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NONSTANDARD ANALYSIS AND THE SUMSET

PHENOMENON IN ARBITRARY AMENABLE GROUPS

MAURO DI NASSO AND MARTINO LUPINI

Abstract. Beiglböck, Bergelson and Fish proved that if subsets A, B of a
countable discrete amenable group G have positive Banach densities α and β
respectively, then the product set AB is piecewise syndetic, i.e. there exists k
such that the union of k-many left translates of AB is thick. Using nonstandard
analysis we give a shorter alternative proof of this result that does not require
G to be countable and moreover yields the explicit bound k ≤ 1/αβ. We
also prove with similar methods that if {Ai}

n

i=1
are finitely many subsets of

G having positive Banach densities αi and G is countable, then there exists
a subset B whose Banach density is at least

∏
n

i=1
αi and such that BB−1 ⊆

⋂
n

i=1
AiA

−1

i
. In particular, the latter set is piecewise Bohr.

Introduction.

Using nonstandard analysis, in 2000 R. Jin proved that the sumset A + B of
two sets of integers is piecewise syndetic whenever both A and B have positive
Banach density ([12]). Afterwards, with ergodic theory, M. Beiglböck, V. Bergelson
and A. Fish generalized Jin’s theorem showing that if two subsets A and B of a
countable amenable group have positive Banach density, then their product set AB
is piecewise syndetic, and in fact piecewise Bohr ([2]). In this paper, by using the
nonstandard characterization of Banach density in amenable groups, we extend that
result to the uncountable case, and we also provide an explicit bound on the number
of left translates of AB that are needed to cover a thick set. Moreover, we extend
some of the properties of Delta-sets A−A proved in [7] for sets of integers, to the
general setting of amenable groups. In particular, applying the pointwise ergodic
theorem for countable amenable groups in the nonstandard setting, we show that
any finite intersection

⋂n
i=1 AiA

−1
i of sets Ai of positive Banach density contains

BB−1 for some set B of positive Banach density and, as a consequence, is piecewise
Bohr.

Let us now introduce some terminology to be used in the paper, as well as some
combinatorial notions that we shall consider. Let G be a group. If A,B ⊆ G, we
denote by A−1 = {a−1 | a ∈ A} the set of inverses of elements of A. A translate of
A is a set of the form xA = {xa | a ∈ A}. More generally, for subsets A,B ⊆ G,
we denote the product set {ab | a ∈ A and b ∈ B} by AB.
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2 MAURO DI NASSO AND MARTINO LUPINI

A set A ⊆ G is k-syndetic if k translates of A suffice to cover G, i.e. if G = FA
for some F ⊆ A such that |F | ≤ k. The set A is thick if the family of its translates
{gA | g ∈ G} has the finite intersection property, i.e.

⋂

x∈H xA 6= ∅ for all finite
H ⊆ G (equivalently, for every finite H there is x ∈ G such that Hx ⊆ A).

Another relevant notion is obtained by combining syndeticity and thickness. A
set A is piecewise k-syndetic if k translates of A suffice to cover a thick set, i.e. if
FA is thick for some F ⊆ A such that |F | ≤ k. (For more on these notions see [3].)

Familiarity will be assumed with the basics of nonstandard analysis, namely with
the notions of hyperextension (or nonstandard extension), internal set, hyperfinite
set (or ∗finite set), the transfer principle, and the properties of overspill and κ-
saturation (recall that for every cardinal κ there exist κ-saturated nonstandard
models). Moreover, in Section 4 we shall also use the Loeb measure. Good references
for the nonstandard notions used in this paper are e.g. the introduction given in
[4] §4.4, and the monograph [9] where a comprehensive treatment of the theory is
given. However, there are several other interesting books on nonstandard analysis
and its applications that the reader may also want to consult (see e.g. [1, 6, 5]).

Let us now fix the “nonstandard” notation we shall adopt here. IfX is a standard
entity, ∗X denotes its hyperextension. A subset A of ∗X is internal if it belongs
to the hyperextension of the power set of X . If ξ, ζ ∈ ∗

R are hyperreal numbers,
we write ξ ≈ ζ when ξ and ζ are infinitely close, i.e. when their distance |ξ − ζ|
is infinitesimal. If ξ ∈ ∗

R is finite, then its standard part st(ξ) is the unique real
number which is infinitely close to ξ. We write ξ . η to mean that st(ξ − η) ≤ 0,
i.e. ξ < η or ξ ≈ η.

