Elsevier Editorial System(tm) for Food Control Manuscript Draft

Manuscript Number: FOODCONT-D-14-00722R1

Title: DNA and Mini-DNA Barcoding for the identification of Porgies species (family Sparidae) of commercial interest on the international market.

Article Type: Research Article

Keywords: DNA Barcoding, Mini-DNA Barcoding, Sparidae, COI gene, mislabeling, seafood identification.

Corresponding Author: Dr. Andrea Armani,

Corresponding Author's Institution:

First Author: Andrea Armani, Dr.

Order of Authors: Andrea Armani, Dr.; Lisa Guardone, Dr.; Lorenzo Castigliego; Priscilla D'Amico; Antonino Messina, Dr.; Renato Malandra; Daniela Gianfaldoni, Prof.; Alessandra Guidi, Prof.

Abstract: The morphological similarity among Sparidae species, which are characterized by a different market price, represents a serious problem for their trade and for stock management, since it encourages fraud for substitution. The most accredited morphological method for their identification is based on the dental-plate, but this approach is not simple and cannot be used for prepared products. When molecular methods are used the DNA degradation induced by cooking is the main drawback. In this work, we collected 314 reference tissues belonging to 75 Sparidae species and we produced a dataset of full (FDB) and mini-barcode (MDB) reference sequences starting from DNA extracted from fresh and ethanol-preserved tissues using universal primes. Moreover, some fresh samples were cooked. The FDB was successfully amplified in 91% (fresh), 50% (cooked) and 81% (ethanolpreserved) samples, while the amplification rates of the MDB were considerably higher in case of cooked (100%) and ethanol-preserved (94%) samples. The same primers were used for the amplification of the DNA obtained from 58 market samples (MS). All the DNA barcodes were compared with BOLD and GenBank using IDs and BLAST analysis. FDB was able to provide unambiguous specieslevel identifications for 53 (78%) and 44 (64.7%) reference samples analyzed on BOLD and GenBank, respectively. Mini-DNA barcode (MDB) showed a lower discriminating power with 32 (45.7%) and 29 (41.4%) sequences unambiguously matched to a species on BOLD and GenBank. However, the MDB allowed to identify all the reference sequences as belonging to the Sparidae family. FDB and MDB showed a similar performance in analyzing the MS, allowing to highlight 21 (38%) mislabeled MS. Our study, while confirming the FDB as a reliable tool for fish authentication, proposes the MDB as a promising tool to recover molecular information in case of cooked products.

Dear Editor,

We would like to submit the following manuscript for possible publication.

"DNA and Mini-DNA Barcoding for the identification of Porgies species (family Sparidae) of commercial interest on the international market"

Among the globally marketed fish, the species belonging to the family Sparidae are excellent food-fishes of high economic value. This family includes about 115 species divided in 33 genera and nowadays 85 species of Sparidae are commercialized worldwide.

The morphological similarity among Sparidae species, which are characterized by a different market price, represents a serious problem for their trade and for stock management. The specialized dentition is the most used criterion for their identification but, the marked similarities, which represent a problem even in the presence of whole specimens, make it almost impossible to distinguish the prepared or processed products during the inspection.

The DNA-based techniques are a useful tool to overcome the problems related to morphological identification and DNA barcoding has been successfully used to enforce traceability regulations in the seafood chain. Despite excellent performances when applied to fresh products, DNA barcoding has shown some weaknesses in case of processed products. For this reason, and considering that targeting a shorter region would increase the likelihood of successful amplification from degraded DNA, in this study, together with the full-barcode, the ability of a mini-DNA barcode was also assessed to produce a correct identification of Sparidae species.

