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Abstract

The design of efficient Home Care Services is a quite recent and challenging field of
study. We propose an integrated approach that jointly addresses: (i) the assignment
of operators to patients so as to guarantee the compatibility between skills associated
with operators and patient visits; (ii) the scheduling of the visits in a given planning
horizon; and (iii) the determination of the operator tours in every day of the planning
horizon. The main Home Care Problem we investigate refers to providers dedicated
to palliative care and terminal patients. In this context, balancing objective functions
are particularly relevant. Therefore, two balancing functions are studied, i.e. maxmin,
which maximizes the minimum operator utilization factor, and minmax, which mini-
mizes the maximum operator utilization factor. In both cases, the concept of pattern
is introduced as a key tool to jointly address assignment, scheduling and routing de-
cisions, where a pattern specifies a possible schedule for skilled visits. The approach
we propose is however able to cope with peculiarities from other home care contexts.
Model extensions to handle scenarios other than the palliative one are discussed in the
paper.

Extensive computational results are reported both on palliative home care instances
based on real data, and on two real-world data sets from the literature, related to con-
texts very different from the palliative one. For both data sets the proposed approach
is able to find solutions of good quality. In the palliative context, the results show that
the selection of the pattern generation policy is crucial to solve large instances effi-
ciently. Furthermore, the maxmin criterion is able to return more balanced solutions,
i.e. the difference between the maximum and the minimum operator utilization factors
is very small. On the other hand, the minmax criterion is more suitable for minimizing
the operating costs, since it computes solutions with smaller total travelled time.
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Introduction

Nowadays, the ever increasing average age of population, at least in industrialized countries,
and the increased costs for the consequently required care, compel the medical care units
(hospitals and so on) to offer home care services in an attempt to limit costs. Elderly people
have in fact varying degrees of need for assistance and medical treatment, and it may be
advantageous to allow them to live in their own homes as long as possible, since a long-term
stay in a nursing home can be much more costly for the social insurance system than a
treatment at home providing assistance to the required level. Even more important, medical
treatments carried out at patients home impact favorably on their quality of life. Therefore,
home care services are a cost-effective and flexible instrument in the social system.

In this paper we address relevant optimization problems arising in Home Care; specifi-
cally, given a planning horizon W , usually a week, a set of patients with an associated care
plan, i.e. weekly requests each of them demanding a specific skill to be operated, and a set
of operators also characterized by a skill, the problems ask to schedule the patient requests
during the planning horizon, assign the operators to the patients by taking into account the
compatibility between request and operator skills, and determine the tour each operator has
to perform in every day of the planning horizon.

Indeed, many significant differences do exist in Home Care, which induce the study of
different problems and the development of different models. The main Home Care problem
we investigate in this paper refers to providers which are mainly dedicated to palliative care
and terminal patients. In this setting, an objective typically used to guide the decisions is
the balancing of the utilization factor among the operators, where the operator utilization
factor is the total workload of the operator in the considered planning horizon over his/her
maximum possible workload. In order to achieve this objective, we study two alternative
functions: (i) maxmin, which maximizes the minimum operator utilization factor, and (ii)
minmax, which consists in minimizing the maximum operator utilization factor.

Relevant Quality of Service (QoS) requisites are taken into account during the optimiza-
tion process. One of them is the so-called continuity of care, expressed by imposing that
at most T operators can be assigned to each patient in the considered planning horizon,
where T is given. Another relevant requisite, the maximum daily workload, states that the
workload of each operator in each day, i.e. the sum of the daily service times and traveling
times of the operator, can not exceed the duration of the operator workday.

In the state-of-the-art literature Home Care problems are usually solved in cascade: first
the operators are assigned to the patients on a geographical basis so as to match the skills
required by a service at patient’s home with the skill owned by the operator; second, the
schedule of each operator is determined, usually operator-wise. Some optimization models
that extend Vehicle Routing Problem (VRP) formulations have been proposed in the liter-
ature, but generally they deal with a daily planning horizon. To the best of our knowledge
there are only three exceptions which deal with a longer time horizon. In [2] the weekly plan-
ning is viewed as the union of independent daily plannings. The other two studies ([17], [22])
address a problem which is similar to the one analysed in this paper, seeking for an optimal
weekly plan. However, no integrated approach is proposed to solve the overall problem, but
two-stage solution approaches are presented. In fact, in the literature tailored metaheuristic
approaches are usually proposed to solve Home Care problems, which address the complex
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decisions via multiple steps. On the other hand, here the studied Home Care problem is
formulated by jointly addressing assignment, scheduling and routing decisions, over a given
planning horizon, by generalizing the VRP, and specifically the Skill VRP ([6], [7]), from
which it inherits the skill based structure. In the Skill VRP papers, however, only daily
routing decisions have been addressed.

We propose a new Integer Linear Programming (ILP) formulation to state the Home
Care problem referring to the palliative context, under the two kinds of balancing objective
functions mentioned above. An innovative modelling device to combine the three levels of
decisions is that services are offered according to a set of a priori given patterns. Three
policies to generate patterns are designed and will be discussed in the paper. The relevant
QoS constraints mentioned before, i.e. continuity of care and maximum daily workload, have
been incorporated into the models. In addition, the models have been enhanced by means of
valid inequalities aimed at breaking the symmetric structure that usually characterizes the
underlying logistics network, and by means of cuts whose aim is to take under control the
length of the operator tours.

The issues that feature the palliative context, however, do not narrow the applicability
of the models we propose to different home care scenarios. Model extensions are in fact
presented that may help in coping with different home care organisations. They include the
satisfaction of time windows indicated by the patients and those relative to operator shifts
(like a morning and an afternoon shift in each day), and overtime handling, with possibilities
of overtime compensation within the time horizon.

The approach has been validated, over a weekly planning horizon, on a set of palliative
home care instances based on real data and publicly available. Specifically, the set includes
both two real instances which are related to the largest division of a northern Italian med-
ical care unit, and which are characterized by 11 operators and by 128 and 162 patients,
respectively, and a pool of 24 smaller instances, which have been generated starting from
the two real ones. Although smaller than the previous ones, the size of these 24 instances
(characterized by a number of patients varying in {40, 50, 60, 80} and by a number of op-
erators varying in {4, 5, 6}) reflects the size of real home care districts in Italy, into which
divisions are usually organized. Furthermore, in order to give computational evidence of the
generalizability of the models proposed, the approach has been validated on two real-world
data sets from the literature, pertaining to contexts very different from the palliative one,
where some of the aforementioned model extensions are required.

One of the objectives of the experimental analysis was to study the impact of the pattern
selection policy in solving the proposed models. At this regard, all the experiments on the
palliative data set show that determining a good but limited set of patterns is crucial for
efficiently solving the Linear Programming (LP) relaxation, thus helping in computing very
good quality solutions. In particular, one of the proposed pattern generation policies, which
is based on the solution of an auxiliary network flow problem, proved to be very effective
in selecting a small number of patterns of good quality. Also, the proposed symmetry man-
agement valid inequalities proved to be crucial for the efficiency of the approach. Therefore
the first achievement is that, by properly selecting the pattern generation mechanism and
suitably using the symmetry management tool, in almost all the cases the proposed models
were able to compute very good quality solutions, near to the optimal ones. This is true for
both the 24 smaller instances and for the two biggest ones. In the latter case, such good
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quality solutions have been computed within the stated time and memory limits, which are
12 hours and 1 GB for the branch and bound tree, respectively. Concerning the required
time and memory resources, notice that a large but affordable consumption of such resources
does not seem to be an issue when the focus is a difficult planning problem that has to be
solved once a week.

Another objective of the computational analysis was to compare the two balancing ob-
jective functions, i.e. maxmin and minmax, by showing their impact on diverse relevant
QoS indicators. This set of indicators includes the mean operator utilization factor over the
considered planning horizon and the corresponding range, i.e. the difference between the
maximum and the minimum operator utilization factors. In addition, in order to provide a
hint about the influence of such equity measures on the Home Care Services efficiency, QoS
indicators related to the operator travelled time have been investigated. At this regard, by
selecting the most promising pattern generation policy, i.e. the one involving an auxiliary
network flow problem, the interesting result is that maxmin is able to return more balanced
solutions, in the sense that the operator utilization range is smaller than the one returned
by minmax. Such a stronger equity achievement is obtained for not too high a price in the
increased mean operator utilization factor and mean operator traveling time. On the other
hand, the minmax criterion is more suitable for the minimization of the operating costs, since
it always returns solutions with the smaller total travelled time for the operators. Therefore,
minmax is a criterion better pursuing home care efficiency, while maxmin appears to be
more suitable for equity in Home Care.

We performed an additional set of experiments on the 24 palliative home care instances,
by relaxing the care continuity constraint. The results in some way contrast the main
conclusions of previous studies in the home care sector. In fact, it appears that relaxing the
care continuity constraint does not deteriorate too much the computed solutions in terms
of number of operators assigned to the same patient. Furthermore, such a relaxation often
allows to solve critical instances in a more efficient way.

Finally, to show the applicability of the approach to contexts different from the palliative
one, we tested the proposed formulation, with some of the presented model extensions, on
two real-world data sets from the literature. These two data sets have been experimented in
the two most recent works dealing with a weekly planning horizon in Home Care, i.e. [17]
and [22]. Even if the two instances seem quite comparable to the palliative biggest instances
according to their size, they have a very different structure and require specific extensions,
due to the different home care context they address. The computational results show that
our approach seems to be able to find solutions of good quality, near to the optimal ones,
also on such real instances.

The determination of very good quality solutions in almost all the performed experiments
thus reveals, in our opinion, the potentiality of the proposed ILP models in successfully
addressing real home care instances. Further, the joint approach appears to be suitable for
the design of decomposition methods, relying on the proposed ILP models, and tailored to
solve even larger home care instances.

The plan of the paper is the following. In Section 1 we introduce the studied Home Care
problems. In Section 2 we describe the main results from the literature on modelling and
solution approaches to Home Care optimization problems. In Section 3 we present the pro-
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posed ILP models to Home Care in the palliative scenario, with the related balancing criteria
maxmin and minmax. Valid inequalities to enhance the models are also presented, which
exploit the peculiar symmetric cost structure of the real instances. In addition, constraints
aiming at avoiding long tours are introduced. The main similarities and dissimilarities be-
tween our models and the models in [17] and [22] are explained in Section 4. In Section 5 we
present some relevant extensions to the ILP Home Care models previously introduced, that
allow to cope with different home care scenarios. Section 6 contains the description of some
pattern generation approaches. In Section 7 we discuss the results of the computational
experiments aimed at validating the proposed models on real home care instances. In par-
ticular, the main achievements of our computational study are summarized in Section 7.7.
Finally, Section 8 provides conclusions and discussion about possible avenues of research.

1 The Home Care problems addressed

Home Care Services aim to satisfy the health and social needs of people by providing ap-
propriate and high quality home based healthcare and social services within a balanced and
affordable continuum of care [26], [27]. Anyway, many significant differences do exist, which
induce the development of different models in the planning of home care organisation opera-
tions. An analysis of the main types of organisations is depicted in [20], where a distinction
among public service providers, and private non for profit/for profit providers is outlined
depending on their corporate status. Another classification of home care providers is related
to the pathologies suffered by their patients and the patient characteristics.

