
Generalized Nash Equilibria for SaaS/PaaS Clouds∗†

Jonatha Anselmi‡ Danilo Ardagna§ Mauro Passacantando¶

Abstract. Cloud computing is an emerging technology that allows to access computing re-

sources on a pay-per-use basis. The main challenges in this area are the efficient performance

management and the energy costs minimization. In this paper we model the service provision-

ing problem of Cloud Platform-as-a-Service systems as a Generalized Nash Equilibrium Problem

and show that a potential function for the game exists. Moreover, we prove that the social opti-

mum problem is convex and we derive some properties of social optima from the corresponding

Karush-Kuhn-Tucker system. Next, we propose a distributed solution algorithm based on the

best response dynamics and we prove its convergence to generalized Nash equilibria. Finally, we

numerically evaluate equilibria in terms of their efficiency with respect to the social optimum of

the Cloud by varying our algorithm initial solution. Numerical results show that our algorithm

is scalable and very efficient and thus can be adopted for the run-time management of very large

scale systems.

Keywords. Game Theory; Cloud Computing; Generalized Nash Equilibrium Problem.

2000 MSC: 91A10; 91A80.

1 Introduction

Cloud computing is an emerging paradigm that aims at streamlining the on-demand provision-

ing of flexible and scalable services accessible through the Internet [24]. The main idea is to

supply users with on-demand access to computing or storage resources and charge fees for their

usage. In these models, users pay only for the resources they use and they can access software

∗Research partially supported by grant SA-2012/00331 of the Department of Industry, Innovation, Trade and

Tourism (Basque Government) and grant MTM2010-17405 (Ministerio de Ciencia e Innovación, Spain) which

sponsored a one-month visit of Danilo Ardagna to BCAM.
†This paper has been published in European Journal of Operational Research, vol. 236 (1), pp. 326–339.
‡Basque Center for Applied Mathematics (BCAM), 14 Mazarredo, 48009 Bilbao, Spain. E-mail:

anselmi@bcamath.org
§Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan,

Italy. E-mail: danilo.ardagna@polimi.it
¶Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy. E-mail:

mpassacantando@di.unipi.it

1

applications (Software as a Service – SaaS), tools for the development and deployment of Cloud-

based applications (Platform as a Service – PaaS) or even low level hardware physical resources

(Infrastructure as a Service – IaaS).

In the SaaS paradigm, applications are available over the Web. The SaaS provider hosts both

the application and the data, hence the end-user is able to use and access the service from all

over the world. With PaaS, applications are developed and deployed on platforms transparently

managed by the Cloud provider. The platform typically includes databases, middleware, and also

development tools. In IaaS systems, virtual computer environments are provided as services and

servers, storage, and network equipment can be outsourced by customers without the expertise

to operate them.

Many companies (e.g., Google, Amazon, and Microsoft) are offering Cloud computing ser-

vices such as Google’s App Engine and Amazon’s Elastic Compute Cloud (EC2) or Microsoft

Windows Azure. Large data centers provide the infrastructure behind the Cloud, and virtual-

ization technology (which allows the execution of multiple virtual machines on the same physical

machine) makes Cloud computing resources more efficient and cost-effective both for providers

and customers. Indeed, end-users obtain the benefits of the infrastructure without the need to

implement and administer it directly adding or removing capacity almost instantaneously on

a “pay-as-you-use” basis. On the other hand, Cloud providers can maximize the utilization of

their physical resources also obtaining economies of scale.

The development of efficient service provisioning policies is among the major issues in Cloud

research. Indeed, modern Clouds operate in a new and dynamic world, characterized by contin-

uous changes in the environment and in the system and performance requirements that must be

satisfied. Continuous changes occur without warning and in an unpredictable manner, and are

outside the control of the Cloud provider. Therefore, advanced solutions need to be developed

that manage the Cloud system in a dynamically adaptive fashion, while continuously provid-

ing service and performance guarantees. Recent studies [14, 17, 24] have shown that the main

challenges for Cloud systems are the reduction of costs and the improvements of performance

levels.

Information Technology (IT) analysts state that at the end of 2012, up to 40% of the budgets

of Cloud service centers are devoted to energy costs [18, 28]. Service centers investment grew by

22.1% during 2012 and it is expected it will further grow by another 14.5% in 2013 [25]. Energy

efficiency is therefore one of the main focal points on which resource management should be

concerned. In addition, providers need to comply with Service Level Agreement (SLA) contracts

that determine the revenues gained and penalties incurred on the basis of the level of performance

achieved. Quality of Service (QoS) guarantees have to be satisfied despite workload fluctuations,

which could span several orders of magnitude within the same business day [17, 18].

The recent development of Cloud systems and the rapid growth of the Internet have led to a

remarkable usage of game-theoretic tools. Problems arising in the IT industry, such as quality

of service or resource allocation, pricing, and load shedding, can not be handled with classical

optimization approaches because each player can be affected by the actions of all players, not only

by his own actions. In this setting, a natural modeling framework involves seeking an equilibrium

or stable operating point for the system, provided that it exists. More precisely, each player seeks

2

to optimize his own goal, which depends on the strategies of the other players upon his own, and

this optimization is performed simultaneously by different players. An equilibrium (in the sense

of Nash) is reached when no player can improve his objective function by changing unilaterally

his strategy. A survey of different modeling and solution concepts of networking games, as well

as a number of different applications in telecommunications and wireless networks, based on

game theory, can be found in [2].

In Cloud computing, game theory methods have been used to provide load balancing and

resource allocation solutions. A number of papers consider centralized and decentralized load

balancing strategies in a system with parallel servers (see [7, 29] and the references therein).

The requests arrive as a Poisson process, and the service time of incoming jobs is assumed to be

known. For such system, the load balancing problem is investigated in two different scenarios:

(i) a centralized setting leading to a global optimization problem, in which a dispatcher decides

where each job will get service so as to minimize the weighted mean number of jobs in the system,

and (ii) a distributed non-cooperative setting leading to a non-cooperative game transformed

into a standard convex optimization problem. The paper studies structural properties of both

strategies, and the efficiency loss in terms of Price of Anarchy (PoA) [30] of the decentralized

scheme relative to the global optimal (centralized) one.

In [41], the authors propose a pricing mechanism for resource allocation in a utility comput-

ing system among competing end-users requests. The fixed available service capacity is allocated

among the different flows proportionally to their monetary bids. The paper studies the resulting

equilibrium point, establishes convergence of a best-response algorithm, and bounds the effi-

ciency loss of this distributed mechanism. More precisely: End-users requests are represented

as job flows in a controlled queueing system. These jobs arrive to the system through a fixed,

random process, are stored in a buffer, and then are serviced by the resource in a first come,

first served manner. The service rate is set through a proportional share mechanism. Within

this framework, the interactions between end-users are modeled as a game. Then, authors show

that the equilibrium can be reached in a distributed, asynchronous manner. The paper also

reports the sensitivity analysis with respect to the variation of problem’s parameters (e.g., load

intensity and relative importance of the competing user requests). Differently from our point of

view, in [41] the problem of the resource allocation is considered for a single virtualized server

among competing user requests, while in this paper we consider the Cloud data center at a

higher granularity (i.e., VMs).

In this paper we take the perspective of SaaS providers which host their applications at a

PaaS provider. Each SaaS provider wants to maximize its profit while complying with QoS

requirements of their end-users, which determine the revenues and the penalties on the basis

of the achieved performance level. The profit of the SaaS is given by the revenues from SLAs

minus the cost sustained for using the resources supplied by the PaaS. The profit maximization

is challenging since on-line services see dynamic workloads that fluctuate over multiple time

scales [17, 22]. Resources have to be allocated flexibly at run-time according to workload fluctu-

ations. Furthermore, each SaaS behaves selfishly and competes with others SaaSs for the use of

resources supplied by the PaaS. The PaaS, in its turn, wants to maximize the revenues obtained

providing the resources. The profits are given by the revenues from the SLA with the SaaSs

3

minus the energy costs sustained for running physical servers.

To capture the behavior of SaaSs and PaaS in this conflicting situation, we will model the

run-time service provisioning problem as a Generalized Nash Equilibrium Problem (GNEP) (see

e.g. [16, 19, 23, 26, 37]), which is an extension of the classical Nash equilibrium problem [35], in

which both the objective function and the feasible region of each player depend on the strategies

chosen by the other players. We then use results from game theory to develop efficient algorithms

for the run-time management and allocation of PaaS resources to competing SaaSs.

