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Abstract  13 

Arbuscular mycorrhizal fungi are increasingly used in organic cropping systems to increase yields. 14 

Although cover crops are largely used in organic farming, there is little knowledge on the impact of cover 15 

crops on native mycorrhizal fungi. Here we studied the effect of cover crop diversity on mycorrhizal 16 

colonization in subsequent organic maize cultivars differing in the level of genetic diversity. Experiments 17 

were conducted from 2010 to 2012 in a Mediterranean environment. First Indian mustard (Brassica juncea 18 

L. Czern.), hairy vetch (Vicia villosa Roth), a mix of seven cover crop species (Mix) and natural vegetation 19 

(Control) were cultivated as winter cover crops. Then an organically and a conventionally bred maize 20 

hybrid, and three organically bred composite cross populations were cultivated. Mycorrhizal propagule 21 

dynamics were measured. Results at juvenile stage show a higher mycorrhizal colonization in maize plants 22 

grown after hairy vetch, of 35.0%, and Mix cover crops, of 29.4%, compared to Indian mustard, of 20.9%, 23 

and Control, of 21.3%. The potential of soil mycorrhization decreased of 56.5% following Indian mustard, 24 

higher than that of other cover crops, of 34.1-47.3%. This finding could be explained by the release of 25 

isothiocyanates in soils. Moreover, maize shoot biomass, nitrogen and phosphorus content across all maize 26 

genotypes at juvenile stage increased with mycorrhizal colonization. These findings provide the first 27 

evidence of the greater role played by cover crop identity in the enhancement of early mycorrhizal 28 

colonization of the subsequent crop and of soil mycorrhizal activity. 29 

 30 
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1 Introduction 35 

Beneficial soil biota provide essential ecological services and represent key elements of soil fertility and 36 

productivity in organic farming systems (Pimentel et al. 1997). Arbuscular mycorrhizal fungi (AMF) 37 

belong to one of the most important groups of beneficial soil biota, establishing mutualistic symbioses with 38 

the roots of most land plants, including the large majority of agricultural crops (Smith and Read 2008). 39 

AMF deliver many essential agroecosystem services, such as nutrient uptake, soil aggregation and carbon 40 

sequestration (Gianinazzi et al. 2010), by means of an extensive extraradical hyphal network spreading 41 

from colonized roots into the soil (Avio et al. 2006; Fortuna et al. 2012) and have been regarded as 42 

‘agroecosystem engineers’ (Rinaudo et al. 2010). In addition, AMF increase plant resistance to biotic and 43 

abiotic stresses (Smith and Read 2008) and affect the synthesis of beneficial plant secondary metabolites, 44 

contributing to the production of safe and high quality food (Giovannetti et al. 2012). 45 

AMF exploitation as biofertilisers has been implemented by the deliberate release of exotic strains 46 

into agroecosystems (Gianinazzi et al. 2010). Less attention has been focused on the possibility of raising 47 

inoculum potential of AMF indigenous strains by appropriate agricultural management practices. Such a 48 

strategy would be fundamental in low-input and organic farming, which rely more on agroecological 49 

approaches than on the use of external inputs. Enhancement of indigenous strains would promote early 50 

colonization of field crops, increasing the expression of agroecosystem services (Bittman et al. 2006). 51 

Cover crops are widely recognized as an important management practice for sustainable agriculture 52 

because of their contributions to soil conservation and quality, and to crop performance (Kabir and Koide 53 

2002; Weil and Kremen 2007). They have been reported to help maintain or increase mycorrhizal potential 54 

of soils, e. g. providing nourishment during winter periods to AMF, which are obligate mutualists (Kabir 55 

and Koide 2002). When the agricultural fields lie fallow through the winter season, AMF populations are 56 

deprived of carbohydrates, and consequently are considerably reduced by the start of the next cropping 57 

season. Thus, mycotrophic cover crops may be fundamental in maintaining a high inoculum potential in the 58 

absence of the cash crop during seasonal fallow periods.  59 

Nonetheless, some cover crops - mainly members of the Brassicaceae family - are not mycorrhizal, 60 

and may reduce AMF colonization in the subsequent crop. Some studies have indicated reduced 61 

mycorrhizal colonization of the subsequent crop after the growth of a Brassica species (Gavito and Miller 62 