We would like to thank Mathias Beiglböck, Neil Hindman and Renling Jin for
many useful conversations, and Samuel Coskey for his comments and suggestions.

1. Amenable groups and Banach density

In this paper we aim at generalizing combinatorial properties of sets of integers
related to their asymptotic density to more general groups. To this purpose, it is
convenient to work in the framework of amenable groups, that are endowed with
a suitable notion of density. Amenable groups admit several equivalent character-
izations (see e.g. [15, 14]). The most convenient definition for our purposes is the
following one, first isolated by Følner [8].

Definition 1.1. A group G is amenable if and only if it satisfies the following

• Følner’s condition: For every finite H ⊂ G and for every ε > 0 there exists
a finite set K which is “(H, ε)-invariant”, i.e. K is nonempty and for every
h ∈ H one has

|hK △K|
|K| < ε.

The Banach density in amenable groups can be defined using the (H, ε)-invariant
sets as the “finite approximations” of G. Using almost invariant sets ensures that
the notion of density so obtained is invariant by left translations.
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Definition 1.2. Let G be an amenable group. The (upper) Banach density d(A)
of a subset A ⊆ G is defined as the least upper bound of the set of real numbers α
such that for every finite H ⊆ G and for every ε > 0 there exists a finite K which

is (H, ε)-invariant and satisfies |A∩K|
|K| ≥ α. Similarly, the lower Banach density

d(A) is the least upper bound of the numbers α such that, for some finite subset H
of G and some ε > 0, every finite subset K of G which is (H, ε)-invariant satisfies
|A∩K|
|K| ≥ α.

It is not difficult to see that if A is piecewise k-syndetic, then d (A) ≥ 1/k, and
if A is k-syndetic then d (A) ≥ 1/k.

We now prove convenient nonstandard characterizations that will be used in the
sequel. The proof of the first part of Proposition 1.3 is essentially contained in
Section 3 of [10] and reported here for convenience of the reader.

Proposition 1.3. A group G is amenable if and only if in every sufficiently satu-
rated nonstandard model one finds a “Følner approximation” of G, i.e. a nonempty
hyperfinite set E ⊆ ∗G such that for all g ∈ G:

|gE △E|
|E| ≈ 0.

Moreover, if G is amenable, for all A ⊆ G one has:

d(A) = max

{

st

( |∗A ∩ E|
|E|

)

∣

∣

∣E Følner approximation of G

}

.

d(A) = min

{

st

( |∗A ∩ E|
|E|

)

∣

∣

∣
E Følner approximation of G

}

.

Proof. Assume first that G is amenable. For g ∈ G and n ∈ N let

Γ(g, n) =

{

K ⊆ G finite nonempty
∣

∣

∣

|gK △K|
|K| <

1

n

}

.

It is readily seen that by Følner’s condition the family of all sets Γ(g, n) has
the finite intersection property. Then, in any nonstandard model that satisfies κ-
saturation with κ > max{|G|,ℵ0}, the hyperextensions ∗Γ(g, n) have a nonempty
intersection, and every E ∈ ⋂{∗Γ(g, n) | g ∈ G,n ∈ N} is a Følner approximation
of G.

Conversely, given H = {g1, . . . , gm} ⊆ G and ε > 0, the existence of a nonempty
finite (H, ε)-invariant set is proved by applying transfer to the following property,
which holds in the nonstandard model: “There exists a nonempty hyperfinite E ⊆
∗G such that |giE △E| < ε |E| for all i ∈ {1, . . . ,m}”.

Suppose now that G is amenable and A ⊆ G. Consider a Følner approximation

E of G and define α = st
(

|∗A∩E|
|E|

)

. If H = {g1, . . . , gn} ⊆ G and ε > 0, applying

transfer to the statement “There exists a nonempty hyperfinite subset E ⊆ ∗G such
that |giE △E| < ε |E| for every i = 1, 2, . . . , n and |∗A ∩ E| > (α − ε) |E|” one
obtains the existence of an (H, ε)-invariant subset K of G such that |A ∩K| >
(α− ε) |K|. This shows that

d (A) ≥ sup

{ |∗A ∩ E|
|E|

∣

∣

∣E Følner approximation of G

}

.
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It remains to show that the sup is a maximum, and it is equal to d (A). Define for
g ∈ G and n ∈ N,

ΛA (g, n) =

{

K ∈ Γ (g, n)
∣

∣

∣

|A ∩K|
|K| > d (A)− 1

n

}

.

