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A B S T R A C T

Background: Basal cell carcinoma (BCC) of the skin is the most common neoplasm among the Caucasian

population of the western world. Ultraviolet (UV) radiation-induced p53 activation promotes cutaneous

pigmentation by increasing transcriptional activity of pro-opiomelanocortin (POMC) in the skin.

Induction of POMC/a-melanocyte-stimulating hormone (a-MSH) activates the melanocortin 1 receptor

(MC1R), resulting in skin pigmentation. The tumor suppressor p53 is a key player in stress responses that

preserve genomic stability, responding to a variety of insults including DNA damage, hypoxia, metabolic

stress and oncogene activation. Malfunction of the p53 pathway is an almost universal hallmark of

human tumors. Polymorphisms in the gene encoding p53 (TP53) alter its transcriptional activity, which

in turn may influence the UV radiation-induced tanning response.

Objective: The aim of the present work is to test association between POMC and TP53 genetic variability,

the possible interplay with host factors and the risk of basal cell carcinoma of skin.

Methods: We covered the variability of the two genes we used 17 tagging polymorphisms in 529 BCC

cases and 532 healthy controls. We have also tested the possible interactions between the genetic

variants and three known risk factors for BCC: skin complexion, sun effect and skin response to sun

exposure.

Results: We did not observe any statistically significant association between SNPs in these two genes and

BCC risk overall, nor interactions of SNPs with known BCC risk factors. However we found that, in the

group of subjects with lower sun exposure, carriers of one copy of the C allele of the TP53 SNP

rs12951053 had a decreased risk of BCC (OR = 0.28, 95% CI 0.12–0.62, P = 0.002).

Conclusions: We have observed that the interplay of an environmental risk factor and one polymorphism

in TP53 gene could modulate the risk of BCC.

� 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights

reserved.
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1. Introduction

Basal cell carcinoma BCC of the skin is the most common
neoplasm among the Caucasian population of the western world
[1]. The risk for development of BCC is mainly associated with
environmental factors (especially sun exposure) but also with
genetic factors [2].
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One of the main risk factors for BCC is ultraviolet (UV) radiation,
through its induction of DNA damage [3–5]. Tanning is acquired
pigmentation that results from exposure to UV, melanin synthesis
by cutaneous melanocytes and transport into adjacent keratino-
cytes [6].

Melanin production is initiated by a-melanocyte-stimulating
hormone (a-MSH), which is produced by proteolysis from a
multicomponent precursor polypeptide, encoded by the pro-
opiomelanocortin (POMC) gene [7]. The induced POMC/a-MSH
binds to MC1R, which further activates the cyclic adenosine
monophosphate (cAMP) signalling system, leading to eumelanin
production.

It has been shown that p53 is involved in cell-cycle arrest and
apoptosis in response to UV-induced DNA damage [8,9]; moreover,
y Elsevier Ireland Ltd. All rights reserved.
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Cui et al. [10] showed that the tumor-suppressor protein p53
promotes cutaneous pigmentation following UV irradiation by
direct transcriptional activation of POMC in the skin and that p53
absence ablates the tanning response.

TP53 mutations have been detected in about half of all BCCs.
Furthermore, it was found that aggressive forms of BCC are
significantly associated with increased p53 expression [1,11].

This tumor suppressor gene is highly polymorphic: so far over
200 SNPs have been identified http://p53.free.fr; http://www-
p53.iarc.fr/ [12]. Few of the many TP53 polymorphisms have been
assessed for altered biochemical and/or biological function, or for
their effects on cancer risk in population studies [13]. The
association between p53 codon 72 polymorphism and BCC risk
has been investigated but the findings are controversial [14–17].
Another study investigated the association between BCC cancer
risk and one SNP in the POMC gene with negative results [18].

In this study we investigated the effect of tagging and functional
polymorphisms in the entire TP53 and POMC genes on well
characterized BCC cases and controls. We analyzed TP53 and POMC
jointly with MC1R variants, which had been previously genotyped
in the same cases and controls [19].

