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Abstract

Associative classification models are based on two different data mining

paradigms, namely pattern classification and association rule mining. These

models are very popular for building highly accurate classifiers and have been

employed in a number of real world applications.

During the last years, several studies and different algorithms have been

proposed to integrate associative classification models with the fuzzy set

theory, leading to the so called fuzzy associative classifiers.

In this paper, we propose a novel fuzzy associative classification approach

based on a fuzzy frequent pattern mining algorithm. Fuzzy items are gener-

ated by first discretizing the input variables and building strong fuzzy parti-

tions for each variable. Then, fuzzy associative classification rules are mined

by using the fuzzy frequent pattern mining algorithm. Finally, a set of highly

accurate classification rules is generated after a pruning stage.
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We tested our approach on seventeen real-world datasets and compared

the achieved results with the ones obtained by using both a non-fuzzy asso-

ciative classifier, namely CMAR, and a well-known fuzzy classifier, namely

FARC-HD, based on fuzzy association rules. Using non-parametric statistical

tests, we show that our approach outperforms CMAR and achieves accuracies

similar to FARC-HD.

Keywords: Fuzzy association rule-based classifiers, Fuzzy FP-Growth,

Fuzzy associative classifier, Fuzzy association rules.

1. Introduction

Pattern classification and association rule mining are two of the most

studied data mining paradigms [1]. Pattern classification deals with assigning

a class label to an object described by a set of features. The classification

task is carried out by using a specific model, namely the classifier, previously

built by using a set of training examples. Association rule mining is the

task of discovering correlation or other relationships among items in large

database [2].

During the last years, association rule mining has become a very popular

method to build highly accurate classification models. Such method is able

to mine a set of high quality classification rules from huge amounts of data

and to achieve a considerable performance in terms of classification accuracy.

Associative classification, that is, classification based on association rules, has

been extensively studied in the literature [3, 4, 5, 6, 7] and has been recently

exploited in a number of real world applications such as detection phishing

activities in websites [8], classification of XML documents [9], text analysis
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[10] and classification of medical diseases [11, 12].

The hybridization of the two data mining paradigms can be summarized

in the following steps which characterize the generation and the use of an

associative classifier. First, a set of classification association rules (CARs) is

mined from the training set. Second, a rule pruning step discards redundant

or noisy information contained in the rule set and selects a subset of high

quality CARs. The selected CARs are used to predict the class labels when

the model is used for classifying unlabeled patterns.

Association rule mining is crucial to the success of the associative classi-

fication models. This mining process is generally performed in three steps.

First, frequent itemsets are extracted from the training set. An itemset is

frequent when its occurrence in the training set is higher than a prefixed

threshold. Then, rules are mined from the frequent itemsets. Finally, rules

are pruned by, for instance, considering their confidence and/or redundancy.

The identification of fast and efficient algorithms for association rule mining

still represents a challenge for the researchers [13, 14, 15, 16].

As stated in [17], even though learning based on association rule min-

ing ensures high accuracy in pattern classification and generates rule-based

models which are often “interpretable” by the user, this model suffers from

some main weaknesses. First, when the number of training data objects is

huge, the complexity of the learning process grows exponentially in terms of

both time and memory. Second, association rule mining algorithms deal with

binary or categorical itemsets. On the other hand, real data objects are often

described by numerical continuous features. Thus, appropriate discretization

algorithms have to be applied to transform continuous feature domains into
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a set of items.

In the literature a number of associative classification approaches, such

as CBA [18], LB [19] and PCAR [14] extract itemsets and then mine CARS

exploiting the well-known Apriori algorithm [20]. This algorithm uses a ”bot-

tom up” approach, where candidate itemsets are generated by extending fre-

quent itemsets one item at a time (a step known as candidate generation),

and are tested against the overall dataset for evaluating if they are frequent.

The algorithm terminates when no further successful frequent extensions are

possible. In many cases the Apriori candidate generate-and-test algorithm

significantly reduces the size of candidate sets, leading to a good performance

gain. However, the Apriori algorithm can suffer from two nontrivial costs

[21]: it may still need to generate a huge number of candidate itemsets and

to repeatedly scan the overall dataset for verifying whether they are frequent.

Since datasets are often very large, scanning the dataset is very expensive,

in particular when the dataset cannot be stored in the main memory.

An interesting approach, which mines the complete set of frequent item-

sets without generating all the possible candidate itemsets has been pro-

posed in [22]. The approach is called frequent pattern growth, or simply

FP-Growth, and adopts a divide-and-conquer strategy. First, it compresses

the dataset representing frequent items into a frequent pattern tree, or FP-

tree, which retains the itemset association information. It then divides the

compressed dataset into a set of conditional datasets (a special kind of pro-

jected datasets), each associated with a frequent item or a pattern fragment.

For each pattern fragment, only its associated conditional dataset needs to be

examined. Independently of the number of frequent items, FP-Growth scans
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the overall dataset only twice. On the contrary, Apriori can need several

scans of the overall dataset. In [23] the authors have proposed an associative

classifier, namely CMAR, just based on the FP-Growth algorithm. Similar

to CMAR, we will adopt the FP-Growth algorithm with some modifications

for dealing with fuzzy sets.

As regards the issue of managing continuous input variables, associative

classification approaches adopt discretization algorithms for extracting a set

of items and therefore allowing the rule mining algorithms to work properly.

