
THE SPECTRAL DROP PROBLEM
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Abstract. We consider spectral optimization problems of the form

min
{
λ1(Ω;D) : Ω ⊂ D, |Ω| = 1

}
,

where D is a given subset of the Euclidean space Rd. Here λ1(Ω;D) is the first eigenvalue of the
Laplace operator −∆ with Dirichlet conditions on ∂Ω ∩D and Neumann or Robin conditions
on ∂Ω ∩ ∂D. The equivalent variational formulation

λ1(Ω;D) = min

{∫
Ω

|∇u|2 dx+ k

∫
∂D

u2 dHd−1 : u ∈ H1(D), u = 0 on ∂Ω ∩D, ‖u‖L2(Ω) = 1

}
reminds the classical drop problems, where the first eigenvalue replaces the total variation
functional. We prove an existence result for general shape cost functionals and we show some
qualitative properties of the optimal domains.
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1. Introduction

We fix an open set D ⊂ Rd with a Lipschitz boundary, not necessarily bounded, and a function
f ∈ L2(D); for every domain Ω ⊂ D we define the Sobolev space

H1
0 (Ω;D) =

{
u ∈ H1(D) : u = 0 q.e. on D \ Ω

}
where q.e. means, as usual, up to a set of capacity zero. When D = Rd we use the notation
H1

0 (Ω) := H1
0 (Ω;Rd). We also fix a real number k and we define the energy Ek,f (Ω) by the

variational problem

Ek,f (Ω) = inf

{
1

2

∫
D
|∇u|2 dx+

k

2

∫
∂D

u2 dHd−1 −
∫
D
fu dx : u ∈ H1

0 (Ω;D)

}
. (1.1)

Note that if Ω is an open set with Ω ⊂ D, then the condition u ∈ H1
0 (Ω;D) is equivalent to

require u ∈ H1
0 (Ω). On the contrary, if ∂Ω ∩ ∂D 6= ∅ and if the infimum in (1.1) is attained,

passing to the Euler-Lagrange equation associated to (1.1) we obtain
−∆u = f in Ω,

u = 0 on ∂Ω ∩D,
∂u

∂n
+ ku = 0 on ∂Ω ∩ ∂D.

(1.2)

It is not difficult to see that the infimum in (1.1) is attained whenever k > −k0(Ω), where

k0(Ω) = inf

{∫
D
|∇u|2 dx : u ∈ H1

0 (Ω;D), ‖u‖L2(∂D) = 1

}
.

Our goal is to study the shape optimization problem

min
{
Ek,f (Ω) : Ω ⊂ D, |Ω| ≤ 1

}
, (1.3)

where we have normalized to 1 the measure constraint on the competing domains Ω. Of course,
the set D is assumed to have a measure larger than 1.

In the rest of the paper we consider a number k which is not too negative; more precisely, we
assume that k > −k0 where

k0 = − inf
{
k0(Ω) : Ω ⊂ D, |Ω| ≤ 1

}
.
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If the condition above is violated and k < −k0(Ω) for some Ω, then it is easy to see that
Ek,f (Ω) = −∞, hence the shape optimization problem (1.3) is not well posed. The limit case
k = −k0 is more delicate and the well posedness of (1.3) depends on the geometry of D. A
detailed analysis for the shape functional λ1(Ω) with Robin boundary conditions can be found
in [13].

Replacing Ek,f (Ω) by another shape functional F(Ω) we may consider the more general class
of problems

min
{
F(Ω) : Ω ⊂ D, |Ω| ≤ 1

}
. (1.4)

For an overview on shape optimization problems we refer to [5, 10, 20]. Typical cases of shape
functionals are the following.

Integral functionals. Given a right-hand side f ∈ L2(D), for every Ω ⊂ D we consider the
solution uΩ of the PDE (1.2), extended by zero on D \ Ω. We may then consider the integral
cost

F(Ω) =

∫
D
j
(
x, uΩ(x),∇uΩ(x)

)
dx,

where j is a suitable integrand. For instance, an integration by parts in (1.2) gives that the
energy Ek,f (Ω) is an integral functional, with

j(x, s, z) = −1

2
f(x)s.

Spectral functionals. For every domain Ω ⊂ D we consider the spectrum λ(Ω) of the Laplace
operator −∆ on the Hilbert space H1

0 (Ω;D), with Robin condition ∂u
∂n + ku = 0 on the common

boundary ∂Ω ∩ ∂D. Since the Lebesgue measure of Ω is finite, the operator −∆ has a compact
resolvent and so its spectrum λ(Ω) consists of a sequence of eigenvalues λ(Ω) =

(
λj(Ω)

)
j
. The

spectral cost functionals we may consider are of the form

F(Ω) = Φ
(
λ(Ω)

)
,

for a suitable function Φ : RN → R. For instance, taking Φ(λ) = λj we obtain

F(Ω) = λj(Ω).

For an overview on spectral optimization problems we refer to [9, 12, 14]

The form of the optimization problems (1.3) and (1.4) reminds the so-called drop problems
(see for instance [17, 18, 19, 23] and references therein), where the cost functional F (Ω) involves
the perimeter of Ω relative to D:

F(Ω) = Per(Ω;D) + k

∫
∂D

1Ω dHd−1 +

∫
Ω
f(x) dx.

When D is bounded we give a rather general existence theorem of optimal domains; assuming
that the optimal domains are regular enough, we provide some necessary conditions of optimality
describing the qualitative behaviour of the optimal sets. Another interesting situation occurs
when D = Rd \K where K is the closure of a bounded Lipschitz domain. Also in this case a
rather general existence result holds.

Finally we consider the case ∂D unbounded and we provide some sufficient conditions for the
existence of an optimal domain. We also provide some counterexamples showing that in general
the existence of optimal domains may not occur.

In the paper, for simplicity, we consider the case k = 0; the general case can be obtained by
small modifications in the proofs.
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2. Preliminaries

2.1. Capacity, quasi-open sets and quasi-continuous functions. For an open set D ⊂ Rd,
we denote with H1(D) the Sobolev space, obtained is closure of the space C∞(Rd) with respect
to the norm

‖u‖H1(D) :=

(∫
D
|∇u|2 dx+

∫
D
u2 dx

)1/2

.

For a generic set E ⊂ Rd we define the capacity cap(E) as

cap(E) := min
{∫

Rd

(
|∇u|2 + u2

)
dx : u ∈ H1(Rd), u ≥ 1 in a neighbourhood of E

}
.

We note that, cap(E) ≥ |E| and so, the sets of zero capacity are also of Lebesgue measure zero.
We will say that a property P holds quasi-everywhere, if P hold for every point x, outside a set
of capacity zero.

Definition 2.1. We say that a set Ω ⊂ Rd is quasi-open, if for every ε > 0, there is an open
set ωε such that

cap(ωε) ≤ ε and the set Ω ∪ ωε is open.

We say that a function u : D → R is quasi-continuous, if for every ε > 0, there is an open set
ωε such that

cap(ωε) ≤ ε and the restriction of u on the set D \ ωε is continuous.

It is well-known that a Sobolev function u ∈ H1(D) has a quasi-continuous representative ũ,
which is unique up to a set of zero capacity. Moreover, in [16] it was proved that quasi-every
x0 is a Lebesgue point for u and the quasi-continuous representative ũ of u can be pointwise
characterized as

ũ(x0) = lim
r→0
−
∫
Br(x0)

u(x) dx.

From now on, we will identify a Sobolev function u with its quasi-continuous representative ũ.
By the definition of a quasi-open set and a quasi-continuous function, we note that for every

Sobolev function u ∈ H1(D), the level set {u > 0} is quasi-open. On the other hand, for each
quasi-open set Ω ⊂ Rd, there is a Sobolev function u ∈ H1(Rd) such that Ω = {u > 0}, up to a
set of zero capacity.

We note that if the sequence un ∈ H1(D) converges in H1(D) to a function u ∈ H1(D), then
up to a subsequence un(x) converges to u(x) for quasi-every point x ∈ D. Therefore, for every
set Ω ⊂ D, the family of functions

H1
0 (Ω;D) =

{
u ∈ H1(D) : u = 0 q.e. on D \ Ω

}
,

is a closed linear subspace of H1(D). When D = Rd, we get simply H1
0 (Ω;Rd) = H1

0 (Ω), defined
as the closure of C∞c (Ω) with respect to the norm ‖ · ‖H1(Rd).

2.2. Partial differential equations on quasi-open sets. Let D ⊂ Rd be an open set and
let Ω ⊂ D be a quasi-open set. For a given function f ∈ L2(D), we say that u is a solution of
the partial differential equation (with mixed boundary conditions)

−∆u = f in Ω,
∂u

∂n
= 0 on ∂D, u = 0 on ∂Ω ∩D, (2.1)

if u ∈ H1
0 (Ω;D) and ∫

D
∇u · ∇v dx =

∫
D
fv dx, ∀v ∈ H1

0 (Ω;D).