In this work, we collected 314 reference tissues belonging to 75 Sparidae species and we produced a dataset of full and mini-barcode reference sequences using universal primes. The same primers were used for the amplification of the DNA obtained from 58 market samples (MS). All the DNA barcodes were compared with BOLD and GenBank using IDs and BLAST analysis. Full-DNA barcode was able to provide unambiguous species-level identifications for an higher percentage of samples than the mini-barcode on both databases. However, the mini-barcode allowed to identify all the reference sequences as belonging to the Sparidae family. Both barcodes showed a similar performance in analyzing the MS highlighting 21 mislabeled MS.

Our study, while confirming the full-DNA barcoding as a reliable tool for fish authentication, shows that the mini-barcode is a valid approach to recover molecular information from processed samples, allowing to assess the authenticity of imported products preventing commercial fraud, but also to enforce fishery control.

Best regards,

Andrea Armani

Dear Editor,

we revised the manuscript as suggested by the Reviewer and here below you can find our answers, comments and rebuttals.

Best Regards

Andrea Armani

Reviewers' comments:

The manuscript from Armani *et al.* is interesting since they have used both the full and minibarcode methodology to analyze a commercially important fish family, the Sparidae or Porgies. In addition, they have also developed a reference dataset of COI sequences for 75 Sparidae fish species using universal primers.

However, the manuscript gets confused when the authors choose to test a range of problems that may affect amplification by PCR and species identification by BOLD and Genbank.

Moreover, I could find at least four aims in the manuscript:

- (1) Development of a COI Barcode dataset for Sparidae,
- (2) Testing the full and mini-barcodes;
- (3) Market mislabeling and
- (4) Factors affecting PCR amplification (i.e. ethanol preservation and cooking) when using full and mini barcodes.

All these aims together make the manuscript very hard to read. I suggest splitting the manuscript into at least four distinct sections and results presented separately. I would recommend looking at the market samples' analysis and data set development forensically instead of discussing other technical related problems.

We appreciated the Reviewer's suggestions and decided to follow his advice to make easier the reading of the manuscript.

The chapter 3 (Results and discussions) have been reorganized in four different sections.

Moreover, some "too much specific parts" have been removed or summarized.

Specifically:

Section 3.1 (Sample collection) line 206-211 (original manuscript) has been moved in section 2.1 (Sample collection: reference and market samples) line 122-125 (revised manuscript)

Line 222-224 (original manuscript) have been removed

Line 311-324 (original manuscript) have been summarized line 283-288 (revised manuscript)

Line 459-462 (original manuscript) have been removed

A new sentence line 501-505 (revised manuscript) and a new table (Table 3) have been added in section 3.4.3 (Mislabeled products: what and why?)

Table 6SM has been changed in table 2 (and thus inserted in the text) to facilitate the comprehension of the results.

Other minor corrections have been made but not highlighted

After reading the manuscript organized this way and observing it was much more readable, we decided not to split the section Results and Discussion. In fact, this would have implied some repetitions, in order to reintroduce topics of discussion every time.

DNA and Mini-DNA Barcoding for the identification of Porgies species (family Sparidae) of commercial interest on the international market. Andrea Armani*, Lisa Guardone, Lorenzo Castigliego, Priscilla D'Amico, Antonino Messina, Renato Malandra°, Daniela Gianfaldoni, Alessandra Guidi. FishLab, Department of Veterinary Sciences, University of Pisa, Via dellePiagge 2, 56124, Pisa (Italy). °Wholesale fish market of Milan, ASL of Milan, Viale Molise, 20, 20137 Milan (Italy). *corresponding author: Postal address: FishLab, Department of Veterinary Sciences, University of Pisa, Via delle Piagge 2, 56124, Pisa (Italy) Tel: +390502210207 Fax: +390502210213 Email: aarmani@vet.unipi.it