2. Materials and methods

2.1. Study population

A set of newly diagnosed cases and controls were recruited as
part of a large study on risk of various cancers due to
environmental arsenic exposure in Hungary, Romania and Slovakia
between 2002 and 2004 [20]. The recruitment was carried out in
the counties of Bacs, Csongrad and Jasz-Nagykun-Szolnok in
Hungary; Bihor and Arad in Romania and Nitra in Slovakia. Skin
cancer cases (n = 529) were invited on the basis of histopatholog-
ical examinations by pathologists. Hospital-based controls
(n = 532) were included in the study, subject to fulfillment of a
set of criteria. All general hospitals in the study area were involved
in the process of control recruitment and a rotation scheme was
[()TD$FIG]
Fig. 1. Linkage disequilibrium (LD) plot across the TP53 locus, r2 values
used in order to achieve appropriate geographical distribution. The
controls were surgery, orthopedic and trauma patients with
conditions such as appendicitis, abdominal hernias, duodenal
ulcers, cholelithiasis and fractures; patients with malignant
tumors, diabetes and cardiovascular diseases were excluded.
The matching of the controls was done using this criteria: being of
the same gender of the index case belonging to the same 5 years
age band (30–34, 35–39, etc.), being of the same area. Moreover
cases and controls were recruited among those individuals that
have resided in the study area for at least one year during their
lifetime) [21].

Subsequent to the signing of consent forms by the participants,
clinicians took venous blood from cases and controls. The blood
samples were kept deep frozen at �80 8C until analysis. A general
questionnaire was completed by trained personnel after an
interview of the recruited cases and controls. The questionnaire
was designed to include information on individual cumulative sun
exposure in summer, sun-tanning, skin-complexion, effects of sun-
exposure on skin and age/s at diagnosis of BCC; the Fitzpatrick
classification was not used because of non-availability of facilities
uniformly across all recruiting centers of the participating
countries. In addition, the interviews included items on demo-
graphic, life-style, socio-economic, medical history, occupational
exposures, drinking and nutritional habits, as well as detailed
residential history. Ethnic background for the cases and controls
was recorded along with other characteristics of the study
population. Local ethical boards approved the study plan and
design.

2.2. Selection of polymorphisms

We aimed at surveying the entire set of common genetic
variants in TP53 and POMC genes. To this end we followed a hybrid
functional/tagging approach using the algorithm described by
Carlson and co-workers [22]. All polymorphisms in the region of
TP53 gene including 5 kb upstream of the first exon and 5 kb
downstream of the last exon with minor allele frequency MAF�5%
are indicated in the plot. Selected SNPs are highlighted in square.

http://p53.free.fr/
http://www-p53.iarc.fr/
http://www-p53.iarc.fr/


Table 1
Distribution of BCC cases and controls for different characteristics.

Variable Cases (%) Controls (%) P-valuea

Male 237 (44.8) 274 (51.4)

Female 292 (55.2) 259 (48.6)

Mean age (�standard deviation) 64.8 (�10.3) 60.0 (�11.8)

Median age (25–75% percentile) 67 (58–73) 61 (52–70)

Nationality
Hungarian 208 (39) 283 (53)

Romanian 125 (24) 118 (22)

Slovak 184 (35) 121 (23)

Others 12 (2) 10 (2)

Skin complexion <0.0001

Light 280 (53) 212 (40)

Medium 233 (44) 261 (49)

Dark 16 (3) 59 (11)

Skin response to sun-exposure 0.04

Blistered/burnt 185 (35) 141 (26)

Mild burn 169 (32) 159 (30)

Tanning/no change 175 (33) 232 (44)

Average cumulative sun exposure

(h per day during summer)b

0.59

<2.4 129 (24) 137 (26)

2.5–3.5 151 (29) 153 (29)

3.6–4.5 135 (26) 111 (21)

>4.5 112 (21) 125 (23)

a P-value is for the effect of factor on BCC risk.
b Sun exposure estimated by calculating a mean of eight categorical variables

measuring average daily exposure to the sun over the respondents’ lifetimes. For

two cases and six controls exposure information was not available.
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in Caucasians from the International HapMap Project version 26
(http://www.hapmap.org) were included. Tagging SNPs were
selected with the use of the Tagger program within Haploview
(http://www.broadinstitute.org/mpg/haploview/; http://
www.broadinstitute.org/mpg/tagger/) [23,24], using pairwise tag-
ging with a minimum r2 of 0.8 (Fig. 1). We also included additional
tagging SNPs selected among polymorphisms detected in a
previous study [12]. We forced in the selection of tagging SNPs
also rs1042522 Pro72Arg, which is a non-synonymous variant
possibly implicated in risk of several cancer types. The SNP
rs2909430 tags two other polymorphisms already found associat-
ed with cancer risk, a 16 bp duplication in the intron 3 rs17878362
[25] and a SNP in intron 6 rs1625895 [25].