It is easily seen that the family of all sets ΛA (g, n) has the finite intersection
property. As before, in any nonstandard model that satisfies κ-saturation with
κ > max{|G|,ℵ0}, the hyperextensions ∗ΛA (g, n) have a nonempty intersection,
and every E ∈ ⋂{∗ΛA (g, n) | g ∈ G,n ∈ N} is a Følner approximation of G such

that st
(

|∗A∩E|
|E|

)

= d (A).

The proof of the nonstandard characterization of the lower Banach density is
similar and is omitted. �

It is often used in the literature the notion of Følner sequence, i.e. a sequence
(Fn)n∈N

of finite subsets of G such that, for all g ∈ G,

lim
n→∞

|gFn △ Fn|
|Fn|

= 0.

We remark that, if the above condition holds, then for every finite H ⊂ G and
for every ε > 0 the sets Fn are (H, ε)-invariant for all sufficiently large n. It follows
that a countable group G is amenable if and only if it admits a Følner sequence.
Moreover, in the countable case the Følner density of a set A ⊆ G is characterized
as follows:

d(A) = sup

{

lim sup
n→∞

|A ∩ Fn|
|Fn|

∣

∣

∣ (Fn)n∈N
a Følner sequence

}

.

It is a well known fact (see for example [2], Remark 1.1), that if (Fn)n∈N
is any

Følner sequence and A ⊆ G, then there is a sequence (gn)n∈N
of elements of G such

that

d(A) = lim sup
n∈N

|A ∩ Fngn|
|Fn|

From this, it immediately follows that, when G = Z, the Banach density as defined
here coincides with the usual notion of Banach density for sets of integers.

For an extensive treatment of Banach density and its generalizations in the
context of semigroups, the reader is referred to [11].

The following notion of density Delta-sets is a generalization of the Delta-sets
A−A = {a− a′ | a, a′ ∈ A} of sets of integers.

Definition 1.4. Let G be an amenable group, and let ε ≥ 0. For A ⊆ G, the
corresponding ε-density Delta-set (or ε-Delta-set for short) is defined as ∆ε(A) =
{g ∈ G | d(A ∩ gA) > ε}.

Observe that ∆ε(A) ⊆ ∆0(A) ⊆ AA−1. We now introduce a notion of embed-
dability between sets of a group. The idea is to have a suitable partial ordering
relation at hand that preserves the finite combinatorial structure of sets.

Definition 1.5. Let A,B ⊆ G. We say that A is finitely embeddable in B, and
write A ⊳ B, if every finite subset of A has a right translate contained in B.
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It is immediate from the definitions that A is thick if and only if G ⊳ A. Finite
embeddability admits the following nonstandard characterization.

Proposition 1.6. Let A,B ⊆ G. Then A ⊳ B if and only if in every sufficiently
saturated nonstandard model one has Aη ⊆ ∗B for some η ∈ ∗G.

Proof. Notice that A ⊳ B if and only if the family {a−1B | a ∈ A} has the finite
intersection property. So, in any nonstandard model that satisfies κ-saturation
with κ > |A|, the intersection

⋂

a∈A a−1∗B is nonempty. If η is an element of
this set, then Aη ⊆ ∗B. Conversely, suppose that Aη ⊆ ∗B for some η ∈ ∗G. If
H = {h1, . . . , hn} is a finite subset of A, one obtains the existence of an element
x ∈ G such that Hx ⊆ B by transfer from the statement: “There exists η ∈ ∗G
such that hiη ∈ ∗B for i = 1, . . . , n ”. This shows that A ⊳ B . �

It is easily verified that, if A ⊳ B, then AA−1 ⊆ BB−1 and ∆ε (A) ⊆ ∆ε (B) for
every ε ≥ 0.

2. Combinatorial properties in a nonstandard setting

In this section we prove combinatorial properties in a nonstandard framework
that will be used as key ingredients in the proofs of our main results. The first
one below can be seen as a form of pigeonhole principle that holds in a hyperfinite
setting.

Lemma 2.1. Let E be a hyperfinite set, and let {Cλ | λ ∈ Λ} be a finite family of
internal subsets of E. Assume that γ, ε are non-negative real numbers such that

• ε < γ2 ;

• st
(

|Cλ|
|E|

)

≥ γ for every λ ∈ Λ ;

• |Λ| > γ−ε
γ2−ε

.

