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Abstract

We study the long term evolution of the distance between two Keplerian
confocal trajectories in the framework of the averaged restricted 3-body prob-
lem. The bodies may represent the Sun, a solar system planet and an asteroid.
The secular evolution of the orbital elements of the asteroid is computed by
averaging the equations of motion over the mean anomalies of the asteroid
and the planet. When an orbit crossing with the planet occurs the averaged
equations become singular. However, it is possible to define piecewise differen-
tiable solutions by extending the averaged vector field beyond the singularity
from both sides of the orbit crossing set [8], [5]. In this paper we improve the
previous results, concerning in particular the singularity extraction technique,
and show that the extended vector fields are Lipschitz-continuous. Moreover,
we consider the distance between the Keplerian trajectories of the small body
and of the planet. Apart from exceptional cases, we can select a sign for
this distance so that it becomes an analytic map of the orbital elements near
to crossing configurations [11]. We prove that the evolution of the ‘signed’
distance along the averaged vector field is more regular than that of the ele-
ments in a neighborhood of crossing times. A comparison between averaged
and non-averaged evolutions and an application of these results are shown
using orbits of near-Earth asteroids.

1 Introduction

The distance between the trajectories of an asteroid (orbiting around the Sun) and
our planet gives a first indication in the search for possible Earth impactors. We
call it orbit distance and denote it by dmin.

1 A necessary condition to have a very
close approach or an impact with the Earth is that dmin is small. Provided close
approaches with the planets are avoided, the perturbations caused by the Earth
make the asteroid trajectory change slowly with time. Moreover, the perturbations
of the other planets produce small changes in both trajectories. The value of the
semimajor axis of both is kept constant up to the first order in the small parameters
(the ratio of the mass of each perturbing planet to the mass of the Sun). All these
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effects are responsible of a variation of dmin. We can study the evolution of the
asteroid in the framework of the restricted 3-body problem: Sun, planet, asteroid.
Then it is easy to include more than one perturbing planet in the model, in fact
the potential energy can be written as sum of terms each depending on one planet
only.

If the asteroid has a close encounter with some planet, the perturbation of
the latter generically produces a change in the semimajor axis of the asteroid.
This can be estimated, and depends on the mass of the planet, the unperturbed
planetocentric velocity of the small body and the impact parameter, see [18].

The orbits of near-Earth asteroids (NEAs, i.e. with perihelion distance ≤ 1.3
au)2 are chaotic, with short Lyapounov times (see [19]), at most a few decades.
After that period has elapsed, an orbit computed by numerical integration and the
true orbit of the asteroid are practically unrelated and we can not make reliable
predictions on the position of the asteroid. For this reason the averaging principle
is applied to the equations of motion: it gives the average of the possible evolutions,
which is useful in a statistical sense. However, the dynamical evolution often forces
the trajectory of a NEA to cross that of the Earth. This produces a singularity in
the averaged equations, where we take into account every possible position on the
trajectories, including the collision configurations.

The problem of averaging on planet crossing orbits has been studied in [8] for
planets on circular coplanar orbits and then generalized in [5] including nonzero
eccentricities and inclinations of the planets. The work in [8] has been used to define
proper elements for NEAs, that are integrals of an approximated problem, see [9]. In
this paper we compute the main singular term by developing the distance between
two points, one on the orbit of the Earth and the other on that of the asteroid, at its
minimum points. This choice improves the results in [8], [5], where a development at
the mutual nodes was used, because it avoids the artificial singularity occurring for
vanishing mutual inclination of the two orbits. Moreover, we show that the averaged
vector field admits two Lipschitz-continuous extensions from both sides of the orbit
crossing set (see Theorem 4.2), which is useful for the numerical computation of the
solutions.

The orbit distance dmin is a singular function of the (osculating) orbital elements
when the trajectories of the Earth and the asteroid intersect. However, by suitably
choosing a sign for dmin we obtain a map, denoted by d̃min, which is analytic in a
neighborhood of most crossing configurations (see [11]).

Here we prove that, near to crossing configurations, the averaged evolution of
d̃min is more regular than the averaged evolution of the elements, which are piece-
wise differentiable functions of time.

The paper is organized as follows. Section 2 contains some preliminary results
on the orbit distance. In Sections 3, 4, 5 we introduce the averaged equations,
present the results on the singularity extraction method and give the definition
of the generalized solutions, which go beyond crossing singularities. In Section 6
we prove the regularity of the secular evolution of the orbit distance. Section 7 is
devoted to numerical experiments: we describe the algorithm for the computation
of the generalized solutions and compare the averaged evolution with the solutions
of the full equations of motion. We also show how this theory can be applied to
estimate Earth crossing times for NEAs.

21 au (astronomical unit) ≈ 149,597,870 Km
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2 The orbit distance

Let (Ej , vj), j = 1, 2 be two sets of orbital elements of two celestial bodies on
confocal Keplerian orbits. Here Ej describes the trajectory of the orbit and vj is a
parameter along the trajectory, e.g. the true anomaly. We denote by E = (E1, E2)
the two-orbit configuration, moreover we set V = (v1, v2). In this paper we consider
bounded trajectories only.

Choose a reference frame, with origin in the common focus, and write Xj =
Xj(Ej , vj), j = 1, 2 for the Cartesian coordinates of the two bodies.

For a given two-orbit configuration E , we introduce the Keplerian distance func-

tion d, defined by
T
2 ∋ V 7→ d(E , V ) = |X1 −X2| ,

where T2 is the two-dimensional torus and | · | is the Euclidean norm.
The local minimum points of d can be found by computing all the critical points

of d2. For this purpose in [6], [7], [12], [2] the authors have used methods of compu-
tational algebra, such as resultants and Gröbner’s bases, which allow us to compute
efficiently all the solutions.

Apart from the case of two concentric coplanar circles, or two overlapping el-
lipses, the function d2 has finitely many stationary points. There exist configura-
tions attaining 4 local minima of d2: this is thought to be the maximum possible,
but a proof is not known yet. A simple computation shows that, for non-overlapping
trajectories, the number of crossing points is at most two, see [7].

Let Vh = Vh(E) be a local minimum point of V 7→ d2(E , V ). We consider the
maps

E 7→ dh(E) = d(E , Vh) , E 7→ dmin(E) = min
h

dh(E) .