SNPs selection for POMC has been described in a previous work
[26] in which the selection has been done using an haplotype-
tagging approach according to the method of Stram et al. [27], with
criterion r2

H ¼ 0:7.

2.3. Genotyping

The order of DNAs from cases and controls was randomized on
PCR plates in order to ensure that an equal number of cases and
controls could be analyzed simultaneously. All the genotyping was
carried out using the Taqman assay. The MGB Taqman probes and
primers were synthesized by Applied Biosystems (Foster City, CA,
USA). PCRs were performed according to the manufacturer’s
instructions. PCR plates were read on an ABI PRISM 7900HT
instrument by Applied Biosystems. MC1R gene has been geno-
typed by sequencing the amplification and sequencing conditions
have been described previously [19].

2.4. Statistical analysis

The frequency distribution of genotypes was examined for
cases and controls. Hardy–Weinberg equilibrium was tested in
cases and in controls separately. The host factors, skin complexion
and skin response to sun-exposure were categorized into high (H:
light complexion or burns/blisters, respectively), medium (M:
medium complexion or mild burns) and low (L: dark complexion
or tan/no change) risk groups. Sun exposure was estimated by
taking a mean of eight categorical variables measuring average
daily exposure to the sun in over the respondents’ lifetimes. The
calculated mean was, then, divided in four categories correspond-
ing to the hours of sun exposure during summer. The four cut-off
points were <2.5 h/2.5–3.5 h/3.6–4.5 h/>4.5 h. More detailed
information has been previously reported [19].

We used logistic regression for multivariate analyses to assess
the main effects of the genetic polymorphism on BCC risk. The
primary end point of the analysis was cancer risk, measured with
odds ratio and associated confidence intervals. All estimates were
adjusted for age at diagnosis, gender, nationality and risk categories.

Considering the large number of comparison performed, we
calculated for each gene the number of effective independent
variables, Meff, using the SNP Spectral Decomposition approach
[28]. We obtained a gene-wide Meff value for each gene and also a
study-wide Meff value, by adding up the gene Meff’s. The study-
wide Meff value was 12, therefore we applied a study-wise
threshold of significance of P = 0.0042 (0.05/12), in order to
interpret P-values in light of the multiple comparisons.

We analyzed associations of SNPs with BCC risk by grouping
cases according to age, skin complexion, sun effect and skin
response to sun exposure, we analyzed a model with the main
effects for each SNP and the covariate of interest and a model
where the SNP was parameterized nested within the covariate
categories; we then computed the likelihood ratio test between the
two models (heterogeneity test). Age was divided in 4 quartiles
(<55 years, 55–63 years, 64–72, >72). The host factor subgroups
have been described above.

Logistic regression analyses and likelihood ratio test were done
with STATA software (StataCorp, College Station, TX, USA).

The haplotype frequencies in cases and controls were inferred
with the SAS/Genetics software module (SAS Institute Inc., Cary,
NC, U.S.A.) using the expectation–maximization algorithm to
generate maximum likelihood estimates. Samples missing one
genotype or more were removed from haplotype analyses.

2.5. Gene–gene and gene–environment interactions

We analyzed all the possible pair-wise interactions between
SNPs (gene–gene; G–G) and between SNPs and two host factors
(skin complexion and skin response to sun exposure) and one
environmental factor (sun exposure) (gene-environment; G–E).
Assessment of G–G and G–E interactions was carried out using
Multifactor Dimensionality Reduction (MDR). The details of MDR
are described elsewhere [29–31]. Briefly, MDR is a data reduction
approach that seeks to identify combinations of multilocus
genotypes and discrete environmental factors that are associated
with either high risk or low risk of disease. MDR defines a single
variable that incorporates information from several loci and/or
environmental factors. This new variable can be evaluated for its
ability to classify and predict outcome risk status using cross-
validation and permutation testing. The MDR software is open-
source and freely available from http://www.epistasis.org.

2.6. Bioinformatics analysis

Potential binding sites of transcription factors within the
sequence encompassing the significantly associated SNP were
performed with MatInspector Professional http://genomatix.de/
cgi-bin/matinspector_prof/mat_fam.pl [32].