Then there exist distinct λ, µ ∈ Λ such that

st

( |Cλ ∩ Cµ|
|E|

)

> ε.

Proof. Without loss of generality, let us assume that st(|Cλ|/|E|) = γ for every
λ ∈ Λ. Suppose by contradiction that for all distinct λ 6= µ:

st

( |Cλ ∩ Cµ|
|E|

)

≤ ε.

For i ∈ E, set ai =
∑

i∈Λ χλ(i) where χλ : E → {0, 1} denotes the characteristic
function of Cλ. Observe that

∑

i∈E

ai =
∑

λ∈Λ

|Cλ|

and
∑

i∈E

a2i =
∑

λ∈Λ

|Cλ|+
∑

λ6=µ

|Cλ ∩ Cµ| .
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If we set bi = 1, then by the Cauchy-Schwartz inequality,
(

∑

λ∈Λ

|Cλ|
)2

=

(

∑

i∈E

aibi

)2

≤
(

∑

i∈E

a2i

)(

∑

i∈E

b2i

)

= |E|





∑

λ∈Λ

|Cλ|+
∑

λ6=µ

|Cλ ∩ Cµ|



 .

Dividing by |E|2, one gets

|Λ|2 γ2 ≈
(

∑

λ∈Λ

|Cλ|
|E|

)2

≤
∑

λ∈Λ

|Cλ|
|E| +

∑

λ6=µ

|Cλ ∩ Cµ|
|E|

≈ |Λ| γ +
∑

λ6=µ

|Cλ ∩ Cµ|
|E| .

As there are |Λ| (|Λ| − 1) ordered pairs (λ, µ) such that λ 6= µ, we get

ε|Λ|(|Λ| − 1) &
∑

λ6=µ

|Cλ ∩ Cµ|
|E| & |Λ|γ(|Λ|γ − 1).

Dividing by |Λ|, we obtain that |Λ| γ2 ≤ γ + ε (|Λ| − 1), and finally:

|Λ| ≤ γ − ε

γ2 − ε
.

This contradicts our assumptions and concludes the proof. �

Recall that we called Følner approximation of G any nonempty hyperfinite set
E ⊆ ∗G such that for all g ∈ G :

|gE △E|
|E| ≈ 0.

Lemma 2.2. Let E be a Følner approximation of G, and suppose that C is an

internal subset of ∗G such that st
(

|C∩E|
|E|

)

= γ > 0. Let 0 ≤ ε < γ2 and k =
⌊

γ−ε
γ2−ε

⌋

. Define

DE
ε (C) =

{

g ∈ G

∣

∣

∣

∣

st

( |C ∩ gC ∩ E|
|E|

)

> ε

}

.

Then, for every P ⊆ G and every g0 ∈ P there exists F ⊆ P such that g0 ∈ F ,
|F | ≤ k and P ⊆ F · DE

ε (C).

Proof. We define elements gi of P by recursion. Suppose that gi has been defined
for 0 ≤ i < n. If P ⊆ {g0, . . . , gn−1} · DE

ε (C), then set gn = gn−1. Otherwise, pick

gn ∈ P \
(

{g0, . . . , gn−1} · DE
ε (C)

)

.
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We claim that, gk = gk−1, i.e. P ⊆ {g0, . . . , gk−1}·DE
ε (C). Suppose by contradiction

that this is not the case. Then, for every i < j < k, we have

gj /∈ {g0, . . . , gi} · DE
ε (C) .

This implies that g−1
i gj /∈ DE

ε (C) and

ε ≥ st

(
∣

∣C ∩ g−1
i gjC ∩ E

∣

∣

|E|

)

= st

( |giC ∩ gjC ∩ E|
|E|

)

.

By the previous lemma applied to the family {giC∩E | i < k}, there exist i < j < k
such that

|giC ∩ gjC ∩ E|
|E| > ε.

This is a contradiction. �

Lemma 2.3. Let U, V ⊆ ∗G be hyperfinite sets, and let C ⊆ U and D ⊆ V be
internal subsets. Then there exists ζ, ϑ ∈ U such that

(1)
|Dζ ∩C|

|V | ≥ |C|
|U | ·

|D|
|V | −max

d∈D

|dU △ U |
|U | .

(2)
|ϑD ∩ C|

|V | ≥ |C|
|U | ·

|D|
|V | −max

d∈D

|Ud△ U |
|U | .