Abstract

27

The morphological similarity among Sparidae species, which are characterized by a different 28 market price, represents a serious problem for their trade and for stock management, since it 29 encourages fraud for substitution. The most accredited morphological method for their 30 identification is based on the dental-plate, but this approach is not simple and cannot be used for 31 prepared products. When molecular methods are used the DNA degradation induced by cooking is 32 33 the main drawback. In this work, we collected 314 reference tissues belonging to 75 Sparidae species and we produced a dataset of full (FDB) and mini-barcode (MDB) reference sequences 34 35 starting from DNA extracted from fresh and ethanol-preserved tissues using universal primes. 36 Moreover, some fresh samples were cooked. The FDB was successfully amplified in 91% (fresh), 37 50% (cooked) and 81% (ethanol-preserved) samples, while the amplification rates of the MDB were considerably higher in case of cooked (100%) and ethanol-preserved (94%) samples. The same 38 39 primers were used for the amplification of the DNA obtained from 58 market samples (MS). All the 40 DNA barcodes were compared with BOLD and GenBank using IDs and BLAST analysis. FDB was able to provide unambiguous species-level identifications for 53 (78%) and 44 (64.7%) reference 41 samples analyzed on BOLD and GenBank, respectively. Mini-DNA barcode (MDB) showed a 42 43 lower discriminating power with 32 (45.7%) and 29 (41.4%) sequences unambiguously matched to a species on BOLD and GenBank. However, the MDB allowed to identify all the reference 44 45 sequences as belonging to the Sparidae family. FDB and MDB showed a similar performance in analyzing the MS, allowing to highlight 21 (38%) mislabeled MS. Our study, while confirming the 46 47 FDB as a reliable tool for fish authentication, proposes the MDB as a promising tool to recover 48 molecular information in case of cooked products.

49

50

Keywords: DNA Barcoding, Mini-DNA Barcoding, Sparidae, *COI* gene, mislabeling, seafood identification.

1. Introduction

53

Trade globalization is one of the main challenges for the identification of fishery products. In 54 fact, due to the depletion of the stocks of the most requested fish on the market, alternative and 55 underutilized species are now exploited. As a consequence, the number of products commercialized 56 over the world is widely increased, especially in the western Countries. In Italy, the number of 57 official denominations for seafood species has augmented from around two hundred to more than 58 59 nine hundred in about ten years. The international authorities, due to an increased attention on nutritional, ecological and safety 60 61 concerns related to seafood, have issued a traceability legislation in the fishery sector. The 62 European Union has adopted a very stringent approach: seafood must be labeled with the 63 commercial and the scientific name, the production method, the catch area (EU Reg. No. 104/2001 and 404/201) and, from the 1st January 2015, the category of fishing gear (EU Reg. No. 1379/2013). 64 A global seafood traceability network requires the harmonization of regulatory and commercial 65 practices across the whole fishing sector. However, some developing Countries still have 66 difficulties to conform to the rules of the international trade chain (Environmental Justice 67 Foundation 2012; Armani, D'Amico, Castigliego, Sheng & Gianfaldoni, 68 2012a; Cawthorn, 69 Steinman & Witthuhn, 2012; Clarke, 2009). Moreover, considering that a single commercial name can be used at the international level for different species, unscrupulous traders could take profit 70 from this confusion by selling illegal products. Recent surveys showed that frauds are becoming 71 72 widespread and seafood mislabelling has reached alarming levels (Armani, Tinacci, Giusti, 73 Castigliego & Gianfaldoni, 2013; Carvalho, Neto, Brasil & Oliveira, 2011; Wong & Hanner, 2008). 74 Among the globally marketed fish, the species belonging to the family Sparidae (Porgies) are excellent food-fishes of high economic value (Antonucci, Costa, Aguzzi & Cataudella, 2009). 75 76 This family includes about 115 species divided in 33 genera (Nelson, 2006) although, according 35 77 to Fishbase, the species are 133 and the genera (http://www.fishbase.org/Nomenclature/FamilySearchList.php?). On the basis of the official lists 78