3. Results

In this study 529 cases with BCC and 532 controls were
recruited from Hungary, Romania and Slovakia. The mean age at

http://www.hapmap.org/
http://www.broadinstitute.org/mpg/haploview/
http://www.broadinstitute.org/mpg/tagger/
http://www.broadinstitute.org/mpg/tagger/
http://www.epistasis.org/
http://genomatix.de/cgi-bin/matinspector_prof/mat_fam.pl
http://genomatix.de/cgi-bin/matinspector_prof/mat_fam.pl
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diagnosis of the cases (237 men and 292 women) was 64.8 (�10.3)
years (median 67; 25–75% percentile 58–73) and that of controls (274
men and 259 women) was 60.0 (�11.8) years (median 61; 25–75%
percentile 52–70). While the complexion and nature of skin response
to sun exposure showed association with BCC risk, the average
cumulative sun-exposure was not associated with the risk Seventeen
SNPs in TP53 and POMC genes were genotyped in each subject of the
study and analyzed jointly with genotypes of MC1R SNPs we
generated in a previous study [15]. Baseline characteristics of cases
and controls are reported in Table 1. Genotype success rate for cases
and controls was greater than 95%. Blinded duplicate samples (6.2%)
included for quality control showed genotype concordance>99%. The
Table 2
Associations between tagging SNPs in the TP53 gene region and BCC risk.

Genotypes Positiona Cases (n = 529)b Contr

rs1642763 7,498,144 ATP1B2, exon 4

GG 325 343

AG 169 145

AA 24 25

AG + AA

rs1050540 7,501,467 ATP1B2, 30 UTR

CC 212 224

CT 239 224

TT 67 67

CT + TT

rs1050541 7,501,560 ATP1B2, 30 UTR

GG 137 143

GT 251 239

TT 125 133

GT + TT

rs1641510 7,502,221 intergenic

AA 184 171

AG 236 247

GG 100 104

AG + GG

rs8073498 7,510,423 intergenic

AA 184 198

AC 247 248

CC 88 73

AC + CC

rs12951053 7,518,132 TP53, intron 7

AA 440 437

AC 79 79

CC 3 7

AC + CC

rs2909430 7,519,370 TP53, intron 4

TT 392 387

TC 103 112

CC 15 10

TC + CC

rs9895829 7,519,404 TP53, intron 4

GG 390 388

GA 106 117

AA 13 8

GA + AA

rs1042522 7,520,197 TP53, exon 3

CC 292 297

CG 186 178

GG 40 46

CG + GG

rs12602273 7,523,738 TP53, intron 1

CC 448 441

CG 68 78

GG 3 2

CG + GG

rs2287499 7,532,893 WRAP53, exon 1

CC 406 397

CG 107 114

GG 5 12

CG + GG

a Position of SNP on chromosome 17, in base pairs referred to UCSC Genome Brow

polymorphism with respect to the gene. Some SNPs are located in genes immediately
b Numbers may not add up to 100% of subjects due to genotyping failure.
c OR: odds ratio; CI: confidence interval. Adjusted for age, gender, nationality and h
genotype frequencies for all SNPs were in accordance with Hardy–
Weinberg equilibrium in controls, and any deviation from the
expected was not statistically significant (data not shown).The
distribution of the genotypes and their odds ratios (ORs) for
association with BCC risk are shown in Tables 2 and 3. The genotype
frequencies of all SNPs were not found to be significantly different
between cases and controls.

3.1. G–G, G–E interactions and subgroup analysis

We have thoroughly analyzed all the possible pair-wise G–G
and G–E interactions between the selected SNPs in TP53, POMC and
ols (n = 532)b ORc 95% CIc p-Value P trend

0.28

1 (ref)