The main Home Care Problem we investigate in this paper refers to providers which are
mainly dedicated to palliative care and terminal patients. For the sake of clarity, it will be
referred to as the Palliative Home Care Problem (PHCP). This is the most common case
in Italy as witnessed by the analysis shown in [20]. However the characteristics of PHCP
are very general; in fact, most of them constitute a common kernel to other types of health
care service organisations (such as the ones classified as polyvalent in [20]). In contrast, the
issues that characterize PHCP are mainly the objective function used, the low importance
of time windows constraints, the care continuity management and a hierachical structure of
the skills associated with patients and caregivers. In the following a brief discussion on these
key features is given. Nevertheless the models we propose are able to cope with additional
peculiarities from different contexts as well.

Home Care problems are multicriteria in nature due to the large number of stakeholders
involved and due to a large number of interwined activities. Typical criteria used to drive
decisions are the minimization of the operating costs (essentially the total travel time), the
minimization of unscheduled visits, the control of the overtime, the regularity of the ser-
vice offered, the continuity between patients and operators, the minimization of masterplan
disruptions, and a fair distribution of the workload among the operators. Each of the afore-
mentioned criterion can give rise to a component of the objective function or to a constraint.
These two situations are commonly referred to as soft and hard constraints respectively.
Objective functions that combine together some of these criteria by means of weights are
widespread in the Home Care literature. In the oncology and terminal diseases context,
balancing objective functions are particularly relevant. In fact, balancing the operator work-
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load is crucial to try to mitigate the so-called burnout syndrome, typical of home care nurses
who have developed special relationships with terminal patients [20]. Objective functions
that aim at balancing the operator workload are very common in more general human re-
source planning problems and specifically in those dealing with home care organisations; as
an example they are used when providers have to assign operators to patients (see [20]). See
also [4] where, in a different context, the problem of partitioning a territory into districts is
addressed by balancing the operator workload.

Time windows imposed on patient’s visits can be crucial in several home care scenarios,
especially for patients requiring a timely administration of drugs. However their management
is very complex and in the practice time windows are often the results of a negotiation with
the patients [22] or they are quite large. In contrast, in the palliative context the satisfaction
of time windows indicated by the patients is typically not pursued.

The continuity of care aims to ensure that the same caregiver, or at least a limited set
of caregivers, delivers service to a patient. The advantages of this practice are that loss of
information among operators is reduced, and patients perceive a better quality of care [20].
In the literature, several ways to manage the care continuity are provided. As an example,
the patient-nurse loyalty addressed in [22] is modeled as a term of the objective function
which controls the number of different operators which can serve a certain job of a certain
patient during the planning horizon. As a further example, the employee regularity studied
in [17] is modeled as an objective function that minimizes the sum, over the patients, of the
number of different operators assigned to each patient. In the palliative care context the
continuity of care is particularly relevant and we model it via a constraint imposing that
at most T operators can be assigned to each patient in the planning horizon (T = 2 in our
experiments). Although stronger forms of care continuity can be devised, what matters is
the number of operators that a patient has to become acquainted with.

Another issue that characterizes the palliative context is that patient’s visits and oper-
ators are associated with levels of skill that are managed hierarchically. In our case study,
for example, there are two levels of skill where skill 1 refers to ordinary requests, whereas
skill 2 corresponds to palliative requests. A specialized operator (i.e. an operator with skill
2) can visit a patient requiring a less skilled visit (i.e. a visit with skill 1) and in such a case
an overskilled visit occurs. This opportunity is perceived positively by the patients since it
increases their confidence in the service they receive [21].

The issues that feature the palliative context, however, do not narrow the applicability
of the models we propose to different home care contexts. In Section 5 we will present model
extensions that may help in coping with different scenarios. Specifically, we will present
extensions addressing the request to satisfy time windows indicated by the patients and
those relative to operator shifts (i.e. a morning and an afternoon shift in each day); we will
discuss the handling of overtime, with possibilities of overtime compensation within the time
horizon, and finally we will deal with scenarios where skills are not organised hierarchically.
In order to give computational evidence of the generalizability of the models proposed, in
Section 7.6 we will present the results obtained on two real-world data sets from different
contexts, where some of the aforementioned model extensions are required.
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2 The literature

Planning Home Care Services is a rather young but quickly evolving research area. As
indicated before, in the state-of-the-art Home Care literature problems are usually solved
in cascade: first the operators are assigned to the patients on a geographical basis so as to
match the skills required by a service at patient’s home with the skill owned by the operator;
second, the schedule of each operator is determined, usually operator-wise.

In 1997, Begur et al. [2] clearly stated the importance of jointly addressing scheduling
and routing decisions in Home Care. Furthermore, they firstly suggested the use of patterns
in order to schedule the patient requests during the considered planning horizon. However,
they used the concept of pattern as a means to decompose the overall problem into a set of
daily independent routing problems, and used a heuristic approach to generate the operator
tours. Specifically, the heuristic proposed in [2] uses a sequential savings algorithm as well
as a nearest neighbor heuristic to reoptimize each single route. The authors estimated large
savings potentials for 40 patients and 7 operators per day.

By distinguishing between salaried operators (full-time nurses) and non-salaried operators
(part-time nurses), in about the same period Cheng and Rich [10] studied the problem of
determining an optimal schedule for each operator such that each nurse leaves from his/her
home, visits a set of compatible patients within associated time windows, takes a lunch break
and returns home, all within the nurse time window and the maximum duration of a shift.
The objective function to be minimized is the amount of the overtime and part-time worked.
Compared to the Home Care problems studied in this paper, there is no concept of skill.
Pairs of compatible nurse-patient are considered instead. In addition, the planning horizon
is the day. Two and three-index ILP formulations are presented. However, the problem is
solved by means of a two phase algorithm that first builds parallel tours that are improved
afterwards. The authors compared their heuristic results with the optimal solutions found
by the solver software Cplex for some random test instances with up to 10 patients and 4
operators, and showed some heuristic results for larger instances.

A mathematical programming model for the combined vehicle routing and scheduling
problem with time windows and additional temporal constraints is presented in [5]. The
temporal constraints allow for imposing pairwise synchronization and pairwise temporal
precedence between customer visits, independently of the vehicles. The authors describe
some real world applications, among which the daily planning of home care staff. They
propose an optimization based heuristic to solve real size instances for up to 80 visits and
16 nurses, and compare a direct usage of a commercial solver against the proposed heuristic.
Again, the considered planning horizon is the day. The description of an analogous combined
scheduling and routing problem, with a related decision support system to solve it, called
Laps Care, can be found in [13]. The problem is formulated as a set partitioning problem
and solved by repeated matching on a daily horizon. Requirements that two operators occur
simultaneously or in given order are also taken into account by the decision support system.
The presented case studies deal with 86 - 123 patients and 12 - 21 nurses. See [14] for a
description of the advantages of using Laps Care in Swedish municipalities.

Syncronized visits in the home care context are addressed also in [18]. The authors
study a routing problem where some cares have to be performed by several operators and
some cares cannot be performed with others. If a patient needs several cares, he/she may
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want to be treated by the same person. Moreover, some skill constraints and time windows
have to be satisfied. Again, the planning horizon is the day. The authors showed that the
studied Home Care problem is equivalent to a multiple traveling salesman problem with time
windows (mTSPWT) with some specific constraints, and proposed an ILP model with some
technical improvements. The proposed ILP model was not able to deal with instances of
real size, but it gave rapidly solutions of good quality.

A multiple vehicle routing model with time windows and additional constraints has been
proposed also in [12]. Here the concept of skill is not present, but the patients are assigned
to a geographical sector depending on their home address. Whenever possible, an operator
visits only patients from his/her sector, but he/she may however have to visit patients
from other sectors to balance the operator workloads. Continuity of care and blood sample
related constraints (the specific application context concerns in fact blood sample requests)
are also taken into account. Although a mathematical model is proposed, a metaheuristic
approach based on Tabu Search is indeed used to solve the specific Home Care problem under
consideration. Other specific Home Care problems have been addressed in the literature, such
as the planning of operations related to chemiotherapy at home in [9], and the daily planning
of Home Health Care in times of flood disasters in [25]. In [25], a model formulation has been
presented which includes assignment constraints, working time restrictions, time windows,
and mandatory break times. A feasible solution has also to consider qualification levels,
language skills, and rejections due to personal reasons. The model has been implemented
with the solver software Xpress 7.0 and solved for small problem instances. Real life-sized
instances have been tackled with a variable neighborhood search (VNS)-based heuristic that
is capable of solving even large instances covering 512 requests and 75 operators.

[11] and [23] present a Branch and Price framework for a daily Home Health Care schedul-
ing problem in Denmark. Instances with up to 150 requests and 15 operators are presented
and compared to current practice. See also [1] for a collaborative population-based meta-
heuristic technique to the scheduling of home care workers in the UK.

A daily assignment and routing Home Care problem is also addressed in [3], in [24] and in
[16]. The problem in [3] considers the skill of patients and operators, and includes a variety
of hard and soft constraints, plus preferences. The proposed two-phase approach interweaves
two parts: finding a partition of requests to operators, and finding an optimal sequencing
for each such partition. A combination of linear programming, constraint programming,
and heuristics is used to develop a software tool to home care applications. The authors
solved instances with 200-600 requests and 20-50 operators. In [24] a new insertion method
is developed on the basis of an already known insertion heuristic where the assignment of
visits to operators and the generation of routes is done in the same process. The solution
found by the insertion heuristic is then used as the initial solution of a tabu search approach.
In [24], sometimes the operators have to visit the same patient more than once on the same
day. Furthermore, shared visits are allowed. However, all operators are assumed to have
the same qualifications, and the visits are not characterized by skills. The instances used
for parameter tuning and performance testing have 17 operators and 166.5 visits on average,
and they are based on data from a municipality in Denmark. In [16], a general framework for
solving a real-world multimodal home-healthcare scheduling problem from a major Austrian
provider is presented. The goal is to assign homecare staff to customers by respecting
various side constraints, like (preferred) time windows, and taking into account staff and
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patient satisfaction as well as the modality of the routes. Multi-modality is a key issue in
the considered context, since nurses use different modes of transportation (cars or public
transportation), which inherently leads to travel times dependent on the chosen modality.
A two stage heuristic approach is proposed to solve the studied problem: in the first stage,
initial solutions are generated either via constraint programming or by a random procedure;
during the second stage, the initial solutions are then iteratively improved by applying one
of four metaheuristics (variable neighborhood search, a memetic algorithm, scatter search
and a simulated annealing hyper-heuristic). An extensive computational comparison shows
that the approach is capable of solving real-world instances in reasonable time and produces
valid solutions within only a few seconds.

To the best of our knowledge, the only works dealing with a weekly planning horizon (in
addition to the already mentioned [2]) are [22] and [17]. In [22] Nickel et al. present a two
phase heuristic approach. In the first stage, a constraint programming heuristic guarantees
the quick calculation of a feasible, applicable solution. Afterwards, an adaptive large neigh-
borhood search (ALNS) seeks to improve the initial solution if further computational time
is available. The approach has been evaluated with two real-world data sets from Germany
and the Netherlands. The results show that it is possible to solve practical instances of home
care operations planning in reasonable time, with up to 12 operators and 95 patient jobs.