consulted (Table 1SM), 85 species of Sparidae are commercialized worldwide with different 79 80 commercial designations, and other unexploited species could attract the interest of the market in the future. 81 82 Porgies are very similar to each other and their morphological identification can only be performed by skilled operators. The specialized dentition, on the basis of which the Sparidae family 83 has been grouped in six subfamilies, is the most used criterion for their identification (Smith & 84 85 Smith 1986; Akazaki, 1962). These marked similarities, which represent a problem even in the presence of whole specimens, make it almost impossible to distinguish the prepared or processed 86 87 products during the inspection. 88 The DNA-based techniques are a useful tool to overcome the problems related to the 89 morphological identification (Armani, Castigliego & Guidi, 2012c) and the DNA barcoding, based on the analysis of the first part of the cytochrome c-oxidase I (COI) gene sequence, is the most 90 91 promising approach (Hebert, Ratnasingham, & de Waard, 2003). In fact, this DNA region usually 92 shows a greater interspecific than intraspecific variation (Hajiababei, Singer, Hebert & Hickey, 2007; Hebert et al., 2003) allowing discrimination among species. Consequently, many researchers 93 have investigated the use of DNA barcoding to enforce traceability regulations and to fight illegal 94 95 fishing and frauds (Handy, Deeds, Ivanova, Hebert & Hanner, 2011; Ward, Hanner, & Hebert, 2009; Yancy, Zemlak, Mason, Washington & Tenge, 2008). Even though this method has been 96 97 successfully used for the identification of fresh seafood products (Di Pinto, Di Pinto, Terio, Bozzo & Bonerba, 2013; Cawthorn et al., 2012; Barbuto, Galimberti, Ferri, Labra & Malandra, 2010; 98 99 Wong & Hanner, 2008), it has shown some weaknesses in the case of processed products, due to the 100 DNA fragmentation induced by heating (Cawthorn et al. 2012; Wong & Hanner, 2008). At the 101 same time, the DNA degradation induced by prolonged storage in ethanol, which can occur in 102 museum reference samples (Hajibabaei, de Waard, Ivanova, Ratnasingham & Dooh, 2005), could affect the amplification of the full COI barcode region, limiting the construction of sequence 103

datasets, necessary for seafood "molecular inspection". These considerations and the possibility that

fish substitutions could occur not only at the market level but also during catering activities, has prompted us to assess, together with the full-DNA barcode (FDB) fragment, also the capability of a mini-DNA barcode (MDB) in identifying the Sparidae species of commercial interest for the international market.

In this work, we collected 75 species of Sparidae, from fresh and ethanol-preserved reference tissues, and we produced a dataset of full-length *COI* barcode reference sequences by using universal primers. Then, by aligning these sequences and those retrieved from databases, we developed a new reverse primer to amplify a mini-DNA *COI* barcoding region of ~ 190bp. The FDB and MDB obtained from the reference samples and from 58 market samples were compared to BOLD and GenBank databases. Lastly, a phylogenetic analysis using the Neighbor-Joining (NJ) method was performed. The information on the label of the market samples were evaluated in the light of the molecular results.

2. Materials and Methods

2.1 Sample collection: reference and market samples

Eighty whole fresh fish were collected and morphologically identified by the Official veterinarian of the wholesale market of Milan. Two hundred thirty four ethanol-preserved reference tissues were kindly provided by Research Institutes. Overall, we collected 75 species, distributed across 26 genera, out of the 133 included in the Sparidae family (Table 2SM), and 72 out of the 85 species of commercial interest included in the official lists consulted (Table 1SM). The mean number of the collected specimens per species was 4.2 (range 1-11). Fifty-eight market samples (MS) were collected from retail markets, large-scale distribution and restaurants (Table 3SM). Each fish/tissue was labeled with an internal code and stored at -20°C.

2.2 Preparation of processed samples

Thirty-four whole fresh fish were used for the preparation of processed samples according to standard recipes. Part of them were baked as whole in an oven preheated at 180°C for a variable

- time (25-40 min) depending on the size. The rest were filleted and cooked in a frying pan for 10-15
- 131 min.