1.15 (0.87–1.53) 0.322

1.06 (0.58–1.96) 0.845

1.14 (0.87–1.50) 0.338

1 (ref) 0.56

1.09 (0.83–1.44) 0.542

0.96 (0.64–1.45) 0.859

1.06 (0.82–1.37) 0.662

1 (ref) 0.93

1.16 (0.85–1.59) 0.338

1.05 (0.73–1.49) 0.802

1.12 (0.84–1.50) 0.438

1 (ref) 0.46

0.93 (0.70–1.24) 0.628

0.94 (0.66–1.35) 0.742

0.93 (0.71–1.22) 0.62

1 (ref) 0.19

1.06 (0.80–1.40) 0.682

1.20 (0.81–1.76) 0.363

1.09 (0.84–1.43) 0.512

1 (ref) 0.55

0.97 (0.68–1.39) 0.872

0.38 (0.09–1.65) 0.198

0.92 (0.65–1.31) 0.656

1 (ref) 0.96

1.01 (0.73–1.39) 0.950

1.52 (0.64–3.60) 0.340

1.05 (0.77–1.43) 0.741

1 (ref) 0.99

0.99 (0.72–1.36) 0.960

1.65 (0.65–4.18) 0.292

1.04 (0.76–1.40) 0.819

1 (ref) 0.91

1.09 (0.83–1.44) 0.523

0.91 (0.57–1.46) 0.702

1.06 (0.82–1.37) 0.679

1 (ref) 0.52

0.85 (0.59–1.23) 0.385

1.31 (0.19–9.2) 0.789

0.86 (0.6–1.24) 0.418

1 (ref) 0.19

0.93 (0.68–1.27) 0.631

0.46 (0.15–1.39) 0.169

0.88 (0.65–1.2) 0.43

ser on Human Mar. 2006 Assembly. In parentheses we report the position of the

flanking TP53 at the 30 and 50 .

ost factors.



Table 3
Associations between tagging SNPs in the POMC gene region and BCC risk.

Genotypes Positiona Casesb Controlsb OR 95% CI P-value P trend

rs13002622 25,223,520 Intron, EFR3B

TT 248 236 1 (ref) 0.42

TC 223 237 0.88 (0.67–1.15) 0.363

CC 45 48 0.95 (0.6–1.52) 0.846

TC + CC 0.89 (0.69–1.16) 0.395

rs1866146 25,234,077 30 UTR, EFR3B

AA 186 194 1 (ref) 0.55

AG 261 269 1.09 (0.82–1.44) 0.551

GG 70 63 1.17 (0.77–1.77) 0.472

AG + GG 1.10 (0.85–1.44) 0.469

rs1042571 25,237,391 30 UTR, POMC

GG 361 366 1 (ref) 0.56

GA 146 149 0.87 (0.65–1.15) 0.327

AA 14 8 1.96 (0.78–4.97) 0.154

GA + AA 0.92 (0.69–1.21) 0.546

rs7566506 25,272,977 Intergenic

CC 447 447 1 (ref) 0.47

CA 67 73 0.97 (0.67–1.41) 0.871

AA 3 5 0.64 (0.14–2.85) 0.560

CA + AA 0.95 (0.66–1.37) 0.775

rs10202360 25,274,369 Intergenic

AA 334 327 1 (ref) 0.59

AC 172 175 1.05 (0.80–1.39) 0.711

CC 14 17 0.80 (0.38–1.72) 0.574

AC + CC 1.03 (0.79–1.35) 0.827

rs28932474 25,383,068 Intergenic

GG 474 475 1 (ref) 0.58

GC 48 54 0.86 (0.56–1.32) 0.479

CC 0 0

a Position of SNP on chromosome 2, in base pairs referred to UCSC Genome Browser on Human Mar. 2006 Assembly. In parentheses we report the position of the

polymorphism with respect to the gene.
b Numbers may not add up to 100% of subjects due to genotyping failure.OR: odds ratio; CI: confidence interval. Adjusted for age, gender, nationality and host factors.
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MC1R by use of the MDR approach. Analysis using the MDR method
with 10-fold cross validation did not reveal any statistically
significant interaction (the best model described had cross
validation consistency 9/10, test balance accuracy 0.56, OR 1.61
CI 0.74–3.49, P value = 0.23). Analyzing the data in subgroups
stratifying for age, gender and the host/environmental factors (skin
complexion, sun exposure and skin response to sun exposure), we
found that two polymorphic variants of TP53 had a study-wise (P-
value <0.0041) significant association with BCC risk. Results of
subgroup analysis for rs12951053 and rs8073498 are reported in
Table 4. Carriers of one copy of the C allele of rs12951053 had a
decreased risk of BCC in the group of subjects with lower sun
exposure during the summer (OR = 0.28, 95% CI 0.12–0.62,
P = 0.002). Moreover, carriers of the C allele of the same
polymorphism show an increased risk in a group of subject with
age ranged between 55 and 63 (OR = 2.67 95% CI 1.27–5.64,
P = 0.01) and subjects more prone to sun burns (OR = 1.95, 95% CI
0.99–3.81, P = 0.052), even if these associations did not reach the
threshold for multiple comparison analysis. When stratifying for
sun exposure, the SNP rs12951053 had a heterogeneity test P value
of 0.0187.