A two-level approach is used also by Jensen [17]. The first phase constructs a masterplan,
which is a long-term plan, via a five-phase heuristic, essentially based on local search routines.
The second phase is a daily planning which uses the masterplan as a starting point, but
incorporates last minute changes such as employees falling in sick, ad hoc visits, and other
unforeseen events. A real-life instance characterized by 5 operators and 37 patients is tested,
together with some large randomly generated instances. An ILP formulation of the key parts
of the masterplan problem is also presented.

With respect to the reviewed literature, a key contribution of our study is to address
a long term (say weekly) planning horizon in Home Care, rather than the daily planning
horizon commonly investigated. In addition, with respect to the aforementioned [2], [17] and
[22], that also consider such a long time horizon, here assignment, scheduling and routing
decisions are addressed in a joint way, i.e. without heuristically decomposing the problem by
means of a two-level approach. For the sake of completeness the main differences between
the ILP models proposed in this paper and the models in [17] and [22] will be emphasized
in Section 4.

In order to coordinate the diverse decision levels, crucial and original is, in our opinion,
the use of a pattern modelling device. Partial and preliminary computational results related
to such a modelling device can be found in [8], showing that pattern generation policies may
have a strong impact on the efficiency of the optimization approach and on the quality of the
returned solutions. Notice that the ILP models presented in this paper strictly generalize
some of the models in [6] and [7]. In fact, they incorporate the skill hierarchy structure
introduced in [6] and [7] where, however, only daily routing decisions have been addressed.
Furthermore, assignment and scheduling aspects are not present in [6] and [7].
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3 ILP Home Care models

This section is devoted to the Palliative Home Care Problem (PHCP) introduced in Section 1.
Suitable extensions will be then presented in Section 5.

PHCP is defined on a complete directed network G = (N,A), having n nodes, where
each node j corresponds to a patient. There is an extra node (node 0), which is used to
denote the basis where the operators start their tour from and arrive in.

A set K of k levels of skill is assumed for both patients and operators, where skill k
corresponds to the highest ability and skill 1 to the lowest one. Skill levels are organized
hierarchically so that an operator with skill k can work all the requests characterized by a
skill up to k. Under this assumption, requests of the highest skill k can be operated only by
the most skilled operators.

A care plan is given for each patient. Specifically, for each patient j ∈ N and for each
level of skill k ∈ K, rjk denotes the number of visits of skill k required by j in the planning
horizon W .

A new modelling device, called pattern, plays a crucial role to address jointly scheduling,
assignment and routing decisions. A pattern specifies a possible schedule for skilled visits;
patient requests are then operated according to a set P of a priori given patterns. Specifically,
for each pattern p ∈ P and for each day d ∈ W , we define p(d) = 0 if no service is offered at
day d, while it is p(d) = k if a visit of skill k is operated on day d according to p. Only one
visit per day can be operated. For example, if a patient requires three visits a week, they
may be scheduled on Monday-Wednesday-Friday or Monday-Tuesday-Thursday: in this case
two patterns will be considered with the appropriate skill level for the visits.

Given the input data above, PHCP consists in assigning a pattern from P to each patient
j, so scheduling the requests of j, expressed by the rjk, over the planning horizon (care plan
scheduling), in assigning operators to each patient j, for each day where a request of j has
been scheduled (operator assignment), and in determining the tour of each operator for each
scheduled day (routing decisions), so as to balance the operator workload. In addressing
these three groups of decisions, the skill constraints (i.e. the compatibility between the
skills associated with the patient requests and the skills of the operators), the continuity of
care (i.e. at most T operators can be assigned to each patient in W , for given T ) and the
maximum daily workload constraints have to be taken into account.

In order to state PHCP in a more formal way, let us introduce some additional notation:

O the set of (skilled) available operators
Od ⊆ O the set of the operators available on day d, for each d ∈ W
sω the skill of operator ω, ω ∈ O
Dω the workday length of operator ω, ω ∈ O
t′j the service time at node j, j ∈ N (t′0 = 0)
tij the traveling time from node i to node j, (i, j) ∈ A.

Then let us define the following three families of variables in order to model the care plan
scheduling, the operator assignment and the routing decisions:

zjp =

{
1 if pattern p is assigned to patient j
0 otherwise

j ∈ N (j 6= 0), p ∈ P
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uωj =

{
1 if operator ω is assigned to patient j
0 otherwise

ω ∈ O, j ∈ N (j 6= 0)

xωdij =

{
1 if operator ω travels along (i, j) on day d
0 otherwise.

(i, j) ∈ A, d ∈ W , ω ∈ Od.

Furthermore, let:

ydij auxiliary flow variable which represents the number of patients visited after patient i
by the operator moving along (i, j) on day d, (i, j) ∈ A, d ∈ W .

Using the variables above, the feasibility set of PHCP can then be modeled as follows:

∑
i∈N

∑
ω∈O

xωdij ≤
∑

p:p(d)≥1

zjp ∀j ∈ N \ {0},∀d ∈ W (1)

∑
i∈N

∑
ω:sω≥k

xωdij ≥
∑

p:p(d)=k

zjp ∀j ∈ N \ {0},∀d ∈ W,∀k ∈ K (2)

∑
p∈P

zjp = 1 ∀j ∈ N \ {0} (3)∑
ω∈O

uωj ≤ T ∀j ∈ N \ {0} (4)

xωdij ≤ uωj ∀(i, j) ∈ A,∀j ∈ N \ {0},∀d ∈ W,∀ω ∈ Od (5)

uωj ≤
∑

i∈N :i 6=j

∑
d

xωdij ∀j ∈ N \ {0},∀ω ∈ O (6)

Dωd =
∑

(i,j)∈A

(tij + t′j) · xωdij ≤ Dω ∀d ∈ W,∀ω ∈ Od (7)

∑
i∈N

xωdij =
∑
i∈N

xωdji ∀j ∈ N \ {0},∀d ∈ W,∀ω ∈ Od (8)∑
j∈N

yd0j =
∑
j∈N

∑
p:p(d)≥1

zjp ∀d ∈ W (9)

∑
i∈N

ydij −
∑
i∈N

ydji =
∑

p:p(d)≥1

zjp ∀j ∈ N, ∀d ∈ W (10)

ydij ≤ n
∑
ω∈Od

xωdij ∀(i, j) ∈ A,∀d ∈ W (11)

zjp ∈ {0, 1} ∀j ∈ N(j 6= 0),∀p ∈ P (12)

uωj ∈ {0, 1} ∀ω ∈ O, ∀j ∈ N(j 6= 0) (13)

xωdij ∈ {0, 1} ∀(i, j) ∈ A, ∀d ∈ W,∀ω ∈ Od (14)

ydij ≥ 0 ∀(i, j) ∈ A,∀d ∈ W (15)

Constraints (1) state that at most one operator per day can visit patient j, if a visit has
been scheduled on that day for node j. Constraints (2) guarantee that, on day d and for
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each level of skill, exactly one operator, of adequate skill, must visit patient j if a service
of that skill has been scheduled for j on day d. Constraints (3) assure that exactly one
pattern is assigned to each patient, thus scheduling his requests in the planning horizon.
Constraints (4) assure that at most T operators are assigned to each patient during a week,
where T is assumed to be given. This models the continuity of care requisite described in
Section 1. Constraints (5) guarantee that an operator can visit a patient only if he has been
assigned to that patient (linking between routing and assignment variables). Furthermore,
constraints (6) force variables uωj to zero if operator ω never visits patient j during the
planning horizon. Constraints (7) assure that the workload of each operator in each day,
expressed as the sum of the service times and the traveling times, does not exceed the
duration of a workday. Constraints (8) are the classical flow conservation constraints on
the routing variables. Constraints (9) and (10) are the flow conservation constraints on the
auxiliary y variables, which are introduced to avoid subtours in the model solutions. They
also guarantee the correct linking between scheduling decisions and auxiliary flow variables.
Finally, constraints (11) link together routing variables and auxiliary flow variables.

Observe that a pattern variable zjp can assume a value other than zero only if pattern p
is compatible with patient j, i.e.:

|{d : p(d) = k}| = rjk ∀k ∈ K. (16)

Therefore, in the preprocessing phase zjp = 0 if anyone of the k constraints (16) is not
satisfied. Furthermore, xωdij = 0 if patients i and j have only requests of skill at least k during
the planning horizon, and ω is an operator of skill less than k.

In order to balance the operator workload, the first objective function we address,
maxmin, maximizes the minimum operator utilization factor, expressed as the total work-
load of the operator during the planning horizon over his maximum possible workload. The
corresponding ILP model is thus:

max m
(1)− (15)∑
d∈W

Dωd

|W |·Dω
≥ m, ∀ω ∈ O,

(17)

where |W | denotes the width of the planning horizon. In contrast, the alternative balanc-
ing objective function investigated in this paper, minmax, minimizes the maximum operator
utilization factor. The resulting ILP model thus differs from the one stated above in the kind
of optimization to be pursued (minimization rather than maximization), and in the form of
constraints (17), that is to say:

min m
(1)− (15)∑
d∈W

Dωd

|W |·Dω
≤ m, ∀ω ∈ O.
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In real home care instances usually the set of the patients is clusterised. Precisely, patients
located in the same municipality or in a small rural area form a cluster of nodes, such that the
distance between any pair of nodes within the cluster is very small compared to the distance
between nodes belonging to different clusters. Such intra-cluster distances can be usually
assumed equal to a certain (small) value δ. In addition, the inter-cluster distances depend
only on the clusters, and not on the specific patients within the clusters. For example, if
patients i and j belong to a certain cluster (or municipality) C1, while patients v and w are
resident in C2, then the distance between i and v is equal to the distance between j and
w, since it only depends on the considered municipalities. This is the case of the Palliative
Home Care dataset we used. Hereafter these instances will be referred to as Clusterized
Home Care instances. These clusterized instances may have a huge number of symmetric
feasible solutions, due to the structure of their logistics network. This, in turn, may slow the
solution of the ILP models. To overcome these difficulties, we studied the following families
of symmetry management valid inequalities, which are tailored to Clusterized Home Care
instances (in these inequalities C denotes a cluster):

xωdij = 0 ∀d ∈ W,∀ω ∈ Od, ∀C, ∀i, j ∈ C : i > j. (18)

Due to the distance structure, any permutation of a subset of patients belonging to
the same cluster induces the same identical cost contribution to the objective function.
Therefore, the aim of inequalities (18) is to break these symmetries by forcing an ordered
visit of the patients within each cluster C. As shown in Section 7, (18) proved to be crucial for
the efficiency of the optimization process on PHCP instances. Furthermore, the following
inequalities have been proposed and computationally analysed to take under control the
length of the operator tours:

∑
i∈(N\C)

∑
j∈C

xωdij ≤ 1 ∀C, ∀d ∈ W,∀ω ∈ Od. (19)

Inequalities (19) impose that, for each cluster of patients C, and in each day of the
planning horizon, each available operator enters C at most once. Hereafter these cuts will
be referred to as Exploit-Cluster, or simply EC. (19) model a reasonable requisite in PHCP,
since for the peculiar structure of the logistics network, and in the absence of time windows
associated with the patient visits, stakeholders usually require that operators visit each
municipality at most once per day.