For each choice of the two-orbit configuration E , dmin(E) gives the orbit distance.
The maps dh and dmin are singular at crossing configurations, and their deriva-

tives do not exist. We can deal with this singularity and obtain analytic maps in
a neighborhood of a crossing configuration Ec by properly choosing a sign for these
maps. We note that dh, dmin can present singularities without orbit crossings. The
maps dh can have bifurcation singularities, so that the number of minimum points
of d may change. Therefore the maps dh, dmin are defined only locally. We say that
a configuration E is non-degenerate if all the critical points of the Keplerian distance
function are non-degenerate. If E is non-degenerate, there exists a neighborhood W
of E ∈ R10 such that the maps dh, restricted to W , do not have bifurcations. On
the other hand, the map dmin can lose regularity when two local minima exchange
their role as absolute minimum. There are no additional singularities apart from
those mentioned above. The behavior of the maps dh, dmin has been investigated
in [11]. However, a detailed analysis of the occurrence of bifurcations of stationary
points and exchange of minima is still lacking.

Here we summarize the procedure to deal with the crossing singularity of dh;
the procedure for dmin is the same. We consider the points on the two orbits

corresponding to the local minimum points Vh = (v
(h)
1 , v

(h)
2 ) of d2:

X (h)
1 = X1(E1, v

(h)
1 ) ; X (h)

2 = X2(E2, v
(h)
2 ) .

We introduce the vectors tangent to the trajectories E1, E2 at these points

τ
(h)
1 =

∂X1

∂v1
(E1, v

(h)
1 ) , τ

(h)
2 =

∂X2

∂v2
(E2, v

(h)
2 ) ,
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Figure 1: Geometric properties of the critical points of d2 and regularization rule.

and their cross product

τ
(h)
3 = τ

(h)
1 × τ

(h)
2 .

We also define
∆ = X1 −X2 , ∆h = X (h)

1 −X (h)
2 .

The vector ∆h joins the points attaining a local minimum of d2 and |∆h| = dh.

From the definition of critical points of d2 both the vectors τ
(h)
1 , τ

(h)
2 are or-

thogonal to ∆h, so that τ
(h)
3 and ∆h are parallel, see Figure 1. Denoting by τ̂

(h)
3 ,

∆̂h the corresponding unit vectors and by a dot the Euclidean scalar product, the
distance with sign

d̃h =
(

τ̂
(h)
3 · ∆̂h

)

dh (1)

is an analytic function in a neighborhood of most crossing configurations. Indeed,

this smoothing procedure fails at crossing configurations such that τ
(h)
1 , τ

(h)
2 are

parallel. A detailed proof can be found in [11]. Note that, to obtain regularity in
a neighborhood of a crossing configuration, we lose continuity at the configurations

with τ
(h)
1 × τ

(h)
2 = 0 and dh 6= 0.

The derivatives of d̃h with respect to each component Ek, k = 1 . . . 10 of E are
given by

∂d̃h
∂Ek

= τ̂
(h)
3 · ∂∆

∂Ek
(E , Vh) . (2)

We shall call (signed) orbit distance the map d̃min.

3 Averaged equations

Let us consider a restricted 3-body problem with the Sun, the Earth and an asteroid.
The motion of the 2-body system Sun-Earth is a known function of time. We denote
by X ,X ′ ∈ R3 the heliocentric position of the asteroid and the planet respectively.
The equations of motion for the asteroid are

Ẍ = −k2
X
|X |3 + µk2

[ X ′ −X
|X ′ −X|3 − X ′

|X |3
]

, (3)

where k is Gauss’ constant and µ is a small parameter representing the ratio of the
Earth mass to the mass of the Sun.
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We study the motion using Delaunay’s elements Y = (L,G,Z, ℓ, g, z), defined
by

L = k
√
a ,

G = k
√

a(1− e2) ,

Z = k
√

a(1 − e2) cos I ,

ℓ = n(t− t0) ,
g = ω ,
z = Ω ,

where (a, e, I, ω,Ω, ℓ) are Keplerian elements, n is the mean motion and t0 is the
time of passage at perihelion. Delaunay’s elements of the Earth are denoted by
(L′, G′, Z ′, ℓ′, g′, z′). We write E = (E,E′) for the two-orbit configuration, where
E,E′ are Delaunay’s elements of the asteroid and the Earth respectively. Using the
canonical variables Y, equations (3) can be written in Hamiltonian form as

Ẏ = J3 ∇YH , (4)

where we use

Jn =

[

On −In
In On

]

, n ∈ N ,

for the symplectic identity matrix of order 2n. The Hamiltonian

H = H0 −R

is the difference of the two-body (asteroid, Sun) Hamiltonian

H0 = − k4

2L2

and the perturbing function

R = µk2
(

1

|X − X ′| −
X · X ′

|X ′|3
)

,

with X ,X ′ considered as functions of Y,Y ′.
The function R is the sum of two terms: the first is the direct part of the

perturbation, due to the attraction of the Earth and singular at collisions with it.
The second is called indirect perturbation, and is due to the attraction of the Sun
on the Earth.

We can reduce the number of degrees of freedom of (4) by averaging over the
fast angular variables ℓ, ℓ′, which are the mean anomalies of the asteroid and the
Earth. As a consequence, ℓ becomes a cyclic variable, so that the semimajor axis a
is constant in this simplified dynamics. For a full account on averaging methods in
Celestial Mechanics see [1].

The averaged equations of motion for the asteroid are given by

Ẏ = −J2∇Y R , (5)

where Y = (G,Z, g, z)t, Y = (G,Z, g, z)t are some of Delaunay’s elements, and

∇Y R =
1

(2π)2

∫

T2

∇Y Rdℓ dℓ′ ,

with T2 = {(ℓ, ℓ′) : −π ≤ ℓ ≤ π,−π ≤ ℓ′ ≤ π}, is the vector of the averaged partial
derivatives of the perturbing function R. Equation (5) corresponds to the scalar
equations

Ġ =
∂R

∂g
, Ż =

∂R

∂z
, ġ = −∂R

∂G
, ż = −∂R

∂Z
.
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We can easily include more planets in the model. In this case the perturbing
function is sum of terms Ri, each depending on the coordinates of the asteroid and
the planet i only, with a small parameter µi, representing the ratio of the mass of
planet i to the mass of the Sun.

Note that, if there are mean motion resonances of low order with the planets,
then the solutions of the averaged equations (5) may be not representative of the
behavior of the corresponding components in the solutions of (4).

Moreover, when the planets are assumed to move on circular coplanar orbits
we obtain an integrable problem. In fact the semimajor axis a, the component Z
of the angular momentum orthogonal to the invariable plane3 and the averaged
Hamiltonian H are first integrals generically independent and in involution (i.e.
with vanishing Poisson’s brackets). Taking into account the eccentricity and the
inclination of the planets the problem is not integrable any more.

In [14] the secular evolution of high eccentricity and inclination asteroids is stud-
ied in a restricted 3-body problem, with Jupiter on a circular orbit. Nevertheless,
crossings with the perturbing planet are excluded in that work. In [15] there is a
similar secular theory for a satellite of the Earth. The dynamical behavior described
in [14], [15] is usually called Lidov-Kozai mechanism in the literature and an explicit
solution to the related equations is given in [13].