Remark 2.2. Suppose that the connected open set D and the quasi-open Ω ⊂ D are such that
the inclusion H1

0 (Ω;D) ↪→ L2(D) is compact. Then we have:
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• the first eigenvalue λ1(Ω;D) defined as

λ1(Ω;D) := min
{∫

D
|∇v|2 dx : v ∈ H1

0 (Ω;D),

∫
D
v2 dx = 1

}
,

is finite and strictly positive if Ω 6= D;
• there is a unique minimizer uf ∈ H1

0 (Ω;D) of the functional

Jf (v) =
1

2

∫
D
|∇v|2 dx−

∫
D
vf dx, v ∈ H1

0 (Ω;D).

Writing the Euler-Lagrange equations for uf , we get that it solves (2.1).

We note that the inclusion H1
0 (Ω;D) ↪→ L2(D) is not always compact even if D is smooth and

Ω is bounded. On the other hand it is well known that the compact inclusion H1
0 (Ω;D) ↪→ L2(D)

occurs when:

D is connected, uniformly Lipschitz and |Ω| < |D|. (2.2)

This covers for instance the following situations:

• D is bounded, ∂D is Lipschitz and |Ω| < |D|;
• Rd \D is bounded, ∂D is Lipschitz and |Ω| <∞;
• D is an unbounded convex open set and |Ω| <∞.

Proposition 2.3. Suppose that the open set D ⊂ Rd and the quasi-open Ω ⊂ D satisfy (2.2).
If δ < |D| is such that |Ω| ≤ δ, then there is a constant C > 0, depending on the dimension d,
the constant δ and the box D, such that

(i) the embedding H1
0 (Ω;D) ↪→ L2(D) is compact;

(ii) there is a constant C > 0, depending only on the measure |Ω|, such that(∫
D
|u|2d/(d−2) dx

)(d−2)/d
≤ C

∫
D
|∇u|2 dx ∀u ∈ H1

0 (Ω;D), if d ≥ 3;∫
D
|u|γ dx ≤ C

(∫
D
|u|γ−2 dx

)(∫
D
|∇u|2 dx

)
∀u ∈ H1

0 (Ω;D), ∀γ ≥ 2, if d = 2;

(iii) for the first eigenvalue λ1(Ω;D), in any dimension d ≥ 2, we have

λ1(Ω;D)−1 ≤ C|Ω|2/d.

Proof. The claim (i) is standard and follows by the Lipschitz continuity of ∂D, the claim (ii) and
the fact that |Ω| < +∞. For (ii), we notice that the condition |Ω| < |D| and the connectedness
of D provide the isoperimetric inequality

|Ω|(d−1)/d ≤ CP (Ω;D),

where P (Ω;D) is the relative perimeter of Ω in D and C is a constant depending on D and the
measure of Ω. Now (ii) follows by the inequality(∫

D
ϕd/(d−1) dx

)(d−1)/d

≤ C
∫
D
|∇ϕ| dx, ∀ϕ ∈ C∞(D),

by replacing ϕ by |u|p. The last claim (iii) follows by (ii) and the Hölder inequality. �

Corollary 2.4. Suppose that the open set D ⊂ Rd and the quasi-open Ω ⊂ D satisfy (2.2).
Then for every function f ∈ L2(D) the equation (2.1) has a solution.

The next result is well-known and we report it for the sake of completeness.

Lemma 2.5. Suppose that the open set D ⊂ Rd and the quasi-open Ω ⊂ D satisfy (2.2).
Let f ∈ Lp(Rd), where p ∈ (d/2,+∞], be a non-negative function and uf ∈ H1

0 (Ω;D) be the
minimizer of Jf in H1

0 (Ω;D). If δ < |D| is such that |Ω| ≤ δ, then we have a constant C,
depending on the dimension d, the exponent p, the set D and the measure bound δ, such that

‖uf‖∞ ≤ C‖f‖Lp |Ω|2/d−1/p.
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Proof. We set for simplicity u := uf . For every t ∈ (0, ‖u‖∞) and ε > 0, we consider the test
function

ut,ε = u ∧ t+ (u− t− ε)+.

Since ut,ε ≤ u and Jf (u) ≤ Jf (ut,ε), we get

1

2

∫
D
|∇u|2 dx−

∫
D
fu dx ≤ 1

2

∫
D
|∇ut,ε|2 dx−

∫
D
fut,ε dx,

and after some calculations

1

2

∫
{t<u≤t+ε}

|∇u|2 dx ≤
∫
D
f (u− ut,ε) dx ≤ ε

∫
{u>t}

f dx.

By the co-area formula we have∫
{u=t}

|∇u| dHd−1 ≤ 2

∫
{u>t}

f dx ≤ 2‖f‖Lp |{u > t}|1/p′ .

Setting ϕ(t) = |{u > t}|, for almost every t we have

ϕ′(t) = −
∫
{u=t}

1

|∇u|
dHd−1 ≤ −

(∫
{u=t}

|∇u| dHd−1
)−1

P ({u > t};D)2

≤ −‖f‖−1
Lpϕ(t)−1+1/pCisoϕ(t)2(d−1)/d = −‖f‖−1

LpCisoϕ(t)(d−2)/d+1/p,

where Ciso is the constant from the isoperimetric inequality in D. Setting α = d−2
d + 1

p , we have

that α < 1 and since the solution of the ODE

y′ = −Ayα, y(0) = |Ω|,

is given by

y(t) =
(
|Ω|1−α − (1− α)At

)1/(1−α)
.

Note that φ(t) ≥ 0, for every t ≥ 0, and y(t) ≥ φ(t), if φ(t) > 0. Since y vanishes in a finite
time, there is some tmax such that φ(t) = 0, for every t ≥ tmax. Finally we obtain the estimate

‖u‖∞ ≤ tmax ≤
‖f‖Lp |Ω|2/d−1/p

Ciso (2/d− 1/p)
,

which concludes the proof. �

2.3. Eigenfunctions and eigenvalues of the Laplacian with mixed boundary condi-
tions. In this subsection we suppose that D ⊂ Rd and Ω ⊂ D satisfy the condition (2.2). Thus
the resolvent operator RΩ : L2(D)→ L2(D), associating to each function f ∈ L2(D) the solution
uf of (2.1), is compact and self-adjoint.

Remark 2.6. By the estimate of Lemma 2.5 we have thatRΩ can be extended to a continuous map
RΩ : Lp → L∞. On the other hand the resolvent is also a continuous map RΩ : L2 → L2d/(d−2),
for d > 2, and RΩ : L2 → Lq, for every q > 1, for d = 2. In dimension d ≥ 4, a standard
interpolation argument gives that RΩ can be extended to a continuous operator

RΩ : Lq → L
q
2

p−2
p−q

2d
d−2 ,

for all p > d/2 and q ∈ (2, p). This gives that RΩ is a continuous operator

RΩ : Lq → Lq+
4

d−2 ,

for all q ∈ [2, d/2]. In particular, for any d ≥ 2, there is an entire number nd depending only on
the dimension such that

[RΩ]nd : L2(D)→ L∞(D),

is a continuous operator.
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Since the operator RΩ : L2 → L2 is compact, its spectrum is discrete. We define the spectrum
of Laplacian on Ω, with Neumann condition on ∂D and Dirichlet condition on D ∩ ∂Ω, as the
following sequence of inverse elements of the spectrum of RΩ.

λ1(Ω;D) ≤ λ2(Ω;D) ≤ · · · ≤ λk(Ω;D) ≤ . . .
We note that, for any k ∈ N, the kth eigenvalue of the Laplacian can be variationally charac-
terized as

λk(Ω;D) = min
Sk⊂H1

0 (Ω;D)
max
u∈Sk

∫
D |∇u|

2 dx∫
D u

2 dx
,

where the minimum is taken over all k-dimensional subspaces Sk ⊂ H1
0 (Ω;D). We note that there

is a corresponding sequence of eigenfunctions uk ∈ H1
0 (Ω;D), forming a complete orthonormal

sequence in L2(Ω) and solving the equation

−∆uk = λk(Ω;D)uk in Ω,
∂uk
∂n

= 0 on ∂D, uk = 0 on ∂Ω ∩D.

Proposition 2.7. Suppose that the open set D ⊂ Rd and the quasi-open Ω ⊂ D satisfy (2.2).
Then the eigenfunctions uk ∈ H1

0 (Ω;D) of the Laplace operator, with Dirichlet conditions on
∂Ω∩D and Neumann conditions on ∂D, are bounded in L∞(D) by a constant that depends only
on the dimension d, the eigenvalue λk(Ω;D), the set D and the measure of Ω.