The discretization is accomplished by assigning each value to a bin. The

data ranges (bin boundaries) and the number of bins are determined by the

discretization algorithm. Bin boundaries are typically crisp. In the last years,

however, a number of associative classification approaches have used fuzzy

boundaries, thus generating fuzzy association rules [17, 24, 25, 26, 27]. Fuzzy

boundaries allow modeling more accurately the real transitions between bins.

As an example, in [24], authors introduce a fuzzy associative classifier

based on Apriori to mine all fuzzy CARs: notions of support, confidence,

redundancy and rule conflict have been extended to the fuzzy context for se-

lecting only the best CARs to build the classifier. Similarly, in [17], authors

propose an associative classification model which generates fuzzy CARs by

means of a fuzzy version of Apriori. Different methods for generating the ini-

tial fuzzy partitions and for classifying the patterns have been experimented.

Recent works, such as [25, 26], exploit the Apriori algorithm for mining

fuzzy CARs. The Fuzzy Association Rule-based Classification model for High

Dimensional datasets (FARC-HD), proposed in [25], is a fuzzy associative

classification approach consisting of three steps. First, all possible fuzzy
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association rules are mined by applying the Apriori algorithm, limiting the

cardinality of the itemsets, so as to generate fuzzy rules with a low number

of conditions. Then, a pattern weighting scheme is employed to reduce the

number of candidate rules, pre-selecting the most interesting. Finally, a

single objective genetic algorithm is applied to select a compact set of fuzzy

association rules and to tune the membership functions.

In [26], the authors introduce a fuzzy version of the well-known CBA al-

gorithm [18] and discuss an example of how associative classification models

can be used for building recommenders. Finally, in [27], authors propose

a fuzzy CAR mining method, which exploits the Fuzzy C-Means clustering

algorithm [28] and a multiple support Apriori algorithm [29]. In particu-

lar, the Fuzzy C-Means is used to generate the fuzzy partitions of the input

attributes and the multiple support Apriori is employed for extracting the

fuzzy CARs. The multiple support Apriori allows specifying multiple mini-

mum supports for each item instead of using a single minimum support value

for the overall database. The multiple support Apriori permits solving the

rare item dilemma [29].

In this paper, we propose a new fuzzy association rule-based classification

scheme. The proposed method mines fuzzy CARs by using a fuzzy version of

the well-known FP-Growth algorithm. Even though some fuzzy versions of

FP-Growth have been proposed in the literature [30, 31], to the best of our

knowledge, our method represents the first attempt of using such algorithm

for deriving fuzzy CARs. In particular, our method integrates a preliminary

discretization step of the continuous attributes for creating fuzzy partitions.

Then, a fuzzy version of the FP-Growth algorithm is used for mining a set
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of candidate CARs. Finally, a pruning method is applied for selecting a

subset of high quality rules. These rules compose the rule base of a classical

fuzzy rule-based classifier (FRBC) that can be used for classifying unlabeled

patterns.

We compare the results achieved by the proposed approach on seven-

teen datasets with the ones achieved by CMAR. By using non-parametric

statistical tests, we show that our approach outperforms CMAR in terms

of accuracy. Further, we compare the proposed fuzzy associative classifier

with FARC-HD. We show that our approach is statistically equivalent to

FARC-HD, although it is more scalable.

This paper is organized as follows. Section 2 provides a basic description

of the FRBCs and their inference models, and introduces some notations

for the CARs. Section 3 describes each phase of the proposed approach

and includes the details of the fuzzy FP-Growth. Section 4 presents the

experimental setup and discusses the results that are obtained on seventeen

real-world datasets. Finally, in Section 5, we draw some final conclusions.

2. Fuzzy Rule-based Classifiers

In this section, we first describe the structure of FRBCs and the inference

model adopted for classifying patterns. Then, we introduce some notations

for fuzzy association rules for classification.

2.1. Fuzzy Rule-based Classifiers

Pattern classification consists of assigning a class Ck from a predefined set

C = {C1, . . . , CK} of classes to an unlabeled pattern. We consider a pattern

as an F -dimensional point in a feature space <F . Let X = {X1, . . . , XF} be
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the set of input variables and Uf , f = 1, . . . , F , be the universe of discourse

of the f th variable. Let Pf = {Af,1, . . . , Af,Tf
} be a fuzzy partition of Tf

fuzzy sets on variable Xf . The data base (DB) of an FRBC is the set of

parameters which describe the partitions Pf of each input variable. The rule

base (RB) contains a set of M rules usually expressed as:

Rm : IF X1 is A1,jm,1 AND . . .AND XF is AF,jm,F

THEN Y is Cjm with RWm (1)

where Y is the classifier output, Cjm is the class label associated with the mth

rule, jm,f ∈ [1, Tf ], f = 1, ..., F , identifies the index of the fuzzy set (among

the Tf linguistic terms of partition Pf ), which has been selected for Xf in

rule Rm. RWm is the rule weight, i.e., a certainty degree of the classification

in the class Cjm for a pattern belonging to the fuzzy subspace delimited by

the antecedent of rule Rm.

Let (xn, yn) be the nth input-output pair, with xn = [xn,1 . . . , xn,F ] ∈ <F

and yn ∈ C. The strength of activation (matching degree of the rule with the

input) of the rule Rm is calculated as:

wm(xn) =
F∏

f=1

Af,jm,f
(xn,f ), (2)

where Af,jm,f
(x) is the membership function (MF) associated with the fuzzy

set Af,jm,f
.

The association degree hm(xn) with the class Cjm is calculated as

hm(xn) = wm(xn) ·RWm (3)
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Different definitions have been proposed for the rule weight RWm [32, 33].