If no orbit crossing occurs, by the theorem of differentiation under the integral
sign the averaged equations of motion (5) are equal to Hamilton’s equations

Ẏ = −J2∇Y R (6)

where

R =
1

(2π)2

∫

T2

Rdℓ dℓ′ =
µk2

(2π)2

∫

T2

1

|X − X ′| dℓ dℓ
′

is the averaged perturbing function. The average of the indirect term of R is zero.
When the orbit of the asteroid crosses that of the Earth a singularity appears in

(5), corresponding to the existence of a collision for particular values of the mean
anomalies. We study this singularity to define generalized solutions of (5) which go
beyond planet crossings. Since the semimajor axis of the asteroid is constant in the
averaged dynamics, we expect that the generalized solutions can be reliable only if
there are no close approaches with the planet in the dynamics of equations (4).

4 Extraction of the singularity

In the following we denote by Ec a non-degenerate crossing configuration with only
one crossing point, and we choose the minimum point index h such that dh(Ec) = 0.
For each E in a neighborhood of Ec we consider Taylor’s development of V 7→
d2(E , V ), V = (ℓ, ℓ′)t, in a neighborhood of the local minimum point Vh = Vh(E):

d2(E , V ) = d2h(E) +
1

2
(V − Vh) · Hh(E)(V − Vh) +R(h)

3 (E , V ) , (7)

where

Hh(E) =
∂2d2

∂V 2
(E , Vh(E))

3Here we mean the common plane of the planetary trajectories.
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is the Hessian matrix of d2 in Vh = (ℓh, ℓ
′
h)

t, and

R(h)
3 (E , V ) =

∑

|α|=3

r(h)α (E , V )(V − Vh)
α , (8)

r(h)α (E , V ) =
3

α!

∫ 1

0

(1 − t)2Dαd2(E , Vh + t(V − Vh)) dt (9)

is Taylor’s remainder in the integral form.4 We introduce the approximated distance

δh =
√

d2h + (V − Vh) · Ah(V − Vh) , (10)

where

Ah =
1

2
Hh =











|τh|2 +
∂2X
∂ℓ2

(E, ℓh) ·∆h −τh · τ ′h

−τh · τ ′h |τ ′h|2 −
∂2X ′

∂ℓ′2
(E′, ℓ′h) ·∆h











,

and

∆h = ∆h(E) , τh =
∂X
∂ℓ

(E, ℓh) , τ ′h =
∂X ′

∂ℓ′
(E′, ℓ′h) .

Remark 1. If the matrix Ah is non-degenerate, then it is positive definite because
Vh is a minimum point, and this property holds in a suitably chosen neighborhood
W of Ec. At a crossing configuration E = Ec the matrix Ah is degenerate if and
only if the tangent vectors τh, τ

′
h are parallel (see [11]):

detAh(Ec) = 0 ⇐⇒ τh(Ec)× τ ′h(Ec) = 0 .

First we estimate the remainder function 1/d− 1/δh. To this aim we need the
following:

Lemma 4.1. There exist positive constants C1, C2 and a neighborhood U of (Ec, Vh(Ec))
such that

C1δ
2
h ≤ d2 ≤ C2δ

2
h (11)

holds for (E , V ) in U . Moreover, there exist positive constants C3, C4 and a neigh-

borhood W of Ec such that

d2h + C3|V − Vh|2 ≤ δ2h ≤ d2h + C4|V − Vh|2 (12)

holds for E in W and for every V ∈ T2.

Proof. From (8), (9) we obtain the existence of a neighborhood U of (Ec, Vh(Ec))
and a constant C5 > 0 such that

|R(h)
3 (E , V )| ≤

∑

|α|=3

|r(h)α (E , V )||V − Vh|α ≤ C5|V − Vh|3 . (13)

4In (8), (9) α = (α1, α2) ∈ (N ∪ {0})2 is a multi-index, hence

|α| = α1 + α2 , α! = α1!α2! , V α = vα1
1 vα2

2 , Dαf =
∂|α|f

∂vα1

1 ∂vα2

2

,

for a vector V = (v1, v2) and a smooth function V 7→ f(V ).
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Figure 2: Sketch for the selection of the neighborhood U = W × V . Here Γj =
{(E , Vj(E)) : dj(E) = 0} for j = h, k. In this case we restrict W to a smaller set
(the inner circle), as explained in the proof of Proposition 1.

We select U so that no bifurcations of stationary points of d2 occur and there exists
a constant C6 > 0 with dk(E) ≥ C6, k 6= h for each (E , V ) ∈ U . Relation (13)
together with (7),(10) yield (11) for some C1, C2 > 0.

Moreover, we can find a neighborhoodW of Ec such that there are no bifurcations
of stationary points of d2, and the inequalities (12) hold for some C3, C4 > 0: in
fact Ah depends continuously on E and Ah(Ec) is positive definite.

Proposition 1. There exist C > 0 and a neighborhood W of Ec such that

∣

∣

∣

∣

1

d
− 1

δh

∣

∣

∣

∣

≤ C ∀ (E , V ) ∈ (W × T
2) \ UΣ ,

where UΣ = {(E , Vh(E)) : E ∈ Σ} with Σ = {E ∈ W : dh(E) = 0}.
Proof. By Lemma 4.1 we can choose two neighborhoods W , V of Ec and Vh(Ec)
respectively such that both (11) and (12) hold in U = W × V . We restrict W , if
necessary, so that there exists C7 > 0 with d ≥ C7 for each (E , V ) ∈ W × (T2 \ V)
(see Figure 2). In U \ UΣ we have

∣

∣

∣

∣

1

d
− 1

δh

∣

∣

∣

∣

=
|δ2h − d2|

δh d[δh + d]
≤ 1√

C1[1 +
√
C1]

|δ2h − d2|
δ3h

≤ C

for a constant C > 0. Using the boundedness of 1/d, 1/δh in W × (T2 \ V) we
conclude the proof.

Now we estimate the derivatives of the remainder function 1/d− 1/δh.

Proposition 2. There exist C > 0 and a neighborhood W of Ec such that, if yk is

a component of Delaunay’s elements Y , the estimate

∣

∣

∣

∣

∂

∂yk

(1

d
− 1

δh

)

∣

∣

∣

∣

≤ C

dh + |V − Vh|
(14)
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holds for each (E , V ) ∈ (W × T2) \ UΣ, with UΣ as in Proposition 1. Therefore the

map

W \ Σ ∋ E 7→
∫

T2

∂

∂yk

(1

d
− 1

δh

)

dℓdℓ′ , (15)

where Σ = {E ∈ W : dh(E) = 0}, can be extended continuously to the whole set W.