In [10, 11], we have considered a problem similar to the one faced here, analysing the service

provisioning problem with on spot resources. With respect to our previous work, in this paper we

extend the game-theoretic model considering a new and more realistic pricing model regulating

SaaS and PaaS contract. Furthermore, we explicitly model energy costs of the PaaS infras-

tructure which requires to include additional decision variables and a totally different solution

approach.

The remainder of the paper is organized as follows. Section 2 describes the problem under

study. In Section 3, we introduce our model based on the concept of Generalized Nash Equilib-

rium (GNE); moreover, we prove the existence of a potential function for the game and of social

optimum solutions. In Section 4, we prove that the social optimum problem is convex and we

derive some properties of social optima from the corresponding Karush-Kuhn-Tucker system. In

Section 5, we provide a solution algorithm based on the best reply dynamics and we prove its

convergence to GNE. The experimental results discussed in Section 6 demonstrate the efficiency

of our algorithm by varing its initial solution. Conclusions are finally drawn in Section 7.

2 Problem Description

We consider SaaS providers using Cloud computing facilities according to the PaaS paradigm

to offer multiple transactional Web-Services (WSs), each service representing a different appli-

cation.

The hosted WSs can be heterogeneous with respect to resource demands, workload intensities

and QoS requirements. The set of WS applications offered by SaaS provider s are denoted by

As, while S indicates the set of SaaSs. In the following, we denote by A the set of all WS

applications hosted at the PaaS location, i.e., A
def
= ∪s∈SAs, and we assume As1 ∩ As2 = ∅, for

all s1 6= s2.

Each SaaS provider signs with its customers an SLA contract specifying: (i) the QoS levels

that it must meet while responding to end-user requests for a given application, and (ii) the

corresponding pricing scheme. In particular, we assume SaaSs have to guarantee to their end-

users that the average response time when accessing application k is less than or equal to a given

threshold RSk , while the per-request revenue for the SaaS is αk (see Figure 1).

In turn, each SaaS provider signs an SLA contract with the PaaS: The PaaS must guaran-

tee that the average response time for WS application k is less than or equal to RPk (≤ RSk).

Furthermore, for the execution of a single request k ∈ As, SaaS s pays a fee βk to the PaaS.

The SaaS per-request revenue αk is greater than or equal to mk βk, where mk > 1 is the SaaS

4

Virtual Machine
Monitor

Operating
System

WS1

VM

Operating
System

WSk

VM

...

SaaS 1

SaaS s

SaaS |S|

End-users

RS
k

αk

RP
k

βk

pk

PaaS Provider

.

.

.

.

.

.

Λk

.

.

.

Ν1

�sk

SaaS Providers

End-user-SaaS SLA SaaS-PaaS SLA

λk ≤ Xk ≤ Λk

Figure 1: SLA contracts among the players.

5

margin for the execution of individual requests. Both RPk and βk may vary with the time of the

day. Therefore, the SaaS can ask the PaaS provider to reduce its application response time to

improve the final end-user experience and thus to increase the loyalty of its customers. How-

ever, intuitively, the more stringent are the performance requirements imposed by the SaaS, the

higher is the number of resources devoted by the PaaS to the SaaS and overall the higher is the

per-request fee βk payed by the SaaS. In particular, we assume that the average response times

RPk enters the SaaS payoff function with a linear function, Uk = δs (RSk −RPk). Linear functions

are a flexible mechanism to express the discontent of final end-users as a function of response

times and have been widely used in the literature (see e.g. [12, 15, 38]).

Current Cloud platforms are based on virtualization technology, which allows a flexible

management of the overall intrastructure. Therefore, we assume that applications are executed

in virtual machines (VMs), which are dynamically instantiated by the PaaS provider. We

make the simplifying assumption that each VM hosts a single WS application. Multiple VMs

implementing the same WS application can also run in parallel. We also assume that physical

servers are dedicated to SaaS providers, i.e. every physical server runs the VMs of the same

SaaS. Cloud users usually prefer dedicated servers especially for business critical applications

and/or when security requirements are of paramount importance. The use of dedicated servers

is becoming widespread in the Cloud market [3]. For example, Amazon has devoted specific

data centers to run applications for US government agencies and contractors [5].

For simplicity, we assume that physical servers are homogeneous, having the same processing

capacity C. However, our framework can be extended relaxing this latter assumption. In the

following, NP denotes the total number of physical servers used for the dedicated execution of

WS applications at the PaaS site.

On each physical servers, we assume that SaaS VMs are replicated with a fixed pattern for

fault-tolerance reasons [8] (e.g., for every DBMS instance, two instances of application servers

and three instances of web servers are allocated) and if any additional physical server is needed,

VMs are replicated on the new server according to this fixed allocation pattern. In the following,

we will denote by vsk the proportion of VMs for WS application k hosted by one server dedicated

to SaaS s.

The number of physical servers that the PaaS decides to supply to SaaS provider s is denoted

by Ns. Since the workload of Internet applications can vary by orders of magnitude within the

same business day [17], the physical servers are dynamically allocated by the PaaS provider

periodically, e.g., every hour, according to a short-term workload prediction. One hour is also

the time unit which is usually adopted by PaaS and IaaS to bill the use of resources to their

customers [4]. We denote by Λk the prediction for the arrival rate of WS application k.

In this context, each SaaS provider can make the decision of accepting or rejecting a WS

application execution request to maximize its own revenue. In other terms, SaaS providers can

implement an admission control scheme trading off between the platform costs and the revenues

they gain from their customers [1]. We assume that such decisions are taken according to some

i.i.d. probabilistic law. The resulting application execution rate (or throughput, acceptance

rate) is denoted by Xk ≤ Λk. SaaS providers may possibly incur in penalties pk ≥ 0 upon

rejection of request executions of k. In order to fix the rejection rate above a fixed threshold

6

and guarantee a minimum availability, SaaS s may decide to guarantee a minimum throughput

λk.

We assume that each physical server runs a Virtual Machine Monitor (VMM) configured

in work-conserving mode. The resource allocation mechanism implemented by VMMs can be

modeled as a first approximation by the Generalized Processor Sharing (GPS) [36] scheduling

(see e.g. [20, 39]). Under GPS, the fraction of the available processing capacity of each server

devoted to WS application k at time t is:

φsk∑
l∈K(t)

φsl
, (1)

where φsk denotes the CPU share, or weight, of application k of the SaaS provider s, and

K(t) ⊆ As is the set of WS applications with waiting requests at time t.

To estimate the per-request mean response time achieved with the GPS mechanism, we adopt

the approximation proposed in [8, Formula (18)]. Under the assumption that the requests of a

given application are evenly distributed among the physical servers in a probabilistic manner,

the mean response time for application k can be approximated by

Rk =
Ns

Xk
·

ρs
ρsk
φsk

C
∑

l∈As
vsl

ρsl
φsl
− ρs ρskφsk

, (2)

whereXk/Ns is the arrival rate of application-k requests to one physical server of SaaS s (requests

are evenly distributed among the Ns physical servers), µk denotes the maximum service rate of

a capacity-one server for executing a class k request, ρsk
def
= Xk/(µkNs) is interpreted as the

“utilization” of application k requests, and ρs
def
=
∑

l∈As
vsl ρsl. Formula 2 renders the mean

response time of a virtual machine when the VMM uses the GPS mechanism described above;

we point the interested reader to [8] for further details.

It is shown in [8, Theorem 5] that the mean response time of all SaaS-s applications, that is∑
k∈As

Xk∑
k′∈As

Xk′
Rk

where Rk is given by (2), is minimized when φsk = ρsk, for all k ∈ As. We assume that PaaSs

make this choice for the CPU shares, which implies that the average WS application k response

time becomes (upon substitution in (2) and noting that
∑

l∈As
vsl = 1)

Rk =
Ns

Xk
·

∑
l∈As

vslXl/µl

C Ns −
∑

l∈As
vslXl/µl

. (3)

Such choice of the weights induce a fair load-balancing among the number of on-going WS

execution requests. In fact, (3) implies that the number on-going WS execution requests of

application k, which is RkXk/Ns by Little’s law [32], is independent of k.

Remark 1. In the remainder of the paper, we use (3) as model of the response time of application

k requests on PaaS s. However, part of the results presented below immediately follow by only

using the convexity of Rk. This lets us stipulate that they hold also for a wider class of response

time functions.

7

Finally, we denote by c the time unit cost for a physical server when it is turned on, including

its power consumption and cooling overhead [28].