Proof. Let χC : U → {0, 1} be the characteristic function of C. For d ∈ D, one has

1

|U |
∑

u∈U

χC(du) =
|C ∩ dU |

|U | =
|C| − |C ∩ (U \ dU)|

|U | ≥ |C|
|U | −

|dU △ U |
|U | .

Then,

1

|U |
∑

u∈U

|Du ∩C|
|V | =

1

|U |
∑

u∈U

(

1

|V |
∑

d∈D

χC(du)

)

=
1

|V |
∑

d∈D

(

1

|U |
∑

u∈U

χC(du)

)

≥ 1

|V |
∑

d∈D

( |C|
|U | −

|dU △ U |
|U |

)

≥ |C|
|U | ·

|D|
|V | −max

d∈D
|dU △ U |/|U |.

Thus for some ζ ∈ U ,

|Dζ ∩C|
|V | ≥ |C|

|U | ·
|D|
|V | −max

d∈D

|dU △ U |
|U | .

The second part of the statement is obtained applying the first part to the
opposite group of G (which is amenable as well). �
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Lemma 2.4. Let G be an amenable group. Suppose A0, A1, . . . , An ⊆ G are
subsets with Banach densities d(Ai) ≥ αi. Then in every sufficiently saturated
nonstandard model there exist Følner approximations E,F ⊆ ∗G and elements
ξ1, . . . , ξn, η1, . . . , ηn ∈ ∗G such that

(1)
|∗A0 ∩ (

⋂n
i=1

∗Ai ξi) ∩ E|
|E| &

n
∏

i=0

αi.

(2)
|∗A0 ∩

(
⋂n

i=1 ηi
∗A−1

i

)

∩ F |
|F | &

n
∏

i=0

αi.

Proof. We proceed by induction. Let us start with property (1). The base n = 0 is
given by the nonstandard characterization of Banach density. Now let the subsets
A0, A1, . . . , An+1 ⊆ G be given where d(Ai) ≥ αi. By the inductive hypothesis
there exists a Følner approximation V ⊆ ∗G and elements ξ1, . . . , ξn ∈ ∗G that
satisfy |∗A0 ∩ (

⋂n
i=1

∗Ai ξi) ∩ V |/|V | & ∏n
i=0 αi. We now want to find a Følner

approximation U that witnesses d(An+1) ≥ αn+1 and with the additional feature
of being “almost invariant” with respect to left translates by elements in V . To
this purpose, pick a hyperfinite V ′ ⊇ V ∪ G (notice that this is possible by κ-
saturation with κ > |G|). Consider the following property that directly follows
from the definition of Følner density: “For every k ∈ N and every finite H ⊆ G
there exists a nonempty finite K ⊆ G which is (H, 1/k)-invariant and such that the
relative density |An+1 ∩ K|/|K| > αn+1 − 1/k” . If ν ∈ ∗

N, by transfer we get
a nonempty hyperfinite U ⊆ ∗G that is

(

V ′, 1
ν

)

-invariant (and, in particular, is a
Følner approximation of G) and such that

|∗An+1 ∩ U |
|U | > αn+1 −

1

ν
≈ αn+1.

Now apply (1) of the previous lemma to the internal sets C = ∗An+1 ∩ U ⊆ U and
D = ∗A0 ∩ (

⋂n
i=1

∗Ai ξi) ∩ V ⊆ V , and pick an element ζ ∈ U such that

|Dζ ∩ C|
|V | ≥ |C|

|U | ·
|D|
|V | −max

d∈D

|dU △ U |
|U | ≥ |C|

|U | ·
|D|
|V | −

1

ν
&

n+1
∏

i=0

αi.

This yields the conclusion with E = V . In fact, by letting ξn+1 = ζ−1

|Dζ ∩ C|
|V | ≤ |Dζ ∩ ∗An+1|

|V | =
|D ∩ ∗An+1ξn+1|

|V | =

∣

∣

∣

∗A0 ∩
(

⋂n+1
i=1

∗Ai ξi

)

∩ V
∣

∣

∣

|V | .

As for (2), we proceed in a similar way as above by considering sets of inverses.
Precisely, let V ⊆ ∗G be a Følner approximation of G and η1, . . . , ηn be elements
of ∗G that satisfy

|∗A0 ∩
(
⋂n

i=1 ηi
∗A−1

i

)

∩ V |
|V | &

n
∏

i=0

αi.