- Fresh muscle tissue samples were collected before and after cooking and used for DNA
- 133 extraction.
 - 2.3 DNA extraction and evaluation of DNA fragmentation by gel electrophoresis
- The ethanol-preserved reference samples were re-hydrated in 100 mM TRIS-base (pH 7.8) for
- 30 min at Room Temperature (RT) on a thermoshaker. Total DNA extraction was performed
- starting from at least 20 mg of tissue as described by Armani, Castigliego, Tinacci, Gandini &
- Gianfaldoni, (2012b). DNA from fresh and cooked samples was extracted as described by Armani,
- Tinacci, Xiong, Titarenko & Guidi (2014). The DNA quality and quantity was determined with a
- NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, US).
- One thousand nanograms of total DNA were electrophoresed on 1% agarose gel GellyPhorLE
- 142 (Euroclone, Wetherby, UK), stained with GelRedTM Nucleid Acid Gel Stain (Biotium, Hayward,
- 143 CA, USA) and visualized via UV transillumination. DNA fragment size was estimated by
- comparison with the marker SharpMassTM50-DNA ladder (Euroclone, Wetherby, UK).
- 2.4 Amplification and sequencing of the full-COI barcode (FDB)
- Some universal primers for the FDB region (Table 4SM) were aligned with the *COI* complete
- sequences of the Sparidae species available in GenBank. Those proposed by Handy et al. (2011)
- were selected. The reverse primer (SPACOIREV) was slightly modified and tailed as proposed by
- 149 Steffens, Sutter, & Roemer (1993) (Table 4SM).
- A 655bp fragment of the *COI* gene was firstly amplified from the DNA extracted from fresh
- reference specimens with the following PCR protocol: 20 µl reaction volume containing 2 µl of a
- 152 10x buffer (5Prime, Gaithersburg, USA), 100 μM of each dNTP (Euroclone, Pavia, Italy), 300 nM
- of forward primers, 400 nM of reverse primer, 25 ng/µL of BSA (New England BIOLABS® Inc.
- 154 Ipswich, MA, USA), 1.25 U PerfectTaq DNA Polymerase (5Prime, USA), 100 ng of DNA and
- DNase free water (5Prime, USA) with the following cycling program: denaturation at 94 °C for 3

min; 45 cycles at 94°C for 30s, 53°C for 30s, 72°C for 35s; final extension at 72°C for 10 min. Five μL of PCR products were checked by electrophoresis on a 1.8% agarose gel and the presence of expected amplicons was assessed by a comparison with the standard marker SharpMassTM50-DNA ladder. Amplicons were purified and sequenced by High-Throughput Genomics Center (Washington, USA). The same PCR protocol was used for the amplification of cooked, ethanol-preserved and market DNA samples. The ethanol-preserved and the market DNA samples that gave the expected amplicon were sequenced.

2.5 Full-DNA barcode (FDB) sequence analysis and comparison with databases

The obtained sequences were analyzed using Clustal W in MEGA version 6 (Tamura, Stecher, Peterson, Filipski, & Kumar, 2013). Fine adjustments were manually made after visual inspection. Before the upload on the database, all the sequences were used to run a BLAST analysis on GenBank and analyzed using the Identification System (IDs) on BOLD (Species Level Barcode Records) (Ratnasingham & Hebert, 2007) to assess the concordance between the morphological and the molecular analysis (Ratnasingham & Hebert, 2013). A top match with a sequence similarity of at least 98% was used to designate potential species identification (Barbuto *et al.*, 2010). Then, all the reference sequences were deposited on BOLD and GenBank (Table 5SM). Moreover, the sequences deposited on BOLD were used to produce a Barcode Index Number discordance report (BINdr). The mean genetic distances were calculated within species, genus and family using the Kimura 2-parameter model (Kimura, 1980) using the Distance Summary tool on BOLD.