Proof. In the following we denote by Cj , j = 8 . . . 14 some positive constants. We
write

∂

∂yk

(1

d
− 1

δh

)

=
1

2

( 1

δ3h
− 1

d3

)∂δ2h
∂yk

− 1

2d3
∂R(h)

3

∂yk
,

and give an estimate for the two terms at the right hand side. We choose a neigh-
borhood U = W×V of (Ec, Vh(Ec)) as in Proposition 1 so that, using (11), (12) and
the boundedness of the remainder function, we have

∣

∣

∣

∣

1

δ3h
− 1

d3

∣

∣

∣

∣

=

∣

∣

∣

∣

1

δh
− 1

d

∣

∣

∣

∣

( 1

δ2h
+

1

δhd
+

1

d2

)

≤ C8

d2h + |V − Vh|2

in U0 = U \ UΣ. Moreover in U0 we have
∣

∣

∣

∣

∂δ2h
∂yk

∣

∣

∣

∣

≤
∣

∣

∣

∣

∂d2h
∂yk

∣

∣

∣

∣

+ C9|V − Vh| ≤ C10(dh + |V − Vh|) ,

since
∂δ2h
∂yk

=
∂d2h
∂yk

− 2
∂Vh

∂yk
· Ah(V − Vh) + (V − Vh) ·

∂Ah

∂yk
(V − Vh) , (16)

and the derivatives

∂Vh

∂yk
(E) = −[Hh(E)]−1 ∂

∂yk
∇V d

2(E , Vh(E))

are uniformly bounded for E ∈ W since bifurcations do not occur.
Hence the relation

∣

∣

∣

∣

( 1

δ3h
− 1

d3

)∂δ2h
∂yk

∣

∣

∣

∣

≤ C11
dh + |V − Vh|
d2h + |V − Vh|2

≤ 2C11

dh + |V − Vh|
(17)

holds in U0, with C11 = C8C10. We also have

∣

∣

∣

∣

∂R(h)
3

∂yk

∣

∣

∣

∣

≤ C13|V − Vh|2 , (18)

for (E , V ) ∈ U0, in fact

sup
U0

|r(h)α | < +∞ , sup
U0

∣

∣

∣

∣

∂r
(h)
α

∂yk

∣

∣

∣

∣

< +∞ , (19)

for each α = (α1, α2) with |α| = 3. Using again (11), (12) we obtain

∣

∣

∣

∣

1

d3
∂R(h)

3

∂yk

∣

∣

∣

∣

≤ C14

dh + |V − Vh|
. (20)

From (17), (20) we obtain (14) and the assert of the proposition follows using the
boundedness of ∂

∂yk

(

1/d
)

, ∂
∂yk

(

1/δh
)

in W × (T2 \ V).
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From (14) in Proposition 2 the average over T2 of the derivatives of 1/d −
1/δh in (15) is finite for each E in W , and can be computed by exchanging the
integral and differential operators: therefore the average of the remainder function
is continuously differentiable in W .

On the other hand, the average over T2 of the derivatives with respect to yk of
1/δh are non-convergent integrals for E ∈ Σ: for this reason the averaged vector
field in (5) is not defined at orbit crossings. Next we show that the average of these
derivatives admit two analytic extensions to the whole W from both sides of the
singular set Σ.
For this purpose, given a neighborhood W of Ec, we set

W+ = W ∩ {d̃h > 0} , W− = W ∩ {d̃h < 0} ,

with d̃h given by (1).

Proposition 3. There exists a neighborhood W of Ec such that the maps

W+ ∋ E 7→ ∂

∂yk

∫

T2

1

δh
dℓ dℓ′ , W− ∋ E 7→ ∂

∂yk

∫

T2

1

δh
dℓ dℓ′ ,

where yk is a component of Delaunay’s elements Y , can be extended to two different

analytic maps G+
h,k,G−

h,k, defined in W.

Proof. We choose W as in Proposition 2 and, if necessary, we restrict this neighbor-

hood by requiring that τ
(h)
1 ×τ

(h)
2 6= 0 in W , so that d̃h|W is analytic. To investigate

the behavior close to the singularity, for each E ∈ W , we can restrict the integrals
to the domain

D = D(Vh, r) = {V ∈ T
2 : (V − Vh) · Ah(V − Vh) ≤ r2} , (21)

for a suitable r > 0. By using the coordinate change ξ = A1/2
h (V − Vh) and then

polar coordinates (ρ, θ), defined by (ρ cos θ, ρ sin θ) = ξ, we have
∫

D

1

δh
dℓdℓ′ =

1√
detAh

∫

B

1
√

d2h + |ξ|2
dξ

=
2π√
detAh

∫ r

0

ρ
√

d2h + ρ2
dρ =

2π√
detAh

(
√

d2h + r2 − dh) ,

with B = {ξ ∈ R2 : |ξ| ≤ r}. The term −2πdh/
√
detAh is not differentiable at

E = Ec ∈ Σ. We set

Fh,k =
∂

∂yk

( 2π√
detAh

)
√

d2h + r2 +
2π√
detAh

d̃h
√

d2h + r2
∂d̃h
∂yk

with d̃h as in (1), and define on W the two analytic maps

G±
h,k = Fh,k ∓

∂

∂yk

( 2π√
detAh

)

d̃h ∓ 2π√
detAh

∂d̃h
∂yk

+
∂

∂yk

∫

T2\D

1

δh
dℓ dℓ′ . (22)

We observe that G+
h,k (resp. G−

h,k) corresponds to the derivative of
∫

T2 1/δh dℓ dℓ
′

with respect to yk on W+ (resp. W−).
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Now we state the main result.

Theorem 4.2. The averages over T2 of the derivatives of R with respect to Delau-

nay’s elements yk can be extended to two Lipschitz–continuous maps
(

∂R
∂yk

)±

h
on a

neighborhood W of Ec. These maps, restricted to W+, W− respectively, correspond

to ∂R
∂yk

. Moreover the following relations hold:

Diffh

(

∂R

∂yk

)

def
=

( ∂R

∂yk

)−

h
−
( ∂R

∂yk

)+

h
=

=
µk2

π

[

∂

∂yk

(

1
√

det(Ah)

)

d̃h +
1

√

det(Ah)

∂d̃h
∂yk

]

, (23)

with the derivatives of d̃h given by (2).