As discussed in [34], the rule weight of each fuzzy rule Rm can improve the

performance of FRBCs. In this paper, we adopt the fuzzy confidence value,

or certainty factor (CF), defined as follows:

RWm = CFm =

∑
xn∈Cjm

wm(xn)∑N
n=1wm(xn)

(4)

where N is the number of input-output pairs contained in the training set T .

An FRBC is also characterized by its reasoning method, which uses the

information from the RB to determine the class label for a specific input

pattern. Two different approaches are often adopted in the literature:

1. The maximum matching : an input pattern is classified into the class

corresponding to the rule with the maximum association degree calcu-

lated for the pattern.

2. The weighed vote: an input pattern is classified into the class corre-

sponding to the maximum total strength of vote. In particular, for a

new pattern x̂, the total strength of vote for each class is computed as

follows:

VCk
(x̂) =

∑
Rm∈RB;Cjm=Ck

hm(x̂) (5)

where Ck = {C1, . . . , CK}. With this method, each fuzzy rule gives a

vote for its consequent class. If no fuzzy rule matches the pattern x̂,

we classify x̂ as unknown.
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2.2. Fuzzy Association Rules for Classification

Association rules are rules in the form Z → Y , where Z and Y are

set of items. These rules describe relations among items in a dataset [21].

Association rules have been widely employed in the market basket analysis.

Here, items identify products and the rules describe dependencies among

the different products bought by customers [2]. Such relations can be used

for decisions about marketing activities as promotional pricing or product

placements.

In the associative classification context, the single item is defined as the

couple If,j = (Xf , vf,j), where vf,j is one of discrete values that the variable

Xf , f = 1, ..., F , can assume. A generic classification association rule CARm

is expressed as:

CARm : Antm → Cjm (6)

where Antm is a conjunction of items, and Cjm is the class label selected

for the rule among the set C = {C1, . . . , CK} of possible classes. For each

variable Xf , just one item is typically considered in Antm. Antecedent Antm

can be represented more familiarly as

Antm : X1 is v1,jm,1 . . . AND . . . XF is vF,jm,F
(7)

where vf,jm,f
is the value used for variable Xf in rule CARm.

Most of the association rule analysis techniques are focused on binary or

discrete attributes. However, in the framework of pattern classification, input

variables can be also continuous. For continuous variables, a discretization
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process is used to generate a finite set of Qf atomic values Vf = vf,1, . . . , vf,Qf

associated with the specific variable Xf . In this context, fuzzy set theory can

offer a very suitable tool for approaching the discretization problem, ensuring

a high interpretability of the rules, thanks to the use of linguistic terms, and

avoiding unnatural boundaries in the partitioning of the attribute domain

[25].

In the fuzzy associative classification context, given a set of attributes

X = {X1, . . . , XF} and a fuzzy partition Pf defined for each attribute Xf ,

the single item is defined as the couple If,j = (Xf , Af,j), where Af,j is one

of the fuzzy values defined in the partition Pf of variable Xf , f = 1, ..., F .

A generic fuzzy classification association rule (FCAR) for classification is

expressed as:

FCARm : FAntm → Cjm (8)

where Cjm is the class label selected for the rule among the set C = {C1, . . . , CK}

of possible classes and FAntm is a conjunction of items. The antecedent

FAntm can be represented more familiarly as

FAntm : X1 is A1,jm,1 . . . AND . . . XF is AF,jm,F
(9)

where Af,jm,f
is the fuzzy value used for variable Xf in rule FCARm.

In the association rule analysis, support and confidence are the most

common measures to determine the strength of an association rule.

Support and confidence can be expressed for a fuzzy classification associ-

ation rule FCARm as follows:

fuzzySupp(FAntm → Cjm) =

∑
xn∈Cjm

wm(xn)

N
(10)
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fuzzyConf(FAntm → Cjm) =

∑
xn∈Cjm

wm(xn)∑
xn∈T wAntm(xn)

(11)

where T is the training set, N is the number of objects in T , wm(xn) is the

matching degree of rule FCARm and wFAntm(xn) is the matching degree of

all the rules which have the antecedent equal to FAntm.

3. The Proposed Approach

In this section, we present our Associative Classifier based on a Fuzzy

Frequent Pattern (AC-FFP) mining algorithm. AC-FFP consists of the fol-

lowing three phases:

1. Discretization: a fuzzy partition is defined on each linguistic variable

by using the multi-interval discretization approach based on entropy

proposed by Fayyad and Irani in [35];

2. FCAR Mining : a fuzzy frequent pattern mining algorithm, which is

an extension of the well known FP-Growth, is exploited to extract

frequent fuzzy classification rules with confidence higher than a pre-

fixed threshold;

3. Pruning : rule pruning based on redundancy and training set coverage

is applied to generate the final RB.

At the end of the three phases, we obtain an FRBC which can be used

for the classification task of unlabeled patterns.

In the following, we introduce in detail all the mentioned phases.

3.1. Discretization

The discretization of continous features is a critical aspect in the genera-

tion of association rule classifiers. In the last years, several different heuristic
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methods have been proposed [35, 36, 37, 38]. In this paper, we use the

method proposed by Fayyad and Irani in [35]. This supervised method ex-

ploits the class information entropy of candidate partitions to select the bin

boundaries for discretization.

Let Tf,0 = [x1,f , ..., xN,f ]T the projection of the training set T along vari-

able Xf and bf,r a bin boundary for the same variable. Let Tf,1 and Tf,2 be

the subsets of points of the set Tf,0 which lie in the two bins identified by bf,r.