1998; Koide and Peoples 2012) while others did not report any change (Pellerin et al. 2007; White and 63 

Weil 2010). Thus, to delineate how cover crops influence field AMF populations it would be necessary to 64 

have comparative field experiments that encompass both AMF host and non host cover crops.  65 

In short season crops, such as maize, AMF benefit may depend on early and large root 66 

colonization, which in turn is strictly correlated with soil inoculum potential (Bittman et al. 2006). 67 

Mycorrhizal dependency and responsiveness also depend on plant genotypes, which vary among different 68 
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crops (Tawaraya 2003; An et al. 2010). Plant breeding to create novel genotypes more efficient in nutrient 69 

and water resource use represents a key target for sustainable agriculture. Crop breeding is generally 70 

carried out in research stations where nutrients are not a limiting factor, possibly leading to the production 71 

of hybrids less responsive to AMF. By contrast, breeding programs in organic agriculture should focus on 72 

crop genotypes that make sustainable use of the available soil bioresources (Wolfe et al. 2008). Thus, a 73 

profitable use of AMF in an organic and low-input farming context, will require the selection of a suitable 74 

combination of plant host, fungal partner and agricultural management practices (Sawers et al. 2008).  75 

Here, we tested the hypothesis that increasing the genetic (breeding) and species (cover crop) 76 

diversity will provide a more favorable environment for AMF activity in an organic system (Fig. 1). The 77 

specific aims of this study were: i) to assess the effects of three winter cover crop treatments, differing in 78 

species diversity, and fallow on AMF colonization of five subsequent maize crop genotypes at the juvenile 79 

stage and at harvest; ii) to monitor the effects of three winter cover crop treatments and fallow on soil 80 

mycorrhizal potential; iii) to examine the growth responses of maize plants at juvenile stage and their 81 

relationship with early mycorrhizal colonization; iv) to assess AMF susceptibility of two maize hybrids 82 

(organically and conventionally bred) compared with three composite cross populations (organically bred) 83 

of higher genetic diversity, at the juvenile stage and at harvest. 84 

 85 

2 Materials and methods 86 

2.1 Experimental site  87 

The experimental fields were located at the Interdepartmental Centre for Agri-environmental Research 88 

“Enrico Avanzi” (CIRAA) of the University of Pisa, located at S. Piero a Grado, Pisa (latitude 43°40’ N, 89 

longitude 10°18’ E) in Italy. The fields are part of a long-term experimental system, MASCOT 90 

(Mediterranean Arable Systems Comparison Trial) established in autumn 2001, comparing organic and 91 

conventional management systems for a 5-year stockless arable crop rotation (Mazzoncini et al. 2010). 92 

Physical and chemical characteristics of soil are: clay, 19.4%; silt, 29.2%; sand, 51.4%; pH (water) 8.3, 93 

total organic carbon, 9.3 g kg 
-1

, total N, 1.1 g kg 
-1

, and available P (Olsen analysis), 6.7 g kg 
-1

. The crop 94 

rotation includes maize (Zea mays L.), common wheat (Triticum aestivum L.), sunflower (Helianthus 95 

annuus L.), pigeon bean (Vicia faba L. var. minor) and durum wheat (Triticum durum Desf.). The 96 

experiment embeds additional organically-managed fields (‘organic playgrounds’) where specific plot 97 

experiments are allocated (Bàrberi and Mazzoncini 2006).  98 

 99 

2.2 Experimental design 100 

The experiment was laid out in one organic playground as a split plot design with three blocks, and in each 101 

year it was performed in a different field. Main plots included four soil cover treatments, namely Brassica 102 
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juncea (L.) Czern. cv. ISCI 20 (Indian mustard), Vicia villosa Roth cv. Latigo (hairy vetch), a mix of seven 103 

species (hereafter called ‘Mix’) and a no-till fallow with natural vegetation (hereafter called ‘Control’). The 104 

Mix treatment, supplied as a commercial mixture by Arcoiris s.r.l. (Modena, Italy), included: Fagopyrum 105 

esculentum Moench (buckwheat), Lupinus albus L. (white lupin), Phacelia tanacetifolia Benth. (lacy 106 

phacelia), Pisum sativum L. (common pea), Trifolium alexandrinum L. (berseem clover), Trifolium 107 

incarnatum L. (crimson clover) and V. villosa. Subplots included five maize genotypes, two hybrids 108 