Proof. We note that

RΩ[uk] = λk(Ω;D)−1uk.

By Remark 2.6, we have

Rnd
Ω [uk] = λk(Ω;D)−nduk ∈ L∞(D),

and, since
∫
D u

2
k dx = 1, we have

‖uk‖L∞ ≤ Cλk(Ω;D)nd ,

where the constant C depends on the measure of Ω, d and D. �

2.4. Energy and energy function. Let Ω ⊂ D be as above. We denote with wΩ the solution
of

−∆wΩ = 1 in Ω,
∂wΩ

∂n
= 0 on ∂D, wΩ = 0 on ∂Ω ∩D,

and we will call it energy function on Ω, while the Dirichlet energy of Ω is defined as

E1(Ω;D) := −1

2

∫
D
wΩ dx.

Sometimes we will use the notation RΩ(1) instead of wΩ. The properties of the energy function
in a domain D are analogous to the properties of the energy function obtained solving the PDE
with Dirichlet boundary condition on the whole ∂Ω (see [8]). We summarize these properties in
the following proposition.

Proposition 2.8. For D ⊂ Rd and Ω ⊂ D as above, we have that the energy function wΩ

satisfies the following properties.

(a) wΩ satisfies the bounds∫
D
|∇wΩ|2 dx ≤ 4λ1(Ω;D)−1|Ω| ,

∫
D
w2

Ω dx ≤ 4λ1(Ω;D)−2|Ω|.

(b) wΩ is bounded and

‖wΩ‖L∞ ≤ C(D, |Ω|),
where C(D, |Ω|) is a constant depending only on D and the measure of Ω.

(c) ∆wΩ + 1{wΩ>0} ≥ 0 on D, in sense of distributions.
(d) Every point of D is a Lebesgue point for wΩ.
(e) H1

0 (Ω;D) = H1
0

(
{wΩ > 0};D

)
. In particular, if Ω is a quasi-open set, then Ω = {wΩ > 0}

up to a set of zero capacity.
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Proof. The first claim (a) follows directly from the definition of an energy function. Claim (b)
follows by Lemma 2.5. The proofs of (c), (d) and (e) are contained in [8, Proposition 2.1]. �

Remark 2.9. In particular, by condition (c) of Proposition 2.8 every quasi-open set Ω ⊂ D of
finite measure has a precise representative (up to a set of zero capacity) Ω = {wΩ > 0}.

3. The γ-convergence

In this section we endow the class of admissible domains Ω ⊂ D with a convergence that will
be very useful for our purposes. In the case of full Dirichlet conditions on ∂Ω this issue has been
deeply studied under the name of γ-convergence, and we refer to [5] for all the related details.

In what follows we assume that D ⊂ Rd is a connected open set satisfying (2.2).

Definition 3.1 (γ-convergence). Let Ωn ⊂ D be a sequence of quasi-open sets of finite measure
and suppose that Ωn 6= D. We say that Ωn γ-converges to the quasi-open set Ω, if the sequence
of energy functions wΩn ∈ H1

0 (Ωn;D) converges strongly in L2(D) to the energy function wΩ ∈
H1

0 (Ω;D).

The γ-convergence is a widely studied subject in shape optimization especially in the purely
Dirichlet case D = Rd and for domains Ωn contained in a fixed ball B ⊂ Rd. In this case various
equivalent definitions were given to the γ-convergence:

• the convergence of the energy functions wΩn → wΩ in L2;
• the operator norm convergence of the resolvents RΩn → RΩ in L(L2);
• the Γ-convergence of the functionals FΩn → FΩ in L2.

If the constraint Ωn ⊂ B is dropped, then the above definitions are no more equivalent even for
D = Rd. As we will see below, the definition through the energy functions wΩn is the strongest
one and implies the other two. We will briefly recall the main results in the γ-convergence theory
(for more details we refer to [5, 15, 22]).

Remark 3.2. Suppose that the sequence Ωn ⊂ D γ-converges to Ω and that un ∈ H1(D) is a
sequence such that

|un| ≤ wΩn and ‖un‖H1(D) ≤ 1.

Then un converges strongly in L2(D) to some u ∈ H1(D). This fact simply follows by the local
compactness of the inclusion H1(D) ↪→ L2(D) and the tightness of un, which is due to the upper
bound with a strongly converging sequence.

Remark 3.3. Suppose that Ω ⊂ D is a quasi-open set of finite measure and let u ∈ H1
0 (Ω;D) be

fixed. We denote with Am,Ω(u) ∈ H1
0 (Ω;D) the unique minimizer of the functional

v 7→
∫
D

(
|∇v|2 +m|u− v|2

)
dx,

in H1
0 (Ω;D). Using u to test the minimality of Am,Ω(u) we get

‖∇Am,Ω(u)‖L2 ≤ ‖∇u‖L2 and ‖Am,Ω(u)− u‖L2 ≤ m−1/2‖∇u‖L2 ,

which gives the strong convergence of Am,Ω(u) to u in L2(D) and also in H1(D). The function
Am,Ω(u) satisfies the equation

−∆Am,Ω(u)+mAm,Ω(u) = mu in Ω,
∂Am,Ω(u)

∂n
= 0 on ∂D, Am,Ω(u) = 0 on ∂Ω∩D,

and so, Am,Ω can be extended to a linear operator on L2(D). Moreover, Am,Ω ≤ mRΩ in sense
of operators on L2(D) and thus, there is a number N depending only on the dimension such
that, after applying N times the operator Am,Ω, we get

‖ANm,Ω(u)‖L∞ ≤ C‖u‖L2 ,

where C is a constant depending on m, d, D and |Ω|.

Proposition 3.4. Suppose that Ωn ⊂ D is a sequence of quasi-open sets, of uniformly bounded
measure |Ωn| ≤ C < |D|. Then the following are equivalent:
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(i) the sequence Ωn γ-converges to a quasi-open set Ω ⊂ D;
(ii) the sequence of energy functions wΩn ∈ H1(Ωn;D) converges strongly in H1(D) to the

energy function wΩ ∈ H1(Ω;D);
(iii) for every sequence fn ∈ L2(D), converging weakly in L2 to some f ∈ L2(D), we have that

RΩn(fn) converges strongly in L2(D) to RΩ(f);
(iv) the sequence of operators RΩn ∈ L(L2(D)) converges in the operator norm ‖ · ‖L(L2(D)) to

RΩ ∈ L(L2(D)).

Proof. We first note that (iii)⇔(iv) is standard and holds for a general sequence of compact
operators on a Hilbert space. Thus it is sufficient to prove (i)⇒(ii)⇒(iii)⇒(i).

(i)⇒(ii). Due to the uniform bound of the Lebesgue measure of Ωn, we have a uniform bound
on the norms ‖wΩn‖L∞ and so wΩn converges to wΩ also in L1(D). Since using the equation we
have ∫

D
|∇wΩn |2 dx =

∫
D
wΩn dx→

∫
D
wΩ dx =

∫
D
|∇wΩ|2 dx,

which gives the strong convergence of the energy functions in H1(D).
(ii)⇒(iii). We set for simplicity wn = wΩn , w = wΩ and un = RΩn(fn). We first note

that un converges strongly in L2(D). In fact, by Remark 3.3 and the maximum principle we

get that for fixed m > 0 the sequence AM+1
m,Ωn

(un) is bounded (up to a constant depending on m

and |Ωn|) by wΩn . Thus, by Remark 3.2, it is a Cauchy sequence in L2(D). Choosing m large
enough and observing that ‖un‖H1(D) is bounded we get that un is also a Cauchy sequence in

L2(D), converging strongly to some u ∈ H1(D). We will now prove that u = RΩ(f). Indeed,
for every ϕ ∈ C∞c (D), we have∫

D
unϕdx =

∫
D
∇wn · ∇(unϕ) dx

=

∫
D

(
un∇wn · ∇ϕ− wn∇un · ∇ϕ

)
dx+

∫
D
∇(wnϕ) · ∇un dx

=

∫
D

(
un∇wn · ∇ϕ− wn∇un · ∇ϕ

)
dx+

∫
D
wnϕfn dx.