The class information entropy of the discretization induced by bf,r, denoted

as E(Xf , bf,r;Tf,0) is given by

E(Xf , bf,r;Tf,0) =
|Tf,1|
|Tf,0|

· Ent(Tf,1) +
|Tf,2|
|Tf,0|

· Ent(Tf,2) (12)

where || denotes the cardinality and Ent() is the entropy calculated for a set

of points [35]. The boundary bf,min which minimizes the class information

entropy over all possible partition boundaries of Tf,0 is selected as a binary

discretization boundary. The method is then applied recursively to both the

partitions induced by bf,min until the following stopping criterion based on

the Minimal Description Length Principle is achieved. Recursive partitioning

stops iff

Gain(Xf , bf,min;Tf,0) <
log2(|Tf,0| − 1)

|Tf,0|
+

∆(Xf , bf,min;Tf,0)

|Tf,0|
(13)

where

Gain(Xf , bf,min;Tf,0) = Ent(Tf,0)− E(Xf , bf,min;Tf,0), (14)

∆(Xf , bf,min;Tf,0) = log2(3
k0−2)−[k0 · Ent(Tf,0)− k1 · Ent(Tf,1)− k2 · Ent(Tf,2)]

(15)

and ki is the number of class labels represented in the set Tf,i.
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The method outputs, for each variable, a set of bin boundaries. Let

Uf = [xf,l, xf,u] be the universe of variableXf . Let {bf,1, . . . , bf,Qf
}, with ∀r ∈

[1, . . . , Qf−1], bf,r < bf,r+1, be the set of bin boundaries, where bf,1 = xf,l and

bf,Qf
= xf,u. Then, the method identifies the set {[bf,1, bf,2] , . . . ,

[
bf,Qf−1, bf,Qf

]
}

of contiguous intervals, which partition the universe of variable Xf .

To transform the crisp partition into a strong fuzzy partition, we adopt

the following procedure. For each bin [bf,r, bf,r+1], with r ∈ [1, . . . , Qf − 1],

we first compute the middle point mf,r =
bf,r+bf,r+1

2
and then generate three

triangular fuzzy sets Af,2r−1, Af,2r and Af,2r+1 defined as (mf,r−1, bf,r,mf,r),

(bf,r,mf,r, bf,r+1) and (mf,r, bf,r+1,mf,r+1), respectively. We recall that a tri-

angular fuzzy set is defined by three points (a, b, c), where b represents the

core and a and c correspond to the lower and upper bounds of the support,

respectively. The two fuzzy sets Af,1 and Af,2Qf−1 at the lower and up-

per bounds of the universe of Xf are defined as Af,1 = (−∞, bf,1,mf,1) and

Af,2Qf−1 = (bf,Qf−1,mQf−1,+∞), respectively. The set Pf =
{
Af,1, . . . , Af,Tf

}
,

where Tf = 2Qf − 1 is the number of fuzzy sets for each feature, defines the

fuzzy partition of feature Xf . If no bin boundaries have been found by the

algorithm for feature Xf , then no fuzzy value is generated for this feature

and the feature is discarded. Figure 1 shows an example of strong fuzzy par-

tition obtained by the fuzzification of the output of the Fayyad and Irani’s

discretizer.

As shown in Fig. 1 and discussed in the text, the cores of the triangular

fuzzy sets are positioned in correspondence to both the middle points and

the bin boundaries. We performed different experiments for determining

the best number of fuzzy sets and also the best positioning of these fuzzy
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Figure 1: An example of strong fuzzy partition obtained by the fuzzification of the output

of the Fayyad and Irani’s discretizer.

sets. For instance, we generated strong fuzzy partitions by using only the

middle points or only the bin boundaries. We verified that the best results in

terms of accuracy are obtained by using fuzzy sets positioned on both middle

points and bin boundaries. On the other hand, the fuzzy sets positioned

on the middle points allow modeling accurately the instances in the bin and

consequently the class connected to the bin. Further, the fuzzy sets on the bin

boundaries permit to finely discriminate instances belonging to two different

bins and possibly different classes.

3.2. FCAR Mining

To mine the FCARs from the dataset, we introduce a novel fuzzy frequent

pattern (FFP) mining algorithm. This algorithm is based on the well known

FP-Growth proposed by Han et al. in [22] for efficiently mining frequent pat-

terns without generating candidate itemsets. The algorithm consists of two

phases. The first phase of FP-Growth creates an FP-tree from the dataset

and the second phase extracts frequent patterns from the FP-tree. The
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creation of the FP-tree is performed in three steps. First, the dataset is

scanned to find the frequent items. Then, these items are sorted in descend-

ing frequency. Finally, the dataset is scanned again to construct the FP-tree

according to the sorted order of frequent items.

In the second phase, all frequent itemsets are mined from the FP-tree. For

each item, a conditional FP-tree is generated and from this tree the frequent

itemsets, including the processed item, are recursively mined.

Some papers have already proposed to integrate the fuzzy theory with

the FP-Growth method. In [31] the authors choose only the most frequent

linguistic value for each variable to build the FP-tree. For example, if the f th

partition contains Tf fuzzy sets, only one of these fuzzy sets is used to mine

rules. Thus, only a limited subset of rules is generated and therefore useful

information resulting from other fuzzy items might be removed. A similar

approach is presented in [39]. Unlike these approaches, in AC-FFP we try to

preserve information as much as possible.