Table 1 summarizes the notation used in this paper for quick reference. Note that, the

SaaS SLA contract parameters (e.g., RSk or pk) are usually public available and stored in public

registries [13]. Requests arrival rates and resource demands (i.e., Λk, µk) can be determined by

SaaS and PaaS by prediction methods or monitoring [6, 9]. Vice versa, platform parameters

(e.g., servers time unit costs c and the overall number of servers available N) are known only

by the PaaS. Hence, the PaaS has or can determine easily the full knowledge of the system

parameters.

System Parameters

S Set of SaaS providers

As Set of applications offered by SaaS s

A = ∪s∈SAs

C Processing capacity of physical servers

αk Revenue for the SaaS provider for single request execution of WS

application k

mk SaaS margin for the execution of individual requests

pk SaaS penalty for application k requests rejection

δs Utility function slope for SaaS provider s

RSk Upper bound on the average response time of WS application k

guaranteed to the SaaS customers

λk Minimum arrival rate guaranteed for WS application k

Λk Prediction (maximum) arrival rate for WS application k

vsk Proportion of VMs running WS application k hosted by a physical

server dedicated to SaaS s

µk Maximum service rate of a capacity 1 server for executing a class

k request

c Time unit cost for a physical server when it is turned on

NP Overall number of physical servers available to the PaaS

PaaS Decision Variables

βk Revenue for the PaaS provider for single request execution of WS

application k

Ns Number of physical servers dedicated to SaaS s

SaaS Decision Variables

Xk Throughput for application k

RPk Upper bound for the average response time of WS application k

Table 1: Parameters and decision variables

8

3 Game-theoretic Model

As discussed in Section 1, the goal of the PaaS is to maximize its revenues obtained from the

execution of SaaS applications minus the cost incurred with the use of the physical servers.

On the other hand, the goal of each SaaS provider is to maximize its payoff which considers

the profits obtained from the execution of incoming requests, the costs incurred for the use of

the platform and the penalties associated with request rejections. Each SaaS payoff function

finally includes also a linear term which takes into account, for each application-k request, the

impact of the response time RPk on the end-user loyalties and expresses the discontent of final

end-users experiencing large response times.

As it will be detailed in the following, the behavior of the PaaS and the SaaSs in this

conflicting situation can be modeled as a GNEP. Section 3.1 formulates the PaaS resource

allocation problem, while Section 3.2 formalizes SaaS providers optimization problems. The

Generalized Nash equilibria of the game which is originated with this setting are defined in

Section 3.3 and a potential function for the game is described in Section 3.4.

3.1 Game formulation from the PaaS side

The PaaS optimization problem is:

max
βk,Ns

∑
k∈A

βkXk −
∑
s∈S

cNs (4)

subject to:

βk ≤
αk
mk

, ∀ k ∈ A, (5)∑
s∈S

Ns ≤ NP , (6)

Ns
∑

l∈As
vslXl/µl

C Ns −
∑

l∈As
vslXl/µl

≤ RPk Xk, ∀ s ∈ S, ∀ k ∈ As, (7)∑
l∈As

vslXl

µl
< C Ns, ∀ s ∈ S. (8)

The first and second terms of the payoff function are the revenues for the execution of end-user

requests and the costs of using physical servers, respectively. Constraint family (5) guarantees

each SaaS with a margin for the execution of end-user requests (mk > 1). Constraint (6)

entails that the total number of servers adopted is lower than the one available. Constraints (7)

guarantee that the average response time for requests execution satisfies the SLA between PaaS

and SaaSs. Finally, constraint family (8) guarantees that physical servers resources are not

saturated.

In the formulation of the PaaS problem, we have not imposed variables Ns to be integer, as in

reality they are. In fact, requiring variables to be integer makes the solution much more difficult.

Therefore, we consider the continuous relaxation of the problem. However, experimental results

have shown that if the optimal values of the variables are fractional and they are rounded to

9

the closest integer solution, the gap between the solution of the real integer problem and the

relaxed one is very small. This is a common assumption adopted in the literature [43] and is

also intuitive for large scale data centers including thousands of servers.

We note that the objective function of the PaaS provider is linear and increasing with respect

to variables βk which are bounded above by the constants αk/mk. Hence βk = αk/mk in every

optimal solution of the PaaS provider for any strategy chosen by the SaaS providers. Thus the

PaaS revenue for the execution of end-user requests is equal to
∑

k∈A αkXk/mk, which depends

only on variables Xk chosen by SaaS providers and is independent from PaaS variables Ns,

hence this term can be deleted from the PaaS objective function. In other words, the PaaS

optimization problem consists in minimizing costs of using physical servers. From now on, we

assume that the PaaS optimization problem has the following form:

max
Ns

Θp
def
= −

∑
s∈S

cNs (9)

subject to: ∑
s∈S

Ns ≤ NP , (10)

Ns
∑

l∈As
vslXl/µl

CNs −
∑

l∈As
vslXl/µl

≤ RPk Xk, ∀ s ∈ S, ∀ k ∈ As, (11)∑
l∈As

vslXl/µl < C Ns, ∀ s ∈ S. (12)

We note that the problem (9)–(12) is easy to solve because constraints (11)-(12) can be

rearranged to obtain linear constraints with respect to Ns so that each variable Ns can be

optimized separately. Hence the PaaS optimal solution is

Ns = max
k∈As

RPk Xk
∑

l∈As
vslXl/µl

C RPk Xk −
∑

l∈As
vslXl/µl

, ∀ s ∈ S, (13)

provided that the sum of the right-hand sides does not exceed the upper bound NP ; otherwise

there is no feasible solution.

3.2 Game Formulation from the SaaS Side

The SaaS s optimization problem is:

max
Xk,R

P
k

Θs
def
=
∑
k∈As

[
αk

(
1− 1

mk

)
Xk − pk (Λk −Xk) + δs (RSk −RPk)Xk

]
(14)

10

subject to:

λk ≤ Xk ≤ Λk, ∀ k ∈ As, (15)

RPk ≤ RSk , ∀ k ∈ As, (16)

Ns
∑

l∈As
vslXl/µl

CNs −
∑

l∈As
vslXl/µl

≤ RPk Xk, ∀ k ∈ As, (17)∑
l∈As

vslXl/µl < CNs. (18)

The first terms of the payoff function compute the net revenues obtained from the execution

of end-users’ request. The second terms determine the penalties incurred with request rejections.

Finally, the last term evaluates the response time RPk for WS application k requests according

to the utility function established in the SLA between the SaaS and each end-user. Constraint

family (15) states that Xk cannot be larger than the actual arrival rate Λk and smaller than the

minimum admission rate λk. Constraint family (16) entails that the response time for application

k negotiated with the PaaS is smaller than RSk . As in the previous section, constraints (17) and

(18) guarantee that the application response time satisfies the SLA and that physical servers

are not saturated, respectively.

3.3 Generalized Nash Equilibria

The model resulting from the optimization problems described in the previous sections is a

Generalized Nash Equilibrium Problem with joint constraints, where the players are the PaaS

and SaaS providers: The strategies of the PaaS provider are N = (Ns)s∈S, the strategies of

each SaaS provider s are Xs = (Xk)k∈As and RPs = (RPk)k∈As . Each SaaS provider shares

constraints (17) and (18) with the PaaS provider.

In this setting, a Generalized Nash Equilibrium (GNE) is a set of strategies such that no

player can improve its payoff function by changing its strategy unilaterally [26], i.e. a GNE is a

vector (X,R
P
, N) such that the following relations hold:

Θp(N) ≥ Θp(N), ∀ N s.t. (X,R
P
, N) satisfies constraints (10)–(12), (19)

and for all s ∈ S

Θs(Xs, R
P
s) ≥ Θs(Xs, R

P
s), ∀ (Xs, R

P
s)s.t. (Xs, R

P
s , N)

satisfies constraints (15)–(18).
(20)

3.4 Potential function

Since (i) the payoff function Θp of PaaS provider depends only on his own strategies Ns, (ii) the

payoff function Θs of each SaaS provider s only depends on his own strategies Xs and RPs , and

(iii) constraints (17) and (18) are shared among the players, we can conclude that this game is a

generalized potential game [27, 34] where the potential function is simply the sum of the players

payoff functions. This potential function represents a social welfare for the game.

11

Proposition 1. The function

Π(X,RP , N)
def
=
∑
s∈S

∑
k∈As

[
αk

(
1− 1

mk

)
Xk − pk (Λk −Xk) + δs (RSk −RPk)Xk

]
−
∑
s∈S

cNs

(21)

is a potential for the game.