Passing to the limit as n→∞, we have∫
D
uϕdx =

∫
D

(
u∇w · ∇ϕ− w∇u · ∇ϕ

)
dx+

∫
D
wϕf dx. (3.1)

On the other hand, RΩ(f) also satisfies (3.1) and so, taking v = u−RΩ(f), we have∫
D
vϕ dx =

∫
D

(
v∇w · ∇ϕ− w∇v · ∇ϕ

)
dx, ∀ϕ ∈ C∞(D),

which can be extended for test functions ϕ ∈ H1(Rd). Taking vt := −t∨v∧ t, as a test function,
we get ∫

D
v2
t dx ≤

∫
D

1

2
∇w · ∇(v2

t )− w|∇vt|2 dx ≤
1

2

∫
D
v2
t dx−

∫
D
w|∇vt|2 dx,

where we used that ∆w + 1 ≥ 0 on D. In conclusion, we have

1

2

∫
D
v2
t dx+

∫
D
w|∇vt|2 dx ≤ 0,

which gives vt = 0. Since t > 0 is arbitrary, we obtain u = RΩ(f), which concludes the proof of
the implication (ii)⇒(iii).

(iii)⇒(i). Consider the sequence fn = 1Ωn∪Ω. Since fn is bounded in L2(D), we can suppose
that, up to a subsequence fn converges weakly in L2(D) to some f ∈ L2(D). Moreover, we have
that 0 ≤ f ≤ 1 and f ≥ 1Ω, since fn ≥ 1Ω for every n ≥ 1. Thus, f = 1 on Ω and fn = 1 on Ωn

and so we have that wΩn = RΩn(fn) converges strongly in L2(D) to wΩ = RΩ(f). �

Since the spectrum of compact operators is continuous with respect to the norm convergence,
we have the following result.
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Corollary 3.5. Suppose that Ωn ⊂ D is a sequence of quasi-open sets, of uniformly bounded
measure |Ωn| ≤ C < |D|, which γ-converges to a quasi-open set Ω ⊂ D. Then, for every k ∈ N
we have that the functional λk(·;D) is continuous:

lim
n→∞

λk(Ωn;D) = λk(Ω;D).

3.1. γ-convergence of quasi-open sets and Γ-convergence of the associated function-
als.

Definition 3.6. We say that the sequence of functionals Fn : L2(D)→ [0,+∞] Γ-converges in
L2(D) to the functional F : L2(D)→ [0,+∞], if

i) for every un → u in L2(D) we have

F (u) ≤ lim inf
n

Fn(un);

ii) for every u ∈ L2(D) there exists un → u in L2(Rd) such that

F (u) = lim
n
Fn(un).

To each quasi-open set Ω ⊂ D we associate the functional FΩ : L2(D)→ [0,+∞] defined as

FΩ(u) =


∫
D
|∇u|2 dx if u ∈ H1

0 (Ω;D);

+∞ otherwise.

Proposition 3.7. Suppose that Ωn ⊂ D, for n ∈ N, and Ω ⊂ D are quasi-open sets of uniformly
bounded measure |Ωn| ≤ C < |D|. Then FΩn Γ-converges in L2(D) to FΩ, if and only if, RΩn

converges strongly in L2(D) to RΩ.

Proof. Suppose first that RΩn converges strongly in L2(D) to RΩ. Let un ∈ H1
0 (Ωn) be a

sequence of uniformly bounded H1(D) norm converging in L2(D) to u ∈ H1(D). Due to the
identification Am,Ω = RΩ(1 + mRΩ)−1, we have that Am,Ωn also converges strongly to Am,Ω.
Thus, we have

‖Am,Ωn(un)−Am,Ω(u)‖L2 ≤ ‖Am,Ωn(un)−Am,Ωn(u)‖L2 + ‖Am,Ωn(u)−Am,Ω(u)‖L2

≤ ‖RΩn‖L(L2(D))‖un − u‖L2 + ‖Am,Ωn(u)−Am,Ω(u)‖L2 ,

which for fixed m > 0 gives the convergence of Am,Ωn(un) to Am,Ω(u). Now since ‖Am,Ωn(un)−
un‖L2 ≤ m−1/2‖un‖H1(D), passing to the limit as n → ∞, we get ‖Am,Ω(u) − u‖L2 ≤ m−1/2C,

which gives that u ∈ H1
0 (Ω;D).

On the other hand, let u ∈ H1
0 (Ω;D). Then we have that Am,Ω(u) → u in H1(D), as

m → ∞. By the strong convergence of the resolvents we have Am,Ωn(u) → Am,Ω(u) in L2(D)
for every fixed m and n → ∞. Using the equations for Am,Ωn(u) and Am,Ω we have also
that ‖Am,Ωn(u)‖H1(D) → ‖Am,Ω(u)‖H1(D). Thus, it is sufficient to extract a diagonal sequence

Amn,Ωn(u) converging to u in H1(D).
Suppose now that FΩn Γ-converges in L2(D) to FΩ and let f ∈ L2(D) be a given function.

Setting un = RΩn(f), we get that un is bounded in H1(D) and so it converges in L2
loc to a

function u ∈ L2
loc(D). Moreover, using the equation for un we have∫

D
|∇((1− φ)un)|2 dx =

∫
D
|∇φ|2u2

n dx+

∫
D
un(1− φ)2f dx, ∀φ ∈ C0,1

c (Rd).

Now choosing φ to be 1 in BR, 0 in Bc
2R and harmonic in B2R \BR, one has that∫

Bc
2R

u2
n dx ≤ λ1(Ωn;D)−1

∫
D
|∇((1−φ)un)|2 dx ≤ λ1(Ωn;D)−1

(Cd
R2
‖un‖2L2 +‖un‖L2‖f1Bc

R
‖L2

)
,

which gives that un converges to u ∈ H1(D) strongly in L2(D). By the Γ-convergence of the
functionals we have that u ∈ H1

0 (Ω;D) and so it remains to prove that u = RΩ(f). Indeed, for
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every v ∈ H1
0 (Ω;D) there is a sequence vn ∈ H1

0 (Ωn;D) such that

1

2

∫
D
|∇v|2 dx−

∫
D
vf dx = lim

n→∞

{1

2

∫
D
|∇vn|2 dx−

∫
D
vnf dx

}
≥ lim inf

n→∞

{1

2

∫
D
|∇un|2 dx−

∫
D
unf dx

}
≥ lim inf

n→∞

{1

2

∫
D
|∇u|2 dx−

∫
D
uf dx

}
,

where we used the minimality of un in the first inequality. �

Proposition 3.8. Suppose that Ω ⊂ D and Ωn ⊂ D, for n ∈ N, are quasi-open sets, all
contained in a quasi-open set of finite measure Ω0 ⊂ D with |Ω0| < |D|. Then the following are
equivalent:

(i) Ωn γ-converges to Ω;
(ii) the sequence of resolvents RΩn ∈ L(L2(D)) converges in the operator norm to RΩ ∈
L(L2(D));

(iii) the sequence of resolvents RΩn ∈ L(L2(D)) converges strongly in L2(D) to RΩ ∈ L(L2(D));
(iv) the sequence of functionals FΩn Γ-converges in L2(D) to FΩ.

Proof. We already have that (i)⇔(ii)⇒(iii)⇔(iv). Thus it is sufficient to check that (iv)⇒(i).
Indeed, let wn = wΩn be the sequence of energy functions of Ωn. By the uniform bound on
|Ωn| we have that ‖wn‖H1(D) ≤ C and, by the compact inclusion H1

0 (Ω0;D) ↪→ L2(D) we can

suppose that wn converges in L2(D) to some w ∈ H1
0 (Ω0;D). By the Γ-convergence of FΩn we

have that w ∈ H1
0 (Ω;D) and so it remains to prove that w = wΩ. Indeed, for every v ∈ H1

0 (Ω;D)
there is a sequence vn ∈ H1

0 (Ωn;D) such that

1

2

∫
D
|∇v|2 dx−

∫
D
v dx = lim

n→∞

{1

2

∫
D
|∇vn|2 dx−

∫
D
vn dx

}
≥ lim inf

n→∞

{1

2

∫
D
|∇wn|2 dx−

∫
D
wn dx

}
≥ lim inf

n→∞

{1

2

∫
D
|∇w|2 dx−

∫
D
w dx

}
,

which concludes the proof. �

Remark 3.9. We note that without the equiboundedness assumption Ωn ⊂ Ω0, the implication
(iii)⇒(ii) of Proposition 3.8 may fail to be true. Take for instance D = Rd and Ωn = xn + B1

with |xn| → +∞. It is easy to see that RΩn converges strongly in L2(Rd) to zero, while

‖RΩn‖L(L2(Rd);L2(Rd)) =
1

λ1(B1)
.

3.2. The weak-γ-convergence.

Definition 3.10 (weak-γ-convergence). Let Ωn ⊂ D be a sequence of quasi-open sets of finite
measure such that |Ωn| < |D|. We say that Ωn weak-γ-converges to the quasi-open set Ω, if
the sequence of energy functions wΩn ∈ H1

0 (Ωn;D) converges strongly in L2(D) to a function
w ∈ H1(D) and Ω = {w > 0} quasi-everywhere.

