Bodei

1 of 17

http://ejlt.org/rt/printerFriendly/276/387

EUROPEAN JOURNAL OF LAW AND TECHNOLOGY, VOL 4,
NO 2 (2013)

Security in Pervasive
Applications: A Survey

Chiara Bodei, [1] Pierpaolo Degano, [2] Gian-Luigi Ferrari,[3] Letterio
Galletta, [4] Gianluca Mezzetti [5]

Cite as: Bodei, C., Degano, P, Ferrari, G-L., Galletta, L., & Mezzetti, G.,
Security in Pervasive Applications: A Survey, in European Journal of Law
and Technology, Vol. 4, No. 2, 2013.

ABSTRACT

We survey some critical issues arising in pervasive applications, in
particular the interplay between context-awareness and security. We shall
outline the techniques adapted for guaranteeing applications to securely
behave in the digital environment they are part of. [6]

1. INTRODUCTION

Modern software systems are designed to operate always and everywhere.
Internet is de facto becoming the infrastructure providing us with wired or
wireless access points for our digitally instrumented life. A great variety of
activities and tasks performed by individuals are mediated, supported and
affected by different heterogeneous digital systems that in turn often
cooperate each other without human intervention. These digital entities can
be any combination of hardware devices and software pieces or even
people, and their activities can change the physical and the virtual
environment where they are plugged in. For example, in a smart house, a
sensor can proactively switch on the heater to regulate the temperature.

An emerging line is therefore integrating these entities into an active and
highly dynamic digital environment that hosts end-users, continuously
interacting with it. Consequently, the digital environment assumes the form
of a communication infrastructure, through which its entities can interact
each other in a loosely coupled manner, and they can access resources of
different kinds, e.g., local or remote, private or shared, data or programs,
devices or services. The name pervasive computing is usually adopted to
denote these phenomena.

The structure of pervasive applications is therefore subject to continuous
changes, which however could compromise the correct behaviour of
applications and break the guarantees on their non-functional requirements.
For instance in the case of applications manipulating classified information,
it is essential among other things that this data maintain integrity, privacy
and security.

Effective mechanisms are thus required to adapt software to the new added
functionalities and to changes of the operational environment, namely the
context in which the application is plugged in. Also, appropriate security
models are mandatory to ensure secured information is not shared

March/30/19 4:05 PM

Bodei

2 of 17

http://ejlt.org/rt/printerFriendly/276/387

intentionally in a way that compromises the security goals and they also
protect against the unintentional release of information to the same ends or
even by outside entities with harmful intent.

The notion of context is fundamental for pervasive software. It includes any
kind of computationally accessible information coming both from outside
(e.g., available devices, code libraries, data offered by the environment), and
from inside the application boundaries (e.g., user profiles). Of course, the
context assumes a different shape depending on the architectural model to
which software adheres. E.g., in the Cloud Computing paradigm, the
context contains at least the description of the computational resources
offered by the cloud provider, and also a measure of the available portion of
each resource, and the way these are partitioned for multi-tenancy.

Traditional software engineering methodologies adopt a static model of
software development, where the boundaries between specification and
development are rigidly fixed; the interactions with the operational
environment are assumed a priori; and software reconfiguration usually
occurs off-line. This approach becomes inadequate, since applications now
run in a partially known, ever changing operational environment. It is thus
crucial studying evolutionary models for addressing the challenges posed by
pervasive software.

Some illustrative, yet largely incomplete, cases of computational models and
technologies towards the effective implementation and usage of pervasive
software have been already developed and deployed. Among these, the
most significant are Service Oriented Computing, the Internet of Things and
Cloud Computing. Each of them is fostered by and addresses different
aspects of the implementation and the usage of ubiquitous computing as
follows.

In the Service Oriented Computing approach, applications are open-ended,
heterogeneous and distributed. They are built by composing software units
called services, which are published, linked, and invoked on-demand by
other services using standard internet-based protocols. Moreover,
applications can dynamically reconfigure themselves, by re-placing the
services in use with others. Finally, services are executed on heterogeneous
systems and no assumptions can be taken on their running platforms. In
brief, a service offers its users access remote resources, i.e. data and
programs.

A further step towards ubiquitous computing is when software pervades
the objects of our everyday life, e.g. webTV, cars, smart phones, eBook
readers, to make a few examples. These heterogeneous entities often have a
limited computational power, but are capable of connecting to the internet,
coordinating and interacting each other, in the so-called plug&play fashion.
The real objects, as well as others of virtual nature (programs, services, etc.),
which are connected in this way, form the Internet of Things. Objects
become points where information can be collected and where some actions
can be performed to process it, so changing the surrounding environment.

Cloud computing features facilities that are present on both the approaches
above. Indeed, it offers through the network a hardware and software
infrastructure on which end-users can run their programs on-demand. In
addition, a rich variety of dynamic resources, such as networks, servers,
storage, applications and services are made available. A key point is that
these resources are ““virtualized" so that they appear to their users as fully

March/30/19 4:05 PM

Bodei

3of 17

http://ejlt.org/rt/printerFriendly/276/387

dedicated to them, and potentially unlimited.

Many different techniques and approaches are being proposed to tackle the
security issues typical of the pervasive computing scenario. There is a very
rich literature about pervasive computing, from different points of view,
including social, political, forensics, technological and scientific ones. By
only considering the approaches within the last two viewpoints, large
communities grew in a mesh of mostly overlapping fields, each one with its
own techniques. In this paper we will lightly review these techniques
focusing on adaptivity and security. Adaptivity is the capability of digital
entities to fit for a specific use or situation; in a pervasive computing
scenario this is a key aspect. Security is mandatory because the apparent
simplicity of use of the new technologies hides their not trivial design and
implementation, that become evident only when something goes wrong. In
general, the risk is exchanging simplicity for absence of attention.