We observed an increased risk of BCC in carriers of one copy of
the C allele of SNP rs8073498 in TP53 in the group of subjects with
intermediate-high sun exposure during the summer (OR = 2.83,
95% CI 1.50–5.35, P = 0.001), although the heterogeneity test was
not significant (pheterogeneity = 0.43). Carriers of at least one copy of
C allele show an association in this subgroup (OR = 2.32, 95% CI
1.29–4.16, P = 0.005), even if this association did not reach the
threshold for multiple comparison analysis. All the other poly-
morphisms, considering the various subgroups, did not show any
statistically significant association. Supplementary Tables 1–4
show the analysis of each polymorphism of this study considering
the various subgroups of age and sun-related exposures.
Haplotype analysis did not detect associations with BCC risk
(showed in detail in Supplementary Table 5).

Searches for potential binding sites of transcription factors were
performed with MatInspector within 100 bp sequence surround-
ing rs12951053 and rs8073498. For the rs12951053 the predicted
binding of transcription factor did not differ between the two
alleles.

Twenty-one binding sites for transcription factors were
detected in the 100 bp sequence surrounding the A allele of
rs8073498. Four of those binding sites were abolished in the
presence of the C allele (Fig. 2). Two of the abolished sites were for
p53 (matrix similarity 0.94 and 0.98) and 2 for Iroquois homeobox
transcription factors (not expressed in the skin).

4. Discussion

The risk for development of BCC is mainly associated with
environmental factors (especially sun exposure) but also with
genetic factors [2]. In this study we investigated the genetic
variability of TP53 and POMC genes using a tagging approach and
selecting 17 SNPs. Using this method we covered all the known
common genetic variation of these genes, including polymorph-
isms coming from a recent study [12], but we did not find any
significant difference of genotype and haplotypes distribution
between cases and controls. Polymorphisms in TP53 have been
found to be associated with cancer risk in a variety of tissues [33–
35].

Two studies found no association of the p53 codon 72
polymorphism with BCC risk [14,15], while in two others
[16,17] the polymorphism has been found associated.

In particular the same population, in which Han et al. reported
an association between the p53 codon 72 polymorphism with
tanning response for BCC risk in a prospective cohort of women,



Table 4
Association of rs12951053 and rs8073498 with BCC risk by subgroups of environmental and host factors.

Cases Controls Per allele P value AA vs. CC P value AA vs. (AC + CC) P value P trend

AA AC CC AA AC CC ORa 95% CIa ORa 95% CIa ORa 95% CIa

rs12951053

Sun-exposure (Pheterogeneity = 0.0187)b

>2.4 120 11 0 108 30 0 0.28 (0.12–0.62) 0.002
2.4–3.5 96 17 2 104 9 2 1.91 (0.77–4.77) 0.16 0.62 (0.07–5.52) 0.67 1.66 (0.71–3.89) 0.25 0.19

3.6–4.5 105 19 1 83 14 3 1.11 (0.51–2.42) 0.78 0.33 (0.03–3.42) 0.35 0.99 (0.47–2.06) 0.97 0.58

�4.5 119 32 0 142 26 2 1.36 (0.75–2.48) 0.31 1.28 (0.71–2.31) 0.41 0.44

Skin response to sun effectc

Blistered/burnt 147 36 1 122 15 1 1.95 (0.99–3.81) 0.05 0.76 (0.05–12.69) 0.85 1.87 (0.97–3.59) 0.06 0.06

Mild burn 144 21 2 125 27 5 0.69 (0.36–1.33) 0.27 0.37 (0.06–2.30) 0.29 0.65 (0.35–1.20) 0.17 0.08

Tanning/no change 138 22 0 183 35 1 0.83 (0.46–1.52) 0.55 0.81 (0.44–1.46) 0.48 0.41