The 55 *COI* sequences from MS, not originating from expert-identified specimens, were not submitted to the databases and were only used to assess the discriminatory ability of the barcoding region (Table 3SM).

2.6 Reverse primer design for the amplification of a mini barcoding region of the COI gene

Five hundred and sixty two reference sequences belonging to 73 Sparidae species available on GenBank and BOLD were downloaded and aligned with those produced in this study using Clustal W in MEGA. Once a potential region was found spanning from the 140th and the 190th bp, all the

sequences were examined for the presence of polymorphisms. The projected reverse primer

183 (REVshort1) (Table 4SM) was tailed (Steffens et al., 1993).

2.7 Amplification and sequencing of the mini-barcode (MDB)

The DNA of the reference samples was used to test the performance of the primer pair

FISHCOILBC_ts/REVshort1 for the amplification of a ~190bp DNA region (139bp without

primers). The PCR was made in 20 µl reaction volume, containing 2 µl of a 10x buffer (5Prime,

USA), 100 μM of each dNTP, 300 nM of primers, 25 ng/μL of BSA, 1.25 U PerfectTaq DNA

Polymerase, 100 ng of DNA and DNase free water. The cycling program was the following:

denaturation at 94 °C for 3 min; 45 cycles at 94°C for 25s, 51°C for 30s, 72°C for 10s; final

extension at 72°C for 5 min. This protocol was also applied to samples for which the amplification

of the 655bp COI barcoding region failed. All the PCR products were sequenced as reported in

193 section 2.4.

184

186

187

188

189

190

191

192

194

195

196

198

199

200

201

202

203

204

205

206

207

2.8 Mini-DNA barcode (MDB) sequence analysis and comparison with databases

The obtained MDB were checked as reported in section 2.5 and those obtained from the

reference samples were deposited in the European Bioinformatics Institute (EBI) (Table 5SM) due

to the fact that BOLD and GenBank do not allow the submission of sequences shorter than 200bp.

All the sequences were compared to the databases as reported in section 2.5. The mean genetic

distances were calculated using the Kimura 2-p model in MEGA.

The sequences obtained from the MS were only used to assess labeling non conformities.

2.9 Phylogenetic analysis.

Two datasets were used to produce NJ dendrograms in MEGA computing the distance using the

Kimura 2-parameter model with 2000 bootstrap re-samplings (Saitou & Nei, 1987).

In case of the FDB 460 reference sequences of 546bp (219 from this study and 241 from

databases) and 52 sequences from MS were used while for the MDB 478 reference sequences of

138bp (254 from this study and 224 from databases) and 55 sequences from MS were used.

3. Results and Discussion

3.1 Development of a COI Barcode dataset for Sparidae

- 3.1.1 Full DNA barcode (FDB): primers amplification performances and DNA amplificability.
- Since the different origin and preservation of tissue samples may affect the primers amplification
- 211 performances, we calculated the specificity and the rate of successful amplifications on the number
- of the species collected rather than on the totality of the samples analyzed. The primers selected in
- 213 this study presented a specificity of 100% for the target region. Overall, the rate of successful
- amplifications was 95%, and rose to 100% for fresh samples.
- The overall DNA amplificability was 85%. The DNA of the fresh specimens was successfully
- amplified in 91% of the cases; the rate drastically decreased to 50% after cooking. The DNA
- amplificability of ethanol-preserved tissue was 81%.
- 3.1.2 Full DNA barcode (FDB) sequence analysis. Sequencing yielded 225 COI FDB with an
- average length of 650bp (520-655), without stop codons, insertions or deletions. We obtained at
- least one FDB for 68 species (91%), with an average of 3.3 (range 1-8) per species.
- The sequences belonging to the species Acanthopagrus palmaris, A. sivicolus, Calamus
- arctifrons, C. proridens, Dentex angolensis, D. canariensis, D. gibbosus, D. maroccanus, Diplodus
- 223 noct, and Pagrus africanus were obtained in this study for the first time.
- As expected, the congeneric divergence was found to be higher than the conspecific divergence,
- with mean pairwise genetic distances of 0.43%, 9.16%, and 16.18% for conspecific, congeneric and
- confamilial, respectively. These values were very similar to those obtained by Keskin & Atar,
- 227 (2013) and Ward et al., 2009.
- 3.1.3 Mini DNA barcode (MDB): primer design for the amplification of a 139 bp region. DNA
- barcoding should be effective in recovering "molecular information" even from processed products,
- 230 whose DNA is expected to be severely degraded. In this study, considering that DNA extracted
- 231 from different kind of samples did not yield the expected amplicon, we designed a new reverse
- primer (REVshort1) for the amplification of a ~ 190bp MDB.