(Pioneer
®
 PR64Y03 and MvTC TO341, developed under conventional and organic management 109 

respectively) and three composite cross populations, namely Complete Composite, Composite 1 Gyula and 110 

PC Composite. Composite cross populations are populations of segregating individuals formed by inter-111 

crossing seed stocks with divergent evolutionary origins, followed by bulking and propagation of the F1 112 

progenies in successive cropping seasons (Phillips and Wolfe 2005). Compared to hybrids, they are thus 113 

characterised by higher genetic diversity. Composite cross populations and the organic hybrid seeds were 114 

provided by the Centre for Agricultural Research, Agricultural Institute, Hungarian Academy of Sciences, 115 

Martonvásár. The whole trial was then composed of 60 subplots each measuring 3 × 10 m. 116 

 117 

2.3 Cover crop management  118 

Cover crops were sown on 18 October 2010 at a seeding rate of 9 kg ha
-1

 (B. juncea), 100 kg ha
-1

 (V. 119 

villosa) and 50 kg ha
-1

 (Mix). In 2011, cover crops were sown on 19 October at higher rates, since cover 120 

crop biomass in the previous year was lower than expected and to ensure adequate plant stand: 12 kg ha
-1 

121 

(B. juncea), 120 kg ha
-1

 (V. villosa), and 65 kg ha
-1 

(Mix). Weeds were not controlled in any of the 122 

treatments. Cover crops and weeds were sampled on 21 April 2011 and 23 April 2012 from four randomly 123 

selected 0.25 m
2
 quadrates plot

-1
. Cover crop and weeds were separated and oven dried at 80°C until 124 

constant weight. Total shoot dry biomass (cover crop and weeds) ranged from 165 g m
-2

 in Control to 200 125 

in B. juncea, 400 in V. villosa and 440 in Mix in 2011, and from 750 g m
-2

 in B. juncea to 800 in V. villosa, 126 

900 in Mix and 920 in Control in 2012, weeds representing about 20-60% and 40-70% of the total biomass 127 

in 2011 and 2012, respectively. In particular, in B. juncea weeds represented 64% and 47% of the total 128 

biomass. The dominant weeds were represented by the AMF hosts Lolium spp., Cynodon dactylon (L.) 129 

Pers. and Avena spp., which occurred as natural vegetation in Control treatment. No differences in weeds 130 

distribution were observed among treatments. Each year, cover crops were mown at the end of April and 131 

immediately incorporated into the soil by disc harrowing at a depth of 15 cm. 132 

 133 

2.4 Maize sowing and management 134 

Maize genotypes were sown on 26 April 2011 and 5 June 2012 at a spacing of 50 × 28 cm. Delayed sowing 135 

in 2012 was due to prolonged heavy rain and cold. Nutex Letame (Sipcam Italia S.p.A., Pero, Italy), a 136 
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pelleted mixture of selected manures (NPK=3:3:3), was applied only in 2011 at 1000 kg ha
-1

 rate as a 137 

starter fertiliser. Maize was grown as a rainfed crop, but in 2012 overhead irrigation was applied since an 138 

extremely dry and hot period occurred after the juvenile stage. 139 

 140 

2.5 Plant sampling  141 

Maize plants were sampled for AMF root colonization at the 4
th
 leaf (juvenile) phenological stage, and at 142 

final harvest stage. At juvenile stage (16 May 2011 and 2 July 2012) the sampling was done by uprooting 4 143 

plants from each subplot, to recover the whole root system. The plants were placed in polythene bags and 144 

transported to the laboratory for analyses. Roots were processed for AMF assessment and shoots were oven 145 

dried at 60°C for 5 days, then weighed and preserved in sealed bags for N and P analyses. At harvest stage, 146 

4 soil cores measuring about 8 cm in diameter and 15 cm in depth were obtained from the base of the 147 

sampled maize plants. The soil was washed through a 500 µm sieve to recover the roots. 148 

 149 

2.6 Mycorrhizal root colonization of maize 150 

At juvenile stage, maize roots were cleaned with tap water, cleared with 10% KOH in water bath at 80°C 151 

for 15 min, neutralized in 2% aqueous HCl and stained with 0.05% trypan blue in lactic acid. Root 152 

colonization was assessed under a dissecting microscope (Wild, Leica, Milano, Italy) at 25× or 40× 153 

magnification by the gridline intersect method (Giovannetti and Mosse 1980).  154 