We denote by Ω the feasible region containing the variables of all the players, i.e.

Ω = {(X,RP , N) : (10), (11), (12) hold and (15)-(16) hold for all s ∈ S}.

Since this is a generalized potential game, we can assume that the potential Π is the payoff

function of each player; therefore each global maximizer of Π on the set Ω, called social optimum,

is a special Generalized Nash Equilibrium (GNE). In other words, social optima represent the

GNE which are optimal from a social point of view.

Proposition 2. There exists at least one social optimum.

Proof. First, we prove that Ω is a closed set. For any (X,RP , N) ∈ Ω we have:

C Ns −
∑
l∈As

vslXl

µl
≥
Ns
∑

l∈As

vslXl
µl

RPk Xk
[from (11)]

≥
Ns
∑

l∈As

vslXl
µl

RSk Λk
[from (15)-(16)]

≥

(∑
l∈As

vslXl
µl

)2

C RSk Λk
[from (12)]

≥

(∑
l∈As

vslλl
µl

)2

C RSk Λk
[from (15)]

for all s ∈ S and k ∈ As. Therefore we obtain that

C Ns −
∑
l∈As

vslXl

µl
≥ max

k∈As


(∑

l∈As

vslλl
µl

)2

C RSk Λk

 ∀ s ∈ S, (22)

hence in the definition of Ω we can replace constraints (12) with constraints (22), thus Ω is a

closed set. Since Ω is also bounded and Π is continuous, the existence of social optima follows

from the well-known Weierstrass theorem.

4 The Social Optimum Problem

The Cloud provisioning game is extremely challenging since the number of SaaS providers |S|
and WS applications |A| characterizing problem instances of interest in practice are extremely

12

large (i.e., hundreds of SaaS and thousands of applications [17]). In order to identify efficient

solution methods, in this section we analyze the social optimum problem determining its main

properties.

In particular, we will show that constraints (11) hold as equality in any social optimum and

that the social optimum problem is convex. Furthermore, bounds relating the platform capacity,

the energy costs and the penalties incurred in case of requests rejection will be identified for

interesting system regimes.

Proposition 3. If (X,R
P
, N) is a social optimum, then the response time constraints (11) are

all active, i.e.

N s
∑

l∈As
vslX l/µl

C N s −
∑

l∈As
vslX l/µl

= R
P
k Xk, ∀ s ∈ S, ∀ k ∈ As. (23)

Proof. Suppose, by contradiction, that there exists an index k ∈ As, for some s, such that

N s
∑

l∈As
vslX l/µl

C N s −
∑

l∈As
vslX l/µl

< R
P
k Xk.

If we slightly decrease the value of R
P
k , keeping fixed the values of the other variables, we obtain a

new feasible vector (X,RP , N) such that Π(X,RP , N) > Π(X,R
P
, N), which is impossible.

It follows from Proposition 3 that the variables RPk can be expressed as function of Xk and

Ns, hence the social optimum problem can be rewritten as follows:

max
X,N

∑
s∈S

∑
k∈As

[
αk

(
1− 1

mk

)
Xk − pk(Λk −Xk) + δsR

S
kXk

]
−
∑
s∈S

[
cNs + δs|As|

Ns
∑

l∈As
vslXl/µl

CNs −
∑

l∈As
vslXl/µl

] (24)

subject to:

λk ≤ Xk ≤ Λk, ∀ k ∈ A, (25)

Ns
∑

l∈As
vslXl/µl

C Ns −
∑

l∈As
vslXl/µl

≤ RSk Xk, ∀ s ∈ S, ∀ k ∈ As, (26)∑
s∈S

Ns ≤ NP , (27)∑
l∈As

vslXl/µl < C Ns, ∀ s ∈ S. (28)

Proposition 4. The social optimum problem (24)–(28) is convex.

Proof. We have to prove that the objective function is concave and all the constraints are convex.

To this end, it is sufficient to show that the functions

(Xs, Ns) 7→
Ns
∑

l∈As
vslXl/µl

CNs −
∑

l∈As
vslXl/µl

13

are convex when constraints (28) are satisfied. Since all these functions have the same structure,

we can consider only the function

h(x1, . . . , xn, y)
def
=

y
∑n

i=1 aixi
b y −∑n

i=1 aixi
,

where variables x = (x1, . . . , xn) and y correspond to Xs and Ns respectively, and the constants

ai > 0 and b > 0 to vsl/µl and C respectively. Therefore, it is sufficient to prove that the

function h is convex when b y −∑n
i=1 aixi > 0 (which corresponds to constraint (28)).

The first derivatives of h are

∂h

∂xj
=

bajy
2

(b y −∑n
i=1 aixi)

2
, j = 1, . . . , n,

∂h

∂y
=
−(
∑n

i=1 aixi)
2

(b y −∑n
i=1 aixi)

2
;

the second derivatives of h are

∂2h

∂xj ∂x`
=

2 b aj a` y
2

(b y −∑n
i=1 aixi)

3
, j, ` = 1, . . . , n,

∂2h

∂xj ∂y
=
−2 b aj y

∑n
i=1 aixi

(b y −∑n
i=1 aixi)

3
, j = 1, . . . , n,

∂2h

∂y2
=

2 b (
∑n

i=1 aixi)
2

(b y −∑n
i=1 aixi)

3
.

Thus the Hessian matrix of h is

∇2h(x1, . . . , xn, y) =
2 b

(b y −∑n
i=1 aixi)

3


a2

1y
2 · · · a1any

2 −a1y
∑n

i=1 aixi
...

. . .
...

...

a1any
2 · · · a2

ny
2 −any

∑n
i=1 aixi

−a1y
∑n

i=1 aixi . . . −any
∑n

i=1 aixi (
∑n

i=1 aixi)
2

 .
For any vector u = (u1, . . . , un, un+1) ∈ Rn+1 we have

uT ∇2h(x1, . . . , xn, y)u =
2 b

(b y −∑n
i=1 aixi)

3
uT


a1 y

2
∑n

i=1 aiui − a1 y un+1
∑n

i=1 aixi
...

an y
2
∑n

i=1 aiui − an y un+1
∑n

i=1 aixi
−y (

∑n
i=1 aixi) (

∑n
i=1 aiui) + un+1 (

∑n
i=1 aixi)

2


=

2 b

(b y −∑n
i=1 aixi)

3

y2

(
n∑
i=1

aiui

)2

− 2 y un+1

(
n∑
i=1

aiui

) (
n∑
i=1

aixi

)

+u2
n+1

(
n∑
i=1

aixi

)2


=
2 b

(b y −∑n
i=1 aixi)

3

[
y

n∑
i=1

aiui − un+1

n∑
i=1

aixi

]2

.

Therefore, if b y−∑n
i=1 aixi > 0, then the Hessian matrix of h is positive semidefinite and hence

h is convex.

14

In the rest of this section we analyze the Karush-Kuhn-Tucker (KKT) system of the social

optimum problem and derive some bounds for the social optima relating the platform capacity,

the energy costs and the penalties incurred in case of requests rejection.

Since the social optimum problem is convex and the Slater constraint qualification holds, the

KKT conditions are necessary and sufficient for the optimality. If we denote Lik ≥ 0, for k ∈ A

and i = 1, 2, 3, the KKT multipliers associated to constraints (25) and (26), and L4 ≥ 0, the

multiplier associated to constraint (27), then the KKT system is the following:

αk

(
1− 1

mk

)
+ pk + δsR

S
k

− C vskN
2
s

µk (C Ns −
∑

l∈As
vslXl/µl)2

δs |As|+
∑
l∈As

L3
l


+L1

k − L2
k + L3

k R
S
k = 0, ∀ s ∈ S, ∀ k ∈ As, (29)

−c+

(∑
l∈As

vslXl/µl

C Ns −
∑

l∈As
vslXl/µl

)2
δs |As|+

∑
l∈As

L3
l

− L4 = 0, ∀ s ∈ S, (30)

L1
k (Xk − λk) = 0, ∀ k ∈ A, (31)

L2
k (Xk − Λk) = 0, ∀ k ∈ A, (32)

L3
k

(
Ns
∑

l∈As
vslXl/µl

C Ns −
∑

l∈As
vslXl/µl

−RSk Xk

)
= 0, ∀ s ∈ S, ∀ k ∈ As, (33)

L4

(∑
s∈S

Ns −NP

)
= 0, (34)

constraints (25)–(28).