Riskc

Low 140 22 0 189 37 2 0.81 (0.45–1.46) 0.48 0.76 (0.42–1.38) 0.37 0.26

Medium 63 12 1 67 17 1 0.81 (0.35–1.90) 0.63 1.57 (0.08–29.54) 0.76 0.85 (0.37–1.93) 0.69 0.57

High 237 45 2 181 25 4 1.22 (0.71–2.11) 0.47 0.31 (0.05–1.92) 0.21 1.10 (0.65–1.86) 0.72 0.68

Aged

<55 82 6 1 139 23 4 0.43 (0.16–1.15) 0.09 0.35 (0.04–3.43) 0.37 0.42 (0.17–1.04) 0.06 0.07

55–63 87 25 0 113 13 1 2.67 (1.27–5.64) 0.01 2.51 (1.2–5.22) 0.01 0.043

64–72 135 26 0 102 21 1 0.93 (0.49–1.77) 0.83 0.88 (0.47–1.66) 0.69 0.60

>72 136 22 2 83 22 1 0.61 (0.31–1.22) 0.16 1.10 (0.08–15.23) 0.95 0.63 (0.33–1.24) 0.18 0.22

Complexionc

Light 235 40 2 174 31 4 0.87 (0.51–1.48) 0.60 0.27 (0.04–1.73) 0.17 0.80 (0.48–1.34) 0.39 0.46

Medium 191 36 1 211 41 2 0.96 (0.58–1.60) 0.88 0.73 (0.06–8.73) 0.80 0.95 (0.58–1.57) 0.85 0.77

Dark 13 3 0 51 7 1 1.90 (0.41–8.75) 0.41 1.62 (0.36–7.27) 0.53 0.76

p53rs8073498

Sun-exposureb (Pheterogeneity = 0.4322)

>2.4 51 59 20 44 78 17 0.59 (0.33–1.05) 0.07 0.77 (0.34–1.76) 0.540 0.63 (0.36–1.08) 0.09 0.59

2.4–3.5 39 58 18 39 58 16 1.00 (0.54–1.84) 0.10 0.95 (0.40–2.25) 0.911 0.99 (0.55–1.77) 0.97 0.82

3.6–4.5 38 69 18 48 34 17 2.83 (1.50–5.35) 0.001 1.39 (0.61–3.18) 0.431 2.32 (1.29–4.16) 0.005 0.10

�4.5 56 61 32 67 78 23 0.93 (0.56–1.55) 0.79 1.57 (0.80–3.08) 0.185 1.08 (0.67–1.73) 0.75 0.21

Skin response to sun effectc

Blistered/burnt 63 88 30 52 65 21 1.05 (0.63–1.74) 0.86 1.09 (0.54–2.18) 0.816 1.06 (0.65–1.71) 0.82 0.59

Mild burn 61 86 21 50 80 24 0.89 (0.54–1.49) 0.67 0.69 (0.33–1.44) 0.323 0.85 (0.52–1.37) 0.50 0.35

Tanning/no change 57 68 34 92 98 28 1.24 (0.77–2.00) 0.37 1.68 (0.90–3.13) 0.105 1.35 (0.87–2.1) 0.18 0.05

Riskc

Low 57 70 34 94 105 28 1.19 (0.75–1.90) 0.47 1.72 (0.92–3.20) 0.088 1.31 (0.85–2.03) 0.22 0.04

Medium 30 38 9 29 41 13 1.01 (0.50–2.03) 0.99 0.58 (0.20–1.65) 0.309 0.89 (0.46–1.74) 0.73 0.45

High 97 139 45 75 102 32 0.98 (0.65–1.48) 0.91 1.07 (0.60–1.89) 0.824 1.00 (0.67–1.48) 0.99 0.74

Aged

<55 28 44 15 67 76 23 1.56 (0.85–2.86) 0.15 1.34 (0.59–3.04) 0.488 1.50 (0.85–2.65) 0.17 0.21

55–63 40 54 18 49 64 12 0.97 (0.55–1.72) 0.92 1.77 (0.74–4.23) 0.197 1.10 (0.64–1.88) 0.74 0.25

64–72 58 80 24 40 64 19 0.83 (0.49–1.42) 0.50 0.82 (0.39–1.73) 0.607 0.83 (0.5–1.38) 0.47 0.63