By definition and the maximum principle Ω = {wΩ > 0}, we have that a γ-converging
sequence Ωn to Ω is also weak-γ-converging to Ω. The converse is not true since an additional
term may appear in the equation for the limit function w (for a precise examples we refer to the
book [5]). Nevertheless, one can obtain a sequence of quasi-open sets γ-converging to Ω simply
by enlarging each of the sets Ωn. More precisely, the following proposition holds.

Proposition 3.11. Let Ωn ⊂ D be a sequence of quasi-open sets weak-γ-converging to a quasi-

open set Ω ⊂ D. Then there is a sequence Ω̃n ⊂ D such that Ωn ⊂ Ω̃n and Ω̃n γ-converges to Ω.
Moreover, if Ω0 ⊂ D is a fixed quasi-open set such that Ωn ⊂ Ω0, for n ≥ 1, then the sequence

Ω̃n can be chosen such that Ω̃n ⊂ Ω0.
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In the case of full Dirichlet boundary conditions and D bounded, the proof of Proposition
3.11 can be found in [5], [9] and [11]; the same proof can be repeated, step by step, to our more
general setting.

We conclude this section with the following semi-continuity result, which can be found, for
example, in [9] and [11].

Proposition 3.12. Suppose that the sequence of quasi-open sets Ωn ⊂ D weak-γ-converges to
Ω. Then we have:

|Ω| ≤ lim inf
n→∞

|Ωn| and λk(Ω;D) ≤ lim inf
n→∞

λk(Ωn;D), ∀k ∈ N.

4. The spectral drop in a bounded domain

In this section we consider the case when the box D is bounded. We obtain that in this case
the optimal spectral drop exists for a very large class of shape cost functionals. More precisely,
the following result holds.

Theorem 4.1. Let D ⊂ Rd satisfy (2.2). Suppose that the shape cost functional F on the
quasi-open sets of D is such that:

1) F is γ lower semi-continuous, that is

F(Ω) ≤ lim inf
n
F(Ωn) whenever Ωn →γ Ω;

2) F is monotone decreasing with respect to the set inclusion, that is

F(Ω1) ≤ F(Ω2) whenever Ω2 ⊂ Ω1.

Then the shape optimization problem

min
{
F(Ω) : Ω ⊂ Ω0, |Ω| = 1

}
, (4.1)

admits at least a solution.

Proof. Suppose that Ωn is a minimizing sequence for (4.1). Up to a subsequence, we may assume
that Ωn weak-γ-converges to a quasi-open set Ω ⊂ D. By Proposition 3.11, there are quasi open

sets Ω̃n ⊂ D such that the sequence Ω̃n γ-converges to Ω and Ωn ⊂ Ω̃n. Then we have

F(Ω) ≤ lim inf
n→∞

F(Ω̃n) ≤ lim inf
n→∞

F(Ωn),

and, on the other hand, by Proposition 3.12, we have

|Ω| ≤ lim inf
n→∞

|Ωn|,

which concludes the proof since F is decreasing. �

Corollary 4.2. Suppose that F : Rp → R is a lower-semi continuous function, increasing in
each variable. Then the shape optimization problem

min
{
F
(
λk1(Ω;D), . . . , λkp(Ω;D)

)
: Ω ⊂ D, |Ω| = 1

}
,

has a solution.

Remark 4.3. We notice that, considering the shape cost functional F(Ω) = λ1(Ω;D) in (4.1), an
optimal domain Ω must touch the boundary of D. Precisely, if we suppose that D is smooth, then
the measure Hd−1

(
∂Ω∩∂D

)
> 0. Indeed, suppose that this is not the case, i.e. Hd−1

(
∂Ω∩∂D

)
=

0. Thus the trace of every function u ∈ H1
0 (Ω;D) ⊂ H1(D) on the boundary ∂D is zero and so,

since D is smooth, we have that H1
0 (Ω;D) ⊂ H1

0 (D), which in turn gives H1
0 (Ω;D) = H1

0 (Ω).
Let now u ∈ H1

0 (Ω) be the first normalized eigenfunction on Ω. Then a classical argument
(see [22, Chapter 6]) gives that:

• the free boundary ∂Ω ∩D is smooth and analytic (see [2]);
• there is a constant α > 0 such that

|∇u|2 = α on ∂Ω ∩D;
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• u is Lipschitz continuous on Rd and Ω = {u > 0}. In particular, there is a constant
C > 0 such that

u(x) ≤ C dist(x, ∂Ω), for every x ∈ Ω. (4.2)

Up to translation of Ω in D, we can assume that there is a point x0 ∈ ∂D ∩ ∂Ω. Let ν be
the external normal to ∂D in x0 and let Ωε := (εν + Ω) ∩D. Setting uε(x) = u(−eν + x) and
applying (4.2), we get

λ1(Ωε;D) ≤
∫

Ωε
|∇uε|2 dx∫

Ωε
u2
ε dx

≤
∫

Ω |∇u|
2 dx

1−
∫

Ω∩(−εν+Dc) u
2 dx

≤ λ1(Ω)

1− C2ε2|(εν + Ω) ∩Dc|
. (4.3)

Now since |(εν + Ω) ∩Dc| → 0 as ε → 0, for small enough ε we can find a smooth vector field

Vε ∈ C∞c (D;Rd) such that the set Ω̃ε := (Id+ Vε)(Ωε) satisfies

|Ω̃ε| = |Ω| = 1 and λ1(Ω̃ε;D) ≤ λ1(Ωε;D)− α

2
|(εν + Ω) ∩Dc|.

Together with (4.3) this implies that for ε small enough λ1(Ω̃ε;D) < λ1(Ω), which is a contra-
diction with the optimality of Ω.

Remark 4.4. If we assume that D is smooth, then the boundary of an optimal domain Ω for
(4.1) intersects ∂D orthogonally. Indeed, by a smooth change of variables we may assume that
∂D is flat around the intersection point x0 ∈ ∂D ∩ ∂Ω. We localize the problem in a small ball

Br(x0), in which we consider Ω̃ to be the union of Ω ∩Br and its reflection with respect to ∂D
as in Figure 1. Analogously we define ũ ∈ H1(Br(x0)) as the eigenfunction u on Ω∩Br(x0) and

its reflection on the rest of Ω̃. Thus ũ is a solution of the free boundary problem

min
{
J(v) : v ∈ H1(Br(x0)), v = ũ on ∂Br(x0), |{v > 0}| = |{ũ > 0}|

}
,

where the functional J : H1(Br(x0))→ R is defined as

J(v) :=

1
2

∫
Br(x0) |∇v|

2 dx+
∫

Ω\Br(x0) |∇u|
2 dx

1
2

∫
Br(x0) v

2 dx+
∫

Ω\Br(x0) u
2 dx

.

Now by the same argument as in [2] the free boundary ∂{ũ > 0} ∩ Br(x0) = ∂Ω̃ ∩ Br(x0) is

smooth and so, by the symmetry of Ω̃ we get that ∂Ω̃ is orthogonal to ∂D.

D

x0

Br(x )0Ω

Ω
~

u~

Figure 1. The construction of the set Ω̃ which is a solution of a free boundary
problem in a neighbourhood of x0 ∈ ∂Ω ∩ ∂D.

5. The spectral drop in unbounded domain

In this section we discuss the existence of a solution to the shape optimization problem

min
{
λ1(Ω;D) : Ω ⊂ D, Ω quasi-open, |Ω| = 1

}
, (5.1)

in an unbounded domain D ⊂ Rd. The existence may fail since it might be convenient for a
drop Ω ⊂ D to escape at infinity as in the situation described in the following proposition.
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rB

{u>t}

{u>t}

Ω

~

D
H

Figure 2. A generic set Ω in the complementary of a (strictly) convex set (on
the left) and a half-ball (on the right).

Proposition 5.1 (Spectral drop in the complementary of a convex domain). Let D ⊂ R2 be an
open set whose complementary Dc is an unbounded closed strictly convex set. Then denoting by
H the half-space {(x, y) ∈ R2 : y > 0} and by B+ the half-ball B√

2/π
∩H, we have

inf
{
λ1(Ω;D) : Ω ⊂ D, Ω quasi-open, |Ω| = 1

}
= λ1(B+;H),

and the infimum above is not attained and so the problem (5.1) does not have a solution.

Proof. Let Ω ⊂ D be a given quasi-open set of unit measure. We will first show that

λ1(B+;H) < λ1(Ω;D).

In order to do that consider the first normalized eigenfunction u on Ω solving

−∆u = λ1(Ω;D)u in Ω,
∂u

∂ν
= 0 on ∂D, u = 0 on ∂Ω ∩D.