 155 

2.7 Mycorrhizal inoculum potential of the experimental field soil 156 

Mycorrhizal inoculum potential (MIP) bioassay before sowing was carried out to verify the homogeneity of 157 

AMF propagules’ distribution in the field soil. As B. juncea treatment reduced early AMF colonization in 158 

the subsequent maize crop, in the second year we decided to assess MIP on soil samples at different times, 159 

in order to investigate field AMF propagule density dynamics. Samples were taken: before cover crop 160 

sowing; at the end of cover crop cycle, a few days before soil incorporation; after soil incorporation of 161 

cover crops and tillage; at maize harvest. Soil samples (3 soil cores per subplot, taken 2.5 m apart at a depth 162 

of 5 to 15 cm) were dried, sieved using a 4 mm sieve and put in 50 ml tubes. Three replicated tubes were 163 

prepared for each MIP determination, for a total of 180 tubes. Cichorium intybus L. cv. Zuccherina di 164 

Trieste was sown in tubes put in transparent sun bags and maintained in a growth chamber at 27 °C and 165 

16/8 h light/dark daily cycle until harvest. One week after germination plants were thinned to four per tube. 166 

Each tube was watered as needed. Plants were harvested 30 days after sowing and shoots excised and 167 

discarded. After removing the soil from tubes, roots were separated and cleaned with tap water. Roots were 168 

then cleared, stained and examined for AMF colonization assessment as described above. 169 

 170 
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2.8 Plant P and N uptake 171 

P concentrations were measured after sulphuric/perchloric acid digestion using the photometric method, 172 

whilst N concentrations were assessed using the Kjeldahl method. The total P and N contents were 173 

calculated by multiplying P and N concentration values by dry weights.  174 

 175 

2.9 Data analyses 176 

Analyses of maize shoot dry matter, N and P content at juvenile stage were performed separately for each 177 

year using a split-plot experimental design, since there was a significant interaction between genotype and 178 

year. A mixed model with year as a random factor, cover crop and maize genotype as fixed factors was 179 

adopted for soil MIP at the start of the experiment, maize AMF colonization at juvenile stage and harvest. 180 

Pearson correlation coefficient was determined for maize shoot dry matter at juvenile stage vs AMF 181 

colonization. The results of MIP bioassays for the second year were analysed by two way ANOVA, using 182 

cover crop and time as factors, separately for each subsequent pair of sampling points. Percentage data 183 

were arcsine transformed to fulfil the assumptions of ANOVA. Data reported in tables and figures were 184 

then back transformed. Wherever feasible, a post hoc test was performed using Tukey’s HSD test, while 185 

orthogonal contrasts were used to test differences within hybrids and between hybrids and composite crop 186 

population. All statistical analyses were performed with SPSS 19.0 (SPSS Inc., Chicago, IL, USA). 187 

 188 

3 Results and Discussion 189 

3.1 Maize mycorrhizal colonization at juvenile stage 190 

MIP bioassay data showed no significant differences in AMF soil propagule density of the relevant 191 

subplots at the start of the experiment (32.5-37.3% in the first year and 38.1-43.4% in the second year), 192 

allowing us to consider mycorrhizal colonization data as only dependent on cover crop treatments and not 193 

biased by a possible heterogeneous distribution of AMF propagules in the field. Mycorrhizal colonization 194 

of maize at juvenile stage was significantly affected by cover crop treatments (F3,12 = 5.41, p = 0.014), 195 

while it was not affected by year and genotype (F1,2 = 0.81, p = 0.462, and F4,62 = 1.04, p = 0.394). Maize 196 

plants grown after V. villosa had the highest percentage of AMF colonised root length (35.0%±2.03%), 197 

while plants grown after B. juncea and Control treatments had the lowest colonization levels (Fig. 2), 198 

suggesting that V. villosa, as an AMF host plant, was able to sustain AMF natural communities better than 199 

the non-host species B. juncea and fallow. The increased level of species diversity in Mix cover crop 200 

treatment decreased AMF root colonization of maize, compared with V. villosa, indicating that cover crop 201 