4 Comparison with models from the literature

Before presenting some model extensions allowing to cope with different home care scenarios,
here we shall better explain the main similarities and dissimilarities between our models and
the two most recent works in the literature dealing with a weekly planning horizon in Home
Care, i.e. [17] and [22]. The comparison is shown synthetically in Figure 1, where the
columns represent the three afore mentioned studies, while each row describes a particular
issue of the problem addressed. It is worth noticing that both in [17] and [22] more than
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one problem is addressed depending on the typology of the decisions involved (tactical vs
operational decisions). Here the comparison is done between our models and the most similar
problem studied in [17] and [22]. In fact, in their paper Nickel et al. [22] distinguish between
two cases: the case in which the provider needs to construct the next week schedule from
scratch, and the case in which the provider prefers the application of the same basic or master
schedule from week to week, in order to ensure continuity of the service, also called time
continuity. This last problem is referred to as Master Schedule Problem (MSP). MSP is less
complicated than the former problem, since several decisions and constraints are relaxed. In
the table, the column corresponding to [22] refers to the construction of the schedule from
scratch which is also the case addressed in our study. Similarly, in Jensen [17] two problems
are addressed: the MSP problem and a simplified version of MSP. In the table, the column
corresponding to [17] refers to the former problem, i.e. to the most general one.

 Our study Nickel [22] Jensen [17] 

Approach (joint vs 

decomposition) 

Joint Decomposition Decomposition 

Scheduling 

decisions (tool 

used) 

Pattern Shift combination No specific tools: satisfaction of 

time lags constraints 

Time windows * Hard TW associated with 

operators and patients 

Hard: days organized in not-

overlapping TW within which 

visits must occur 

Overtime * Allowed and penalized (soft) Not specified 

Care Continuity Hard Patient-nurse loyalty (soft) Employee regularity (soft) 

Covering of 

demand 

Guaranteed 

(hard) 

Not guaranteed (soft) Guaranteed (hard) 

Patient-operator 

compatibility 

Hierarchical skills Set of qualifications for 

operators 

Single skill for visits 

Prioritized list (soft) 

Objective function Balancing Combination of : 

number of unscheduled visits 

patient-nurse loyalty penalty 

overtime penalty 

total distance traveled 

Combination of: 

total travel time 

employee regularity 

time continuity 

employee priority 

busyness 

 

Figure 1: Comparison with the literature (a “*” denotes an issue that can be managed)

In regards to the comparison between PHCP and [22], the main differences concern:
(i) the time windows, (ii) the overtime, and (iii) the fact that in [22] it is not mandatory
to assign each patient job to an operator. In contrast the main similarities regard: (i)
the tool used to address scheduling decisions (pattern vs shift combination); (ii) the care
continuity management; (iii) the compatibility constraints between qualifications required
by the visits and those owned by the operators. Specifically, in [22] each operator provides
a set of qualifications, while each job requires a specific qualification; then the assignment
of an operator to a job j is feasible if the operator provides the qualification required by
j; notice that such a qualification mechanism differs from ours since it is not hierarchical
(although, as indicated in [22], typically the qualification levels are hierarchical), and since
more qualifications can be associated with an operator. Model extensions able to cope with
this alternative form of qualification mechanism will be addressed in Section 5.

In regards to the comparison between PHCP and [17], the main differences concern
the time windows associated with each visit and with each operator. Specifically, for each
operator a number of intervals in which the operator is on duty per day is supported; usually
there are two such intervals, one before and one after the lunch break. Model extensions able
to cope with this form of time windows will be addressed in Section 5. In contrast, the main
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similarities regard: (i) the compatibility constraints between visits and operators, expressed
by prioritized lists associated with visits; (ii) the management of visit frequency; and (iii) the
care continuity management. Concerning the frequency of the visits, a time lag is associated
with each visit, which specifies the distance in time between the starting time of two visit
repetitions. Indeed, time lags are not addressed in our models in an explicit way; anyway,
observe that patterns allow to incorporate the requirement of time distances between visits;
for example, if the provider does not want to visit a patient on two consecutive days, then
it is sufficient not to include such kind of visiting templates into the set of patterns P . Also
observe that the care continuity addressed in [17] is a relaxation of the one considered in
PHCP.

Besides the MSP discussed above, Jensen proposed a Branch and Price approach for
a simplified version of MSP where the time continuity objective is disregarded and QoS
requisites related to the feasibility of the planned tours and the compatibility between the
qualification of operators and visits are relaxed and introduced, in a soft way, into the
objective function. The adoption of this approach allowed to solve instances with up to 55
visits, whereas CPLEX was unable to solve an instance of the simplified MSP with more than
11 visits. In any cases, the instances are characterized by one or two operators. On larger
instances the Branch and Price algorithm, however, exceeded 20 CPU hours by reporting
percentage optimality gaps up to about 8%. This is mainly due to the large number of
visit combinations to be taken into account. Such a behavior outlines that selecting suitably
combinations of the patient visits, or patterns in our terminology, is crucial to the efficiency
of the Home Care optimization process. This will be the subject of Section 6.

5 Model extensions

Here we shall present some relevant extensions to the ILP Home Care models introduced in
Section 3.

5.1 Overtime handling

Overtime can be handled by replacing constraints (7) by:

Dωd =
∑

(i,j)∈A

(tij + t′j) · xωdij ≤ Dω +Overωd ∀d ∈ W,∀ω ∈ Od (20)

c(
∑
d∈W

∑
ω∈Od

Overωd) ≤ B, (21)

where Overωd are newly introduced variables, which specify the overtime of operator
ω on day d, c denotes the unit overtime penalty, and B is the budget which is available
for overtime. Notice that, by replacing (7) by (20) − (21) within the stated ILP models,
then overtime compensation within a week is allowed, since the weekly workload

∑
d∈W Dωd

contributes to the definition of the operator utilization factor.
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5.2 Skills not organised hierarchically

As in Section 3, let K be the set of k skills characterizing both patients and operators.
However, consider now the situation where the skills are not organised hierarchically. Let
Sω denote the set of the skills characterizing the abilities of operator ω: as in [22], assume
that a visit of skill k can be operated by ω only if k ∈ Sω. By defining a pattern p as before,
i.e. p(d) = 0 if no service is offered at day d, while p(d) = k if a visit of skill k is operated
according to pattern p on day d, then the alternative skill organisation can be modelled by
replacing constraints (2) by:

∑
i∈N

∑
ω:k∈Sω

xωdij ≥
∑

p:p(d)=k

zjp ∀j ∈ N \ {0},∀d ∈ W,∀k ∈ K (22)

Skill organisations of this type have been introduced in [7] for skill-based routing prob-
lems.

5.3 Time windows

First observe that the management of two time windows per operator, i.e. a morning and an
afternoon shift, can be easily handled by the proposed ILP models by replacing each single
original operator with two copies of it, one relative to the morning shift and the other relative
to the afternoon shift (however, the utilization factor of the operators must be still computed
operator-wise, i.e. considering the two copies of each original operator together). Splitting
each operator therefore allows us to manage loose time windows, simply guaranteeing the
compatibility between a shift (morning or afternoon) and a visit.

Assume now that a hard time window, say [adh, b
d
h], is associated with patient h on day d.

Then, by extending the modelling concepts introduced in [7], we can perform a disaggregation
of the flow variables ydij by patient. Specifically, replace the flow variables ydij (definition
(15)) by the disaggregated flow variables yhdij , h ∈ N \ {0}, that specify the amount of flow
traversing the arc (i, j) on day d that is destined to node h. Using these disaggregated flow
variables, then it is possible to replace constraints (9)-(11) and (15) by:

∑
i∈N

yhdij −
∑
i∈N

yhdji =


∑

p:p(d)≥1 zhp if j = h

0 if j 6= 0, h
−
∑

p:p(d)≥1 zhp if j = 0
h ∈ N \ {0}, d ∈ W

yhdij ≤
∑
ω∈Od

xωdij (i, j) ∈ A, h ∈ N \ {0}, d ∈ W (23)

yhdij ≥ 0 (i, j) ∈ A, h ∈ N \ {0}, d ∈ W

The disaggregated flow constraints (23) state that one unit of flow must be sent from
node 0 to patient h on day d, if a visit has been scheduled for h on that day. Thus, the flow
variables yhdij can be reinterpreted as indicating whether the arc (i, j) is in the path from
node 0 to patient h on day d. By exploiting such disaggregated variables, the time window
constraints can be expressed as:
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adh
∑

p:p(d)≥1

zhp ≤
∑

(i,j)∈A

(t′i + tij)y
hd
ij ≤ bdh

∑
p:p(d)≥1

zhp ∀h ∈ N \ {0}, d ∈ W. (24)

5.4 More visits per day

By considering the model comparison in Section 4, it may be worthy to observe that, since
jobs respectively visits are scheduled in [17] and [22] rather than patients, then more visits
per day can be planned for some patients in the corresponding solutions. More visits per day
can indeed be handled also by the ILP formulations in Section 3. To this end, just modify
the home care graph interpretation, so that each node in N \ {0} represents a job or a visit
rather than a patient. This modelling interpretation will be experimented in Section 7.

6 Pattern generation policies

Three policies to generate the set of patterns P (see Section 3) have been analyzed:

1. a greedy heuristic procedure, Heur, which is based on the frequency of the request
types: it firstly orders the patient requests according to their numbers of requirements
for increasing levels of skill and then, by scanning the ordered list, generates patterns
that can accomplish with the frequency of such requests;

2. a procedure based on the extraction of pattern information from the solution actually
implemented at the Palliative Home Care provider; this will be referred to as ImplSol;

3. a flow based model, or FB, described in the following in details.

Flow based patterns. As a third approach to generate a set of a priori patterns, let
us consider an auxiliary layered network GW = (NW , AW ) with |NW | = nw, having one
layer Ld for each considered day d in the planning horizon W , plus a source node and a
destination node. For matter of convenience the source node will be denoted by index 1 and
the destination by nw. Each layer is composed of k + 1 nodes: node 0, which indicates that
no visit is scheduled in the day corresponding to the layer, and a node k, for each k ∈ K,
which represents the scheduling of a visit of skill k. In GW there exists a directed arc from
the source node to the nodes in first layer, from each node in the last layer to the destination
node, and from each node in layer Ld to each node in the layer corresponding to the day
after d (if any), for each d ∈ W . The figure below provides a picture of this auxiliary layered
network in the case of a weekly planning horizon.