2. STATE OF THE ART AND CHALLENGES

The development of pervasive adaptive software has been investigated from
different perspectives (control theory, artificial intelligence, programming
languages) and several proposals have been put forward; for a survey, see
[85,61]. Moreover, the opportunities of exploiting the offered techniques
have transformed the ways software architectures are designed and
implemented. Also user experience, (namely how a person feels when
interfacing with a pervasive application) has been extremely transformed.
Below, we focus on three branches, and related technologies, that we
consider pivotal in pervasive computing from both the developer and the
user perspective. We think that security and context-awareness are among
the main concerns of pervasive computing, and so we mainly report on the
results on these aspects focusing on the software engineering standpoint.

Service Oriented Computing

Service Oriented Computing (SOC) is a well-established paradigm to design
distributed applications [80, 79, 78, 47]. In this paradigm, applications are
built by assembling together independent computational units, called
services. Services are stand-alone components distributed over a network,
and made available through standard interaction mechanisms.

The main research challenges in SOC are described in [79]. An important
aspect is that services are open, in that they are built with little or no
knowledge about their operating environment, their clients, and further
services therein invoked.

Adaptivity shows up in the SOC paradigm at various levels. At the lower
one, the middleware should support dynamically reconfigurable run-time
architectures and dynamic connectivity.

Service composition heavily depends on several, possibly, conflicting
features:

¢ which information about a service is made public;
¢ how those services are selected that match the user's requirements;
e the actual run-time behaviour of the chosen services.

Service composition demands then autonomic mechanisms also driven by
business requirements. The service oriented applications, made up by

March/30/19 4:05 PM

Bodei

4 of 17

http://ejlt.org/rt/printerFriendly/276/387

loosely coupled services, also require self management features to minimise
human intervention: self-configuring, self-adapting, self-healing,
self-optimising, in the spirit of autonomic computation [63].

A crucial issue concerns defining and enforcing non-functional requirements
of services, e.g. security and service level agreement ones. In particular,
service assembly makes security imposition even harder. One reason why is
that services may be offered by different providers, which only partially
trust each other. On the one hand, providers have to guarantee the delivered
service to respect a given security policy, in any interaction with the open
operational environment, and regardless of who actually called the service.
On the other hand, clients may want to protect their sensible data from the
services invoked. Furthermore, security may be breached even when all the
services are trusted, because of unintentional behaviour due, e.g. to design
or implementation bugs, or because the composition of the services exhibits
some unexpected and unwanted behaviour, e.g. leakage of information.

Web Services [8, 87, 92] built upon XML technologies are possibly the most
illustrative and well-developed example of the SOC paradigm. Indeed, a
variety of XML-based technologies already exist for describing, discovering
and invoking web services [42, 26, 12, 2]. There are several standards for
defining and enforcing non-functional requirements of services, e.g.
WS-Security [14], WS-Trust [11] and WS-Policy [27]. The kind of security
taken into account in these standards only concerns end-to-end
requirements about secrecy and integrity of the messages exchanged by the
parties.

Assembly of services can occur in two different flavours: orchestration or
choreography. Orchestration describes the interactions from the point of view
of a single service, while choreography has a global view, instead.
Languages for orchestration and choreography have been proposed, e.g.
BPEL4WS [12, 68] and WS-CDL [66]. However these languages have no
facilities to explicitly handle security of compositions, only being focused on
end-to-end security. Instead, XACML [3] gives a more structured and
general approach, because it allows for declaring access control rules among
objects that can be referenced in XML.

It turns out that the languages mentioned above do not describe many
non-functional requirements, especially the ones concerning the emerging
behaviour obtained by assembling services.

The literature on formal methods reports on many (abstract) languages for
modelling services and their orchestration, see [52, 25, 56, 69, 19, 74, 70, 94,
36, 32] just to cite a few; [21] is a recent detailed survey on approaches to
security and related tools, especially within the process calculi framework,
[73] provides a formal treatment for a subset of XACML. An approach to the
secure composition of services is presented in [18, 19]. Services may
dynamically impose policies on resource usage, and they are composed
guaranteeing that these policies will actually be respected at run-time. The
security control is done efficiently at static time, by exploiting a type and
effect system and model-checking. The problem of relating orchestration
and choreography has been addressed in [38, 43], but without focusing on
security issues.

Recently, increasing attention has been devoted to express service contracts
as behavioural or session types [60]. These types synthesize the essential
aspects of the interaction behaviour of services, while allowing for efficient

March/30/19 4:05 PM

Bodei

5of 17

http://ejlt.org/rt/printerFriendly/276/387

static verification of properties of composed systems. Through session types,
[62] formalises compatibility of components and [31] describes adaptation of
web services. Security has also been studied using session types, e.g. by [24,
17, 16].

Internet of Things

In 1988, Mark Weiser described his vision about the coming age of
ubiquitous computing:

Ubiquitous computing names the third wave in computing, just
now beginning. First were mainframes, each shared by lots of
people. Now we are in the personal computing era, person and
machine staring uneasily at each other across the desktop. Next
comes ubiquitous computing, or the age of calm technology,
when technology recedes into the background of our lives

In this world, sensors and computers are commodities available everywhere
and surrounding people anytime. This idea has given rise to what is now
called the Internet of Things [15] or Everyware [54]. Due to the pervasive
integration of connectivity and identification tags, real objects are
represented by digital entities in the virtual environment supported by
dynamic opportunistic networks [81] or by the Internet. This is the case, e.g.,
of a fridge that becomes an active entity on the Internet ready to be queried
for its contents. Such an intelligent space is then made of smart things,
physical and endowed with software pieces, or fully virtual, that is highly
interconnected and mutually influences their behaviour.