Proof. Using the results of Propositions 2, 3 we define the extended maps by

( ∂R

∂yk

)±

h
=

µk2

(2π)2

[
∫

T2

∂

∂yk

(

1

d
− 1

δh

)

dℓ dℓ′ + G±
h,k

]

,

with G±
h,k given by (22). We show that the maps E 7→

(

∂R
∂yk

)±

h
(E) are Lipschitz–

continuous extensions to W of ∂R
∂yk

. The maps G±
h,k are analytic in W , thus we only

have to study the integrals
∫

T2

∂
∂yk

(1/d− 1/δh) dℓdℓ
′. From Proposition 2 we know

that these maps are continuous.
We only need to investigate the behavior close to the singularity, therefore we

restrict these integrals to the domain D introduced in (21). We prove that the maps

W \ Σ ∋ E 7→ ∂

∂yj

∫

D

∂

∂yk

1

δh
dℓdℓ′ , W \ Σ ∋ E 7→ ∂

∂yj

∫

D

∂

∂yk

1

d
dℓdℓ′ ,

with j = 1 . . . 4, are bounded. First observe that the derivatives

∂

∂yj

∫

D

∂

∂yk

1

δh
dℓdℓ′ =

∫

D

(

3

4

1

δ5h

∂δ2h
∂yj

∂δ2h
∂yk

− 1

2

1

δ3h

∂2δ2h
∂yj∂yk

)

dℓdℓ′ (24)

are bounded in W\Σ, otherwise we could not find the analytic extensions G+
h,k,G−

h,k

introduced in Proposition 3.5 Then we show that the maps

∂

∂yj

∫

D

∂

∂yk

1

d
dℓdℓ′ =

∫

D

(

3

4

1

d5
∂d2

∂yj

∂d2

∂yk
− 1

2

1

d3
∂2d2

∂yj∂yk

)

dℓdℓ′ (25)

5Actually we can prove that

3

4

∫

D

1

δ5
h

∂δ2
h

∂yj

∂δ2
h

∂yk
dℓdℓ′ = T

(h)
j,k

+ U
(h)
j,k

,
1

2

∫

D

1

δ3
h

∂2δ2
h

∂yj∂yk
dℓdℓ′ = T

(h)
j,k

+V
(h)
j,k

,

where U
(h)
j,k

,V
(h)
j,k

are bounded in W \ Σ, and

T
(h)
j,k

=
2π

dh
√
detAh

(

∂dh

∂Ej
∂dh

∂Ek
+

∂Vh

∂Ej
· Ah

∂Vh

∂Ek

)

is unbounded but cancels out in the difference.
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are bounded in W \Σ. Using (7), (10) we write the integrand function in the right
hand side of (25) as the sum of

3

4

1

δ5h

∂δ2h
∂yj

∂δ2h
∂yk

, −1

2

1

δ3h

∂2δ2h
∂yj∂yk

(26)

and of terms of the following kind:

3

4

1

δ5h

∂R(h)
3

∂yj

[

∂R(h)
3

∂yk

(

1 + P(h)
5

)

+ P(h)
5

∂δ2h
∂yk

]

, −1

2

P(h)
3

δ3h

∂2R(h)
3

∂yj∂yk
, (27)

3

4

1

δ5h

∂R(h)
3

∂yj

∂δ2h
∂yk

, −1

2

1

δ3h

∂2R(h)
3

∂yj∂yk
, (28)

3

4

P(h)
5

δ5h

∂δ2h
∂yj

∂δ2h
∂yk

, −1

2

P(h)
3

δ3h

∂2δ2h
∂yj∂yk

. (29)

The integrals over D of the terms in (26) are not bounded in W \Σ, but their sum
is bounded and corresponds to (24). In the following we denote by Cj , j = 15 . . . 34

some positive constants. Moreover we use the relation d2 = δ2h + R(h)
3 and the

developments

1

ds
=

1

(δ2h +R(h)
3 )s/2

=
1

δsh

[

1 + P(h)
s

]

(s = 3, 5)

with
P(h)
s = P(h)

s (E , V ) =
∑

|β|=1

p
(h)
β,s(E , V )(V − Vh)

β ,

p
(h)
β,s(E , V ) =

∫ 1

0

Dβ

[

(

1 +
R(h)

3

δ2h

)−s/2
]

(E , Vh + t(V − Vh)) dt . (30)

By developing (30) we obtain

p
(h)
β,s(E , V ) = −s

2

∫ 1

0

[(

1 +
R(h)

3

δ2h

)− s
2
−1

Dβ

(R(h)
3

δ2h

)]

(E , Vh + t(V − Vh)) dt

= −s

2

∫ 1

0

Dβ

(R(h)
3

δ2h

)

(E , Vh + t(V − Vh)) dt+R
(h)
s (E , V ) ,

with |R(h)
s (E , V )| ≤ C15|V − Vh|, s = 3, 5. Moreover, we have

Dβ

(

R(h)
3

δ2h

)

=
DβR(h)

3

δ2h
− R(h)

3

δ4h
Dβδ2h . (31)

We can estimate the terms in (31) as follows:

DβR(h)
3 =

∑

|α|=3

[

Dβr(h)α (V − Vh)
α + r(h)α Dβ(V − Vh)

α
]

where
|Dβr(h)α | ≤ C16 , |Dβ(V − Vh)

α| ≤ C17|V − Vh|2 ,

12



so that
|DβR(h)

3 | ≤ C18|V − Vh|2

Moreover
Dβδ2h = 2Dβ(V − Vh) · Ah(V − Vh)

so that
|Dβδh| ≤ C19|V − Vh| .

We conclude that
∣

∣

∣

∣

∣

Dβ

(

R(h)
3

δ2h

)∣

∣

∣

∣

∣

≤ C20 , so that |p(h)β,s(E , V )| ≤ C21 ,

and we obtain the estimate

|P(h)
s (E , V )| ≤ C22|V − Vh| (32)

for (E , V ) ∈ U0. Using (16), (18), (32) and the estimate

∣

∣

∣

∣

∂2R(h)
3

∂yj∂yk

∣

∣

∣

∣

≤ C23|V − Vh| ,

that follows from the boundedness of

r(h)α ,
∂r

(h)
α

∂yk
,

∂2r
(h)
α

∂yj∂yk
,

∂Vh

∂yk
,

∂2Vh

∂yj∂yk
,

we can bound both terms in (27) by C24/|V − Vh|, which has finite integral over
D.6

To estimate the integrals of the terms in (28) we observe that

∂R(h)
3

∂yj
=
∑

|α|=3

r
(h)
α,0

∂(V − Vh)
α

∂yj
+S

(h)
3 ,

∂2R(h)
3

∂yj∂yk
=
∑

|α|=3

r
(h)
α,0

∂2(V − Vh)
α

∂yj∂yk
+S

(h)
2 ,

with

r
(h)
α,0 = r

(h)
α,0(E) = r(h)α (E , Vh(E)) , |S(h)

i | ≤ C25|V − Vh|i (i = 2, 3) .