Any directed source-destination path in GW corresponds to a potential pattern. There-
fore, let us introduce a binary commodity for each patient j, having node 1 as the origin and
node nw as its destination, and state the following auxiliary multicommodity flow problem
on GW as a tool to generate a set of feasible patterns:
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Figure 2: The auxiliary layered network

min
∑

(h,i)∈AW

qhi

∑
(h,i)∈AW

f j
hi −

∑
(i,h)∈AW

f j
ih =


−1 if i = 1
1 if i = nw

0 otherwise
∀i ∈ NW ,∀j ∈ N \ {0} (25)

∑
d∈W

∑
(h,k):k∈Ld

f j
hk = rjk ∀j ∈ N \ {0},∀k ∈ K (26)

∑
j∈N\{0}

t′j
∑
k′≥k

∑
(h,k′):k′∈Ld

f j
hk′ ≤

∑
ω∈Od:sω≥k

Dω ∀d ∈ W,∀k ∈ K (27)

∑
j∈N\{0}

f j
hi ≤ nqhi ∀(h, i) ∈ AW (28)

f j
hi ∈ {0, 1} ∀(h, i) ∈ AW ,∀j ∈ N \ {0} (29)

qhi ∈ {0, 1} ∀(h, i) ∈ AW (30)

For each patient j, the multicommodity flow variables f j
hi model a directed path in the

layered graph, which starts from node 1 and ends to nw (see (25)). These variables satisfy
conditions (16), thanks to constraints (26), and therefore they model a feasible pattern for
j, that is a pattern which is compatible with the care plan of j. Constraints (27) take into
account, skill by skill, the operators availability in each day of the planning horizon. In
fact, they impose that the total service time of scheduled visits of skill k per day does not
exceed the daily availability in that day of the set of the operators of skill at least k. Finally,
constraints (28) link together the flow variables f j

hi with the design variables qhi, and they
guarantee that if arc (h, i) is used, i.e. qhi = 1, it can be crossed by any number of patients,
whereas if that arc is not used, i.e. qhi = 0, then it cannot be traversed.

Such auxiliary variables qhi are introduced to discover which arcs are used to design the
patterns: by minimizing the total number of used arcs, the model thus tends to minimize,
in an implicit way, the number of generated patterns.

It is worth saying that, in the experimental campaign related to PHCP, this flow based
policy has been used in combination with a parameter that reduces the right-hand-side
(r.h.s.) in constraints (27). In fact, since the flow based model neglects the traveling times,
it may occur that the patterns thus provided generate an infeasible solution when the routing
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issue is also considered. A reduction of the r.h.s. in constraints (27) is then used as a means
to prevent some undesirable infeasibilities. Specifically, in the experimental campaign three
values of the aforesaid parameter are considered: 0.5 which halves the r.h.s., 0.75 which
reduces the r.h.s. by 25%, and 1 which maintains the r.h.s. as stated in (27). These policies
will be referred to as FB-0.50, FB-0.75 and FB-1.00, respectively.

7 Computational results

We generated a set of PHCP instances starting from real data, and analyzed the behavior
of the proposed ILP models depending on: (i) pattern characteristics; (ii) kind of objective
function selected; (iii) symmetry management; and (iv) management of care continuity
constraints.

We also analyzed both the computational efficiency and the quality of the solutions ob-
tained in terms of operator utilization factor and travel time. Moreover, we tested two
real-world data sets from the literature. A summary on the main achievements of our com-
putational campaign will be provided in Section 7.7.

7.1 The PHCP data set

The real data have been provided by one of the largest Italian public medical care unit,
mainly devoted to palliative care and terminal patients, and they have been already used in
[19]. An instance of PHCP is characterized by: (i) the geographical area where the service is
provided; (ii) a time period; (iii) the set of patients; (iv) the set of operators; (v) the set of
patterns. The considered provider operates in the north of Italy and its services cover a region
of about 800 km2 that is organized in three divisions. In turn, each division is organized
in districts. The instances we used consider the largest district of the Merate area which
corresponds to the largest division in the considered area and comprises 10 municipalities.
As already indicated, two skills are considered for operators and patient requests: ordinary,
corresponding to skill 1 in the proposed models, and palliative, corresponding to skill 2. In
regards to the patients, we selected two weeks in the historical database that are considered
by the provider representative of typical situations, i.e. a week in January 2006 (hereafter
denoted by January 2006 ) and a week in April 2007 (hereafter denoted by April 2007 ).
Patient demands had been computed by looking at the scheduling implemented by the
provider in the period considered: specifically, for each skill, the requested number of visits
in our instances is set equal to the real number of visits performed by operators of that
particular skill. This choice is supported by the fact that the provider never used operators
with skill different from the skill required by a visit.

For each selected week we generated both a complete instance involving all the patients
requiring a service in that week and restricted smaller instances comprising subsets of munic-
ipalities and patients. Specifically, the restricted instances are characterized approximately
by either one third or one half of the patients present in the complete instance. The dimen-
sion of the smaller instances is however considered representative of real application contexts.
Summarizing, for the January 2006 week, the number of patients is 40, 60 or 128, whereas
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for the April 2007 week, the number of patients is 50, 80 or 162. For each week the biggest
number of patients refers to the complete instance. In regards to the municipalities, in the
complete instance related to January 2006 all the 10 municipalities are considered, whereas
in the complete instance related to April 2007 there were no requests regarding two of the
10 municipalities. On the contrary, the restricted instances comprise either 5 or 8 munici-
palities. The district under consideration is characterized by 11 operators, 8 of which of skill
1 and 3 of skill 2. The workday durations (Dt) are 4, 6 or 8 hours. In restricted instances
the number of operators depends on the number of patients considered. Specifically, when
the number of patients is 40, 4 operators are chosen; when the number of patients is 50 or
60, the corresponding number of operators is fixed to 5, while for 80 patients 6 operators are
selected. In all the restricted instances only one operator with skill 2 and a workday duration
of 6 hours is considered, while the remaining operators are all characterized by a workday
duration of 8 hours and skill 1. For a given combination of number of municipalities, number
of patients and number of operators, three restricted instances are generated by randomly
selecting the desired number of patients among the available patients. The instances are
thus identified by a string reporting the following fields separated by a “-” character: the
week, the number of municipalities, the number of patients, the number of operators, and
the instance identifier in the group (i.e. 0, 1 or 2). As an example “0106-5-40-4-0” refers to
the week in January 2006, 5 municipalities, 40 patients, 4 operators, and instance number 0.

Summarizing, for each of the two weeks, 12 restricted instances are generated in addition
to the complete instance. In fact, 2 values for the number of municipalities are combined
with 2 values for the number of patients and for each of these combinations 3 instances are
generated, thus giving rise to 12 instances for each week. The total number of instances is
thus equal to 24 restricted instances + 2 complete instances (i.e. the biggest ones). These
instances are available at http://www.di.unipi.it/optimize/.

In all the generated instances, the traveling times tij have been computed via Google
Maps for the inter-municipalities distances, while they have been set equal to 3 minutes
(δ = 3) for the intra-municipalities distances, consistently with the provider indications.
Furthermore, according to the medical care unit indications the service time has been fixed
to 30 minutes (i.e. t′j = 30 min), while the maximum number of operators per patient has
been initially set to the value 2 (i.e. T = 2). Summary information of the complete instances
are given in Table 1, while for restricted instances the information about number of patients,
municipalities and operators are contained in the string used to denote the name of the
instance as described above.

In regards to the patterns, which are a peculiarity of our approach, the generation policies
described in Section 6 have been used. These policies may produce a number of patterns
very different the one from each other; these values are reported in Table 2 and commented
hereafter.

In addition to the pattern selection, the other two features that characterize our approach
to solve PHCP are the selection of the objective function (maxmin vs minmax) and the
management of symmetries. Moreover, the models can be equipped with EC constraints or
not; the impact of these cuts has been evaluated experimentally only in combination with
maxmin, since in this case the cost control may be more critical than in the minmax case.

Summarizing, the experimental campaign analyzes the behavior of the models on the con-
sidered 26 PHCP instances both in terms of efficiency and quality of the solutions provided
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Table 1: Instances features

Week Patients Operators Municipalities
January 2006 128 11 10
April 2007 162 11 8

Table 2: Number of patterns used

Week Heur ImplSol FB-0.50 FB-0.75 FB-1.00
January 2006 20 29 13 11 11
April 2007 27 33 17 14 14

when all of the pattern generation policies (5 choices) are combined with the two alternative
objective functions, the symmetries are managed or not by means of constraints (18) and
the cluster structure is exploited or nor by means of constraints (19).

The experiments have been performed on a AMD Opteron(tm) Dual Core Processor 246
(CPU MHz 1991.060). The solver is CPLEX 12.4 with a time limit of 12 hours and a memory
limit for the branch and bound tree of 1 GB. In the following the computational times are
expressed in seconds of CPU time.

7.2 Assessing the impact of pattern selection

In this section a comparison among the different pattern selection strategies is done on
the biggest instances in the test bed, i.e. the complete ones, when the maxmin objective
function is used. The impact of both symmetry management and EC constraints is evaluated.
Computational results for the minmax case are not reported since for the biggest instances
the solver failed to provide a feasible solution within the time or memory limit imposed in
the experimental campaign.

Tables 3 and 4 report, respectively for the maxmin and the maxmin with EC variants,
the performance of the models in terms of time required to solve the Linear Programming
relaxation (LPTime) and in terms of LP objective function (LPValue).

For both weeks the impact of the pattern generation policies (see the last 5 columns of
Tables 3 and 4) is evaluated against the symmetry management (see the rows).

It is worth observing the following two facts: (i) the introduction of the EC constraints
makes the model more difficult to solve; (ii) the flow based policy with parameter set to
0.50 exhibits an LPTime that is significantly smaller than the one required by policies Heur
and ImplSol and it is a viable option also to address the EC variant. While the LPTime
can almost reach the time limit for Heur policy, it is at most about one hour for FB-0.50
which is characterized by a much smaller number of generated patterns with respect to the
policies Heur and ImplSol (see Table 2). Determining a good and limited set of patterns
seems thus to be crucial in our study. Particular attention should be given to the LPValue:
observe that, when EC are not inserted, the LPValue is the same (when available) for policies
Heur, ImplSol and FB-0.50, thus suggesting that the selected patterns are sufficient to obtain
almost the same solution quality (but, as observed, with very different computational times).
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Table 3: Maxmin - LP results

FlowBased
Heur ImplSol 0.50 0.75 1.00

January 2006 NoSymm LPTime 9329.13 18031.67 1235.19 210.89 258.93
LPValue 0.3552 0.3552 0.3552 0.2922 0.2922

Symm LPTime 10487.83 14097.05 1049.34 107.32 193.21
LPValue 0.3552 0.3552 0.3552 0.2922 0.2922

April 2007 NoSymm LPTime 21292.40 17638.89 1973.86 1491.31 585.62
LPValue 0.5393 0.5393 0.5393 0.5393 inf

Symm LPTime 11154.98 13355.74 1557.08 1359.73 446.32
LPValue 0.5393 0.5393 0.5393 0.5393 inf

Table 4: Maxmin with EC - LP results

FlowBased
Heur ImplSol 0.50 0.75 1.00

January 2006 NoSymm LPTime 14660.29 18781.83 1964.06 201.69 951.19
LPValue 0.3552 0.3552 0.3452 0.2922 0.2922

Symm LPTime 10984.84 20297.67 2623.68 288.76 n.a.
LPValue 0.3552 0.3552 0.3452 0.2922 0.2922

April 2007 NoSymm LPTime 27802.37 30989.28 4132.02 2933.63 813.12
LPValue 0.5382 0.5382 0.5334 0.5251 inf

Symm LPTime 41295.70 27141.74 3001.12 2511.57 668.26
LPValue 0.5382 0.5382 0.5334 0.5251 inf

On the contrary, it may happen that equal sized sets of patterns provide different continuous
solution values. This is the case for example of the selected week in April 2007, where FB-
0.75 and FB-1.00 both return a set of 11 patterns. However, while the patterns obtained
with policy FB-1.00 provides an infeasible solution regardless of the symmetry management
(string inf in the presented tables), all of the other policies give the same solution value.