AC-FFP performs four scans of the dataset. The first two scans determine

the fuzzy frequent values and build the FP-tree, respectively. The FP-tree is

therefore used to mine fuzzy frequent patterns and then FCARs. The third

and fourth scans are needed to compute fuzzy support and confidence, and

the training set coverage, respectively, in the pruning phase. In the following,

we will describe in detail the operations performed in the four scans with the

help of an example of application. In the example, we adopt the training

set shown in Table 1. Further, we assume that the discretization and the

subsequent fuzzification process have partitioned the input variables as in

Figure 2.
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Table 1: A simple dataset characterized by four input features.

ID X1 X2 X3 X4 Class

1 20 20 0 10 C1

2 25 -60 10 80 C3

3 -25 40 100 40 C1

4 75 60 35 110 C2

5 20 80 100 75 C2

6 30 90 75 10 C3

7 120 50 75 -25 C1

A1,1 A1,2 A A A1,3 1,51,4

1.0

0.0

0.5

-25 0

5

50

50

100 120

(a) The fuzzy partition of X1.

1.0

0.0

0.5

-60 0 40 80 90

A2,1 A A

A

A A2,2 2,3 2,4 2,5

(b) The fuzzy partition of X2.
A3,1 A A A A3,2 3,3 3,4 3,5

1.0

0.5

0.0

0 25 50 75 100

(c) The fuzzy partition of X3.

1.0

0.5

0.0

-25 0 50 100 110

A A A A A4,1 4,2 4,3 4,4 4,5

(d) The fuzzy partition of X4.

Figure 2: The fuzzy partitions of each variable in the example.

17



In the first scan, AC-FFP calculates the fuzzy support of each fuzzy value

Af,j. The fuzzy support is computed as:

fuzzySupp(Af,j) =

∑N
n=1Af,j(xf,n)

N
(16)

Only the fuzzy values, called frequent fuzzy values, whose support is larger

than the support threshold minSup (0.2 in the example) are retained and

organized in a list, called flist, in support descending order. The other fuzzy

values are pruned and therefore not considered in the FCAR mining. In

Table 2, we show the fuzzy supports calculated for each fuzzy set considered

in the example. From the analysis of Table 2, the following flist is generated:

flist = {A2,3 , A1,3 , A1,2 , A4,3 , A3,4 , A3,5 , A4,2 , A2,4 , A3,1 }.

Table 2: The fuzzy supports of each fuzzy set in the example.

Fuzzy Value Fuzzy Support Fuzzy Value Fuzzy Support

A1,1 0.14 A3,1 0.23

A1,2 0.30 A3,2 0.14

A1,3 0.34 A3,3 0.06

A1,4 0.07 A3,4 0.29

A1,5 0.14 A3,5 0.29

A2,1 0.14 A4,1 0.14

A2,2 0.07 A4,2 0.26

A2,3 0.38 A4,3 0.30

A2,4 0.25 A4,4 0.16

A2,5 0.14 A4,5 0.14

In the second scan, AC-FFP builds the FP-tree in order to mine all the

FCARs. The generation of the FP-tree is performed as in FP-Growth: the
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only difference is that here the items correspond to the fuzzy values. Actually,

if we consider the example fuzzy partition in Figure 1, we can observe that

each value on the universe belongs to two different fuzzy values with different

membership grades. Thus, two fuzzy values should be associated with each

value. However, if we associated two fuzzy values for each feature value, each

object would generate 2F patterns.

To limit the number of possible patterns, we assign each continuous

value to the fuzzy set with the highest membership value (in case of tie,

we randomly select one of the two fuzzy sets). Each object xn is therefore

transformed into a fuzzy object x̃n =
{
A1n,j1n , . . . , AZn,jZn

}
, where Ain,jin

,

in ∈ [1, . . . , F ], jin ∈ [1, . . . Tin ], indicates the frequent fuzzy value selected

for feature in. The fuzzy values in x̃n are sorted in the same order as in

the flist, as required by the FP-Growth algorithm. Obviously, the number

of features, which describe the fuzzy object, can be lower than F . Table 3

shows for each pattern of the example dataset, the fuzzy values associated

with the highest membership degree and the corresponding fuzzy objects for

each pattern in the example training set.

The fuzzy objects are used to build the FP-tree. Each branch from the

root to a leaf node describes a fuzzy rule. When a fuzzy object of the training

set is added to the FP-tree, the fuzzy values are considered as labels: if a

node already exists, the corresponding counter is simply incremented by 1.

Figure 3 shows the FP-tree generated after the FCAR mining process on the

example dataset.

As in the CMAR algorithm, which is an associative classification model

based on the classical version of FP-Growth [3], the rules are extracted from
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Table 3: The fuzzy values associated with the highest membership degree and the corre-

sponding fuzzy objects for each pattern in the example dataset.

ID X1 X2 X3 X4 x̃n Class

1 A1,2 A2,3 A3,1 A4,2 (A2,3 , A1,2 , A4,2 , A3,1) C1

2 A1,3 A2,1 A3,1 A4,4 (A1,3 , A3,1) C3

3 A1,1 A2,3 A3,5 A4,3 (A2,3 , A4,3 , A3,5) C1

4 A1,4 A2,4 A3,2 A4,5 (A2,4) C2

5 A1,2 A2,4 A3,5 A4,3 (A1,2 , A4,3 , A3,5 , A2,4) C2

6 A1,3 A2,5 A3,4 A4,2 (A1,3 , A3,4 , A4,2) C3

7 A1,5 A2,3 A3,4 A4,1 (A2,3 , A3,4) C1

Figure 3: The FP-tree generated by using the example dataset.
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the FP-tree by using minSupp and minConf . In particular, the association

rules which are not characterized by a support and a confidence higher than

minSupp and minConf , respectively, are first generated and therefore elim-

inated. We recall that support and confidence are here computed by only

considering the frequency of the fuzzy values. Further, similarly to the prun-

ing process discussed in [3] for CMAR, we test whether the antecedent of

each rule is positively correlated with the consequent class by performing the

χ2 test. Only the rules with a χ2 value higher than minχ2 are maintained.