species functional identity (Costanzo and Bàrberi 2013) may play a more influential role than diversity in 202 

determining the mycorrhizal status of the subsequent crop. In this experiment, we found a reduced level of 203 

maize AMF colonization after B. juncea cover crop, in agreement with observations on oilseed rape 204 
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(Brassica napus L.) preceding maize (Koide and Peoples 2012). Our findings could be ascribed to a 205 

reduction, during the winter period, of AMF propagules, which, as obligate symbionts, depend on carbon 206 

sources supplied by host plants for their survival and on the maintenance of an extensive extraradical 207 

hyphal network able to boost mycorrhizal colonization of nearby plants (Giovannetti et al. 2004). 208 

Alternatively, the disruption and soil incorporation, as green manure, of B. juncea tissues, which contain 209 

glucosinolates producing biotoxic compounds, e. g. isothiocyanates after hydrolysis by myrosinase 210 

enzyme, may have had inhibitory effects on field AMF populations (Pellerin et al. 2007). Though, 211 

mycorrhizal colonization of maize grown after B. juncea did not differ from that obtained after fallow, as 212 

previously reported by other authors (Pellerin et al. 2007; White and Weil 2010). In our experimental 213 

system, the occurrence of host plant species growing as dominant weeds (Lolium spp., Cynodon dactylon 214 

(L.) Pers. and Avena spp.) may have buffered the negative effects of the non-host cover crop, maintaining 215 

soil mycorrhizal potential at the same level of the fallow treatment. 216 

Maize genotypes did not significantly influence AMF colonization at juvenile stage in both years: 217 

all maize genotypes (both hybrids and composite cross populations) had a similar percentage of colonised 218 

root length (25.1 to 28.8%), suggesting that at juvenile stage soil mycorrhizal potential may play a more 219 

important role than genotype. Our results refer to the colonization of roots growing in the top soil layer (0-220 

15 cm), since root colonization and propagules numbers decrease with depth (>20 cm) (Oehl et al. 2005).  221 

 222 

3.2 Dynamics of soil mycorrhizal inoculum potential  223 

Monitoring of AMF propagules over the growing season of cover crops and maize, as assessed by MIP, 224 

showed an interesting dynamics, with large variations depending on cropping system stages and related 225 

agronomic disturbance. MIP values at the end of cover crop cycle, before soil incorporation, were 226 

significantly higher than MIP values at cover crop sowing (F1,104 = 20.9; p <0.001) (Fig. 4) independently 227 

from the cover crop treatments (F3,6 = 0.25; p = 0.856 for cover crop treatment and F3,104 = 0.76; p = 0.517 228 

for interaction time × cover crop). Our data are consistent with previous data on soil inoculum potential 229 

obtained with hairy vetch as a winter cover crop (Galvez et al. 1995). However, results obtained with B. 230 

juncea treatment suggested that it did not affect the activity of AMF populations, possibly supporting our 231 

hypothesis on the role of AMF host weeds in buffering possible negative effects of non-host species. 232 

A strong decrease of MIP values was detected after incorporation of cover crops into the soil (Fig. 233 

4). Indeed, statistical analyses showed an effect of time (F1,104 = 239.9, p <0.001). The significant 234 

interaction between cover crops and time (F3,104 = 3.1, p = 0.029) showed that MIP values after cover crop 235 

soil incorporation decreased differently depending on the type of cover crop, as confirmed by the Tukey’s 236 

post hoc analysis following one way ANOVA performed on MIP data at this sampling time, which 237 

separated B. juncea from V. villosa and Mix. Several studies have reported the detrimental effects of tillage 238 
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on field AMF populations (Kabir 2005), although this aspect has not been extensively studied in cropping 239 

systems incorporating cover crops to increase soil fertility. Interestingly, there was a greater negative effect 240 

on MIP values of B. juncea cover crop, supporting our previous remarks on possible negative effects of 241 

isothiocyanates released by B. juncea tissues after soil incorporation.  242 

At maize harvest, MIP values were higher than values after cover crop soil incorporation (F1,104 = 243 

583.2; p <0.001), due to a generalized increase, which varied depending on the cover crop treatment (F3,6 = 244 

6.14; p= 0.03 for cover crop treatment; F3,104 = 3.15; p= 0.028 for time × cover crop interaction) (Fig. 4). 245 