The software of intelligent spaces has then to be aware of the surrounding
environment and of the ongoing events, to reflect the idea of an active space
reacting and adapting to a variety of different issues, e.g. arising from
people, time, programs, sensors and other smart things. Besides being
assigned a task, a device can also take on the responsibility of proactively
performing some activities with or for other digital entities.

The Ambient calculus [39] is among the first proposals to formalise those
aspects of intelligent, virtual environments that mainly pertain to the
movement of (physical devices and) software processes. Processes are
hosted in virtual, separated portions of the space, called ambients. Processes
can enter and leave ambients, and be executed in them. This calculus has
been used, e.g. [34] to specify a network of devices, in particular to statically
guarantee some properties of them, e.g. for regulating rights to the provision
and discovery of environmental information.

Security plays a key role in the Internet of Things, not only because any
digital entity can plug in, but also because the smart things may be devices,
with also specific physical dimensions. The key point here is that
information and physical security became interdependent, and traditional
techniques that only focus on digital security are inadequate [37]. For
example, there are some papers facing these issues with suitable extensions
of the Ambient calculus, among which [71, 35, 29, 28, 91], but these
proposals do not address the protection of the physical layer of smart things.

In addition, since spaces are active, the digital entities composing them may
easily collect sensible information about the nearby people and things.
Privacy may therefore be violated, because people are not always aware that
their sensible data may be collected, nor that their activities are always
context-aware, either. Even worse: it is possible through data mining to

March/30/19 4:05 PM

Bodei

60f 17

http://ejlt.org/rt/printerFriendly/276/387

disclose pieces of information, possibly confidential, so originating a tension
with a tacit assumption or an explicit guarantee of privacy. For example, the
analysis of behavioural patterns over big data can infer the actual identity of
the individuals, violating their assumed anonymity [88].

Although some workshops and conferences are being organized on the new
security topics of the Internet of Things, to the best of our knowledge little
work is done in the area of formal methods, except for studies on protocols
that guarantee anonymity (for brevity, we only refer the reader to the
discussion on related work and to the references of [96]).

Cloud computing

The US National Institute of Standards and Technology defines Cloud
computing as follows:

Cloud computing is a model for enabling convenient,
on-demand network access a shared pool of configurable
computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider
interaction

Cloud computing refers therefore to both the applications therein deployed
and made available on the Internet and to the hardware infrastructures that
makes this possible. The key characteristics of Cloud computing include
on-demand self-service, ubiquitous network access, resource pooling.

Also, Cloud systems are characterized by some peculiar adaptivity
characteristics called elasticity and measured services [10]. These are related to
the two different viewpoints of the Cloud that customers and providers
have. Elasticity refers to the ability of the provider to adapt its hardware
infrastructure with minimal effort to the requirements of different
customers, by scaling up and down the resources assigned to them.
Measured services indicate load and resource usage optimization. It refers
then to scalability from the provider point of view, usually achieved by
multi-tenancy, i.e. by the capability of dynamically and accurately
partitioning an infrastructure shared among various consumers.

The Cloud offers different models of services: Software as a Service, Platform
as a Service and Infrastructure as a Service, so subsuming SOC. These three
kinds can be organised in a stack hierarchy where the higher ones are built
on the lower ones. At the lowest level, the Cloud provider offers an
infrastructure made up by virtual machines, storages, and network
interconnections. The whole application environment is granted to the user,
who takes the responsibility for it. When supplying a platform as a service,
the provider gives a basic software stack, usually including the operating
system and a programming environment. At the highest level, we have
Software as a Service, i.e. the provider enables its users to run on-demand
one of its software service.

These aspects have been recently tackled within the formal methods
approach. A formal calculus for defining the architecture of virtualized
systems has been proposed in [20]. Elasticity has been studied and
formalized in [30] through a calculus of processes with a notion of groups. A
core functional language extended with explicit primitives for
computational resource usage has been proposed in [22]. A process calculus
with explicit primitives to control the distributed acquisition of resources

March/30/19 4:05 PM

Bodei

7 of 17

http://ejlt.org/rt/printerFriendly/276/387

has been presented in [23].

The most relevant security issues in Cloud computing deal with access to
resources, their availability and confidentiality [89]. Due to the distributed
nature of the computation carried on in the Cloud, one challenge is to ensure
that only authorised entities obtain access to resources.

A suitable identity management infrastructure should be developed, and
users and services are required to authenticate with their credentials.
However such a feature may affect the level of interoperability that a Cloud
needs to have, because of the management of the identity tokens and of the
negotiation protocols. In addition, providers should guarantee the right
level of isolation among partitioned resources within the same
infrastructure, because multi-tenancy can make unstable the borders
between the resources dedicated to each user. Virtualization usually helps in
controlling this phenomenon.

Moreover users should protect themselves from a possibly malicious Cloud
provider, preventing him from stealing sensible data. This is usually
achieved by exploiting encryption mechanisms [10] and identity
management.

It is worth noting that whenever a program running in the Cloud handles
some encrypted data, and the attacker is the provider itself, encryption is
useless if also the encoding key is on the Cloud. For a limited number of
cases, this problem can be circumvented by using suitable encryption
schemata [53, 6]. There are providers that support working groups (e.g. [1])
who are aiming at making efficient homomorphism encryption so to
commercially exploit it in the Cloud [75].