Consider the rearrangement ũ ∈ H1
0 (B+;H) of u (see Figure 2), defined through the equality

{ũ > t} = Bρ(t) ∩H, where ρ(t) is such that |Bρ(t)| = 2|{u > t}|.
Then ũ is such that |∇ũ| = const on Bρ(t), for every t > 0. Moreover, we have the isoperimetric

inequality
P (Bρ(t);H) < P ({u > t};D), ∀t > 0.

Thus, setting f(t) = |{u > t}| a standard co-area formula argument (see Example 5.3) gives

λ1(Ω;D) =

∫
D
|∇u|2 dx ≥

∫ +∞

0

(
|f ′(t)|−1H1

(
{u = t} ∩D

)2)
dt

>

∫ +∞

0

(
|f ′(t)|−1H1

(
{ũ = t} ∩H

)2)
dt

=

∫
H
|∇ũ|2 dx ≥ λ1(B+;H).

Now it is sufficient to notice that choosing a sequence xn ∈ ∂D such that |xn| → +∞ one has
that

distH

((
Br ∩ (−xn +D)

)c
, Bc

+

)
→ 0,

where distH denotes the Hausdorff distance between closed sets. By [5, Propostion 7.2.1] we
have that

λ1(Br(xn) ∩D;D)→ λ1(B+;H),

which proves the non-existence of optimal spectral drops in D. �

We start our analysis of the spectral drop in an unbounded domain with three examples when
optimal sets do exist. Namely, we consider the case when the domain D ⊂ R2 is either a half
space, an angular sector or a strip.
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Ω

Ω
~

D

U

DB

Figure 3. A generic set Ω with its reflection Ω̃, on the left, and the optimal set
B ∩D, on the right.

{u>t}

Ω

D D

{u>t}

Dr

~

0

Figure 4. A generic set Ω in the sector D, on the left, and the optimal set Dr0 ,
on the right.

Example 5.2 (Spectral drop in a half-space). Let D ⊂ R2 be the half-plane

D =
{

(x, y) ∈ R2 : y > 0
}
.

Then the solution of (5.1) is given by the half ball D ∩B√2π. Indeed, for any Ω ⊂ D, we have

λ1(Ω;D) = λ1

(
Ω ∪ Ω̃ ∪ (∂Ω ∩ ∂D)

)
,

where Ω̃ is the reflection of Ω

Ω̃ =
{

(x, y) ∈ R2 : (x,−y) ∈ Ω
}
.

By the Faber-Krahn inequality we have that the optimal set of (5.1) is a half-ball centered on
∂D (see Figure 3).

Example 5.3 (Spectral drop in an angular sector). Suppose now that D ⊂ R2 is a sector

D =
{

(r cos θ, r sin θ) ∈ R2 : r > 0, θ ∈ (−α, α)
}
,

where α ∈ (0, π/2) is a given angle. We now prove that the unique solution of (5.1) is given by

Dr0 =
{

(r cos θ, r sin θ) ∈ R2 : r0 > r > 0, θ ∈ (−α, α)
}
,

where r0 = α−1/2. Indeed, let Ω ⊂ D be a quasi-open set of unit measure and let u be the first
eigenfunction on Ω. We considered the symmetrized function ũ ∈ H1

0 (Dr0 ;D) (see Figure 4),
defined by

ũ(r, θ) = max
{
t : |{u > t}| ≤ αr2

}
.

We now notice that
∫
D ũ

2 dx =
∫
D u

2 dx = 1 and
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λ1(Ω;D) =

∫
D
|∇u|2 dx =

∫ +∞

0

(∫
{u=t}

|∇u| dH1
)
dt

≥
∫ +∞

0

((∫
{u=t}

|∇u|−1 dH1
)−1
H1
(
{u = t} ∩D

)2)
dt

=

∫ +∞

0

(
|f ′(t)|−1H1

(
{u = t} ∩D

)2)
dt

≥
∫ +∞

0

(
|f ′(t)|−1H1

(
{ũ = t} ∩D

)2)
dt

=

∫ +∞

0

((∫
{ũ=t}

|∇ũ|−1 dH1
)−1
H1
(
{ũ = t} ∩D

)2)
dt

=

∫ +∞

0

(∫
{ũ=t}

|∇ũ| dH1
)
dt

=

∫
D
|∇ũ|2 dx ≥ λ1(Dr0 ;D),

where f(t) = |{u > t}| = |{ũ > t}| and we used that |∇ũ| = const on {ũ = t} and that for every

set Ω ⊂ D the isoperimetric inequality H1(D ∩ ∂Dr) ≤ H1(D ∩ ∂Ω) holds for r =
√
|Ω|/α.

In the following example we note that the qualitative behaviour of the spectral drop may
change as the measure of the drop changes.

Example 5.4 (Spectral drop in a strip). Up to a coordinate change we may suppose that the
strip is of the form D = R× (0, 1). We consider for c > 0 the problem

min
{
λ1(Ω;D) : Ω ⊂ D quasi-open, |Ω| = c

}
. (5.2)

We will prove that for c small enough the optimal set for (5.4) is a half-ball, while for c large
the optimal set is a rectangle (0, c)× (0, 1).

• Let c ≤ 2/π. We first notice that if |Ω| ≤ 2/π, then the isoperimetric inequality

P (Ω;D)2 ≥ 2π|Ω|,
holds with equality achieved when Ω is a half-ball centered on ∂D. Thus, arguing
as in Example (5.3) we get that the solution of (5.2) is any half ball Br((0, y)) with
r = πc/2 ≤ 1 and y ∈ R.
• Let c ≥ 2

√
2π. We will prove that in this case the solution of (5.2) is the rectangle

Ωc = (0, c)× (0, 1). Consider an open set Ω ⊂ D, of measure |Ω| = c, such that

l(t) := H1({y = t} ∩ Ω) > 0, ∀t ∈ (a, b).

We will show that λ1(Ω;D) ≥ λ1(Ωc;D). Setting u ∈ H1
0 (Ω;D) to be the first normalized

eigenfunction on Ω, we have

h(t) :=

(∫ 1

0
u2(x, t) dx

)1/2

> 0, ∀t ∈ (0, 1), and

∫ 1

0
h(t)2 dt = 1.

Taking the derivative in t we get

|h′(t)| = 1

h(t)

∣∣∣∣∫ 1

0
uy(x, t)u(x, t) dx

∣∣∣∣ ≤ (∫ 1

0
uy(x, t)

2 dx

)1/2

.

Now, using the decomposition |∇u|2 = u2
x + u2

y, we obtain

λ1(Ω;D) =

∫
Ω |∇u(x, y)|2 dx dy∫

Ω u
2(x, y) dx dy

≥
∫ 1

0

(
|h′(t)|2 +

∫
u2
x(x, t) dx

)
dt∫ 1

0 h
2(t) dt

≥

∫ 1
0

(
|h′(t)|2 + π2h(t)2

l(t)2

)
dt∫ 1

0 h
2(t) dt

,
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where the last inequality is due to the one-dimensional Faber-Krahn inequality∫
u2
x(x, t) dx∫
u2(x, t) dx

≥ λ1({y = t} ∩ Ω) ≥ π2

l(t)2
.

Now we have

λ1(Ω;D) ≥min

{∫ 1

0

(
|h′(t)|2 +

π2h(t)2

l(t)2

)
dt

: h ∈ H1(0, 1), ‖h‖L2 = 1, l ≥ 0, ‖l‖L1 = c

}
.

(5.3)

Minimizing the right-hand side of (5.3) first in l, we get

λ1(Ω;D) ≥ min
{∫ 1

0
|h′(t)|2 dt+

π2

c2

(∫ 1

0
h(t)2/3 dt

)3

: h ∈ H1(a, b), ‖h‖L2 = 1
}
.

Choosing t0 ∈ (0, 1) such that h(t0) =

∫ 1

0
h2(t) dt = 1, we get

h2(t)− 1 = h2(t)− h2(t0) ≤ 2

∫ 1

0
|h′(s)|h(s) ds ≤ 2

(∫ 1

0
|h′(s)|2 ds

)1/2

.