Pick a Følner approximation U that witnesses d(An+1) ≥ αn+1 and with the ad-
ditional feature of being “almost invariant” with respect to translates by elements
in the set of inverses V −1, i.e. |∗An+1 ∩ U |/|U | & αn+1 and |xU △ U |/|U | ≈ 0
for all x ∈ V −1. Then apply (2) of the previous lemma to the internal sets
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C = ∗A−1
n+1 ∩ U−1 ⊆ U−1 and D = ∗A0 ∩ (

⋂n
i=1 ηi

∗A−1
i ) ∩ V ⊆ V , and get the

existence of an element ϑ ∈ U−1 such that

|ϑD ∩ C|
|V | ≥ |C|

|U−1| ·
|D|
|V | −max

d∈D

|U−1d△ U−1|
|U−1|

=
|C−1|
|U | · |D|

|V | − max
d∈D−1

|dU △ U |
|U |

&

n+1
∏

k=1

αk.

Since

|ϑD ∩ C|
|V | ≤ |ϑD ∩ ∗A−1

n+1|
|V | =

|D ∩ ϑ−1∗A−1
n+1|

|V | =

∣

∣

∣

∗A0 ∩
(

⋂n+1
i=0 ηi

∗A−1
n+1

)

∩ V
∣

∣

∣

|V | ,

the statement is proved by letting F = V and ηn+1 = ϑ−1. �

3. Intersection properties of Delta-sets and Jin’s theorem

The nonstandard lemmas of the previous section entail a general result about
intersections of density Delta-sets.

Theorem 3.1. Suppose that, for i ≤ n, Ai is a subset of G of positive Banach

density αi. Let 0 ≤ ε < β2 where β =
∏n

i=1 αi, P ⊆ G and g0 ∈ P . If r =
⌊

β−ε
β2−ε

⌋

,

then there exists a finite L ⊆ G such that |L| ≤ r, g0 ∈ L and P ⊆ L·(⋂n
i=1 ∆ε(Ai)).

Proof. By Lemma 2.4 where A0 = G, we can pick a Følner approximation E ⊆ ∗G
and elements ξ1, . . . , ξn ∈ ∗G such that

|(⋂n
i=1

∗Aiξi) ∩ E|
|E| & β.

Define the internal set C =
⋂n

i=1
∗Aiξi and observe that

DE
ε (C) ⊆

n
⋂

i=1

∆ε(
∗Ai).

To see this, notice that if g ∈ DE
ε (C) then for every j = 1, . . . , n:

ε <
|C ∩ gC ∩E|

|E| =
|(⋂n

i=1
∗Aiξi) ∩ g (

⋂n
i=1

∗Aiξi) ∩E|
|E|

≤ |∗Ajξj ∩ g ∗Ajξj ∩E|
|E| =

|∗(Aj ∩ gAj) ∩ Eξ−1
j |

|Eξ−1
j | .

Now apply Lemma 2.2 to C and get a finite L ⊆ P such that |L| ≤ r, g0 ∈ L and

P ⊆ L · DE
ε (C) ⊂ L ·

n
⋂

i=1

∆ε (
∗Ai) . �

By applying Theorem 3.1 where P = G, one immediately obtains the following
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Corollary 3.2. Under the assumptions of Theorem 3.1,
⋂n

i=1 ∆ε(Ai) is r-syndetic
and, as a consequence, its lower Banach density is at least 1/r.

For k ∈ N, denote by

• A(k) = {gk | g ∈ A} the set of k-th powers of elements of A.

• k
√
A = {g ∈ G | gk ∈ A} the set of k-th roots of elements of A.

Corollary 3.3. Under the assumptions of Theorem 3.1, for every k ∈ N the in-
tersection

⋂n
i=1

k

√

∆ε(Ai) is r-syndetic and, as a consequence, its lower Banach
density is at least 1/r.

Proof. Apply Theorem 3.1 with P = G(k) and get the existence of a finite set
L ⊆ G(k) such that |L| ≤ β−ε

β2−ε
and G(k) ⊆ L · (⋂n

i=1 ∆ε(Ai)). Pick H ⊆ G such

that |H | = |L| and H(k) = L. Then for every g ∈ G one has gk = hk ·x for suitable
h ∈ H and x ∈ ⋂n

i=1 ∆ε(Ai). Equivalently, for every g ∈ G there exists h ∈ H such
that (h−1g)k ∈ ⋂n

i=1 ∆ε(Ai), and hence

h−1g ∈
n
⋂

i=1

k

√

∆ε (Ai).