As well as for the FDB, the specificity was 100% and the overall rate of successful amplification was 93%. The DNA of the 3 species that were not amplified had been preserved in formalin or in ethanol for a long time.

The DNA amplificability was 95%, 100% and 94% for fresh, cooked and ethanol-preserved tissues. In case of cooked and ethanol-preserved samples the rates were considerably higher than with the FDB (91% for fresh, 50% for cooked, and 81% for ethanol-preserved samples) and we obtained molecular data also for *D. cervinus* and *P. africanus*.

3.1.5 Mini DNA barcode (MDB) sequence analysis. Thirty four MDB with an average length of 135bp (60-139bp) were produced and registered. No insertions, deletions or stop codons were found, indicating that nuclear DNA sequences (NUMTs) were not amplified (Zhang & Hewitt, 1996).

3.2 Testing the full (FDB) and mini-barcodes (MDB)

3.2.1. BOLD: full barcode (FDB) IDs results and BINdr. The BOLD System includes a tool for the characterization of unknown specimens, the Identification System (IDs) resource, that delivers a species identification if the query sequence shows a divergence less than 1% to a reference sequence. When less than 1% divergence is found with two or more taxa all possible species assignments are shown (Ratnasingham & Hebert, 2007). On the other hand, the BIN module assigns new COI sequences longer than 500bp to an existing or a new BIN, clustering them into OTUs independently from their previous taxonomic assignment. This analysis allows to confirm the concordance between barcode sequence clusters and species designations.

The IDs results and the BINdr are summarized in Table 5SM and 2, respectively. A maximum species identity in the range of 98–100% was obtained for 220 sequences (98%). For *C. arctifrons*, *D. canariensis* and *D. gibbosus*, the absence of reference sequences in the database resulted in "no match". The identification approach based on IDs results was coherent with the morphological approach for 39 species out of 68 (57.4%), according to an identity value \geq 98%. Usually, when a sequence matches with more than one species, the highest value is obtained for the species inferred

from the morphological identification (Table 5SM). A previous work suggested that a threshold value of 2% was effective in distinguish different species (Hebert et al., 2003). In this work this threshold did not allow to identify the remaining 29 species (42.6%). However, among these "non-identifiable" species, 9 (13.2%) were not identified due to the lack of reference sequences (Table 5SM). We found that inconsistencies, such as indecision among species, were confirmed in most of the cases by the BINdr (Table 2). Among the 259 sequences that obtained a BIN, 37 were discordant at the genus level and 56 at the species level.

Considering the high number of "ambiguous" results we further investigate the issues highlighted by the IDs analysis and the BINdr, with the aim to interpret and possibly solve them.