Then, using (16) and writing dV for dℓdℓ′, we have

∣

∣

∣

∣

∫

D

1

δ5h

∂R(h)
3

∂yj

∂δ2h
∂yk

dV

∣

∣

∣

∣

≤
∣

∣

∣

∣

∂d2h
∂yk

∣

∣

∣

∣

(

∑

|α|=3

∣

∣r
(h)
α,0

∣

∣

∫

D

∣

∣

∣

∣

1

δ5h

∂(V − Vh)
α

∂yj

∣

∣

∣

∣

dV +

∫

D

|S(h)
3 |
δ5h

dV

)

(33)

+2
∑

|α|=3

∣

∣r
(h)
α,0

∣

∣

∣

∣

∣

∣

∫

D

1

δ5h

∂(V − Vh)
α

∂yj

[

∂Vh

∂yk
· Ah(V − Vh)

]

dV

∣

∣

∣

∣

+ C26

∫

D

|V − Vh|4
δ5h

dV

6The boundedness of ∂2Vh

∂yj∂yk
on W follows by differentiating with respect to yj the relation

Hh(E)
∂Vh

∂yk
(E) = − ∂

∂yk
∇V d2(E, Vh(E)) .
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and
∣

∣

∣

∣

∣

∫

D

1

δ3h

∂2R(h)
3

∂yj∂yk
dV

∣

∣

∣

∣

∣

≤
∑

|α|=3

∣

∣r
(h)
α,0

∣

∣

∣

∣

∣

∣

∫

D

1

δ3h

∂2(V − Vh)
α

∂yj∂yk
dV

∣

∣

∣

∣

+ C27

∫

D

|V − Vh|2
δ3h

dV .

(34)

Passing to polar coordinates (ρ, θ), defined by (ρ cos θ, ρ sin θ) = A1/2
h (V − Vh), we

find that

∣

∣

∣

∣

∂d2h
∂yk

∣

∣

∣

∣

∫

D

∣

∣

∣

∣

1

δ5h

∂(V − Vh)
α

∂yj

∣

∣

∣

∣

dV ≤ C28 ,

∣

∣

∣

∣

∂d2h
∂yk

∣

∣

∣

∣

∫

D

|S(h)
3 |
δ5h

dV ≤ C29

for each E ∈ W \ Σ and α with |α| = 3, in fact

∫ r

0

ρi

(d2h + ρ2)5/2
dρ ≤ C30

dh
(i = 3, 4) . (35)

Moreover, passing to polar coordinates (ρ, θ), we have

∫

D

1

δ5h

∂(V − Vh)
α

∂yj

[

∂Vh

∂yk
· Ah(V − Vh)

]

dV =

=

∫ r

0

ρ4

(d2h + ρ2)5/2
dρ
∑

|γ|=3

cγ

∫ 2π

0

(cos θ)γ1(sin θ)γ2 dθ = 0 . (36)

for some functions cγ : W \ Σ → R, γ = (γ1, γ2). Thus the integrals in (33) are
uniformly bounded in W \ Σ. In (36) we have used

∫ 2π

0

(cos θ)γ1(sin θ)γ2 dθ = 0 (37)

for each γ, with odd |γ| = γ1 + γ2 . Finally, using again (37), we obtain

∣

∣

∣

∣

∫

D

1

δ3h

∂2(V − Vh)
α

∂yj∂yk
dV

∣

∣

∣

∣

≤
∣

∣

∣

∣

∑

|γ|=1

bγ

∫ 2π

0

(cos θ)γ1(sin θ)γ2 dθ

∣

∣

∣

∣

∫ r

0

ρ2

(d2h + ρ2)3/2
dρ

+ C31

∫

D

1

|V − Vh|
dV = C31

∫

D

1

|V − Vh|
dV .

for some functions bγ : W \ Σ → R. Hence also the integrals in (34) are uniformly
bounded in W \ Σ.
To estimate the integrals of the terms in (29) we make the following decomposition:

p
(h)
β,s = q

(h)
β,s + w

(h)
β,s ,

with

q
(h)
β,s = −s

2

∑

|α|=3

r
(h)
α,0

∫ 1

0

[

1

δ2h

(

Dβ(V − Vh)
α − Dβδ2h

δ2h
(V − Vh)

α

)]

(E , Vh+t(V−Vh)) dt

14



and |w(h)
β,s| ≤ C32|V − Vh|. For the first term in (29) we obtain

∣

∣

∣

∣

∫

D

P(h)
5

δ5h

∂δ2h
∂yj

∂δ2h
∂yk

dV

∣

∣

∣

∣

≤
∣

∣

∣

∣

∂d2h
∂yj

∂d2h
∂yk

∫

D

1

δ5h

∑

|β|=1

q
(h)
β,5(V − Vh)

β dV

∣

∣

∣

∣

(38)

+ 4

∣

∣

∣

∣

∫

D

1

δ5h

∑

|β|=1

q
(h)
β,5(V − Vh)

β

[

∂Vh

∂yj
· Ah(V − Vh)

] [

∂Vh

∂yk
· Ah(V − Vh)

]

dV

∣

∣

∣

∣

+ C33

where we have used polar coordinates and the inequalities (35). The two integrals
at the right hand side of (38) vanish: in fact using Fubini-Tonelli’s theorem and
passing to polar coordinates (ρ, θ), by relations (37) we obtain

∫

D

1

δ5h

∑

|β|=1

q
(h)
β,5(V − Vh)

β dV =

=
∑

|β|=1

∑

|γ|∈{3,5}

∫ 1

0

∫ r

0

φβ,γ(ρ, t) dρ dt

∫ 2π

0

(cos θ)γ1(sin θ)γ2 dθ = 0

for some functions φβ,γ : R+ × R → R. The computation for the other integral is
analogous.
The second term in (29) is estimated in a similar way:

∣

∣

∣

∣

∫

D

P(h)
3

δ3h

∂2δ2h
∂yj∂yk

dV

∣

∣

∣

∣

≤
∣

∣

∣

∣

(

∂2d2h
∂yj∂yk

+ 2
∂Vh

∂yj
· Ah

∂Vh

∂yk

)
∫

D

1

δ3h

∑

|β|=1

q
(h)
β,3(V − Vh)

β dV

∣

∣

∣

∣

+ C34 ,

and the integral at the right hand side vanishes as well.
We conclude the proof observing that, using (22) and the theorem of differen-

tiation under the integral sign, the derivatives
(

∂R
∂yk

)+

h
,
(

∂R
∂yk

)−

h
, restricted to W+,

W− respectively, correspond to ∂R
∂yk

, and their difference in W is given by (23).

Remark 2. If Ec is an orbit configuration with two crossings, assuming that
dh(Ec) = 0 for h = 1, 2, we can extract the singularity by considering the ap-
proximated distances δ1, δ2 and the remainder function 1/d− 1/δ1 − 1/δ2.