This shows that G = H ·
(

⋂n
i=1

k

√

∆ε(Ai)
)

. �

Next, we prove the existence of an explicit bound in Jin’s theorem that only
depends on the densities of the given sets.

Theorem 3.4. Let G be an amenable group. If X ⊆ G is infinite, w ∈ X and
A,B ⊆ G have positive Banach densities d(A) = α and d(B) = β respectively, then
there exists a finite F ⊂ X such that:

• w ∈ F ;

• |F | ≤ 1
αβ

;

• X ⊳ FAB.

Proof. By Lemma 2.4, we can pick a Følner approximation E ⊆ ∗G and an element
η ∈ ∗G such that the internal set X = ∗A∩η∗B−1∩E has relative density |X |/|E| &
αβ. Then by Lemma 2.2 with ε = 0, there exists a finite F ⊂ G such that
|F | ≤ 1/αβ and X ⊆ F · DE

0 (X). If g ∈ X , there are ξ ∈ F and y ∈ DE
0 (X) such

that g = ξy. Since y ∈ DE
0 (X), ∗A ∩ η∗B−1 ∩ y∗A ∩ yη∗B−1 6= ∅. In particular,

y = abη−1 for some a ∈ ∗A and b ∈ ∗B. Therefore,

g = ξy = ξabη−1

and

gη = ξab ∈ F ∗A∗B = ∗(FAB) .

Since this is true for every g ∈ X ,

Xη ⊂ ∗(FAB) .

Hence, by the nonstandard characterization of finite embeddability,

X ⊳ FAB. �
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Corollary 3.5. Under the hypothesis of Theorem 3.4, AB is piecewise k-syndetic

where k =
⌊

1
αβ

⌋

.

Proof. Set X = G and apply Theorem 3.4. Thus, G ⊳ FAB for some F ⊂ G such

that |F | ≤ 1
αβ

. Henceforth FAB is thick and AB is piecewise
⌊

1
αβ

⌋

-syndetic. �

4. Countable amenable groups

Throughout this section we focus on countable amenable groups and prove finite
embeddability properties.

By [2] (Corollary 5.3), if A ⊆ G has positive Følner density and G is countable,
then AA−1 is piecewise Bohr. Moreover, by [2] (Lemma 5.4), if A,B ⊆ G, A is
piecewise Bohr and A ⊳ B, then B is piecewise Bohr as well. It is a standard result
in ergodic theory (see for example [13]) that any countable discrete amenable group
G has a Følner sequence (Fn)n∈N

for which the pointwise ergodic theorem holds.
This means that, if G acts on a probability space (X,B, µ) by measure preserving
transformations and f ∈ L1 (µ), then there is a G-invariant f̄ ∈ L1 (µ) such that,
for µ-almost all x ∈ X :

lim
n→∞

1

|Fn|
∑

g∈Fn

f (gx) = f̄(x) .

Lemma 4.1. If E is a Følner approximation of G, 0 < γ ≤ 1, and C is an internal

subset of E such that |C|
|E| & γ, then there exists ξ ∈ E such that

d
(

Cξ−1 ∩G
)

≥ γ.

Proof. Pick a Følner sequence (Fn)n∈N
for G that satisfies the pointwise ergodic

theorem. Consider the (separable) σ-algebra B on E generated by the characteristic
function χC of C, the probability space (E,B, µ) where µ is the restriction of the
Loeb measure to B and the measure preserving action of G on (E,B, µ) by left
translations. Since χC belongs to L1 (µ), there is a G-invariant function f̄ ∈ L1 (µ)
such that the sequence





1

|Fn|
∑

g∈Fn

χC (gx)





n∈N

converges to f̄ (x) for µ-a.a. x ∈ E and hence, by the Lebesgue dominated conver-
gence theorem, in L1 (µ). This implies in particular that

∫

f̄dµ =

∫

χCdµ = st

( |C|
|E|

)

= γ.

Thus, the set of x ∈ E such that f̄ (x) ≥ γ is non negligible and, in particular,
there is ξ ∈ X such that f̄ (ξ) ≥ γ and the sequence





1

|Fn|
∑

g∈Fn

χC (gξ)





n∈N
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converges to f̄ (ξ) ≥ γ. Observe now that, for every n ∈ N,

1

|Fn|
∑

g∈Fn

χC (gξ) =
|C ∩ Fnξ|

|Fn|

=

∣

∣Cξ−1 ∩ Fn

∣

∣

|Fn|

=

∣

∣

(

Cξ−1 ∩G
)

∩ Fn

∣

∣

|Fn|
.