Figure 4 shows the pseudo code of FCAR mining process.

Since we consider only the fuzzy objects for generating the FP-tree, only

a high quality subset of rules is stored in the FCARlist. Indeed, each rule

FCARm mined from the FP-tree represents the rule with the highest match-

ing degree for the specific object xn ∈ T . Other rules that could be mined

from xn would have had a lower matching degree and probably would have

been pruned. At the end of the second scan, list FCARlist still contains a

large amount of FCARs that are pruned in the subsequent phase.

3.3. Pruning

Rule pruning aims to discard slightly relevant rules so as to speed up the

classification process. Pruning has to be applied carefully since an excessive

elimination of rules may delete useful knowledge. Several approaches to rule

pruning have been proposed in the last years, such as lazy pruning [40],

database coverage [18] and pessimistic error estimation [1].

We perform three different types of pruning. In the first type, a rule

FCARm is pruned if its fuzzy support and confidence are not higher than

minFuzzySupp and minFuzzyConf, respectively. These thresholds correspond
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Figure 4: Pseudo-code of the FCAR mining process based on FP-Growth.
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to minSupp and minConf adapted to the number of conditions and number

of instances of each class, respectively, so as to take into account the effect

of the t-norm used as conjunction operator and the imbalance of datasets.

Indeed, since we use the product as t-norm for implementing the conjunc-

tion operator, rules with a higher number of conditions in the antecedent will

be characterized by a lower support value than rules with a lower number of

conditions. Actually, this result is mainly due in general to the effect of the

t-norm rather than to the activation of each condition. Indeed, each condi-

tion could be activated with a high matching degree, but for the behavior of

the t-norm the matching degree of the rule, when the number of conditions

is high, would result to be quite low. With the aim of reducing this effect

and therefore avoiding to penalize more specific rules, we adapt the thresh-

old minFuzzySupp on the fuzzy support to the rule length (RL), that is, the

number of conditions in the antecedent of the rules, as follows:

minFuzzySuppg = minSupp · 0.5g−1 (17)

where minSupp is the minimum support determined by the expert and g ∈

[1..F ] is the rule length.

For instance, for a rule with one condition in the antecedent, we have

minFuzzySupp1 = minSupp. For a rule with two conditions in the an-

tecedent, we have minFuzzySupp2 = minSupp · 0.5, and so on.

To take into consideration also the imbalanced datasets, the confidence

threshold is adapted by considering the imbalance ratio between each class

and the majority class as follows:
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minFuzzyConfCj
= minConf ·

NCj

NMajorityClass

(18)

where NMajorityClass is the number of occurrences of the majority class label

in the data set, NCj
is the number of occurrences of the consequent class

Cj in the training set and minConf is the minimum confidence fixed by the

expert. Formula 18 allows decreasing the minConf threshold proportionally

to the imbalance ratio between the class of the rule and the majority class.

Thus, rules, which have a minority class in the consequent, are not pruned

only because the number of instances of that class is very low in the training

set.

Figure 5 shows the pseudo-code of the first type of pruning, which involves

the third scan of the dataset.

With the adjustments performed by formulas 17 and 18, we are able to

mine a higher number of fuzzy rules than the other approaches described in

[31] and [39], without losing the advantages of the FP-Growth method, even

if a third scan in the dataset is necessary.

In the second type of pruning, redundant rules are removed. First, the

rules are sorted according to the fuzzy support, confidence and RL. In par-

ticular, rule FCARl has higher rank than rule FCARm, if and only if:

1. fuzzyConf(FCARl) > fuzzyConf(FCARm)

2. fuzzyConf(FCARl) = fuzzyConf(FCARm) AND fuzzySupp(FCARl) >

fuzzySupp(FCARm);

3. fuzzyConf(FCARl) = fuzzyConf(FCARm) AND fuzzySupp(FCARl) =

fuzzySupp(FCARm) AND RL(FCARl) < RL(FCARm).
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Figure 5: Pseudo-code of the first type of pruning.
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A fuzzy rule FCARm is pruned if and only if there exists a rule FCARl

with higher rank and more general than FCARm. A rule FCARl : FAntl →

Cjl is more general than a rule FCARm : FAntm → Cjm , if and only if,

FAntm ⊆ FAntl. Our experimental results show that this second step can

reduce significantly the number of FCARs in the FCARlist.

In the third type of pruning, the training set coverage is exploited: only

the fuzzy rules that are activated by at least one data object in the training

set are retained. Each data object in the training set is associated with a

counter initialized to 0. For each object, a scan over the sorted FCARlist

is performed to find all the rules that match the object: we consider only

those rules FCARm with matching degree higher than the fuzzy matching

degree threshold wm = 0.5gm−1, where gm is the rule length of FCARm. This

threshold allows us to take into account only the most significant rules for

a specific data object, without penalizing rules with high rule length. If

FCARm classifies correctly at least one data object, then it is inserted into

the RB. Further, the counters associated with the objects, which activate

FCARm, are incremented by 1. Whenever the counter of an object becomes

larger than the coverage threshold δ, the data object is removed from the

training set and no longer considered for subsequent rules. Since rules are

sorted in descending ranks, it is very likely that these subsequent rules would

have a very limited relevance for the object. The procedure ends when no

more objects are in the training set or all the rules have been analyzed.