5 Generalized solutions

We show that generically we can uniquely extend the solutions of (5) beyond the
crossing singularity dmin = 0. This is obtained by patching together classical solu-
tions defined in the domains W+ with solutions defined in W−, or vice versa.

Let a > 0 be a value for the semimajor axis of the asteroid and Y : I → R4

be a continuous function defined in an open interval I ⊂ R, representing a possible
evolution of the asteroid orbital elements Y = (G,Z, g, z). We introduce

E(t) = (E(t), E
′
(t)) , (39)

with
E(t) = (k

√
a, Y (t)) , (40)
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where k is Gauss’ constant and E
′
is a known function of time representing the

evolution of the Earth.7

Let T (Y ) be the set of times tc ∈ I such that dmin(E(tc)) = 0, and assume that
each tc is isolated, so that we can represent the set

I \ T (Y ) = ⊔j∈N Ij

as disjoint union of open intervals Ij , with N a countable (possibly finite) set.

Definition 5.1. We say that Y is a generalized solution of (5) if its restriction to
each Ij , j ∈ N is a classical solution of (5) and, for each tc ∈ T (Y ), there exist finite
values of

lim
t→t+c

Ẏ (t) , lim
t→t−c

Ẏ (t) .

Choose Y0 ∈ R4 and a time t0 such that dmin(E0) > 0, with E0 = (E0, E
′
0),

E0 = (k
√
a, Y0), E

′
0 = E′(t0). We show how we can construct a generalized solution

of the Cauchy problem

Ẏ = −J2∇Y R , Y (t0) = Y0 . (41)

Let Y (t) be the maximal classical solution of (41), defined in the maximal interval
J . Assume that tc = sup J < +∞, and limt→t−c

E(t) = Ec, with Ec a non-degenerate

crossing configuration such that dmin(Ec) = dh(Ec) = 0 for some h. Let W , W±

be chosen as in Theorem 4.2. Suppose that there exists τ ∈ (t0, tc) such that
E(t) ∈ W+ for t ∈ (τ, tc). Let Yτ = Y (τ). By Theorem 4.2 there exists Ẏc ∈ R4

such that
lim
t→t−c

Ẏ (t) = Ẏc , (42)

in fact relation (42) is fulfilled by the solution of the Cauchy problem8

Ẏ = −J2 (∇Y R)+h , Y (τ) = Yτ , (43)

which corresponds to the solution of (41) in the interval (τ, tc) and is defined also
at the crossing time tc. Let us denote by Yc its value for t = tc. Using again
Theorem 4.2 we can extend Y (t) beyond the crossing singularity by considering the
new problem

Ẏ = −J2 (∇Y R)−h , Y (tc) = Yc . (44)

The solution of (44) fulfils

lim
t→t+c

Ẏ (t) = Ẏc +Diffh(∇Y R)(E(tc)) . (45)

The vector field in (44) corresponds to −J2∇Y R on W−, thus we can continue the
solution outside W and this procedure can be repeated at almost every crossing
singularities. Indeed, the generalized solution is unique provided the evolution t 7→
E(t) is not tangent to the orbit crossing set Σ.

7In the case of one perturbing planet E
′
(t) is constant and represents the trajectory of a solution

of the 2-body problem. If we consider more than one perturbing planet then E
′
(t) changes with

time due to the planetary perturbations.
8Here (∇Y R)+

h
is the vector with components

(

∂R
∂yk

)+

h
, k = 1 . . . 4 introduced in Theorem 4.2.
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Moreover, if detAh = 0 the extraction of the singularity, described in Section 4,
cannot be performed.

In case E(t) ∈ W− for t ∈ (τ, tc) the previous discussion still holds if we exchange
(∇Y R)+h with (∇Y R)−h . In this case (45) becomes

lim
t→t+c

Ẏ (t) = Ẏc −Diffh(∇Y R)(E(tc)) .

6 Evolution of the orbit distance

We prove that the secular evolution of d̃min is more regular than that of the orbital
elements in a neighborhood of a planet crossing time. We introduce the secular
evolution of the distances d̃h and of the orbit distance d̃min:

dh(t) = d̃h(E(t)) , dmin(t) = d̃min(E(t)) . (46)

Assume these maps are defined in an open interval containing a crossing time tc,
and suppose Ec = E(tc) is a non-degenerate crossing configuration at time tc, as in
Section 4.

In the following we shall discuss only the case of d̃h. The same result holds
for d̃min, taking care of the possible exchange of role of two local minima dh, dk as
absolute minimum.

Proposition 4. Let Y (t) be a generalized solution of (41) and E(t) as in (39),
(40). Assume tc ∈ T (Y ) is a crossing time and Ec = E(tc) is a non-degenerate

crossing configuration with only one crossing point. Then there exists an interval

(ta, tb), ta < tc < tb such that dh ∈ C1((ta, tb);R).

Proof. Let the interval (ta, tb) be such that E((ta, tb)) ⊂ W , where W is chosen as
in Theorem 4.2. We can assume that E(t) ∈ W+ for t ∈ (ta, tc), E(t) ∈ W− for
t ∈ (tc, tb) (the proof for the opposite case is similar). For t ∈ (ta, tb)\ {tc} the time
derivative of dh is

ḋh(t) = ∇E d̃h(E(t)) · Ė(t) = ∇Y d̃h(E(t)) · Ẏ (t) +∇E′ d̃h(E(t)) · Ė
′
(t)

= −
(

∇Y d̃h · J2∇Y R
)

(E(t)) +∇E′ d̃h(E(t)) · Ė
′
(t) .

Here ∇E , ∇Y , ∇E′ denote the vectors of partial derivatives with respect to E , Y, E′

respectively. The derivative Ė
′
(t) exists also for t = tc. On the other hand, by

Theorem 4.2, the restrictions of ∇Y R(E(t)) to t < tc and t > tc admit two different
continuous extensions to tc. By (23), since d̃h(E(tc)) = 0, we have

lim
t→t+c

ḋh(t)− lim
t→t−c

ḋh(t) = Diffh

(

∇Y R
)

· J2∇Y d̃h

∣

∣

∣

E=Ec

=
µk2

π
√
detAh

{d̃h, d̃h}Y
∣

∣

∣

E=Ec

= 0 ,

where {, }Y is the Poisson bracket with respect to Y . Thus the time derivative of
dh exists and is continuous also in t = tc.
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7 Numerical experiments

7.1 The secular evolution program

Using a model with 5 planets, from Venus to Saturn, we compute a planetary
ephemerides database for a time span of 50, 000 yrs starting from epoch 0 MJD
(November 17, 1858) with a time step of 20 yrs. The computation is performed
using the FORTRAN program orbit9, included in the OrbFit free software9. From
this database we can obtain, by linear interpolation, the orbital elements of the
planets at any time in the specified time interval.