From this and the fact (Fn)n∈N
is a Følner sequence for G it follows that

d
(

Cξ−1 ∩G
)

≥ γ. �

Theorem 4.2. Let G be a countable amenable group and suppose that A1, . . . , An ⊆
G have positive Banach densities d(Ai) = αi. Then there exists B ⊆ G such
that d(B) ≥ ∏n

i=1 αi and B ⊳ Ai for every i = 1, . . . , n. As a consequence,

BB−1 ⊆ ⋂n
i=1 AiA

−1
i and ∆ε(B) ⊆ ⋂n

i=1 ∆ε(Ai) for every ε ≥ 0. In particular,
⋂n

i=1 AiA
−1
i is piecewise Bohr.

Proof. By Lemma 2.4 there exists a Følner approximation E ⊆ ∗G and elements
ξ1, . . . , ξn ∈ ∗G such that

|∗A0 ∩
⋂n

i=1
∗Aiξi ∩ E|

|E| &

n
∏

i=0

αi.

By applying 4.1 to E and C = ∗A0 ∩
⋂n

i=1 ξi
∗Ai ∩ E one obtains η ∈ E such that

d
(

Cη−1 ∩G
)

≥
n
∏

i=0

αi.

Define B = Cη−1 ∩G and observe that Bη ⊆ ∗A0 and Bηξ−1
i ⊆ ∗Ai for 1 ≤ i ≤ n.

This implies that B ⊳ Ai for 0 ≤ i ≤ n. �

5. Final remarks and open problems

In a preliminary version of [12], R. Jin asked whether one could estimate the
number k needed to have A + B + [0, k) thick (under the assumption that both
sets A,B ⊆ N have positive Banach density). In the final published version of that
paper, he then pointed out that no such estimate for k exists which depends only
on the densities of A and B. In fact, the following holds.

• Let α, β > 0 be real numbers such that α + β < 1, and let k ∈ N. Then
there exist sets Ak, Bk ⊆ N such that the asymptotic densities d(Ak) > α
and d(Bk) > β but Ak +Bk + [0, k) is not thick.

An example can be constructed as follows.1 Pick natural numbers M,N,L such
that M/L > α , N/L > β, and M/L+N/L+ 1/L < 1. For every k ∈ N, consider

1 This example did not appear in [12], and it is reproduced here with Jin’s permission.
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the following subsets of N:

Ak =
∞
⋃

n=0

[Lnk, Lnk+Mk) and Bk =
∞
⋃

n=0

[Lnk, Lnk +Nk).

Then the following properties are verified in a straightforward manner:

• The asymptotic densities d(Ak) = M/L and d(Bk) = N/L.

• Ak +Bk + [0, k) =
⋃∞

n=0[Lnk, Lnk +Mk +Nk + k).

Since Lkn+Mk+Nk+k < Lkn+Lk = Lk(n+1), it follows that Ak+Bk+[0, k)
is not thick, as it consists of disjoint intervals of length (M +N + 1)k.

However, as remarked by M. Beiglböck, the problem was left open if one replaces
the length k of the interval [0, k) with the cardinality k of an arbitrary finite set.
As shown by our Theorem 3.4, one can in fact give the bound k ≤ 1/αβ. Now, the
question naturally arises as to whether such a bound is optimal.

Next, it is easy to see that if G is abelian and B ⊆ G then d (B) = d
(

B−1
)

.
Thus, it follows from Corollary 3.5 that if A,B ⊆ G are such that d (A) = α and

d (B) = β and G is abelian then both AB and AB−1 are piecewise
⌊

1
αβ

⌋

-syndetic.

It would be interesting to know if the same is true for more general amenable
groups. More precisely: if G is an amenable group and B ⊆ G, then do B and B−1

have the same density? Or at least, is it always the case that B has positive density
if and only if B−1 has positive density? Besides, is the statement of Corollary 3.5
still true where one replaces AB with AB−1?

Finally, all the results of this paper are proved without assumptions on the cardi-
nality of the group, apart from Theorem 4.2, where G is supposed to be countable.
It would be interesting to know if also this result holds for any amenable group,
regardless of its cardinality.
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