In the following we will analyze two limiting regimes for the Cloud system. In particular

Proposition 5 considers that the system provides very good performance for a provider s (i.e., the

constraints (26) are not active for the whole set of WS applications As hosted at the PaaS site),

which corresponds to light load conditions for the SaaS s. Vice versa, Proposition 6 considers

the case a provider s is under heavy load and the minumum workload is served for every WS

applications in As. These results are used in Section 5 to identify the initial solution for our

resource allocation algorithm, and, as it will be further discussed in Section 6, they allow to

achieve the best efficiency in terms of PoA.

In the remainder of the paper, we will denote with Ψsk = αk

(
1− 1

mk

)
+ pk + δsR

S
k and we

set Ωsk = vsk C/µk.

Proposition 5. If (X,N) is a social optimum solution and there exists a SaaS provider s such

that Xk = Λk and the response time is strictly lower than RSk for all WS applications k ∈ As,

15

then: ∑
k∈As

vsk Λk/µk

C −
√

δs|As|
min
k∈As

Ψsk/Ωsk

≤ Ns ≤
√
c+

√
δs|As|

C
√
c

∑
k∈As

vsk Λk/µk. (35)

Proof. Since for all k ∈ As the constraint (26) is not active and Xk = Λk, we obtain L1
k = L3

k = 0.

It follows from (29) that

Ψsk −
Ωsk δs |As|N2

s

(C Ns −
∑

l∈As
vslXl/µl)2

= L2
k ≥ 0 ∀ k ∈ As,

hence we have

min
k∈As

Ψsk

Ωsk
≥ δs |As|N2

s

(C Ns −
∑

l∈As
vslXl/µl)2

.

Setting Xl = Λl and taking into account the equilibrium condition C Ns −
∑

l∈As
vsl Λl/µl > 0,

we obtain the first inequality of (35).

On the other hand, it follows from (30) that

δs|As|
(∑

l∈As
vslXl/µl

C Ns −
∑

l∈As
vslXl/µl

)2

− c = L4 ≥ 0.

Setting Xl = Λl for all l ∈ As, we get

δs|As|
c

∑
k∈As

vsl Λl/µl

2

≥

C Ns −
∑
l∈As

vsl Λl/µl

2

,

which, together with the equilibrium condition C Ns −
∑

l∈As
vsl Λl/µl > 0, implies the second

inequality of (35).

Proposition 6. If (X,N) is a social optimum solution and there exists a SaaS provider s such

that Xk = λk and the response time is strictly lower than RSk for all WS applications k ∈ As,

then

Ns ≤ min


1

C −
√

δs|As|
max
k∈As

Ψsk/Ωsk

,

√
c+

√
δs|As|

C
√
c


∑
k∈As

vsk λk/µk. (36)

Proof. Since for all k ∈ As the constraint (26) is not active and Xk = λk, we obtain L2
k = L3

k = 0.

From (29) we obtain

Ψsk −
Ωsk δs |As|N2

s

(C Ns −
∑

l∈As
vslXl/µl)2

= −L1
k ≤ 0, ∀ k ∈ As,

hence we have

max
k∈As

Ψsk

Ωsk
≤ δs |As|N2

s

(C Ns −
∑

l∈As
vslXl/µl)2

.

16

Setting Xl = λl and taking into account the equilibrium condition C Ns −
∑

l∈As
vsl λl/µl > 0,

we obtain

Ns ≤

∑
l∈As

vsl λl/µl

C −
√

δs|As|
max
k∈As

Ψsk/Ωsk

. (37)

On the other hand, from (30) we get

δs|As|
(∑

l∈As
vslXl/µl

C Ns −
∑

l∈As
vslXl/µl

)2

− c = L4 ≥ 0.

Setting Xl = λl for all l ∈ As, we get

δs|As|
c

∑
k∈As

vsl λl/µl

2

≥

C Ns −
∑
l∈As

vsl λl/µl

2

,

which, together with the equilibrium condition C Ns −
∑

l∈As
vsl λl/µl > 0, implies

Ns ≤
√
c+

√
δs|As|

C
√
c

∑
k∈As

vsk λk/µk. (38)

Finally, the thesis follows from (37) and (38).

5 Distributed Solution Method

In the previous Section it has been proved that the social optimum problem is convex and,

from a theoretical point of view, it could be solved by the PaaS which has the full knowledge

of system parameters (see Section 2). However, computational results demonstrate that only

small instances can be solved to optimality with commercial nonlinear optimization packages

(see Section 6). To handle representative problem sizes, in this Section we provide a solution

algorithm which converges to a GNE. Several different versions of the algorithm we implemented

are characterized by a different choice of the initial solution.

Before describing the solution algorithm, we analyze in more details the PaaS and SaaSs

problems. In Section 3.1 we have shown that PaaS problem is easy to solve. On the other

hand, the SaaS problem (14)–(18) can not be solved analytically, but it can be reformulated as

a convex problem. In fact, we can prove similarly to Proposition 3 that constraints (17) are

active in any SaaS optimal solution. Hence, the variables RPk can be expressed as function of

Xk by formula (23) and we can rewrite the SaaS problem as follows:

max
Xs

∑
k∈As

[
αk

(
1− 1

mk

)
Xk − pk (Λk −Xk) + δsR

S
k Xk

]
−δs|As|

Ns
∑

l∈As
vslXl/µl

C Ns −
∑

l∈As
vslXl/µl

(39)

subject to:

17

λk ≤ Xk ≤ Λk, ∀ k ∈ As, (40)

Ns
∑

l∈As
vslXl/µl

C Ns −
∑

l∈As
vslXl/µl

≤ RSk Xk, ∀ k ∈ As, (41)∑
l∈As

vslXl/µl < CNs. (42)

Finally, it can be proved that this problem is convex following the proof of Proposition 4.

Now, we describe the solution algorithm and prove that it converges to a GNE.

Solution Algorithm

1. An initial value for the number of physical servers of each SaaS Ns is identified.

2. If
∑

s∈SNs > NP , the PaaS provider reducesNs proportionally to constraint (10) violation,

i.e. the PaaS sets

N s =
NsN

P∑
s′∈S

Ns′
, ∀ s ∈ S; (43)

otherwise PaaS provider set N s = Ns for all s ∈ S.

3. Given N , each SaaS provider s finds a optimal solution (Xk)k∈As , of the convex optimiza-

tion problem (39)–(42) and set

R
P
k =

1

Xk

N s
∑

l∈As
vslX l/µl

C N s −
∑

l∈As
vslX l/µl

, ∀ k ∈ As.

The algorithm performs three simple steps. An initial estimate for the number of physical

servers is identified. If the initial server assignment is unfeasible, then the PaaS reallocates

servers among SaaSs. Finally, each SaaS computes the optimal values for (Xs, R
P
s) accordingly

to its objective. We can obtain many different versions of the algorithm according to the way

and the players (SaaS or PaaS) that select the initial number of servers. We first prove that the

solution algorithm converges to a GNE, then we formulate five alternative methods that will be

evaluated in the next Section.

Proposition 7. If N is such that the feasible region (40)–(42) of each SaaS provider is non-

empty, then the vector (X,R
P
, N) found by the solution algorithm is a GNE.

Proof. Since each SaaS determines the best reply (Xs, R
P
s) to the PaaS strategy N , we obtain

that all the constraints (17) are active. Thus, by formula (13) also the strategy N of the PaaS

is the best reply to the strategies (X,R
P

) of the SaaS players. Hence (X,R
P
, N) is a GNE

because of relations (19)–(20).

18

According to the previous result, the solution algorithm finds a GNE. However, the equi-

librium is found in a single best reply dynamic iteration and depends on the arbitrary choice

N at step 1. Hence, finding good equilibria for the problem under study could be hard. We

have implemented the following heuristic methods for defining a vector N which provides a good

equilibrium.

• Method 1: Each SaaS randomly selects Ns at step 1. Random initialization at step 1 is

considered as a benchmark for the comparison of alternative methods.

• Method 2: At step 1, each SaaS sets Xk randomly in the interval [λk,Λk] and determines

Ns such that physical servers average utilization is
∑
l∈As

vslXl
C Ns µl

= 0.6. In other words,

the initial number of physical servers is determined according to the utilization thresholds

principle which is an heuristic for Cloud systems resource allocation widely used in the

literature [21, 40, 44] and adopted in practice by IaaS/PaaS providers [4].

• Method 3: At step 1, each SaaS s maximizes the function

∑
k∈As

[
αk

(
1− 1

mk

)
Xk − pk(Λk −Xk) + δsR

S
kXk

]
− cNs − δs|As|

Ns
∑

l∈As
vslXl/µl

CNs −
∑

l∈As
vslXl/µl

subject to constraints (40)–(42), considering both Xs and Ns as decision variables.