Note in passing that the Cloud can be misused and support attacks to
security. Indeed, the great amount of computational resources made easily
available can be exploited for large-scale hacking or denial of service attacks,
and also to perform brute force cracking of passwords [4].

In the currently available systems, the responsibility for dealing with
security issues is often shared between customer and providers. The actual
balance depends on the service level at which security has to be enforced [9].

3. ADAPTIVITY AND SECURITY

In the previous sections, we overviewed a few technological and
foundational features of ubiquitous computing, focusing on the Service
Oriented Computing, the Internet of Things and the Cloud paradigms, from
the developers' perspective. An emergent challenge is integrating adaptivity
and security issues to support programming of applications and systems in
the ubiquitous setting.

Adaptivity refers to the capability of a digital entity, in particular of its
software components, to dynamically modify its behaviour reacting to
changes of the surrounding active space, such as the location of its use, the
collection of nearby digital entities, and the hosting infrastructure [86, 33].
Software must therefore be aware of its running environment, represented
by a declarative and programmable context.

The notion of context assumes different forms in the three computational
models discussed earlier. The shape of contexts in Service Oriented

March/30/19 4:05 PM

Bodei

8of 17

http://ejlt.org/rt/printerFriendly/276/387

Computing is determined by the various directories where services are
published and by the end-points where services are actually deployed and
made available, as well as by other information about levels of service, etc.

In the Internet of Things, the context is a (partial) representation of the active
space hosting and made of the digital entities. Hence each digital entity may
have its own context.

In the Cloud, a context contains the description of the computational
resources offered by the centralised provider, and also a measure of the
available portion of each resource; note that the context has to show to the
provider the way computational resources are partitioned, for multi-tenancy.

A very short survey of the approaches to context-awareness follows,
essentially from the language-based viewpoint (see, e.g. SCEL [48]). Other
approaches range on a large spectrum, from the more formal description
logics used to representing and querying the context [41, 93, 55] to more
concrete ones, e.g. exploiting a middleware for developing context-aware
programs [83].

Another approach is Context Oriented Programming (COP), introduced by
Costanza [46]. Also subsequent work [58, 5, 65, 13] follows this paradigm to
address the design and the implementation of concrete programming
languages. The notion of behavioural variation is central to this paradigm. It is
a chunk of behaviour that can be activated depending on the current
working environment, i.e. of the context, so to dynamically modify the
execution. Here, the context is a stack of layers, and a programmer can
activate/deactivate layers to represent changes in the environment. This
mechanism is the engine of context evolution.

Usually, behavioural variations are bound to layers: activating/deactivating
a layer corresponds to activating/deactivating a behavioural variation. Only
a few papers in the literature give a precise semantic description of the
languages within the Context Oriented Programming paradigm. Among
these, we refer the reader to [45, 64, 59, 44, 49] that however does not focus
on security issues.

Security issues, instead, have been discussed in [40], even though this
survey mainly considers specific context-aware applications, but not from a
general formal methods viewpoint. Combining security and context-
awareness requires addressing two distinct and interrelated aspects. On the
one side, security requirements may reduce the adaptivity of software. On
the other side, new highly dynamic security mechanisms are needed to scale
up to adaptive software. Such a duality has already been put forward in the
literature [95, 37] and we outline below two possible ways of addressing it:
securing context-aware systems and context-aware security.

Securing context-aware systems aims at rephrasing the standard notions of
confidentiality, integrity and availability [82] and at developing techniques
for guaranteeing them [95]. Contexts may contain sensible data of the
working environment (e.g. information about surrounding digital entities),
and therefore to grant confidentiality this contextual information should be
protected from unauthorised access. Moreover, the integrity of contextual
information requires mechanisms for preventing its corruption by any entity
in the environment.

A trust model is needed, taking also care of the roles of entities that can vary
from a context to another. Such a trust model is important also because

March/30/19 4:05 PM

Bodei

9 of 17

http://ejlt.org/rt/printerFriendly/276/387

contextual information can be inferred from the environmental one,
provided by or extracted from digital entities therein, that may forge
deceptive data. Since information is distributed, denial-of-service can be
even more effective because it can prevent a whole group of digital entities
to access relevant contextual information.

Context-aware security is dually concerned with the definition and
enforcement of high-level policies that talk about, are based on, and depend
on the notion of dynamic context. The policies most studied in the literature
control the accesses to resources and smart things; see among the others [95,
62, 97]. Some e-health applications show the relevance of access control
policies based on the roles attached to individuals in contexts [7, 51].

Most of the work on securing context-aware systems and on context-aware
security aims at implementing various features at different levels of the
infrastructures, e.g. in the middleware [83], or in the interaction protocols
[57]. Indeed, the basic mechanisms behind security in adaptive systems have
been studied much less. Moreover, the two dual aspects of context-aware
security sketched above are often tackled separately. We lack then a unifying
concept of security.

4. ALANGUAGE-BASED APPROACH TO
SECURITY

We propose here linguistic mechanisms for adaptivity, coupled with
methodological issues. Indeed, we think that an effective development of
pervasive software requires a strong synergy between the methodologies
and the development tools, in particular programming languages. Crucial to
our approach is the design and implementation of high-level constructs that
enable programmers to directly program adaptation at a fine-grain level and
to ensure consistency and security of the adaptation process.

Our proposal faces the challenges pointed out above, by formally endowing
a programming language with linguistic primitives for context-awareness
and security, provided with a clear formal semantics. We suitably extend
and integrate together techniques from COP, type theory and model-
checking.