The highlights above mentioned become even more evident when integer solutions are
analyzed. In Tables 5 and 6, respectively for the maxmin and the maxmin with EC cases,
the results obtained when the integer problem is solved are reported for all the combinations
of pattern selection policies and symmetry management in terms of percentage relative gap
computed with respect to the best upper bound obtained in the branch and bound tree
(string “n.a.” is used to point out that no integer solution is found). The stopping criterion
that determines the termination of the algorithm is also given in columns Stop, where the
character “T” is used to indicate that the time limit has been exceeded while a “M” is
used to indicate an out of memory condition. Specifically, the FB-0.50 policy is able to find
solutions very close to the best upper bound even when the EC are considered, while the
other policies often exceed the time limit without reporting a feasible solution.

Tables 5 and 6 also reveal that symmetry management is, almost everywhere, a very
effective tool to reduce the optimality gap and even to find feasible solutions for the most
critical approach combinations. Indeed, the symmetry management used in combination with
Heur policy allows to more than halve the gap when the base maxmin case is considered;
moreover, in the maxmin with cuts case, for the January 2006 instance, the symmetry
management allows to obtain a feasible solution with a gap equal to 3.22% whereas no feasible
solutions are obtained without the symmetry management. On the contrary the impact of
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Table 5: Maxmin - ILP results

FlowBased
Heur ImplSol 0.50 0.75 1.00

%Gap Stop %Gap Stop %Gap Stop %Gap Stop %Gap Stop
January 2006 NoSymm 1.74 T 0.66 T 0.07 T n.a. T n.a. T

Symm 0.66 T 0.30 T 0.18 M n.a. T n.a. T
April 2007 NoSymm 1.59 T 1.99 M 0.17 M 0.17 M n.a. inf

Symm 0.69 T n.a. T 0.22 T 0.22 M n.a. inf

symmetries on ImplSol policy is less clear since there are cases where their introduction
worsens the performance obtained.

However, it is worth observing that the symmetry management is not an issue when the
LP problem can be solved efficiently, as it happens with the flow based policies. In addition,
whereas the FB-0.50 policy provides very good results (without the help of the symmetry
management tool), and thus seems to be a viable option to address also the most difficult
instances, the flow based policy fails almost everywhere to find feasible solutions when the
number of patterns is too small (parameter set to 0.75 and 1). For this reason the last two
policies will not be commented further in the following.

We also observed that the symmetry management generally allows one to explore more
branch and bound nodes, and that the very good solutions found by policy FB-0.50 are
computed quite early within the branch and bound approach. Details on this aspect can be
found in the Online Supplement. There, comments and explanations in terms of dimension
of the solved problems are also reported. In particular, the symmetry management allows
to reduce the LP dimension. However, despite the reduction in terms of constraints and
variables, the time required to solve the LP may increase when the symmetries are treated.
Anyway Tables 5 and 6 show that the symmetry management is crucial almost everywhere
either to halve the ILP gap or to find feasible solutions in the most critical cases.

In regards to the quality of the solutions we report that on instance January 2006 the
introduction of EC constraints allows to halve the gap between the most and the least
loaded operators, thus providing more balanced solutions. In addition, the total travel time
spent weekly by the operators decreases from 3120 minutes in the base maxmin case to
2849 minutes when EC are introduced, whereas the weekly number of crossings between
different municipalities decreases from 296 to 267. On April 2007 instance the figures are
the following: the total travel time is 3734 in the base maxmin case and 3598 in the maxmin
with EC case, whereas the numbers of crossings are respectively 321 and 297. Indeed, the
number of crossings represents a quality indicator: the bigger it is the greater the occurrence
of operators traveling among municipalities solely to increase their utilization factor. The
EC constraints seem thus to represent an effective tool to control the travel time; motivated
by these promising results, from now on we assume that, under maxmin, the models are
always equipped with the EC constraints.
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Table 6: Maxmin with EC - ILP results

FlowBased
Heur ImplSol 0.50 0.75 1.00

%Gap Stop %Gap Stop %Gap Stop %Gap Stop %Gap Stop
January 2006 NoSymm n.a. T 3.09 T 0.17 T n.a. T n.a. T

Symm 3.22 T n.a. T 0.17 T n.a. T n.a. T
April 2007 NoSymm n.a. T n.a. T 1.29 T 0.82 T n.a. inf

Symm n.a. T n.a. T 0.25 M 0.25 T n.a. inf

7.3 Assessing the impact of the alternative objective functions

In this section we analyze the impact of the two objective functions on computational ef-
ficiency. The computational results are related to the 24 restricted instances. Specifically,
Table 7 refers to the minmax objective function and it reports a comparison among the
pattern generation policies Heur, ImplSol and FB-0.50 in terms of time required to solve
the linear programming relaxation (LPTime), time required to solve the integer problem
(IPTime) and gap of the best feasible solution with respect to the best bound computed in
the branch and bound tree (%Gap). Finally, Table 8 shows the performance of the maxmin
model when the FB-0.50 pattern generation policy is used: the computational results pre-
sented in previous sections, in fact, indicate that such a policy is the best performing among
the investigated ones.

The computational results presented in Tables 7 and 8 allow to draw the following conclu-
sions: (i) the maxmin objective function makes the problem significantly easier to solve than
the minmax one; (ii) the FB-0.50 seems to be crucial also to address the minmax objective
function.

Indeed, for the maxmin case (Table 8) the time limit is exceeded only for three of the
restricted instances and the optimality gap is very close to or zero everywhere. Moreover,
for 13 instances maxmin returns a gap ≤ 0.57% in less than 1.5 hours. In regards to the
goodness of the flow based policy, it is worth observing that, for the minmax case (Table 7),
when FB-0.50 is used the percentage gap is below 0.53 for 17 over 24 instances. In addition,
always looking at Table 7, the computational time increases remarkably with the number
of patients, quite independently of the number of municipalities. The instances with 80
patients seem thus to be the most difficult in the test bed, and Heur and ImplSol fail to
provide a feasible solution for all of them. Conversely, FB-0.50 allows to find good quality
feasible solutions for 5 over 6 of these difficult instances. As for the complete instances, the
computational results relative to minmax thus corroborate the efficacy of the flow based
pattern selection strategy to address hard settings. We also observe that the value of the
best integer solution (IPValue) returned by FB-0.50 is not greater than the one given by
the other two policies except that in two cases and it can be remarkably smaller. Table 7
also reveals that the smaller instances in the test bed are by no way trivial to solve (see the
results relative to the 0106-5-40-4-0 instance). Additional information about the efficiency
of the approach for the minmax objective function can be found in the Online Supplement.
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Table 7: minmax - LP and ILP results

Heur ImplSol FB-0.50
LPTime IPTime %Gap LPTime IPTime %Gap LPTime IPTime %Gap

0106-5-40-4-0 265.46 43200.00 14.22 332.95 43200.00 15.53 19.92 43200.00 6.41
0106-5-40-4-1 16.90 3045.74 0.00 109.84 25485.74 0.25 8.82 279.49 0.53
0106-5-40-4-2 35.65 6371.47 0.00 38.01 43200.00 6.48 6.07 380.96 0.00
0106-8-40-4-0 1098.74 15072.77 0.00 984.01 43200.00 0.88 4.15 1946.90 0.00
0106-8-40-4-1 47.41 2924.98 0.00 31.24 43200.00 3.81 0.87 113.01 0.00
0106-8-40-4-2 367.71 2006.08 0.15 56.25 7242.51 0.00 1.06 295.91 0.00
0106-5-60-5-0 336.28 43200.00 9.78 485.77 43200.00 11.88 23.07 7454.13 0.38
0106-5-60-5-1 285.47 43200.00 9.18 692.85 43200.00 28.47 6.83 3169.17 0.32
0106-5-60-5-2 558.72 43200.00 17.21 456.01 43200.00 13.01 89.63 16959.97 0.50
0106-8-60-5-0 370.14 43200.00 23.74 276.88 43200.00 19.31 4.75 1086.50 0.00
0106-8-60-5-1 338.93 43200.00 13.31 462.46 43200.00 7.51 33.61 5470.26 0.23
0106-8-60-5-2 196.77 43200.00 10.78 274.80 43200.00 16.65 4.14 3570.36 0.00
0407-5-50-5-0 141.63 9644.53 0.25 302.23 11331.98 0.45 9.97 685.17 0.07
0407-5-50-5-1 1820.38 43200.00 20.92 1955.30 43200.00 21.64 184.77 43200.00 11.01
0407-5-50-5-2 106.74 22949.32 0.00 150.03 15451.70 0.00 235.35 787.64 0.31
0407-8-50-5-0 76.28 10171.30 0.27 81.94 9626.55 0.00 108.61 4306.24 0.00
0407-8-50-5-1 69.53 35082.61 0.00 37.93 38268.08 0.00 379.89 2013.19 0.00
0407-8-50-5-2 2564.60 43200.00 51.41 2110.19 43200.00 57.76 112.94 43200.00 9.70
0407-5-80-6-0 1720.48 43200.00 n.a. 1633.70 43200.00 n.a. 235.88 39240.70 0.00
0407-5-80-6-1 1686.18 43200.00 n.a. 11162.44 43200.00 n.a. 164.30 43200.00 18.78
0407-5-80-6-2 3183.52 43200.00 n.a. 2254.02 43200.00 n.a. 91.10 32900.24 0.00
0407-8-80-6-0 519.95 43200.00 n.a. 2243.43 43200.00 n.a. 38.02 43200.00 n.a.
0407-8-80-6-1 3266.31 43200.00 n.a. 3048.89 43200.00 n.a. 100.56 43200.00 6.62
0407-8-80-6-2 1244.38 43200.00 n.a 999.79 43200.00 n.a. 65.11 43200.00 1.02

7.4 Assessing the solution quality

Figures 3 and 4, respectively for the restricted instances related to January 2006 and April
2007, provide some information on the quality of the solutions obtained in terms of operator
utilization factor and travel time. Specifically, we considered the solutions obtained with the
FB-0.50 policy and in each figure, for each instance, the results obtained for maxmin and
minmax are reported consecutively so as to facilitate the comparison. The figures report
the minimum, the maximum, the average operator utilization factor (min UF, max UF, avg
UF) and the minimum, the maximum, the average fraction of travel time with respect to the
maximum weekly workload (min TTF, max TTF, avg TTF), computed over the available
operators. The utilization factor is computed as the weekly time an operator globally spends
in servicing the patients and traveling among them over the weekly availability time (as
defined in the l.h.s. of constraints (17)).