Such a finding could be ascribed either to the growth of the host crop maize or to the favorable growing 246 

season (spring-summer, compared with fall-winter) promoting soil microbial biomass, AMF spore 247 

germination and spread of mycorrhizal networks in the soil (Gavito et al. 2002; Giovannetti et al. 2004).  248 

 249 

3.3 Maize growth, N and P uptake at juvenile stage 250 

Maize shoot dry matter at juvenile stage was significantly influenced by preceding cover crop (F3,6=20.21, 251 

p = 0.002) and maize genotype (F4,32=5.30, p = 0.002) in the year 2011 (Table 1), whereas in 2012 it was 252 

only affected by genotype (F4,30= 2.84, p = 0.041). In 2011 both shoot N and P contents were significantly 253 

affected by cover crop treatments (p = 0.001 and 0.005 respectively) and genotypes (p = 0.014 and 0.017 254 

respectively), while the interaction between the two was not significant (Table 1). Although cover crop 255 

effect was only statistically significant in 2011, its effect on maize shoot biomass, N and P uptake followed 256 

the same pattern in 2012: V. villosa > Mix > Control = B. juncea (Table 1), suggesting that V. villosa is a 257 

good winter cover crop for the subsequent summer crop, when used as green manure, representing a source 258 

of easily mineralisable N (Campiglia et al. 2010). In addition, V. villosa, as a N2-fixing legume, can 259 

accumulate a large amount of N during the growing period, and make it available to the subsequent crop. 260 

The Mix treatment, containing species other than legumes, represents a less effective source of N than V. 261 

villosa. Therefore a better AMF colonization may have contributed to the uptake of the additional N 262 

available in soil (Hodge and Fitter 2010). 263 

For each experimental year, we found a linear correlation between AMF root colonization and 264 

maize shoot dry matter production at juvenile stage (r
2
=0.47, P <0.001, and r

2
=0.29, P <0.001, in 2011 and 265 

2012, respectively) (Fig. 3). Maize, being a relatively short-season crop, is known to benefit from an early 266 

and extensive mycorrhizal colonization both for juvenile growth and for grain yield at harvest (Bittman et 267 

al. 2006), as confirmed in our experiment where grain yield was higher in those cover crop treatments (V. 268 

villosa and Mix) which provide a higher early colonization level (N. Nol, personal communication). 269 

 270 

3.4 Maize mycorrhizal colonization at harvest 271 
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At maize harvest, no significant differences in AMF root colonization among cover crop treatments were 272 

detected, consistently with earlier studies reporting that the reduced AMF colonization of maize after 273 

oilseed rape at the juvenile stage disappeared at silking (Gavito and Miller 1998). By contrast, percentage 274 

of mycorrhizal colonization was significantly affected by genotypes (F4,64=2.67, p = 0.040), while no effect 275 

of cover crop×genotype interaction was found. Both maize hybrids showed a significantly lower AMF 276 

colonization (29.2-30.0%), than composite cross populations (32.8-33.1%) in both years, as revealed by 277 

orthogonal contrasts (p=0.002). However, the levels of colonization were high in both genotypes, 278 

confirming that modern hybrids do not necessarily show low levels of colonization (An et al. 2010).  279 

 280 

4 Conclusions  281 

Our experimental findings show that cover crops management affects soil mycorrhizal potential 282 

and early mycorrhizal colonization and growth of the subsequent maize crop. They also point out that 283 

choice of the right (i.e. most AMF supportive or less detrimental for AMF) cover crop species is more 284 

important than cover crop diversity (i.e. species mixture) in organic systems. Level of maize genetic 285 

diversity did not seem to influence AMF symbiosis to a great extent. In addition, the monitoring of AMF 286 

propagule dynamics over time evidenced that soil mycorrhizal potential values were negatively affected by 287 

soil incorporation of cover crops. Further investigations will elucidate whether the strong negative impact 288 

of B. juncea cover crop on AMF, reduced here by higher weed abundance under organic management, may 289 

be additionally alleviated by avoiding tillage and soil incorporation of Indian mustard biomass which could 290 

reduce the possible negative effects of isothiocyanates.  291 

 292 
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 373 

FIGURE LEGENDS 374 

 375 

Fig. 1. Maps and pictures showing the location of the experimental field where a split plot experiment 376 

was laid out using four different cover crops  [Vicia villosa, Brassica juncea, a mix of seven species 377 