In particular, we introduced in [50] a static technique ensuring that a
program:

¢ i. Adequately reacts to context changes;

e ii. Accesses resources in accordance with security policies;

¢ iii. Exchanges messages, complying with specific communication
protocols.

The kernel of our proposal was COML [49], an extension of ML with COP
features. Our first concern is the context, an active and complex entity that
evolves independently of the applications. A programmer specifies the
contents and the changes of a context, using its own specific mechanisms
and rules, that are typically different from those used in programming
applications. Indeed, programming the context requires skills different from
those needed for applications. This methodological issue, as well as
separation of concerns motivates us to define a two-component language: a
declarative constituent for programming the context and a functional one
for computing.

March/30/19 4:05 PM

Bodei

10 of 17

http://ejlt.org/rt/printerFriendly/276/387

The declarative approach allows programmers to express what information
the context has to include, leaving to the virtual machine how this
information is actually collected and managed. For us, a context is a
knowledge base and we implement it as a Datalog program [77, 72]. With
this representation, adaptive programs can query the context by simply
verifying whether a given property holds in it, i.e. by checking a Datalog
goal. During the needed deductions the relevant information is also
retrieved.

As for programming adaptation, we propose two mechanisms. The first one
takes care of those program variables that assume different values
depending on the different properties of the current context. To make that
explicit, we introduce the notion of context-dependent binding, a sort of
dynamic binding.

The second mechanism is based on behavioural variations, the fundamental
concept of the COP paradigm. Usually, behavioural variations are not first
class constructs in COP languages, rather, they are expressed as partial
definition of procedures or classes or methods or modules. Instead, we
equip COML with first class higher-order behavioural variations, that can
therefore be referred to by identifiers, and passed as arguments to, and
returned by functions. This provides us with a natural hook for
programming dynamic adaptation patterns, as well as reusable and
modular code. Note in passing that a behavioural variation can be supplied
by the context, and then composed with existing ones, so implementing the
autonomic element of [67].

We now discuss our programming model. It assumes that the virtual
machine of the language provides its users with a collection of system
variables, values, functions and predicates through a predefined APL
Consequently, the context is split in two parts: the systerm and the application
context.

The first one is provided by the virtual machine through its API; while the
other one stores specific knowledge of the application, and the programmer
initially fills in its contents. Obviously, programs acquire information about
the system context through system predicates, but we stress that the actual
values holding therein are only available at runtime.

In our execution model, the compiler produces a triple (C,P,H), where C is
the application context, P is the program object code and H is an
approximation of the program, used to verify properties about the program.
Given such a triple, at loading-time the virtual machine performs a linking
and a verification phase. The linking phase resolves system variables and
links the application context to the system context, so obtaining the initial
context that, of course, is checked for consistency.

Note that linking itself makes a first adaptive step, because it enables the
application to use the capabilities of the hosting system, be they resources,
data or code. In the spirit of Proof-Carrying code [76] and of the Java
Bytecode Verifier [84], the verification phase exploits the approximation H
to check that the program P will adapt to all the contexts that may occur at
runtime.

If both phases succeed program evaluation begins, otherwise it is aborted.

5. CONCLUDING REMARKS

March/30/19 4:05 PM

Bodei

11 of 17

http://ejlt.org/rt/printerFriendly/276/387

We reviewed some techniques for designing and developing adaptive
applications within the pervasive computing paradigm. We focused on the
issues arising from handling security policies.

REFERENCES

1. Cloud cryptography group at Microsoft Research,
http:/ /research.microsoft.com/en-us/projects/cryptocloud /

2. UDDI technical white paper. Tech. rep., W3C (2000)

3. eXtensible Access Control Markup Language (XACML) Version 2.0}. Tech.

rep., OASIS (2005)

4. The future of cloud computing. Tech. rep., European Commision,
Information Society and Media (2010)

5. Achermann, F., Lumpe, M., Schneider, J., Nierstrasz, O.: PICCOLA --- a
small composition language. In: Formal methods for distributed processing.
pp. 403--426. Cambridge University Press (2001)

6. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption
for numeric data. In: Proceedings of the 2004 ACM SIGMOD international
conference on Management of data. pp. 563--574. SIGMOD '04, ACM, New
York, NY, USA (2004).

7. Al-Neyadi, F., Abawajy,].: Context-based e-health system access control
mechanism. Advances in information security and its application pp. 68-77
(2009)

8. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts,
Architectures and Applications. Springer-Verlag (2004)

9. Amazon.com Inc.: Aws customer agreement., http:/ /aws.amazon.com
/agreement

10. Amazon.com Inc.: Overview of Amazon Web Services.
http:/ /aws.amazon.com/whitepapers (2010)

11. Anderson, S., et al.: Web Services Trust Language (WS-Trust) (2005)

12. Andrews, T, etal.: Business Process Execution Language for Web
Services (BPEL4WS), Version 1.1 (2003)

13. Appeltauer, M., Hirschfeld, R., Haupt, M., Masuhara, H.: Context]:
Context-oriented programming with java. Computer Software 28(1) (2011)

14. Atkinson, B., et al.: Web Services Security (WS-Security) (2002)

15. Atzori, L., lera, A., Morabito, G.: The internet of things: A survey.
Computer Networks 54(15), 2787--2805 (2010)

16. Barbanera, F., Bugliesi, M., Dezani-Ciancaglini, M., Sassone, V.:
Space-aware ambients and processes. Theor. Comput. Sci. 373(1-2), 41--69
(2007)

17. Barbanera, F., Dezani-Ciancaglini, M., Salvo, 1., Sassone, V.: A type
inference algorithm for secure ambients. Electr. Notes Theor. Comput. Sci.