• Method 4: At step 1, the PaaS sets

Ns =

√
c+

√
δs|As|

C
√
c

∑
k∈As

vsk Λk/µk,

according to Proposition 5.

• Method 5: At step 1, the PaaS sets

Ns = min


1

C −
√

δs|As|
max
k∈As

Ψsk/Ωsk

,

√
c+

√
δs|As|

C
√
c


∑
k∈As

vsk λk/µk,

according to Proposition 6.

Note that the initialization steps implemented by methods 4 and 5 are performed by the PaaS

provider, since they require the knowledge of the time unit cost c of use of the physical servers,

which is usually unknown by the SaaS providers. Method 3 can be implemented in practice only

if the PaaS shares c with SaaSs. Methods 1–5 are suitable for a distributed implementation and

require at most three messages exchange between each SaaS and PaaS (for providing the initial

service demand, to communicate the effective number of physical servers, and finally set up the

WS applications response time threshold and overall throughput).

19

6 Numerical Results

The solution algorithm proposed has been evaluated for a variety of system and workload config-

urations. Section 6.1 is devoted to quantitatively analyze the efficiency of the equilibria achieved

by our approach, while the scalability is discussed in Section 6.2. Finally, Section 6.3 illustrates

the equilibria properties for a medium size system by varying application performance parame-

ters.

6.1 Equilibria Efficiency

To evaluate the efficiency of our algorithm we have considered a very large set of randomly

generated instances. The number of SaaS providers has been varied between 100 and 1,000, the

number of applications (evenly shared among SaaSs) between 1,000 and 10,0001.

The performance parameters of the applications and infrastructural resources costs have been

randomly generated uniformly in the ranges reported in Table 2 as in [8, 12, 31], considering also

real applications [11], according to commercial fees applied by IaaS/PaaS Cloud providers [4, 33]

and the energy costs available in the literature [28]. We have included in the time unit cost c

of a physical server also the overhead of the cooling system according to the values reported

in [28], varying also the cost of energy per kWh. Furthermore, the penalty values pk have been

set proportional to the revenues for single request execution αk, pk = γ1
kαk, where γ1

k has been

randomly generated uniformly in the range [5, 50], as in [42], while the upper bounds on the

average response time thresholds guaranteed to the SaaS customers were set proportional to

the request service demand 1/µk, i.e., RSk = γ2
k/µk, where γ2

k has been randomly generated

uniformly in the range [100, 200], as in [13]. Finally, since request rejection has an important

impact on SaaS provider reputation, we set λk = 0.95Λk.

αk [0.01, 1] $/req c [0.03, 0.14] $/hour δs [0.1, 1]

µk [10, 1000] req/s Λk [100, 1000] req/s

mk [1, 2] vsk [1, 100]

Table 2: Performance parameters and time unit cost ranges.

We denote with x̃ any social optimum and with x the GNE found by the solution algorithm

using methods 1–5. The efficiency has been measured in terms of the Price of Anarchy (PoA)

evaluated as

PoA =
Π(x)

Π(x̃)
.

The PoA is a measure of the inefficiency due to PaaS and SaaSs selfish behavior with respect to

the scenario where the social optimum is pursued. The metric is lower or equal to 1 (the greater

the better).

1We have verified that the performance of our solution is not affected by the applications to SaaSs assignment

cardinality (we varied the number of applications per SaaS in the range 1-100), both in terms of Price of Anarchy

and execution time. Results are omitted for space limitation.

20

Random instances have been generated guaranteeing that the constraint (27) is active, which

corresponds to the worst case situation for a Cloud system (heavy workload) and for the proposed

methods which otherwise can determine the social optimum naively (e.g., if the servers are not

saturated, PoA is always equal to 1 for method 3). This has been obtained by solving the social

optimum problem with an infinite number of servers and then by setting NP equal to ρ times

the total number of servers actually used. In order to evaluate the robustness of our solution, ρ

has been set equal to 0.9, 0.8 and 0.7, which corresponds to increasing workload conditions for

the PaaS.

Results are reported in Tables 3–5. The figures reported in each table are the means com-

puted on 10 different runs.

(|S|,|A|) Method 1 Method 2 Method 3 Method 4 Method 5

(100,1000) 0.41 0.41 0.41 0.45 0.50

(200,2000) 0.39 0.39 0.39 0.45 0.49

(300,3000) 0.40 0.40 0.40 0.47 0.51

(400,4000) 0.40 0.41 0.40 0.48 0.53

(500,5000) 0.40 0.40 0.40 0.45 0.54

(600,6000) 0.40 0.40 0.40 0.49 0.50

(700,7000) 0.39 0.39 0.39 0.44 0.50

(800,8000) 0.40 0.40 0.40 0.47 0.52

(900,9000) 0.39 0.39 0.39 0.44 0.50

(1000,10000) 0.40 0.39 0.40 0.46 0.49

Average 0.40 0.40 0.40 0.46 0.51

Table 3: Solution methods efficiency, ρ = 0.9.

(|S|,|A|) Method 1 Method 2 Method 3 Method 4 Method 5

(100,1000) 0.41 0.41 0.41 0.45 0.50

(200,2000) 0.39 0.39 0.39 0.45 0.48

(300,3000) 0.40 0.40 0.40 0.50 0.51

(400,4000) 0.40 0.41 0.40 0.48 0.54

(500,5000) 0.42 0.42 0.42 0.47 0.56

(600,6000) 0.40 0.40 0.40 0.45 0.51

(700,7000) 0.39 0.39 0.39 0.44 0.53

(800,8000) 0.40 0.41 0.40 0.47 0.52

(900,9000) 0.39 0.39 0.39 0.44 0.50

(1000,10000) 0.41 0.41 0.41 0.47 0.51

Average 0.40 0.40 0.40 0.46 0.52

Table 4: Solution methods efficiency, ρ = 0.8.

For every method the PoA does not depend significantly on the system size, neither on the

21

(|S|,|A|) Method 1 Method 2 Method 3 Method 4 Method 5

(100,1000) 0.41 0.41 0.41 0.45 0.50

(200,2000) 0.39 0.40 0.39 0.45 0.48

(300,3000) 0.40 0.41 0.40 0.47 0.51

(400,4000) 0.40 0.41 0.40 0.50 0.54

(500,5000) 0.42 0.42 0.42 0.51 0.57

(600,6000) 0.40 0.40 0.40 0.44 0.51

(700,7000) 0.39 0.40 0.39 0.44 0.50

(800,8000) 0.40 0.41 0.40 0.47 0.56

(900,9000) 0.39 0.40 0.39 0.44 0.50

(1000,10000) 0.40 0.40 0.40 0.46 0.49

Average 0.40 0.41 0.40 0.46 0.51

Table 5: Solution methods efficiency, ρ = 0.7.

system workload conditions. Furthermore, methods 1–3 perform similarly, the PoA is around

0.4 (i.e., on average the percentage difference of the sum of the payoff functions with respect

to the social optimum is lower than 60%). This means that the heuristic solution based on the

utilization threshold proposed in the literature (implemented by method 2) achieves the same

results of random initialization (implemented by method 1). Vice versa, methods 4 and 5, based

on the analysis of the KKT system of the social optimum problem, allow to improve the PoA

by 15% and 25%, respectively.

6.2 Algorithms Scalability

The scalability of our approach has been evaluated performing tests on a VMWare virtual ma-

chine based on Ubuntu 11.04 server, running on an Intel Nehalem dual socket quad-core system

with 32 GB of RAM. The virtual machine has a physical core dedicated with guaranteed per-

formance and 4 GB of memory reserved. KNITRO 8.0 has been used as nonlinear optimization

solver, which can exploit the multi-core architecture of our system. We have considered a very

large set of randomly generated instances obtained as in the previous Section varying the model

parameters according to the ranges reported in Table 2.

Table 6 reports the average execution time required by our methods for problem instances

of different sizes. As in the previous Section, the average values reported in the table have

always been computed by considering 10 instances with the same size. Results show that the

proposed methods are very efficient and can solve problem instances of maximum size in less

than one minute. Usually in Cloud systems resource allocation is performed periodically on a

hourly basis [1, 14, 17]. Hence, a social optimum solution can be computed directly by the PaaS

only for problem instances including 700 SaaSs and 7,000 WS applications which are not very

significant in practice.