Taking the square of the both sides and integrating for t ∈ (0, 1) we obtain the inequality∫ 1

0
h4(t) dt ≤ 1 + 4

∫ 1

0
|h′(t)|2 dt,

with equality achieved for h ≡ 1. Thus we obtain

λ1(Ω;D) ≥ −1

4
+ min

{1

4

∫ 1

0
h(t)4 dt+

π2

c2

(∫ 1

0
h(t)2/3 dt

)3

: ‖h‖L2 = 1
}
. (5.4)

Now by the Young inequality ap/p+ bq/q ≥ ab with

1

p
=

1

1 + 4π
2

c2

and
1

q
=

4π
2

c2

1 + 4π
2

c2

,

we obtain

1

4

∫ 1

0
h(t)4 dt+

π2

c2

(∫ 1

0
h(t)2/3 dt

)3

=
1 + 4π

2

c2

4

(
1

p

∫ 1

0
h(t)4 dt+

1

q

(∫ 1

0
h(t)2/3 dt

)3
)

≥ ‖h4/p‖Lp‖h2/q‖Lq/3 ≥ ‖h(4/p+2/q)r‖Lr ,

where
1

r
=

1

p
+

3

q
and the equality holds when h ≡ 1. Since c ≥ 2

√
2π, we have

2 ≤
4 + 8π

2

c2

1 + 12π
2

c2

= r

(
4

p
+

2

q

)
,

and so, by the Hölder inequality we have ‖h(4/p+2/q)r‖Lr ≥ 1 with equality for h ≡ 1.
Substituting in (5.4) we get

λ1(Ω;D) ≥ π2

c2
= λ1(Ωc;D).

Proposition 5.1 suggests that non-existence occurs when the spectral drop follows the bound-
ary ∂D escaping at infinity. There are two particular cases of domains D, for which the above
situation can be avoided:

• the case of an external domain D ⊂ Rd, i.e. a domain whose complementary Dc is
bounded;
• the case of an unbounded convex set D ⊂ R2 in which a drop escaping at infinity would

have less contact with the boundary ∂D, which becomes flat at infinity.
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We treat these two cases in separate subsections. In the case of an external domain we are able
to prove an existence result for a large class of spectral functionals F(Ω), while in the case of a
convex set we focus on the first eigenvalue λ1(Ω;D).

5.1. Spectral drop in an external domain. In this subsection we prove the existence of
optimal sets for general spectral functionals F(Ω) in a domain D ⊂ Rd, whose complementary
Dc is a bounded set. The lack of the compact inclusion H1(D) ↪→ L2(D) adds significant
difficulties to the existence argument since one has to study the qualitative behaviour of the
minimizing sequences. Even in the simplest case D = Rd, in which the Neumann boundary ∂D
vanishes, the question was solved only recently by Bucur [3] and Mazzoleni-Pratelli [21]. There
are basically three different methods to deal with the lack of compactness:

• The first approach is based on a concentration-compactness argument for a minimizing
sequence Ωn of quasi-open sets in D, as the one proved in [4]. The compactness situation
leads straightforwardly to existence. The vanishing case never occurs because this would
give λ1(Ωn) → +∞. The most delicate case is the dichotomy when each set of the
sequence is a union of two disjoint (and distant) quasi-open sets. At this point one
notices that for spectral functionals one can run an induction argument on the number
of eigenvalues that appear in the functional and their order. A crucial element of the
proof is showing that the optimal sets remain bounded, thus in the case of dichotomy one
can substitute the two distant quasi-open sets with optimal ones without overlapping.
This approach was used in [3] in Rd, in [6] in the case of an internal geometric obstacle
and in [7] in the case of Schrödinger potentials.
• The second approach is to use the compactness of the inclusion H1(D) ∩ H1

0 (BR) ↪→
L2(D∩BR), for a ball BR ⊂ Rd large enough, hence to prove the existence of an optimal
domain among all quasi-open sets contained in BR. Then prove that there is a uniform
bound on the diameter of the optimal sets. This approach was used in [21].
• The last approach consists in taking a minimizing sequence and modifying each of the

domains, obtaining another minimizing sequence of uniformly bounded sets. One can
choose a well behaving minimizing sequence by considering an auxiliary shape optimiza-
tion problem in each of the quasi-open sets of the original minimizing sequence and then
prove that the optimal sets have uniformly bounded diameter. This is the method that
was used in [22] in Rd and the one we will use below in the case of general external
domain D.

As we saw above, the boundedness of the optimal sets is a fundamental step of the existence
proof. For this, we will need the following notion of a shape subsolution.

Definition 5.5. Let F be a functional on the family of quasi-open sets in D. We say that
Ω ⊂ D is a shape subsolution (or just subsolution) for F if it satisfies

F(Ω) ≤ F(ω), for every quasi-open set ω ⊂ Ω. (5.5)

We say that Ω is a local subsolution if (5.5) holds for quasi-open sets ω ⊂ Ω such that Ω \ ω is
contained in a ball of radius less than some fixed ε > 0.

Lemma 5.6. Suppose that the quasi-open set Ω ⊂ D is a subsolution for the functional F =
F
(
λ1(Ω;D), . . . , λk(Ω;D)

)
+ Λ|Ω|, where F : Rk → R is a locally Lipschitz continuous function.

Then Ω is a local subsolution for the functional G(Ω) = E1(Ω;D) + Λ′|Ω|, where the constants
Λ′ and ε depend on D, F , Λ, λk1(Ω;D), . . . , λkp(Ω;D) and |Ω|.

Proof. Let ω ⊂ Ω be a quasi-open set. By [3, Lemma 3] or [22, Lemma 3.7.7], we have the
estimate

λk(Ω;D)−1 − λk(ω;D)−1 ≤ C
(
E1(ω;D)− E1(Ω;D)

)
, (5.6)
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where C is a constant depending on the sum
∑k

i=1 ‖ui‖∞. By the sub-optimality of Ω and the
estimate (5.6) we have

Λ|Ω \ ω| ≤ F
(
λ1(ω;D), . . . , λk(ω;D)

)
− F

(
λ1(Ω;D), . . . , λk(Ω;D)

)
≤ L

k∑
i=1

(
λi(ω;D)− λi(Ω;D)

)
= L

k∑
i=1

λi(ω;D)λi(Ω;D)
(
λi(Ω;D)−1 − λi(ω;D)−1

)
≤ LC

(
E1(ω;D)− E1(Ω;D)

) k∑
i=1

λi(ω;D)λi(Ω;D),

where L is the Lipschitz constant of F and C is the constant from (5.6). �

The following lemma is classical and a variant was first proved by Alt and Caffarelli in [1],
for a precise statement we refer to [3] and [8].

Lemma 5.7. Suppose that the quasi-open set Ω ⊂ D is a local subsolution for the functional
G(Ω) = E1(Ω;D) + Λ|Ω|. Then there are constants r0 > 0 and c > 0, depending on Λ and ε,
such that the following implication holds(

−
∫
Br(x0)

wΩ dx ≤ cr
)
⇒

(
wΩ = 0 in Br/4(x0)

)
,

for every x0 ∈ D and 0 < r ≤ r0 such that Br(x0) ⊂ D.

The following Lemma was proved in [8] in the case D = Rd.

Lemma 5.8. Suppose that the quasi-open set Ω ⊂ D is a local subsolution for the functional

G(Ω) = E1(Ω;D) + Λ|Ω|.

Then Ω is a bounded set. Moreover, for r > 0 small enough the set

Ωr := Ω ∩
{
x ∈ D : dist(x, ∂D) > 2r

}
,

can be covered by Nr balls of radius r, where the number of balls Nr depends on ε, Λ and D.

Proof. We construct a sequence (xn)n≥1 as follows: choose x1 ∈ Ωr; given x1, . . . , xn1 , we choose

xn ∈ Ωr \
(⋃n−1

i=1 B2r(xi)
)

. We notice that, by construction wΩ(xn) > 0 and that the balls

Br(xi) are pairwise disjoint for i = 1, . . . , n. Thus, by Lemma 5.7, we have that∫
D
wΩ dx ≤

n∑
i=1

∫
Br(xi)

wΩ dx ≤ ncωdrd+1,

and so, if N is the largest integer such that

N ≤ 1

cωdrd+1

∫
D
wΩ dx,

the sequence xn can have at most N elements. �

We are now in position to prove our main existence result in an external domain D ⊂ Rd.