(Mix) and a no-till fallow (Control)], cultivated before five different maize genotypes [two hybrids 378 

(Pioneer
® 

PR64Y03 and MvTC TO341 developed under conventional and organic managements 379 

respectively) and three Composite Cross Populations (Complete Composite, Composite 1 Gyula and PC 380 

Composite)]. Arbuscular mycorrhizal structures (arbuscules and vesicles) were detected in the roots of the 381 

different maize genotypes and in the roots of Cichorium intybus L. plants, which were used for the 382 

mycorrhizal inoculum potential bioassay. 383 

 384 

Fig. 2 Maize AMF root colonization at juvenile stage, as influenced by the cover crop treatments: 385 

Brassica juncea, no-till fallow (Control), a mix of seven species (Mix), and Vicia villosa during two years 386 

experimental years. Note the higher levels of mycorrhizal colonization after the host species V. villosa 387 

and the Mix treatment, compared with the non-host species B. juncea and Control. The same lower case 388 

letters indicate no significant differences at p ≤ 0.05 (Tukey’s HSD test). 389 

 390 

Fig. 3 Relationship between percentage of AMF root colonization of maize and shoot dry matter at 391 

juvenile stage (mg plant
-1

) in 2011 (r
2
=0.47; y=5.2x+62.3) and 2012 (r

2
=0.29; y=13.7x+75.5)), showing 392 

the impact of early mycorrhizal establishment on maize growth. As a relatively short-season crop, maize 393 

may greatly benefit from an early and extensive AMF colonization. Each point represents data from 394 

individual subplots. 395 

 396 

Fig. 4 AMF propagule dynamics as affected by cropping system stages, assessed by mycorrhizal 397 

inoculum potential  bioassay of the field soil. Sampling time (in days) were: 0 days: before sowing of 398 

cover crop, 190 days: at the end of cover crop cycle before soil incorporation, 230 days: after cover 399 

biomass soil incorporation and 350 days: at maize harvest. Note the strong decrease in AMF propagule 400 

density after cover crop incorporation, which is higher in the non-host species treatment (B. juncea). 401 

Vertical bars represent ± SE. When occurring within sampling times, different letters represent 402 

statistically significant differences at p < 0.05 (Tukey’s HSD test). 403 

 404 
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Table 1. Shoot dry matter, N and P content (mg plant
-1

) of maize plants at juvenile stage, as influenced by cover crop and maize genotype treatments in 2011 and 2012. 

  2011 2012 

  Shoot DM N content P content Shoot DM N content P content 

Cover crop              

V. villosa  317.0 c 13.1 c 0.95 c 546.8 a 17.9 a 1.81 a 

Mix  231.9 b 8.1 b 0.73 b 401.2 a 11.0 a 1.86 a 

Control  142.9 a 4.0 a 0.47 a 347.0 a 9.6 a 1.75 a 

B. juncea  163.6 a 4.7 a 0.51 a 367.5 a 10.3 a 1.53 a 

Maize genotype              

PR64Y03  258.1 b 9.0 b 0.76 b 415.0 ab 12.1 a 1.80 a 

MvTC TO341  159.9  a 5.8 a 0.50 a 507.7 b 14.3 a 1.94 a 

Complete composite  216.2 ab 7.4 ab 0.67 ab 364.3 a 10.7 a 1.60 a 

Composite 1 Gyula  182.2 ab 6.5 ab 0.61 ab 414.8 ab 12.7 a 1.75 a 

PC Composite  252.8 b 8.6 ab 0.77 b 365.0 a 10.8 a 1.58 a 

P values of main factors and interaction  

Cover crop  0.002  0.001  0.005  0.534  0.384  0.984  

Maize genotype  0.002  0.014  0.017  0.041  0.189  0.614  

Cover x Genotype  0.847  0.477  0.618  0.169  0.263  0.486  

P values of linear orthogonal contrasts for maize genotype factor  

Hybrids vs CCP  0.637  0.885  0.361  0.034  0.134  0.236  

PR64Y03 vs MvTC TO341  0.001  0.003  0.005  0.039  0.143  0.499  

Values followed by the same letter in a column within each treatment are not significantly different at P<0.05 (Tukey’s HSD test) 
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