22

(|S|,|A|) Social Opt. Method 1 Method 2 Method 3 Method 4 Method 5

Solution

(100,1000) 132.80 0.74 0.74 0.80 0.60 0.80

(200,2000) 364.70 3.35 3.30 4.30 3.10 3.30

(300,3000) 632.50 3.31 3.31 5.31 6.31 7.31

(400,4000) 972.90 5.01 5.10 5.20 3.90 4.10

(500,5000) 1551.50 6.53 6.90 7.10 7.80 7.80

(600,6000) 1940,00 7.93 8.32 8.51 9.42 10.18

(700,7000) 2452.10 9.32 9.92 10.42 11.87 12.33

(800,8000) 3224.40 11.44 11.28 11.27 10.07 9.36

(900,9000) 3860.70 14.21 13.60 12.65 11.50 11.11

(1000,10000) 6100.00 41.60 36.60 43.60 44.60 37.60

Table 6: Execution times (s).

6.3 Equilibria Sharing Analysis

The aim of this Section is to analyze how the equilibrium changes by varying the game param-

eters. The results have been obtained by Method 5 only, since the methods proposed do not

differ significantly in terms of execution time and Method 5 performs better in terms of PoA.

In particular, we considered three SaaSs offering five heterogeneous applications each. If not

differently stated we set αk = 0.5 $/req, µk = 10k req/s, mk = 1.5, c = 0.09 $/h, Λk = 450 req/s,

and δs = 0.45 (i.e., we considered the midpoint of the random intervals reported in Table 2).

For the sake of simplicity, we considered the following application to SaaS provider assignment

A1 = {1, . . . , 5}, A2 = {6, . . . , 10}, A3 = {11, . . . , 15}.
In the following we will vary one parameter at the time for the first application k = 1, while

the parameters of the remaining ones will be held fixed. We will investigate how the parameter

change will affect: (i) the throughput ratio of WS application 1, i.e., X1/Λ1, (ii) the throughput

of the remaining applications for the first provider (i.e.,
∑5

k=2Xk) and the total throughput of

the remaining providers (i.e.,
∑15

k=6Xk), (iii) the number of servers of the first SaaS provider

N1, and (iv) WS application 1 average response time R1.

Figures 2–5 show the results we achieved by varying Λ1 in [495, 1165] req/s: As Λ1 increases,

the number of servers used by the SaaS provider 1 increases also linearly (Figure 4), while R1

decreases non-linearly improving by around 57% (Figure 5). Vice versa, X1/Λ1 ratio is not

affected significantly and stays close to 1 (Figure 2), as the overall throughput of the remaining

applications (Figure 3).

Figures 6–9 analyze how the GNE changes by varying application 1 maximum service rate

µ1 (the range [60, 510] req/s has been considered). If the maximum service rate increases,

the service time required to process each WS application 1 request decreases and the overall

capacity required to process WS application 1 decreases accordingly (Figures 8 and 9). Vice

versa, application throughput is not affected (see Figures 6 and 7).

23

500 600 700 800 900 1000 1100 1200
0.5

0.6

0.7

0.8

0.9

1

1.1

X 1/Λ
1

Λ1 (req/s)

Figure 2: X1/Λ1 ratio with varying applica-

tion 1 incoming workload.

500 600 700 800 900 1000 1100 1200
1500

2000

2500

3000

3500

4000

4500

Sy
st

em
 T

hr
ou

gh
pu

t (
re

q/
s)

Λ1 (req/s)

 Applications 2−5
 Applications 6−15

Figure 3: Application 2–5 and 6–15 through-

put with varying application 1 incoming work-

load.

500 600 700 800 900 1000 1100 1200
20

22

24

26

28

30

32

34

36

38

N 1

Λ1 (req/s)

Figure 4: SaaS provider 1 number of servers

with varying application 1 incoming workload.

500 600 700 800 900 1000 1100 1200
0.8

1

1.2

1.4

1.6

1.8

2

2.2

R 1 (s
)

Λ1 (req/s)

Figure 5: WS application 1 average response

time with varying application 1 incoming

workload.

24

50 100 150 200 250 300 350 400 450 500 550
0.5

0.6

0.7

0.8

0.9

1

1.1

X 1/Λ
1

µ1 (req/s)

Figure 6: X1/Λ1 ratio with varying applica-

tion 1 maximum service rate.

50 100 150 200 250 300 350 400 450 500 550
1500

2000

2500

3000

3500

4000

4500

Sy
st

em
 T

hr
ou

gh
pu

t (
re

q/
s)

µ1 (req/s)

 Applications 2−5
 Applications 6−15

Figure 7: Application 2–5 and 6–15 through-

put with varying application 1 maximum ser-

vice rate.

50 100 150 200 250 300 350 400 450 500 550
10.8

11

11.2

11.4

11.6

11.8

12

12.2

12.4

N 1

µ1 (req/s)

Figure 8: SaaS provider 1 number of servers

with varying application 1 maximum service

rate.

50 100 150 200 250 300 350 400 450 500 550
2.275

2.28

2.285

2.29

2.295

2.3

2.305

2.31

2.315

2.32

R 1 (s
)

µ1 (req/s)

Figure 9: WS application 1 average response

time with varying application 1 maximum ser-

vice rate.

25

Surprisingly, varying the revenue for application 1 single request execution (α1 varied in

[0.17, 1.02] $/req) has no impact on the metrics under analysis, see Figures 10–13 (however,

recall that WS application rejection penalty p1 is proportional to α1).

0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

1.1

X 1/Λ
1

α1 ($/req)

Figure 10: X1/Λ1 ratio with varying applica-

tion 1 per request revenue.

0.2 0.4 0.6 0.8 1
1500

2000

2500

3000

3500

4000

4500

Sy
st

em
 T

hr
ou

gh
pu

t (
re

q/
s)

α1 ($/req)

 Applications 2−5
 Applications 6−15

Figure 11: Application 2–5 and 6–15 through-

put with varying application 1 per request rev-

enue.

0.2 0.4 0.6 0.8 1
18.5

19

19.5

20

20.5

21

N 1

α1 ($/req)

Figure 12: SaaS provider 1 number of servers

with varying application 1 per request rev-

enue.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
1

1.5

2

2.5

3

3.5

R 1 (s
)

α1 ($/req)

Figure 13: WS application 1 average response

time with varying application 1 per request

revenue.

Finally, we varied SaaS provider 1 utility function slope δ1 in the range [0.2, 1]. As δ1

increases, the metrics under analysis remain almost constant but change abruptly when δ1 = 0.82

(see Figures 14–17). For that value, the ratio X1/Λ1 drops suddenly from 100% to 95% (the

minimum achievable value), which is very unintuitive.

26

0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

1.1

X 1/Λ
1

δ1 ($/req)

Figure 14: X1/Λ1 ratio with varying applica-

tion 1 per request revenue.

0.2 0.4 0.6 0.8 1
1500

2000

2500

3000

3500

4000

4500

Sy
st

em
 T

hr
ou

gh
pu

t (
re

q/
s)

δ1 ($/req)

 Applications 2−5
 Applications 6−15

Figure 15: Application 2–5 and 6–15 through-

put with varying application 1 per request rev-

enue.

0.2 0.4 0.6 0.8 1
19.6

19.8

20

20.2

20.4

20.6

20.8

N 1

δ1 ($/req)

Figure 16: SaaS provider 1 number of servers

with varying application 1 per request rev-

enue.

0.2 0.4 0.6 0.8 1

2.25

2.3

2.35

2.4

R 1 (s
)

δ1 ($/req)

Figure 17: WS application 1 average response

time with varying application 1 per request

revenue.

27

7 Conclusions

We proposed a game-theoretic approach for the run-time management of a PaaS provider ca-

pacity among multiple competing SaaSs. The cost model consists of a class of utility functions

which include revenues and penalties incurred depending on the achieved performance level and

the energy costs associated with PaaS resources.

The solution methods proposed have been evaluated for a variety of system and workload

configurations and have been demonstrated effective even for very large size problem instances.

Systems up to thousands of applications can be managed very efficiently.

Results have shown that solution methods proposed by the literature and the one based

on random initialization perform similarly from the PoA point of view. Vice versa, methods 4

and 5 which have been obtained through the analytical analysis of the social optimum problem,

allow to improve PoA by 15–25%. Future work will extend the proposed solutions to consider

multiple time-scales for performing resource allocation ranging from few minutes to one hour.

Finally, the opportunity to allocate SaaS applications on multiple PaaS providers will be also

investigated.