Figure 6 shows the pseudo-code of the third type of pruning.

We would like to point out that the overall rule base is obtained by

performing only 4 scans of the overall training set.
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Figure 6: Pseudo-code of the third type of pruning.
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3.4. Classification

The set of rules survived after the pruning are used to classify unlabeled

patterns. In this paper, we adopt the weighted vote [41] as reasoning method :

an input pattern is classified into the class corresponding to the the maximum

total strength of vote, calculated by using formula (5). Given an input pat-

tern x̂ = [x̂1 . . . , x̂F ], each fuzzy rule in the RB gives a vote for its consequent

class. If x̂ activates no rule, then x̂ is classified as unknown.

Since we use the product t-norm as conjunction operator, rules with a

higher number of conditions in the antecedent have generally a lower match-

ing degree than rules with a lower number of conditions in the antecedent.

Hence, more general rules are more influential than specific rules on the

prediction phase. To re-balance the influence, we normalize formula (5) as

follows:

VCk
(x̂) =

∑
FCARm∈RB;Cjm=Ck

wm(x̂) · 2gm · CFm (19)

where wm(x̂) is the matching degree of FCARm for the input x̂, F is the

number of features in the data set, gm is the RL of FCARm and CFm is the

certainty factor. For example, let us assume that three rules have, respec-

tively, one condition, two conditions and three conditions, respectively. Let

us suppose that each object is described by 3 features and each condition

is activated by the unlabeled pattern x̂ with membership degree equal to

0.5. The matching degrees for the three rules would be 0.5, 0.25 and 0.125,

respectively. After re-balancing with formula 19, all the votes are equal to 1.

This normalization allows considering also the vote of rules with a high

number of conditions. Indeed, the vote of these rules is strongly penalized

by the number of conditions, even if all these conditions are activated with a
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high membership degree. In our experiments, we verified that this approach

is more effective than for instance maximum matching.

4. Experimental Study

We tested our method on seventeen classification datasets extracted from

the KEEL repository (available at http://sci2s.ugr.es/keel/datasets.php). As

shown in Table 4, the datasets are characterized by different numbers of

input variables (from 4 to 16), input/output instances (from 106 to 19020)

and classes (from 2 to 11). For the datasets CLE and WIS, we removed the

instances with missing values. The number of instances in the table refers to

the datasets after the removing process.

We compare the results obtained by AC-FFP with the ones achieved by

two different classification models, namely CMAR [3] and FARC-HD [25].

We chose these two algorithms because CMAR exploits as AC-FFP the FP-

Growth algorithm for generating the association rules, and FARC-HD is, to

the best of our knowledge, one of the most recent and effective fuzzy rule-

based associative classifiers proposed in the literature.

Similar to our approach, CMAR first adopts the multi-interval discretiza-

tion method presented in [35] to split the input domains into bins. Then, it

builds a class distribution-associated frequent pattern tree to efficiently mine

CARs. Finally, CARs are pruned based on the analysis of the: i) confidence,

ii) correlation, iii) rule redundancy and iv) database coverage. The classi-

fication is performed based on a weighted χ2 analysis enforced on multiple

association rules. We implemented a JAVA version of CMAR following the

description provided in [3].

29



Table 4: Datasets used in the experiments (sorted for increasing numbers of input vari-

ables).

Dataset # Instances # Variables # Classes

Iris (IRI) 150 4 3

Phoneme (PHO) 5404 5 2

Newthyroid (NEW) 215 5 3

Monk-2 (MON) 432 6 2

Appendicitis (APP) 106 7 2

Ecoli (ECO) 336 7 8

Pima (PIM) 768 8 2

Yeast (YEA) 1484 8 10

Glass(GLA) 214 9 6

Wisconsin (WIS) 683 9 2

Page-Blocks (PAG) 5472 10 5

Magic (MAG) 19020 10 2

Heart (HEA) 270 13 2

Cleveland (CLE) 297 13 5

Wine (WIN) 178 13 3

Vowel (VOW) 990 13 11

Pen-Based (PEN) 10992 16 10
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FARC-HD has been described in Section 1. In [25], the authors have

shown that FARC-HD is very efficient since it outperforms a large number of

classical classification algorithms, both based and not based on fuzzy rules

and/or on CARs [25]. In the experiments, we have used the implementations

of FARC-HD available in the KEEL package [42] .

Table 5 shows the parameters used for each algorithm in the experiments.

The parameters have been chosen according to the guidelines provided by

the authors in the papers in which each algorithm has been introduced. For

FARC-HD, the description of the specific parameters can be found in [25].

Further, for each dataset and for each algorithm, we performed a ten-fold

cross-validation by using the same folds for all the datasets.

Table 5: Values of the parameters for each algorithm used in the experiments.

Method Parameters

CMAR MinSupp = 0.01,MinConf = 0.5, δ = 4,minχ2 = 20%

FARC-HD
MinSupp = 0.05,MaxConf = 0.80, Depthmax = 3, kt = 2,

Pop = 50, Evaluations = 15.000, BITSGENE = 30, δ = 2

AC-FFP MinSupp = 0.01,MinConf = 0.5, δ = 4,minχ2 = 20%

Table 6 shows, for each dataset and for each algorithm, the average values

of the accuracy, both on the training (AccTr) and test sets (AccTs), associated

with the ACs generated by the three algorithms. For each dataset, the values

of the highest accuracies are shown in bold.