March/30/19 4:05 PM

Bodei

12 of 17

http://ejlt.org/rt/printerFriendly/276/387

62, 83--101 (2001)

18. Bartoletti, M., Degano, P, Ferrari, G.L., Zunino, R.: Semantics-based
design for secure web services. IEEE Trans. Software Eng. 34(1), 33--49
(2008)

19. Bartoletti, M., Degano, P, Ferrari, G.L., Zunino, R.: Local policies for
resource usage analysis. ACM Trans. Program. Lang. Syst. 31(6) (2009)

20. Bhargavan, K., Gordon, A.D., Narasamdya, I.: Service combinators for
farming virtual machines. In: Lea, D., Zavattaro, G. (eds.) COORDINATION.
Lecture Notes in Computer Science, vol. 5052, pp. 33--49. Springer (2008)

21. Blanchet, B.: Security protocol verification: Symbolic and computational
models. In: Principles of Security and Trust - First International Conference,
POST 2012, Lecture Notes in Computer Science, 7215, pp. 3--29 (2012)

22. Bodei, C., Dinh, V.D., Ferrari, G.L.: Safer in the clouds (extended
abstract). In: Bliudze, S., Bruni, R., Grohmann, D., Silva, A. (eds.) ICE.
EPTCS, vol. 38, pp. 45--49 (2010)

23. Bodei, C., Dinh, V.D., Ferrari, G.L.: Predicting global usages of resources
endowed with local policies. In: Mousavi, M.R., Ravara, A. (eds.) FOCLASA.
EPTCS, vol. 58, pp. 49--64 (2011)

24. Bonelli, E., Compagnoni, A., Gunter, E.: Typechecking safe process
synchronization. In: Proc. Foundations of Global Ubiquitous Computing.
ENTCS, vol. 138(1) (2005)

25. Boreale, M., et al.: SCC: a service centered calculus. In: WS-FM. Springer
Lecture Notes in Computer Science, vol. 4184 (2006)

26. Box, D., et al.: Simple Object Access Protocol (SOAP) 1.1. WRC Note
(2000)

27. Box, D., et al.: Web Services Policy Framework (WS-Policy) (2002)

28. Braghin, C., Cortesi, A.: Flow-sensitive leakage analysis in mobile
ambients. Electr. Notes Theor. Comput. Sci. 128(5), 17--25 (2005)

29. Braghin, C., Cortesi, A., Focardi, R.: Security boundaries in mobile
ambients. Computer Languages, Systems & Structures 28(1), 101 -- 127
(2002),

30. Bravetti, M., Giusto, C.D., Perez,].A., Zavattaro, G.: Adaptable processes
(extended abstract). In: Bruni, R., Dingel, . (eds.) FMOODS/FORTE. Lecture
Notes in Computer Science, vol. 6722, pp. 90--105. Springer (2011)

31. Brogi, A., Canal, C., Pimentel, E.: Behavioural types and component
adaptation. In: Proc. Algebraic Methodology and Software Technology
(AMAST). Springer Lecture Notes in Computer Science, vol. 3116 (2004)

32 Bruni, R.: Calculi for service-oriented computing. In: Bernardo, M.,
Padovani, L., Zavattaro, G. (eds.) SFM. Lecture Notes in Computer Science,
vol. 5569, pp. 1--41. Springer (2009)

33. Bruni, R., Corradini, A., Gadducci, F., Lluch-Lafuente, A., Vandin, A.: A
conceptual framework for adaptation. In: de Lara, J., Zisman, A. (eds.) FASE.
Lecture Notes in Computer Science, vol. 7212, pp. 240--254. Springer (2012)

March/30/19 4:05 PM

Bodei

13 of 17

http://ejlt.org/rt/printerFriendly/276/387

34. Bucur, D., Nielsen, M.: Secure data flow in a calculus for context
awareness. In: Degano, P, De~Nicola, R., Meseguer,]. (eds.) Concurrency,
Graphs and Models, Lecture Notes in Computer Science, vol. 5065, pp.
439--456. Springer (2008)

35. Bugliesi, M., Castagna, G., Crafa, S.: Reasoning about security in mobile
ambients. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR. Lecture Notes in
Computer Science, vol. 2154, pp. 102--120. Springer (2001)

36. Caires, L., De Nicola, R., Pugliese, R., Vasconcelos, V.T., Zavattaro, G.:
Core calculi for service-oriented computing. In: Results of the SENSORIA
Project, Lecture Notes in Computer Science, 6852, pp. 153--188 (2011)

37. Campbell, R., Al-Muhtadj, J., Naldurg, P, Sampemane, G., Mickunas,
M.D.: Towards security and privacy for pervasive computing. In:
Proceedings of the 2002 Mext-NSF-JSPS international conference on
Software security: theories and systems. pp. 1--15. ISS5'02, Springer-Verlag,
Berlin, Heidelberg (2003),

38. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred
programming for web services. In: European Symposium in Programming
Languages (ESOP). vol. 4421 (2007)

39. Cardelli, L., Gordon, A.: Mobile ambients. In: Nivat, M. (ed.)
Foundations of Software Science and Computation Structures, Lecture Notes
in Computer Science, vol. 1378, pp. 140--155. Springer Berlin (1998)

40. Chen, G., Kotz, D.: A survey of context-aware mobile computing
research. Tech. rep., Dartmouth College, Hanover, NH, USA (2000)

41. Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive
computing environments. The Knowledge Engineering Review 18(03),
197-207 (2003)

42. Chinnici, R., Gudgina, M., Moreau, ., Weerawarana, S.: Web Service
Description Language (WSDL), Version 1.2 (2002)

43. Ciancia, V., Ferrari, G.L., Guanciale, R., Strollo, D.: Event based
choreography. Sci. Comput. Program. 75(10), 848--878 (2010)

44 Clarke, D., Costanza, P, Tanter, E.: How should context-escaping closures
proceed? In: International Workshop on Context-Oriented Programming,.
pp. 1:1--1:6. COP '09, ACM, New York, NY, USA (2009) }

45. Clarke, D., Sergey, I.: A semantics for context-oriented programming
with layers. In: International Workshop on Context-Oriented Programming.
pp- 10:1--10:6. COP '09, ACM, New York, NY, USA (2009)

46. Costana, P.: Language constructs for context-oriented programming. In:
In Proceedings of the Dynamic Languages Symposium. pp. 1--10. ACM
Press (2005)

47. Curbera, F., Khalaf, R., Mukhi, N., Tai, S., Weerawarane, S.: The next step
in web services. Communications of the ACM, 46(10) (2003)

48. De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R.: A language-based
approach to autonomic computing. In: Formal Methods for Component and
Objects 2011. Lecture Notes in Computer Science, 7542, Springer (2013)

49. Degano, P, Ferrari, G.L., Galletta, L., Mezzetti, G.: Typing context-

March/30/19 4:05 PM

Bodei

14 of 17

http://ejlt.org/rt/printerFriendly/276/387

dependent behavioural variations. In: PLACES 2012. vol. to appear in
EPTCS (2012)

50. Degano, P, Ferrari, G.L., Galletta, L., Mezzetti, G.: Typing for
coordinating secure behavioural variations. In: Coordination Models and
Languages. Lecture Notes in Computer Science, vol. 7274. Springer (2012)

51. Deng, M., Cock, D.D., Preneel, B.: Towards a cross-context identity
management framework in e-health. Online Information Review 33(3),
422--442 (2009)

52. Ferrari, G., Guanciale, R., Strollo, D.: {JSCL}: A middleware for service
coordination. In: Proc. FORTE, Springer LNCS, vol. 4229 (2006)

53. Gentry, C.: Fully homomorphic encryption using ideal lattices. In:
Proceedings of the 41st annual ACM symposium on Theory of computing.
pp. 169--178. ACM (2009)

54. Greenfield, A.: Everyware: The dawning age of ubiquitous computing.
Peachpit Press (2006)

55. Gu, T, Wang, X., Pung, H., Zhang, D.: An ontology-based context model
in intelligent environments. In: Proceedings of communication networks
and distributed systems modeling and simulation conference. vol. 2004, pp.
270--275 (2004)

56 Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: A
calculus for service oriented computing. In: Proc. Service-Oriented
Computing (ICSOC). Springer LNCS, vol. 4294 (2006)

57. Heer, T., Garcia-Morchon, O., Hummen, R., Keoh, S., Kumar, S., Wehrle,
K.: Security challenges in the ip-based internet of things. Wireless Personal
Communications pp. 1--16 (2011)

58. Hirschfeld, R., Costanza, P, Nierstrasz, O.: Context-oriented
programming. Journal of Object Technology, March-April 2008, ETH Zurich
7(3), 125-151 (2008)

59. Hirschfeld, R., Igarashi, A., Masuhara, H.: ContextF]: a minimal core
calculus for context-oriented programming. In: Proceedings of the 10t

international workshop on Foundations of aspect-oriented languages. pp.
19--23. FOAL '11, ACM, New York, NY, USA (2011)

60. Honda, K., Vasconcelos, V., Kubo, M.: Language primitives and type
discipline for structured communication-based programming. Programming
Languages and Systems pp. 122--138 (1998)

61. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing
degrees, models, and applications. ACM Comput. Surv. 40(3), 7:1--7:28
(2008)

62. Hulsebosch, R., Salden, A., Bargh, M., Ebben, P., Reitsma, J.: Context
sensitive access control. In: Proceedings of the tenth ACM symposium on
Access control models and technologies. pp. 111--119. ACM (2005)

63. IBM: An architectural blueprint for autonomic computing. Tech. rep.
(2005)

64. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight java: a minimal core

March/30/19 4:05 PM

Bodei

15 of 17

http://ejlt.org/rt/printerFriendly/276/387

calculus for Java and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396--450
(2001)

65. Kamina, T., Aotani, T., Masuhara, H.: Eventcj: a context-oriented
programming language with declarative event-based context transition. In:
Proceedings of the tenth international conference on Aspect-oriented
software development. pp. 253--264. AOSD '11, ACM, New York, NY, USA
(2011)

66. Kavantza, N., et al.: Web Service Coreography Description Language},
http:/ /www.w3.org/TR/ws-cdl-10/

67. Kephart,].O., Chess, D.M.: The vision of autonomic computing.
Computer 36(1), 41--50 (Jan 2003)

68. Khalaf, R., Mukhi, N., Weerawarana, S.: Service oriented composition in
BPELAWS. In: Proc. WWW Conference (2003)

69. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web
services. In: European Symposium in Programming Languages (ESOP),
LNCS vol. 4421, (2007)

70. Lazovik, A., Aiello, M., Gennari, R.: Encoding requests to web service
compositions as constraints. In: Proc. Principles and Practice of Constraint
Programming, Springer LNCS, vol. 3709 (2005)