Acknoledgements

The authors wish to thank the anonymous referees for the careful reviews and valuable com-

ments, which helped them to improve the presentation form of the paper.

References

[1] J. Almeida, V. Almeida, D. Ardagna, I. Cunha, C. Francalanci, and M. Trubian. Joint

admission control and resource allocation in virtualized servers. Journal of Parallel and

Distributed Computing, 70(4):344–362, 2010.

[2] E. Altman, T. Boulogne, R. El-Azouzi, T. Jiménez, and L. Wynter. A survey on networking

games in telecommunications. Computers and Operations Research, 33(2):286–311, 2006.

[3] Amazon Inc. Amazon EC2 Dedicated Instances. http://aws.amazon.com/

dedicated-instances/.

[4] Amazon Inc. Amazon Elastic Cloud. http://aws.amazon.com/ec2/.

[5] Amazon Inc. AWS GovCloud (US). http://aws.amazon.com/govcloud-us/.

[6] M. Andreolini and S. Casolari. Load prediction models in web-based systems. In Proceed-

ings of the 1st international conference on Performance evaluation methodolgies and tools,

valuetools ’06, New York, NY, USA, 2006. ACM.

[7] J. Anselmi and B. Gaujal. The price of forgetting in parallel and non-observable queues.

Performance Evaluation, 68(12):1291–1311, 2011.

28

[8] J. Anselmi and I. M. Verloop. Energy-aware capacity scaling in virtualized environments

with performance guarantees. Performance Evaluation, 68(11):1207–1221, 2011.

[9] D. Ardagna, S. Casolari, M. Colajanni, and B. Panicucci. Dual time-scale distributed

capacity allocation and load redirect algorithms for cloud systems. Journal of Parallel and

Distributed Computing, 72(6):796 – 808, 2012.

[10] D. Ardagna, B. Panicucci, and M. Passacantando. A game theoretic formulation of the

service provisioning problem in cloud systems. In Proceedings of the 20th international

conference on World wide web, WWW ’11, pages 177–186, New York, NY, USA, 2011.

ACM.

[11] D. Ardagna, B. Panicucci, and M. Passacantando. Generalized Nash equilibria for the

service provisioning problem in cloud systems. IEEE Transactions on Services Computing,

in press.

[12] D. Ardagna, B. Panicucci, M. Trubian, and L. Zhang. Energy-aware autonomic resource

allocation in multitier virtualized environments. IEEE Transactions on Services Computing,

5(1):2–19, 2012.

[13] D. Ardagna and B. Pernici. Adaptive service composition in flexible processes. IEEE

Transactions on Software Engineering, 33(6):369–384, 2007.

[14] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A.

Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the clouds: A Berkeley view of

cloud computing. Technical Report UCB/EECS-2009-28, EECS Department, University of

California, Berkeley, Feb 2009.

[15] M. N. Bennani and D. A. Menasce. Resource allocation for autonomic data centers us-

ing analytic performance models. In Proceedings of the Second International Conference

on Automatic Computing, ICAC ’05, pages 229–240, Washington, DC, USA, 2005. IEEE

Computer Society.

[16] G. Bigi, M. Castellani, M. Pappalardo, and M. Passacantando. Existence and solution

methods for equilibria. European Journal of Operational Research, 227(1):1–11, 2013.

[17] R. Birke, L. Chen, and E. Smirni. Data centers in the cloud: A large scale performance

study. In Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on, pages

336 –343, 2012.

[18] J. Cao, K. Hwang, K. Li, and A. Zomaya. Optimal multiserver configuration for profit

maximization in cloud computing. IEEE Transactions on Parallel and Distributed Systems,

24(6):1087–1096, 2013.

[19] E. Cavazzuti, M. Pappalardo, and M. Passacantando. Nash equilibria, variational inequali-

ties, and dynamical systems. Journal of Optimization Theory and Applications, 114(3):491–

506, 2002.

29

[20] A. Chandra, W. Gong, and P. Shenoy. Dynamic resource allocation for shared data centers

using online measurements. In Proceedings of ACM SIGMETRICS, pages 300–301, NY,

USA, 2003. ACM.

[21] L. Cherkasova and P. Phaal. Session-based admission control: a mechanism for peak load

management of commercial web sites. IEEE Transactions on Computers, 51(6):669–685,

2002.

[22] A. Croll. Cloud performance from the end user perspective. http://www.bitcurrent.

com/download/cloud-performance-from-the-end-user-perspective/.

[23] G. Debreu. A social equilibrium existence theorem. Proceedings of the National Academy

of Sciences of the USA, 38(10):886–893, 1952.

[24] M. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali. Cloud computing: Dis-

tributed internet computing for IT and scientific research. IEEE Internet Computing,

13(5):10–13, 2009.

[25] D. C. Dynamic. Industry census 2012: Emerging data cen-

ter markets. https://www.datacenterdynamics.com/blogs/

industry-census-2012-emerging-data-center-markets, 2013.

[26] F. Facchinei and C. Kanzow. Generalized Nash equilibrium problems. Annals of Operations

Research, 175(1):177–211, 2010.

[27] F. Facchinei, V. Piccialli, and M. Sciandrone. Decomposition algorithms for generalized

potential games. Computational Optimization and Applications, 50(2):237–262, 2011.

[28] Greenpeace. How clean is your cloud? http://www.greenpeace.org/international/

Global/international/publications/climate/2012/iCoal/HowCleanisYourCloud.

pdf.

[29] M. Haviv and T. Roughgarden. The price of anarchy in an exponential multi-server. Op-

erations Research Letters, 35(4):421–426, 2007.

[30] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Proceedings of the 16th

annual conference on Theoretical aspects of computer science, STACS’99, pages 404–413,

Berlin, Heidelberg, 1999. Springer-Verlag.

[31] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang. Power and per-

formance management of virtualized computing environments via lookahead control. In

Proceedings of the 2008 International Conference on Autonomic Computing, ICAC ’08,

pages 3–12, Washington, DC, USA, 2008. IEEE Computer Society.

[32] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quantitative system per-

formance: computer system analysis using queueing network models. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1984.

30

[33] Microsoft. Windows azure. http://msdn.microsoft.com/en-us/library/

windowsazure/dd163896.

[34] D. Monderer and L. Shapley. Potential games. Games and Economic Behaviour, 14(1):124–

143, 1996.

[35] J. Nash. Non-cooperative games. Annals of Mathematics, 54(2):286–295, 1951.

[36] A. Parekh and R. Gallager. A generalized processor sharing approach to flow control in inte-

grated services networks: the multiple node case. IEEE/ACM Transactions on Networking,

2(2):137–150, 1994.

[37] J. B. Rosen. Existence and uniqueness of equilibrium points for concave n-person games.

Econometrica, 33(3):520–534, 1965.

[38] B. Urgaonkar and P. Shenoy. Sharc: managing CPU and network bandwidth in shared

clusters. IEEE Transactions on Parallel and Distributed Systems, 15(1):2–17, 2004.

[39] VMware. ESX server performance and resource management for CPU-intensive workloads.

Technical report, VMware, 2005.

[40] A. Wolke and G. Meixner. Twospot: A cloud platform for scaling out web applications

dynamically. In E. Di Nitto and R. Yahyapour, editors, Towards a Service-Based Inter-

net, volume 6481 of Lecture Notes in Computer Science, pages 13–24. Springer Berlin /

Heidelberg, 2010.

[41] B. Yolken and N. Bambos. Game based capacity allocation for utility computing envi-

ronments. In Proceedings of the 3rd International Conference on Performance Evaluation

Methodologies and Tools, ValueTools ’08, pages 1–8, ICST, Brussels, Belgium, Belgium,

2008. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications

Engineering).

[42] L. Zhang and D. Ardagna. SLA based profit optimization in autonomic computing systems.

In Proceedings of the 2Nd International Conference on Service Oriented Computing, ICSOC

’04, pages 173–182, New York, NY, USA, 2004. ACM.

[43] Q. Zhang, Q. Zhu, M. Zhani, and R. Boutaba. Dynamic service placement in geograph-

ically distributed clouds. In Distributed Computing Systems (ICDCS), 2012 IEEE 32nd

International Conference on, pages 526–535, 2012.

[44] X. Zhu, D. Young, B. Watson, Z. Wang, J. Rolia, S. Singhal, B. McKee, C. Hyser, D. Gmach,

R. Gardner, T. Christian, and L. Cherkasova. 1000 islands: an integrated approach to

resource management forvirtualized data centers. Cluster Computing, 12(1):45–57, 2009.

31