From Table 6, we can observe that, in most of the datasets, the AC-FFP

algorithm generates classifiers more accurate than the ones generated by

CMAR. In particular, in 12 out of 17 datasets, AC-FPP achieves the highest

accuracies on the test set. As regards FARC-HD, we observe that AC-FFP
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and FARC-HD achieve similar average accuracies on the test set. Further,

FARC-HD suffers from overtraining more than the other two approaches.

Table 6: Average results obtained by CMAR, FARC-HD and AC-FFP.

CMAR FARC-HD AC-FFP

Dataset AccTr AccTs AccTr AccTs AccTr AccTs

IRI 96.00 93.33 98.59 96.00 96.15 98.00

PHO 79.10 78.70 83.50 82.14 81.54 81.10

NEW 96.38 93.10 98.98 93.95 97.73 95.87

MON 77.78 77.56 99.92 99.77 97.22 97.27

APP 90.87 86.00 93.82 84.18 91.51 85.09

ECO 83.30 76.83 92.33 82.19 89.35 83.39

PIM 78.69 74.87 82.90 75.66 79.25 74.87

YEA 56.55 54.32 63.81 58.50 57.99 55.60

GLA 80.42 69.44 81.10 70.24 83.59 74.18

WIS 97.74 96.80 98.70 96.52 98.85 96.06

PAG 93.79 93.68 95.62 95.01 94.15 93.88

MAG 79.39 78.94 85.36 84.51 73.59 73.40

HEA 90.08 84.07 93.91 84.44 94.77 81.85

CLE 54.40 53.88 88.18 55.24 80.43 56.91

WIN 99.94 96.05 99.94 94.35 100 97.12

VOW 74.14 61.41 80.48 71.82 98.95 91.52

PEN 78.60 77.78 97.04 96.04 85.66 83.48

Mean 82.77 79.22 90.25 83.56 88.28 83.51

In order to verify if there exist statistical differences among the values

of accuracy on the test set associated with the classifiers generated by the

different algorithms, we perform a statistical analysis. As suggested in [43],

we apply non-parametric statistical tests combining all the datasets: for each

approach we generate a distribution consisting of the mean values of accuracy
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calculated on the test set. We compare both CMAR and FARC-HD with AC-

FFP by using a pairwise comparison, namely the Wilcoxon signed-rank test

[44], which detects signicant differences between two distributions. In all the

tests, we use α = 0.05 as level of significance.

Table 7 shows the results of the application of the Wilcoxon signed-rank

test between AC-FFP and CMAR and between AC-FFP and FARC-HD. As

regards the first comparison, since the p-value is lower than the significance

level α, the null hypothesis of equivalence can be rejected. In conclusion, we

can state that AC-FFP statistically outperforms CMAR in terms of classifi-

cation accuracy on the test set.

Table 7: Results of the Wilcoxon signed-rank test with a significance level α = 0.05.

Comparision R+ R− P -value Hypothesis

AC-FFP vs CMAR 113 23 0.01825 Rejected

AC-FFP vs FARC-HD 76 77 1 Not Rejected

As regards the Wilcoxon signed-rank test between AC-FFP and FARC-

HD, since the p-value is higher than the significance level α, the null hypoth-

esis of equivalence is not rejected. Hence, AC-FFP and FARC-HD result to

be statistically equivalent in terms of classification rate computed on the test

set. In FARC-HD, however, the first two steps, which generate the initial set

of candidate rules, are based on a fuzzy version of the Apriori algorithm. This

algorithm suffers from the curse of dimensionality: the higher the number of

input variables, the more difficult the generation of the set of candidate rules.

In addition, the third step of FARC-HD requires the execution of a genetic
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algorithm for selecting a reduced set of rules. As stated in [45], the size of the

search space grows with the increase of the number of input variables, thus

leading to a slow and possibly difficult convergence of the genetic algorithm.

Further, the computational cost of the fitness evaluation increases linearly

with the increase of the number of instances in the dataset, thus obliging to

limit the number of evaluations especially when the dataset is large. On the

other hand, AC-FFP needs only four scans of the dataset.

5. Conclusions

In this paper, we have proposed a novel model of classification based on

fuzzy association rules derived by using a fuzzy version of the well-known

FP-Growth algorithm.

We have first discretized the input variables and generated strong fuzzy

partitions by using a well-known discretization algorithm. Then, we have

applied the FP-Growth for generating the fuzzy association rules. Finally,

we have applied three different pruning types to select a subset of high quality

fuzzy association rules for classification.

The proposed approach has been tested on seventeen classification bench-

marks. We have compared the results achieved by the novel fuzzy model with

the ones achieved by a well-know non-fuzzy associative classification model,

namely the CMAR algorithm, and by a state-of-the-art algorithm for gener-

ating fuzzy rule-based association classifiers, namely FARC-HD.

By performing non parametric statistical tests, we have highlighted that

the proposed approach outperforms the CMAR algorithm, in terms of classifi-

cation accuracy on the test set, and achieves accuracies similar to FARC-HD.
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Highlights 
 

• We propose a novel fuzzy associative classification approach 
• We exploit a fuzzy version of the FP-Growth algorithm 
• We perform an experimental analysis on 17 classification datasets 
• We compare our approach with two well-known associative classifiers 
 

*Highlights (for review)