We describe the algorithm to compute the solutions of the averaged equations
(5) beyond the singularity, where R is now the sum of the perturbing functions Ri,
i = 1 . . . 5, each related to a different planet. We use a Runge-Kutta-Gauss (RKG)
method to perform the integration: it evaluates the averaged vector field only at
intermediate points of the integration time interval. When the asteroid trajectory
is close enough to an orbit crossing, then the time step is decreased to reach the
crossing condition exactly.

From Theorem 4.2 we can find two Lipschitz-continuous extensions of the aver-
aged vector field from both sides of the singular set Σ.

To compute the solution beyond the singularity we use the explicit formula
(23) giving the difference between the two extended vector fields, either of which
corresponds to the averaged vector field on different sides of Σ. We compute the
intermediate values of the extended vector field just after crossing, then we correct
these values by (23) and use them as approximations of the averaged vector field in
(5) at the intermediate points of the solutions, see Figure 3. This RKG algorithm
avoids the computation of the extended vector field at the singular points, which
may be affected by numerical instability.

A difficulty in the application of this scheme is to estimate the size of a suitable
neighborhood W of the crossing configuration Ec fulfilling the conditions given in
Section 4.

xx

x

x
x

xY k−1
Y k

Y k+1W+

W−
Σ

Figure 3: Runge-Kutta-Gauss method and continuation of the solutions of equations
(5) beyond the singularity. The crosses correspond to the intermediate values.

9http://adams.dm.unipi.it/~orbmaint/orbfit/
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Figure 4: Averaged and non-averaged evolutions of asteroid 1979 XB.

7.2 Comparison with the solutions of the full equations

We performed some tests to compare the solutions of the averaged equations (5) with
the corresponding components of the solutions of the full equations (4). Here we
show two tests with the asteroids 1979 XB and 1620 (Geographos). We considered
the system composed by an asteroid and 5 planets, from Venus to Saturn. We
selected the 8 values kπ/4, with k = 0 . . . 7, for the initial mean anomaly of the
asteroid and the same for the planets. Using the program orbit9, we performed the
integration of the system with these 64 different initial conditions (i.e. we selected
equal initial phases for all the planets). Then we consider the arithmetic mean of the
four equinoctial10 orbital elements h, k, p, q of the asteroid over these evolutions, and
compare them with the results of the secular evolution. In Figures 4, 5, we show the
results: the crosses indicate the secular evolution, the continuous curve is the mean
of full numerical one and the gray region represents the standard deviation from
the mean. The correspondence between the solutions is good. During the evolution
the distance between the asteroid and the Earth for some initial conditions attains
values of the order of 10−4 au for 1620 (Geographos), and 10−3 au for 1979 XB. In
Figure 5 the Earth crossing singularity is particularly evident near the epoch 3000
AD.

10We recall that

h = e sin(ω +Ω) , k = e cos(ω + Ω) , p = tan(I/2) sin(Ω) , q = tan(I/2) cos(Ω) .

The equinoctial orbital elements have been introduced in [4].
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Figure 5: Averaged and non-averaged evolutions of asteroid 1620 (Geographos).

Some numerical tests of the theory introduced in [8], with the planets on circular
coplanar orbits, can be found in [10].

7.3 An estimate of planet crossing times

The results of Section 6 can be used to estimate the epoch in which the orbit of a
near-Earth asteroid will cross that of the Earth. We are interested in particular to
study the behavior of those asteroids whose orbits will cross the Earth in the next
few centuries, so that they must have a small value of dmin already at the present
epoch. We can consider, for example, the set of potentially hazardous asteroids
(PHAs), which have dmin ≤ 0.05 au and absolute magnitude Hmag ≤ 22, i.e. they
are also large.

In Figure 6 we show 3 different evolutions of the signed orbit distance d̃min for
the PHA 1979 XB. Here we draw the full numerical (solid line), secular (dashed) and
secular linearized (dotted) evolution of d̃min. By Proposition 4 the linearization of
the secular evolution dmin(t) can give a good approximation also in a neighborhood
of a crossing time.

We propose a method to compute an interval J of possible crossing times. We
sample the line of variation (LOV), introduced in [16], which is a sort of ‘spine’ of
the confidence region (see also [17]), and compute the signed orbit distance d̃min for
each virtual asteroid (VA) of the sample. Then we compute the time derivative of
d̄min for each VA and extrapolate the crossing times by a linear approximation of
the evolution. We set J = [t1, t2], with t1, t2 the minimum and maximum crossing
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Figure 6: Different evolutions of d̃min for 1979 XB: full numerical (solid line), secular
(dashed) and secular linearized (dotted).

times obtained (see Figure 7). In the computation of J we take into account a band
centered at the Earth crossing line dmin = 0: in this test the width of the considered
band is 2× 10−3 au.

We describe a method to assign a probability of occurrence of crossings in a
given time interval, which is related to the algorithm described above. For each
value of the LOV parameter s we have a VA at a time t, so that we can compute
d̄min(t). Thus, using the scheme of Figure 7 we can define a map T from the LOV
parameter line to the time line. The map T gives the crossing times (by using the
linearized secular dynamics) for the VAs on the LOV that correspond to the selected
values of the parameter s. Moreover, we have a probability density function p(s)
on the LOV. Therefore, given an interval I in the time line, we can consider the set
UI = T−1(I) and define the probability of having a crossing in the time interval I
as

P (I) =

∫

UI

p(s) ds .

Finally, in Figure 8 we show the corresponding interval J ′ obtained by computing
the secular evolution (without linearization) of the orbit distance for each VA of
1979 XB. The sizes of J and J ′ are almost equal, but the left extremum of J ′ is
∼ 10 years before.

8 Conclusions and future work

We have studied the double averaged restricted 3-body problem in case of orbit
crossing singularities, improving and completing the results in [8], [5]. This problem
is of interest to study the dynamics of near-Earth asteroids from a statistical point
of view, going beyond the Lyapounov times of their orbits. We have also proved
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Figure 7: Computation of the interval J (horizontal solid line) for asteroid 1979 XB.
The transversal solid line corresponds to the linearized secular evolution of the
nominal orbit. The linearized secular evolution of the VAs are the dotted lines.

that generically, in a neighborhood of a crossing time, the secular evolution of the
(signed) orbit distance is more regular than the averaged evolution of the orbital
elements.

The solutions of this averaged problem have been computed by a numerical
method and then compared with the solutions of the full equations in a few test
cases. The results were good enough; however, we expect that the averaging tech-
nique fails in case of mean motion resonances or close encounters with a planet. We
plan to perform numerical experiments with a large sample of near-Earth asteroids
showing different behaviors: this will be useful to understand the applicability of
the averaging technique to the whole set of NEAs.
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