>72 58 69 31 42 44 19 1.13 (0.64–2.01) 0.68 1.26 (0.61–2.59) 0.539 1.17 (0.69–1.98) 0.57 0.60

Complexionb

Light 105 129 42 79 98 30 1.04 (0.69–1.58) 0.84 0.99 (0.56–1.77) 0.979 1.03 (0.70–1.52) 0.88 0.89

Medium 74 111 41 92 124 36 1.10 (0.73–1.66) 0.65 1.28 (0.73–2.25) 0.390 1.14 (0.77–1.69) 0.51 0.23

Dark 5 7 4 26 26 7 1.46 (0.40–5.37) 0.57 2.58 (0.51–12.92) 0.250 1.74 (0.52–5.75) 0.37 0.19

a OR: odds ratio; CI: confidence interval. Study-wise significant associations (P<0.0042) are written in bold, associations with P<0.05 but not reaching the threshold for

multiple comparison are underlined.
b Adjusted for age, gender, risk (which consists of the combination of skin complexion and skin response to sun exposure) and nationality.
c Adjusted for age, gender and nationality.
d Adjusted for gender, risk and nationality.

[()TD$FIG]

Fig. 2. Output of MatInspector software. The yellow arrow indicates the position of rs8073498 SNP. The C allele abolishes recognition motifs for p53 (in a green frame). The

recognition motif is predicted with a matrix similarity of 0.94 and 0.98 (a. output for A allele, b. output for C allele). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of the article.)
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showed no association between one SNP in POMC gene
(rs1042571) and BCC risk [18]. Our results show no association
with the p53 codon 72 polymorphism, and confirm lack of
association with POMC polymorphisms covering the whole gene,
including rs1042571. Nan et al. [36] tested also an interaction
analysis between p53 codon 72 polymorphism and MC1R variants.
The authors found that there was an association between the two
genes and melanoma risk but not for BCC risk. Our results on the
interactions between the two gene variants confirm in a bigger
independent population their null finding.

Sun exposure is the major etiological factor in the genesis of BCC;
however, many studies have suggested that risk may involve an
interplay between genetic (SNPs), host (skin complexion, skin
response to sun exposure) and environmental (sun exposure) factors
[2]. Thus we have thoroughly analyzed all the possible interactions
and associations between the selected polymorphisms and known
risk factors for BCC. Analyzing the data in subgroups stratifying for
age, gender and the host factors previously mentioned, we found
that two polymorphisms were associated with BCC risk. We found
that, in the group of subjects with lower sun exposure during the
summer, carriers of one copy of the C allele of the rs12951053 had a
decreased risk of BCC and subjects with intermediate-high sun
exposure had an increased risk of BCC in carriers of one copy of the C
allele of SNP rs8073498, although the heterogeneity test in this
subgroup analysis was not significant. The rs12951053 polymor-
phism has been found associated with increased risk in other cancer
types [37–39]. On the other hand, we observed it to be associated
with a decrease in BCC risk. p53 is known to act in many different
ways, depending on the tissue and environmental stimuli; in this
specific case its function is likely related with UV response. In
different cancer types the major function can be a different one with
different regulations. In silico analysis predicts that several variants
in moderate LD (0.5 < r2 < 0.7) with TP53 rs12951053 can affect a
transcription factor binding site; in addition, rs2287498, which is in
the flanking gene WDR79 and in LD with rs12951053 (r2 = 0.62), is
predicted to affect function at a splice site [39]. The mRNA encoding
this protein plays a critical role in the regulation of p53 expression at
the post-transcriptional level; it is involved both in maintaining
basal p53 mRNA levels and in p53 induction upon DNA damage [40].
So far there is no published association between genotypes in
rs8073498 and cancer risk. We assessed the putative effect of the C
allele by the MatInspector program, which predicts that this variant
may abolish recognition motifs for p53 itself (Fig. 2).

In this study we had more than 80% power to detect a possible
association with a minimum OR of 1.28 for a SNP with minor allele
frequency of 0.45 in the controls assuming alpha = 0.05, two-sided
test and a codominant model. In conclusion, we have observed that
the interplay of sun exposure and one polymorphism in TP53 gene
association could modulate the risk of BCC. However these results
have to be taken with caution due to the relatively large number of
comparisons done and have to be replicated in a larger
independent study.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in

the online version, at doi:10.1016/j.jdermsci.2011.03.006.
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