71. Levi, F,, Sangiorgi, D.: Mobile safe ambients. ACM Trans. Program. Lang,.
Syst. 25(1), 1--69 (2003)

72. Loke, S.W.: Representing and reasoning with situations for context-aware
pervasive computing: a logic programming perspective. Knowl. Eng. Rev.
19(3), 213--233 (2004)

73. Masi, M., Pugliese, R., Tiezzi, F.: Formalisation and implementation of
the xacml access control mechanism. In: Barthe, G., Livshits, B., Scandariato,
R. (eds.) ESSoS. Lecture Notes in Computer Science, vol. 7159, pp. 60--74.
Springer (2012)

74. Misra,].: A programming model for the orchestration of web services. In:

2d International Conference on Software Engineering and Formal Methods,
(2004)

75. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic
encryption be practical? In: Proceedings of the 3rd ACM workshop on
Cloud computing security workshop. pp. 113--124. ACM (2011)

76. mNecula, G.C,, Lee, P.: Safe, untrusted agents using proof-carrying code.
In: Mobile Agents and Security. pp. 61--91. Springer (1998)

77. Orsi, G., Tanca, L.: Context modelling and context-aware querying. In:
Datalog Reloaded, LNCS, vol. 6702. Springer (2011)

78. Papazoglou, M.P.: Service-oriented computing: Concepts, characteristics
and directions. In: WISE (2003)

79. Papazoglou, M.P, Traverso, P, Dustdar, S., Leymann, F.: Service-oriented
computing: a research roadmap. Int. J]. Cooperative Inf. Syst. 17(2), 223--255
(2008)

80. Papazouglou, M., Georgakopoulos, D.: Special issue on service oriented

March/30/19 4:05 PM

Bodei

16 of 17

http://ejlt.org/rt/printerFriendly/276/387

computing. Communications of the {ACM} 46(10) (2003
puting

81. Pelusi, L., Passarella, A., Conti, M.: Opportunistic networking: data
forwarding in disconnected mobile ad hoc networks. Communications
Magazine, IEEE 44(11), 134 --141 (2006)

82. Pfleeger, C., Pfleeger, S.: Security in computing. Prentice Hall (2003)

83. Roman, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R.,
Nabhrstedt, K.: Gaia: a middleware platform for active spaces. ACM
SIGMOBILE Mobile Computing and Communications Review 6(4), 65--67
(2002)

84. Rose, E.: Lightweight bytecode verification. J]. Autom. Reason. 31(3-4)
(2004)

85 Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and
research challenges. ACM Trans. Auton. Adapt. Syst. 4(2), 14:1--14:42 (May
2009)

86. Schilit, B., Adams, N., Want, R.: Context-aware computing applications.
In: In Proceedings of the Workshop on Mobile Computing Systems and
Applications. pp. 85--90. IEEE Computer Society (1994)

87. Stal, M.: Web services: Beyond component-based computing.
Communications of the ACM 55(10) (2002)

88. Sweeney, L., et al.: k-anonymity: A model for protecting privacy.
International Journal of Uncertainty Fuzziness and Knowledge Based
Systems 10(5), 557--570 (2002)

89. Takabi, H., Joshi, J., Ahn, G.: Security and privacy challenges in cloud
computing environments. Security & Privacy, IEEE 8(6), 24--31 (2010)

90. Vallecillo, A., Vansconcelos, V., Ravara, A.: Typing the behaviours of
objects and components using session types. In: Proc. of FOCLASA (2002)

91. Vitek, J., Castagna, G.: Seal: A framework for secure mobile
computations. In: Bal, H.E., Belkhouche, B., Cardelli, L. (eds.) ICCL
Workshop: Internet Programming Languages. Lecture Notes in Computer
Science, vol. 1686, pp. 47--77. Springer (1998)

92. Vogels, W.: Web services are not distributed objects. IEEE Internet
Computing 7(6) (2003)

93. Wang, X., Zhang, D., Gu, T., Pung, H.: Ontology based context modeling
and reasoning using owl. In: Pervasive Computing and Communications
Workshops, 2004. IEEE (2004)

94. Wirsing, M.. (ed.): Rigorous Software Engineering for Service-Oriented
Systems - Results of the SENSORIA Project on Software Engineering for
Service-Oriented Computing, Lecture Notes in Computer Science, vol. 6582.
Springer (2011)

95. Wrona, K., Gomez, L.: Context-aware security and secure context-
awareness in ubiquitous computing environments. In: XXI Autumn Meeting
of Polish Information Processing Society (2005)

96. Yang, M., Sassone, V., Hamadou, S.: A game-theoretic analysis of
cooperation in anonymity networks. In: Degano, P., Guttman,].D. (eds.)

March/30/19 4:05 PM

Bodei

17 of 17

http://ejlt.org/rt/printerFriendly/276/387

POST. Lecture Notes in Computer Science, vol. 7215, pp. 269--289. Springer
(2012)

97. Zhang, G., Parashar, M.: Dynamic context-aware access control for grid
applications. In: Grid Computing, 2003. Proceedings. Fourth International
Workshop on. pp. 101--108. IEEE (2003)

[1] Dipartimento di Informatica, Universita' di Pisa
[2] Dipartimento di Informatica, Universita' di Pisa
[3] Dipartimento di Informatica, Universita' di Pisa
[4] Dipartimento di Informatica, Universita' di Pisa
[5] Dipartimento di Informatica, Universita' di Pisa

[6] This work has been partially supported by IST-FP7-FET open-IP project
ASCENS, MIUR Project Security Horizons

March/30/19 4:05 PM