Theorem 5.9. Assume that D is an external domain, that is an open set satisfying (2.2) with
bounded complementary Dc, and that the function F : Rk → R is increasing and Lipschitz
continuous. Then the shape optimization problem

min
{
F
(
λ1(Ω;D), . . . , λk(Ω;D)

)
+ Λ|Ω| : Ω quasi-open, Ω ⊂ D

}
, (5.7)

has a solution. Moreover, every solution of (5.7) is a bounded set.
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Proof. Let Ωn be a minimizing sequence for (5.7). Since each of the quasi-open sets Ωn has finite
measure, we have that weak-γ-convergence is compact in Ωn and so, the shape optimization
problem

min
{
F
(
λ1(Ω;D), . . . , λk(Ω;D)

)
+ Λ|Ω| : Ω quasi-open, Ω ⊂ Ωn

}
,

has at least one solution Ω̃n. Since

F
(
λ1(Ω̃n;D), . . . , λk(Ω̃n;D)

)
+ Λ|Ω̃n| ≤ F

(
λ1(Ωn;D), . . . , λk(Ωn;D)

)
+ Λ|Ωn|,

we have that the sequence Ω̃n is also minimizing. Moreover, each of the sets Ω̃n is a subsolution
for F and so, a local subsolution for G(Ω) = E1(Ω;D) + Λ′|Ω|. By Lemma 5.8, we can cover the

set Ω̃n \ (Dc+B1) by a finite number of balls of radius, which does not depend on n. Setting An
to be the open set obtained as a union of these balls, we can translate the parts of Ω̃n contained

in the different connected components of An obtaining a new set, which we still denote by Ω̃n

and which has the same measure and spectrum. Moreover, we now have that Ω̃n ⊂ BR, for
some R > 0 large enough. Again, by the compactness of the weak-γ-convergence in BR, we have

that up to a subsequence Ω̃n weak-γ-converges to a set Ω̃ ⊂ D ∩BR. By the semi-continuity of
λk(·;D) and the Lebesgue measure (Proposition 3.12), we have

F
(
λ1(Ω̃;D), . . . , λk(Ω̃;D)

)
+ Λ|Ω̃| ≤ lim inf

n→∞

{
F
(
λ1(Ω̃n;D), . . . , λk(Ω̃n;D)

)
+ Λ|Ω̃n|

}
,

which proves that Ω̃ is a solution of (5.7). �

Remark 5.10. By arguments similar to the ones used in Remarks 4.3 and 4.4 we obtain that the
optimal domain Ω∗ for the functional F(Ω) = λ1(Ω;D) satisfies the following properties:

• the free boundary D ∩ ∂Ω∗ is smooth;
• Ω∗ must touch the boundary ∂D;
• if D is smooth, then the boundary of Ω∗ intersects ∂D orthogonally.

5.2. A spectral drop in unbounded convex plane domains. In this subsection we consider
the case when D is an unbounded convex domain in R2. We note that the unbounded convex
sets in R2 can be reduced to the following types:

• a strip D = (a, b)× R;
• an epigraph of a convex function ϕ : R→ R;
• an epigraph of a convex function ϕ : (a, b)→ R.

In order to prove the existence of an optimal set we argue as in the case of external domains
and we consider the following penalized version of the shape optimization problem:

min
{
λ1(Ω;D) + Λ|Ω| : Ω ⊂ D, Ω quasi-open

}
. (5.8)

In what follows we will concentrate our attention to the third case when the convex domain
is an epigraph of a convex function defined on the entire line R.

Since we are in two dimensions the uniform bound on the minimizing sequence is easier to
achieve through an estimate on the perimeter P (Ω;D). The following result was proved in [3].

Lemma 5.11. Suppose that the quasi-open set Ω ⊂ D is a subsolution for the functional F(Ω) =
λ1(Ω) + Λ|Ω|. Then Ω has finite perimeter and

P (Ω;D) ≤ Λ−1/2λ1(Ω;D)|Ω|1/2.

Theorem 5.12. Let ϕ : R → R be a convex function and let D = {(x, y) ∈ R2 : y > ϕ(x)}.
Then there exists a solution of the problem (5.8). Moreover, every solution Ω of (5.1) is a
bounded open set of finite perimeter whose boundary is locally a graph of an analytic function,
intersecting the boundary ∂D orthogonally.

Proof. Let Ωn ⊂ D be a minimizing sequence for (5.8). For every Ωn we consider a solution Ω̃n

of the problem

min
{
λ1(Ω;D) + Λ|Ω| : Ω ⊂ Ωn, Ω quasi-open

}
.
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We first notice that Ω̃n is also a minimizing sequence for (5.8). Since each of the sets Ω̃n is a
subsolution for the functional F(Ω) = λ1(Ω) + Λ|Ω| we have that the bound

P (Ω̃n;D) ≤ Λ−1/2λ1(Ω̃n;D)|Ω̃n|1/2,

holds or every n ∈ N. Thus, there is a universal bound on the diameter diam(Ω̃n) ≤ R < +∞,

for all n ∈ N. Thus, for every Ω̃n, there is a ball BR(xn) such that Ω̃n ⊂ BR(xn). We now
consider, for every n ∈ N, a solution Ω∗n of the problem

min
{
λ1(Ω;D) + Λ|Ω| : Ω ⊂ BR(xn) ∩D, Ω quasi-open

}
.

Notice that Ω∗n is still a minimizing sequence for (5.8) and has uniformly bounded perimeter and

diameter. If the sequence xn is bounded, then Ω̃n are all contained in a large ball BR∗ , which
by the compactness of the weak-γ-convergence and the lower semi-continuity of the functional,
gives the existence of an optimal set.

Suppose, by absurd, that (up to a subsequence) we have that |xn| → +∞. We notice that up
to translating the balls, which are entirely contained in D and enlarging the fixed radius R, we
can suppose that xn ∈ ∂D, for every n ∈ N. Now since the boundary of an unbounded convex
set is getting flat at infinity, we have that there is a sequence of half-spaces Hn ⊂ R2 such that
Hn ∩BR(xn) ⊂ D ∩BR(xn) for all n ∈ N, and

distH
(
BR(xn) ∩ ∂Hn, BR(xn) ∩ ∂D

)
−−−→
n→∞

0,

where distH is the Hausdorff distance between compact sets in R2.
Let now un ∈ H1

0 (Ω∗n;D) be the first normalized eigenfunction on Ω∗n with mixed boundary
conditions

−∆un = λ1(Ω∗n;D)un in Ω∗n,
∂un
∂ν

= 0 on ∂D, un = 0 on ∂Ω∗n ∩D.

Consider the quasi-open set ω∗n = Ω∗n ∩Hn. Then we have

λ1(ω∗n;Hn) ≤
∫
Hn
|∇un|2 dx∫
Hn

u2
n dx

≤ λ1(Ω∗n;D)

1− ‖un‖2∞|D \Hn|
≤ λ1(Ω∗n;D)

1− C|D \Hn|
,

where the last inequality is due to the uniform bound on the infinity norm of the eigenfunctions
proved in Proposition 2.7.

Let now H = {(x, y) : y > 0}, Brn be the ball of measure |ω∗n| centered at the origin and
r = limn→∞ rn. Then we have

λ1(Br ∩H;H) + Λ|Br ∩H| = lim
n→∞

{
λ1(Brn ∩H;H) + Λ|Brn ∩H|

}
≤ lim inf

n→∞

{
λ1(ω∗n;Hn) + Λ|ω∗n|

}
≤ lim inf

n→∞

{
λ1(Ω∗n;D) + Λ|Ω∗n|

}
.

In order to prove that the minimizing sequence Ω∗n cannot escape at infinity, it is sufficient to
show that

λ1(Bρ ∩D;D) + Λ|Bρ ∩D| ≤ λ1(Br ∩H;H) + Λ|Br ∩H|,
where we assume that 0 ∈ ∂D is a point where ∂D is not flat and choose ρ > r such that
|Bρ ∩D| = |Br ∩H|. We consider the first normalized eigenfunction u ∈ H1

0 (Bρ ∩H;H) on the
half-ball

−∆u = λ1(Br ∩H;H)u in Br ∩H,
∂u

∂ν
= 0 on ∂H, u = 0 on ∂Br ∩H,

and we consider the rearrangement ũ ∈ H1
0 (Bρ ∩D;D) of u (see Figure 5) defined as:

{ũ > t} = Bρ(t) ∩D, where ρ(t) > 0 is such that |Bρ(t) ∩D| = |{u > t}|.
We notice that ũ is constant on each circle ∂Bρ(t) ∩D and so, |∇ũ| = const on ∂Bρ(t) ∩D, for

every ρ(t). Moreover, since ∂D is not flat in 0, we have the isoperimetric inequality

H1
(
∂Bρ ∩D

)
< H1

(
∂Br ∩H

)
,
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rB
Bρ

{u>t}

H

~{u>t}

D

Figure 5. A half-ball obtained as limit of a minimizing sequence escaping at
infinity (on the right) and a competitor with circular level sets (on the left).

for every ρ and r such that |Bρ ∩D| = |Br ∩H|. Thus, taking f(t) = |{u > t}| we repeat the
argument from Example 5.3 obtaining

λ1(Br ∩H;H) =

∫
H
|∇u|2 dx =

∫ +∞

0

(
|f ′(t)|−1H1

(
{u = t} ∩H

)2)
dt

>

∫ +∞

0

(
|f ′(t)|−1H1

(
{ũ = t} ∩D

)2)
dt

=

∫
D
|∇ũ|2 dx ≥ λ1(Bρ ∩D;D),

which concludes the existence part. The regularity of the free boundary of the optimal sets
follows by the result from [2] and the orthogonality to ∂D can be obtained as in Remark 4.4. �
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