As expected, we observe that the minmax case consumes less travel time than the maxmin
counterpart to visit the patients. Anyway the cost savings are not particularly high but on
some instances. Conversely, it is worth observing that these savings seem to happen at the
expenses of a worse balancing of the solutions in terms of operator utilization factor, i.e.
in terms of the difference between the most and the least loaded operators. Specifically, in
regards to restricted instances related to January 2006, the average difference between max
UF and min UF computed over the 24 instances is 0.0755 in the maxmin case and 0.1251 in
the minmax case. The minimum differences are 0.0007 and 0.0021 in the two cases, while the
maximum differences are respectively 0.1912 and 0.3196. In the restricted instances related
to April 2007 this behavior is even more evident; in this case the statistics are computed
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Table 8: maxmin - LP and ILP results

FB-0.50
LPTime IPTime %Gap IPValue NodeInf

0106-5-40-4-0 0.89 1813.52 0.25 0.2646 16811/100089
0106-5-40-4-1 0.64 1896.11 0.11 0.2588 1596/188762
0106-5-40-4-2 0.79 1689.32 0.46 0.2438 11077/113218
0106-8-40-4-0 0.77 893.02 0.11 0.3072 788/90607
0106-8-40-4-1 0.65 5645.37 0.05 0.2558 794/592484
0106-8-40-4-2 0.29 43200.00 0.11 0.2550 1545/3646097
0106-5-60-5-0 4.20 1873.59 0.19 0.2758 303/66839
0106-5-60-5-1 5.69 75.40 0.00 0.2471 784/784
0106-5-60-5-2 8.34 4258.55 0.25 0.2863 996/97146
0106-8-60-5-0 6.02 2121.53 0.10 0.3275 1126/73981
0106-8-60-5-1 3.46 43200.00 0.04 0.2800 43415/1878404
0106-8-60-5-2 2.95 58.71 0.00 0.3017 818/818
0407-5-50-5-0 2.19 43200.00 0.06 0.3412 1525/2878969
0407-5-50-5-1 2.26 14283.88 0.14 0.3342 3200/431512
0407-5-50-5-2 3.93 10467.40 0.17 0.3658 758/744031
0407-8-50-5-0 1.73 508.48 0.00 0.3767 17850/17850
0407-8-50-5-1 4.06 11546.51 0.18 0.3383 1730/900536
0407-8-50-5-2 2.85 21220.87 0.09 0.2950 401/2385155
0407-5-80-6-0 35.27 2534.66 0.32 0.4142 630/39149
0407-5-80-6-1 45.74 3281.84 0.57 0.4667 5817/35044
0407-5-80-6-2 34.39 13511.08 0.10 0.4317 44417/134691
0407-8-80-6-0 45.10 12246.63 0.11 0.4550 16322/110239
0407-8-80-6-1 39.10 11224.26 0.04 0.4075 26386/190312
0407-8-80-6-2 22.17 20819.45 0.06 0.3850 1576/1824514
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Figure 3: Solution quality analysis on 0106 instances

over 23 instances instead over 24 since in the minmax case instance 0407-8-80-6-0 failed
to provide a feasible solution. In regards to the average difference between the extreme
utilization factors we observed a value of 0.1071 in the maxmin case and a value of 0.2048
in the minmax case. The minimum differences are both equal to 0.0088 whereas the figures
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Figure 4: Solution quality analysis on 0407 instances

for the maximum differences are respectively 0.3303 and 0.6481 in the maxmin and minmax
cases.

Finally we give some information on the number of times operators are used to service
a request with a skill less specialized than their skill. The number of overskilled visits is
quite low for both groups of instances and for both the alternative objective functions, even
if it is slightly bigger in April 2007 than in January 2006. In January 2006, this indicator is
zero almost everywhere except that in three cases - two times for maxmin and one time for
minmax. Conversely, for April 2007 the indicator is bigger for minmax than for maxmin
(14 vs 9).

7.5 Impact of care continuity constraints

The aim of this section is to investigate the effect of the care continuity constraints on
the efficiency of the resolution method and on the solution quality for both the alternative
objective functions. Motivated by the results analyzed in previous sections, the FB-0.50
strategy is used to select the patterns. For the 24 restricted instances, the care continuity
constraints have been removed thus allowing that a patient is visited by up to 5 operators
each week; then the solutions obtained when the continuity of care constraints are imposed,
are compared with the solutions obtained without care continuity. First of all we report
that the elimination of care continuity constraints had no effect on the LPValue, at least
on this data set. Furthermore, by looking at the lower bound value (in the minmax case),
there was no potential decrease of the operators utilization factor in increasing the number
of operators that can service a client beyond two. In general, we observe that relaxing the
care continuity constraints has no impact on the value of the solutions except in few cases;
on the other hand, disregarding the care continuity, the model seems to be faster in finding
feasible solutions with respect to the case where the care continuity is ensured. In regards to
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the IPTime, we observe a non monotonic behavior since the relaxation of the care continuity
constraints can involve either a reduction or an increase of computational time with respect
to the more constrained model, at least on instances with up to 60 patients. On the most
critical instances in the test bed, i.e. on instances characterized by 80 patients, we report
either a valuable reduction of the IPTime or of the optimality gap; indeed, the elimination
of care continuity constraints allows to find a feasible solution also for instance 0407-8-80-
6-0 whereas no feasible solution is found in the other case. Similar results are obtained in
the maxmin case. See the Online Supplement for detailed results about the impact of care
continuity on efficiency and efficacy in the minmax case.

Interestingly, the solutions returned when care continuity is disregarded are not very
different from the ones which take into account care continuity in terms of operator utilization
factor and travel time. These observations are supported by the results shown in Figures 5
and 6, which report information on the quality of the solutions respectively for the maxmin
and the minmax restricted instances related to January 2006. Analogous information for
the instances related to April 2007 can be found in the Online Supplement. In these figures,
for each instance, information relative to the case where the care continuity is imposed and
the case where it is relaxed are reported consecutively. The elimination of care continuity
constraints seems thus to represent an useful tool to address the most critical instances since
it allows to find quickly feasible solutions preserving the quality of the solutions obtained
when the care continuity is guaranteed. Furthermore, we observe that the number of patients
assigned to more than two operators is quite low when the care continuity constraints are
ignored, for both the alternative objective functions. For restricted instances referring to
January 2006 this behavior is more evident than for instances related to April 2007. See the
Online Supplement for an analysis of the number of operators per patient in both scenarios
(maxmin and minmax), under the care continuity constraints and their removal.
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Figure 5: maxmin - quality analysis on 0106 instances with and without CC
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Figure 6: minmax - quality analysis on 0106 instances with and without CC

7.6 Results on real instances from the literature

In this section we report the computational results obtained on two real-world data sets from
the literature, referred to as Nickel et al [22] and Jensen [17] instances. In Table 9 we give
the main characteristics of the two instances, i.e. the length of the planning horizon (|W |),
the number of patients (Patients), the total number of typologies of visits that the patients
require (Jobs), the total number of visits required (Visits), and the number of operators
(Operators). In fact, differently from the Italian home care provider context, in these two
instances a patient may require more than one typology of visits each day and each visit
typology may have to be repeated several times in the planning horizon. As an example a
patient may require an application of medication three times a week and washing five times
a week; in such a case we have to consider two jobs (medication and washing) for a total of
8 (3+5) visits. As anticipated in Section 5, in our study this issue is modeled by associating
a node of the network with each job instead than with each patient.

Finally, we give also the number of patterns we generated to reflect information relative to
the frequency of the visits in the two real instances. Specifically, in regards to the Nickel et al
instance patterns reflect the shift combinations used by the authors, whereas for Jensen
instance patterns reflect the requirements expressed in term of time lags, i.e. in terms of
number of days that must elapse between two repetitions of the same visit typology. Observe
that in the computational campaign performed in [22] only a shift combination for each job
is given. This implies that, for each job, the days in the week where the visits occur are
given.

Even if the two instances seem quite comparable according to their size, they have a very
different structure. In fact, Nickel et al instance arises from a German provider operating in
a rural area; hence traveling distances range from 0 to 45 minutes and most of them range
in [15,45] minutes. On the contrary, the Jensen instance comes from a Danish provider
operating in a urban area where the operators travel by bike. In this case traveling times
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Table 9: Instances features

Instance |W | Length Patients Jobs Visits Operators Patterns
Nickel et al 7 36 53 287 11 18
Jensen 5 37 65 256 5 9

are quite short and range from 0 to 18 minutes. A second relevant difference between the
two instances concerns the duration of the visits: in the Nickel et al instance the service
time ranges from a minimum of 10 minutes to a maximum of 510 minutes. Indeed while
most visits require a service time not greater than one hour, there are 28 visits with a
service time in [180,510] minutes. In contrast, in Jensen instance the service time always
varies in [10,120] minutes. A third difference between the two instances lies in the number
of skills which is equal to two in the Nickel et al instance and equal to one in the Jensen
instance. Summarizing, the Nickel et al instance presents a heterogenous structure and as
clearly reported by the authors, this irregularity further complicates the problem solving.

In regards to operators, in Nickel et al instance the weekly maximum number of minutes
an operator should work is known, whereas in Jensen instance the workday length is given.
In both cases we assume two daily shifts (morning and afternoon) for each operator. As dis-
cussed in Section 5, this is implemented in our model by replacing a single original operator
with two copies of it, one relative to the morning shift and the other relative to the after-
noon shift. However the utilization factor of the operators is still computed operator-wise,
i.e. considering the two copies of each original operator together. Splitting each operator
allows us to manage loose time windows, simply guaranteeing the compatibility between a
shift (morning or afternoon) and a visit. Other kinds of time windows constraints are not
considered in this computational campaign. Observe, however, that the operator splitting
allows us (at least theoretically) to manage exactly the same time windows constraints con-
sidered in [17]; there, each day of the planning horizon is organized in not-overlapping time
windows within which visits must occur. In the same manner we could plan several copies
of each operator, where each copy refers to a time window; then we can handle the compat-
ibility between time windows and visits properly. In contrast, in Nickel et al instance quite
narrow time windows are considered that we do not address in the present experimentation.
It is however worth recalling that in Nickel et al instance the time windows do not comply
with patients’ needs; rather, they are extracted ex-post from the solution implemented by
the provider, weakly enlarged for feasibility reasons, and then imposed in the mathematical
model to make the comparison between the automated solution and the provider’s solution
possible.

Tables 10 and 11 show the computational results obtained on the two real-world data sets
by means of proper extensions of the models in Section 3. Specifically, we performed three
tests on Nickel et al instance and two tests on Jensen instance. In all of the five tests, the
care continuity is not addressed since the corresponding data are unavailable. The objective
function maxmin is used for all the tests coming from the Nickel et al instance; minmax,
in fact, failed to provide a feasible solution within time and memory limits. In the first test
(referred to as Nickel et al), as in the campaign performed in [22], only a shift combination
for each job is given; in our model this corresponds to fix a pattern for each node of the
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Table 10: LP/IP information

LPTime LPRows LPCols %Gap Stop BestNode/TotalNodes
Nickel et al 390.39 14757 82935 0.40 T 1810/1971
Nickel et al free p53 374.95 14918 84165 0.30 T 0/0
Nickel et al free all 648.00 18432 111215 1.01 T 651/651
Jensen maxmin 120.88 15344 66939 0.30 M 29258/67898
Jensen minmax 139.89 15344 66939 29.88 T 0/8

Table 11: Solution quality analysis

TT ST 0T min UF max UF avg UF min TTF max TTF avg TTF
Nickel et al 10070 13090 5017 1.2734 1.2814 1.2761 0.2987 0.8864 0.6157
Nickel et al free p53 7298 13090 2245 1.0260 1.3081 1.1297 0.1234 0.8262 0.4358
Nickel et al free all 9990 13090 4937 1.2651 1.2839 1.2721 0.2359 0.8606 0.5989
Jensen maxmin 2422 6489 0 0.7920 0.7924 0.7921 0.2027 0.2373 0.2153
Jensen minmax 1977 6489 0 0.6502 0.9338 0.7525 0.1453 0.2027 0.1757

network. In the other two tests a degree of freedom is added by letting that the model takes
job pattern decisions. In particular, in test referred to as Nickel et al free p53, schedule
decisions are fixed for all nodes except that for a job (number 53) that is characterized by
a long service time. This test is motivated by the fact that the computational campaign
performed in [22] and some of our preliminary tests as well, confirm that the irregularity of
service time makes problem solving complicate. In this sense, the test we perform follows
the approach delineated in [22] where some of the long jobs are treated aside. In contrast, in
the third test relevant to Nickel et al instance, the model is free to select a pattern for each
node. Preliminary computational tests also revealed that a feasible solution to our model
does not exist if overtime is not allowed; thus, the model is extended as described in Section
5. On the other side the two tests performed on Jensen instance use respectively the maxmin
(Jensen maxmin) and the minmax (Jensen minmax) objective function.

Table 10 reports for the 5 tests performed the following information: the time required to
solve the Linear Programming relaxation (LPTime), the dimension of the instances in terms
of number of constraints (LProws) and variables (LPCols), the optimality gap (%Gap), the
stopping criterion (Stop: “T” for time limit and “M” for memory limit) and finally the
branch and bound node where the best integer solution is found with respect to the total
number of nodes explored (BestNode/TotalNodes).

Table 11 reports the following information: the total travel time (TT), the total service
time (ST) and the total overtime (OT), all of them expressed in minutes. Then information
relative to the utilization factor and travel time factor of the operators is given as for the
results relative to the Italian provider. Specifically, the minimum, maximum and average
values are given for each metric.

In regards to Nickel et al tests, we observe that all of the solutions are pretty well bal-
anced in terms of utilization factor while they are quite different the one from the other
in terms of total travel time and overtime. All of the patient requests are covered (this is
a hard constraint in our model). Test Nickel et al free p53 represents a good compromise
between efficiency and balancing being characterized by the smallest values of travel time
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and overtime among the three tests. We can also observe that the reduction of travel time
and overtime obtained when the pattern is not a priori fixed is quite limited (compare the
results obtained on tests Nickel et al and Nickel et al free all). It is worth noticing that in
Nickel et al instance and in Jensen instance as well, the clustering of patients according to
their geographical location is not given; hence the EC cuts have not been exploited and the
cost containment is not addressed in these tests.

In regards to Jensen instance, the computational tests confirm the same trend emerged for
the instances from the Italian home care provider. Specifically, maxmin is better suited to
balance the operators utilization factor than minmax and it allows for a very good optimality
gap; in contrast, minmax allows to contain the total travel time (see column TT). In these
tests the overtime never occurs and we can also observe that, as expected, the travel times
play a role less crucial than in Nickel et al instance (see column avg TTF). Finally we observe
that consistently with the time lags requirements, in this instance the patterns are generated
exhaustively, i.e. they comprise all the feasible scheduling combinations. Interestingly, we
performed a test with a smaller number of patterns (6 instead of 9) and we observed a very
low detriment of the optimality gap with respect to the run characterized by the complete
set of patterns (0.47% instead of 0.30%). The corresponding solution however was obtained
more efficiently and the LPValue remains the same.

In conclusion observe that the results we obtained are not directly comparable to those
reported in [22] and in [17]. In fact, although we used the same real-world data sets, the
problem we solved presents some dissimilarities with respect to those addressed in such two
papers, as already emphasized in Section 4. Anyway, by referring to the computational
results in [22], we can report that the solution found in [22] for the first real-world data set
has four ten minute requests unscheduled. In contrast, all of the patient requests are covered
in our solution. Furthermore, the solution found in [22] is characterized by 8745 overtime
units, which reduces to 8180 by fixing two long jobs in advance. In addition, according to the
indications in [22], it seems that the overtime is not equally split among the operators. On the
other hand, our solutions are characterized by a sensibly lower total overtime, and are pretty
well balanced in terms of utilization factor (see Table 11). Concerning the computational
results reported in [17], again a direct comparison can not be done. However observe that,
as reported in [17], after the daily planning step the masterplan computed by Jensen’s
approach on the second real-world data set is characterized by a total travel time of 1305
minutes; therefore, each operator spends 52 minutes on average on the road per working
day. Furthermore, according to the indications in [17] the total number of different operators
assigned to the patients, i.e. the the employee regularity, is 74; therefore, each patient is
visited on average by 2 different operators over the considered five day period. Both under
maxmin and minmax, the total travel time returned by our computational campaign is
bigger (see Table 11) and the average number of operators per job is 2.82 in the maxmin
case and 2.83 in the minmax case.

Summarizing, we conclude that our approach seems to be able to find solutions of quite
good quality also on real instances with an irregular structure and pertaining to context
very different from the one characterizing our case study. In addition, the two real-world
data sets allow us to validate experimentally two of the extensions addressed theoretically
in Section 5, i.e. those pertaining to (weak) time windows and to overtime management.
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7.7 Main achievements

The main achievements supported by the compuutational results can be summarized as fol-
lows:
Pattern selection plays a crucial role in the optimization process. Determining a
good but limited set of patterns is crucial for efficiently solving the LP relaxation, and for
finding good quality solutions to the ILP models; in particular, the flow based procedure, and
specifically the one halving the operators availability, proved to be very effective in selecting
a small number of ad-hoc patterns.
Symmetry management may help in finding quickly feasible solutions. The sym-
metry management allowed either to halve the optimum percentage gap, or to find feasible
solutions in the most critical cases; however, it was not an issue for the flow based pattern
generation policy, which proved to be very efficient independently of the symmetry manage-
ment tool.
Minmax and maxmin objectives reflect different but equally relevant stakehold-
ers’ perspectives. Both objective functions provide interesting results. Specifically, the
maxmin objective allows to meet equity and computational efficiency criteria. Indeed, bal-
anced solutions are obtained rapidly where balancing refers to the gap between the most and
the least loaded operators. On the contrary, the minmax objective meets the cost efficiency
criterion which is the typical perspective assumed by the providers in an attempt to limit
transportation costs, whereas maxmin tends to provide, more than minmax, the undesir-
able effect of operators spending time in traveling between municipalities to increase their
utilization factor. However, minmax requires on average longer computational time than the
maxmin counterpart and is not able to provide feasible solutions for the biggest instances in
the test bed. In summary, both objective functions are capable of capture essential features
that characterize real settings and can support the decision makers providing them with al-
ternative solutions among which selecting the one that best fits their preferences: when the
focus is on equity criterion the maxmin is preferable; on the contrary the minmax should
be used when the focus is on cost control.
The introduction of the EC cuts allows to tradeoff equity vs efficiency. The
maxmin objective function equipped with the EC constraints represents a very good com-
promise between efficiency and equity criteria. Specifically, the EC constraints allow to
indirectly control travel costs, thus letting the model be distance aware. It still preserves the
good balancing level of the solutions provided by maxmin and allows to address also the
biggest instances.
The care continuity constraints may be used as a tool to control computational
efficiency. When care continuity constraints are relaxed, patients may be assigned to more
than two operators. In general, the less constrained variants of the models exhibit a greater
capability than the more constrained counterparts in finding quickly feasible solutions. In
addition, the quality of the solutions obtained does not experience an important detriment
in the less constrained models, in the sense that the number of patients assigned to more
than two operators is overall limited.
Some biggest instances in the test bed can be solved only for some combina-
tions of objective function and cost control mechanism. The biggest instances from
the palliative home care context and the real instance from [22] can be solved only under
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maxmin equipped with the EC constraints. The study of decomposition approaches thus
represents a challenging line of research we are currently pursuing.
The models proposed can be extended so as to cope successfully with problems
from different home care contexts. We run some variants of our models on two real big
instances from the literature which are very different in nature the one from the other. On
these instances, within the time and memory limits imposed, we are able to provide good
quality solutions both in terms of optimality gap and of workload balancing.

8 Conclusions

In this paper we addressed weekly planning horizon Home Care Problems. With respect to
[2], [17] and [22] that, to best of our knowledge, are the only papers which extend the daily
planning horizon usually investigated in Home Care, here assignment, scheduling and routing
decisions are addressed in a joint way, i.e. without heuristically decomposing the problem by
means of a two-level approach. To this end, crucial and original is, in our opinion, the use of
the pattern modelling device as a means to coordinate the diverse decision levels. The main
Home Care Problem we have investigated refers to providers dedicated to palliative care and
terminal patients. In this context, balancing objective functions are particularly relevant.
Therefore, two balancing functions have been studied, maxmin and minmax. Relevant QoS
constraints such as continuity of care and maximum daily workload have been incorporated
into the proposed Integer Linear Programming formulations. In addition, the models have
been enhanced by means of valid inequalities aimed at breaking the symmetric structure that
usually characterizes the underlying logistics network. The approach we proposed is however
able to cope with peculiarities from different home care contexts. Model extensions to handle
scenarios other than the palliative one have been discussed in the paper. These extensions
include the satisfaction of time window constraints, the handling of overtime and scenarios
where skills are not organised hierarchically, which is instead typical of the palliative context.

The computational experiments performed reveal, in our opinion, the potentiality of the
proposed ILP models in successfully addressing home care instances. Crucial, to this end,
is the selection of a limited set of patterns of good quality, such as the ones produced by
the flow based pattern generation approach, which is another contribution of this paper.
The experimental results have been obtained on palliative home care instances based on
real data, and on two real-world data sets from the literature, related to contexts very
different from the palliative one, where some of the aforementioned model extensions are
required. In the palliative context, the comparison of the two balancing objective functions,
i.e. maxmin and minmax, shows that maxmin is able to return more balanced solutions,
in the sense that the operator utilization range is smaller than the one returned by minmax.
Such a stronger equity achievement is obtained for not too high a price in the increased
mean operator utilization factor and mean operator traveling time. On the other hand, the
minmax criterion is more suitable for the minimization of the operating costs, since it always
returns solutions with the smaller total travelled time for the operators. The results on the
two data sets from the literature show that the proposed approach is able to find solutions of
good quality also on instances pertaining to contexts very different from the palliative one.

The design of decomposition methods based on the proposed ILP models, and tailored
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to solve even larger home care instances, is in progress.
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