In most of the cases, only a few sequences were responsible for the discordance at the genus level. In particular, among the most interesting cases, the sequences of *Boops boops*, *Pagellus acarne*, *Pagellus erythrinus*, and *Pagrus pagrus*, for which all the discordances were related to sequences of *O. melanura* produced in an unpublished work. The probable misidentification of these sequences was already supposed by Keskin & Atar, (2013). However, a 7% mean genetic distance between our sequences and those of Keskin & Atar, (2013) highlights a remarkable intraspecific variation within the specimens of *O. melanura*. The reliability of our morphological identification is supported by the fact that our sequences show a mean identity value of 99.7% with other private sequences available on BOLD. Interesting to note that, while our specimens were collected in the Western part of the Mediterranean Sea, those analyzed by Keskin & Atar, (2013) came from the Eastern Mediterranean. Similar values of intraspecific divergence have been reported for the most diverse fish groups, and often attributed to cryptic species (April, Mayden, Hanner & Bernatchez, 2011; Ward, Holmes & Yearsley, 2008).

Also in the case of the sequences of *Evynnis cardinalis*, *V. acromegalus*, and *Rhabdosargus haffara*, which showed misidentification with *E. tumifrons*, *P. acarne*, and *S. aurata* respectively, the discordance might come from mislabeled specimens. In particular, in case of *R. haffara*,

considering the different geographical origin of the two species, it could be possible that the specimen identified as *S. aurata* was a misidentified specimen of *R. haffara* migrated through the Suez Canal (Golani, 1992).

All the discrepancies at the genus level are reported in Table 5SM and 2. These findings could be due to the fact that the barcodes are not filtered as they enter BOLD, even if they show deep sequence divergence from existing records (Ratnasingham & Hebert, 2007). This eventuality could distort the outcomes of studies relying on database comparison.

Regarding the discrepancies at the species level, different issues were found. For instance, the species belonging to the genus *Acanthopagrus* are very similar from both a genetic and a morphological point of view (Hsu, Guillén Madrid, Burridge, Cheng & Gwo, 2011). There have been many re-descriptions within this genus and currently 15 species and 2 subspecies are recognized (Hsu *et al.*, 2011). The impossibility encountered in this work to distinguish *A. pacificus* from *A. berda* could be due to a misidentification of specimens or to an identification based on previous classification, considering that *A. pacificus*, very similar in overall appearance to *A. berda*, has been recently re-described as a new species (Iwatsuki, Kume, & Yoshino, 2010). The barcodes were not even able to distinguish among *A. schlegelii*, *A. schlegelii schlegelii*, and *A. sivicolus*, which are closely related species belonging to the "black seabream complex" (Hsu *et al.*, 2011).

Moreover, the occurrence of hybrid-like individuals among the *Acanthopagrus* species makes the study of this group even more difficult (Hsu *et al.*, 2011). In fact, by using a mitochondrial gene, only the matrilineal lineage is examined (Carvalho *et al.*, 2011; Costa, Landi, Martins, Costa & Costa, 2012). In this case, supplemental analyses on nuclear genes would be advisable.

When two or more species of the same genus cluster together, misidentification among them could have occurred (Costa *et al.*, 2012).

The reason why the DNA barcode has not been capable to distinguish among *Pagrus major* and *P. auratus* could be related to the fact that they might be two subspecies, as suggested by Tabata & Taniguchi (2000). As well, the system was neither able to distinguish the *D. sargus* subspecies due

- 311 to the close phylogenetic relationship of the genus *Diplodus*, which includes 13 species and 11
- subspecies (Summerer, Hanel & Sturmbauer, 2001).
- However, the DNA barcoding approach is always capable to distinguish this genus from the
- other belonging to the family Sparidae.
- On the basis of this elaboration process, 53 additional sequences (belonging to 14 species) were
- considered resolvable and therefore the IDs could discriminate 53 species out of 68 (78%), strongly
- 317 increasing the ability of the FDB in discriminating among Porgies species. Summarizing, the
- system was not able to identify 15 species due to the lack of reference sequences (n=9) or due to
- 319 close phylogenetic relationship among species (n=6) (Table 1).
- 3.2.2. Full barcoding (FDB) BLAST analysis on GenBank: A maximum species identity in the
- range of 98–100% were obtained in GenBank for 208 sequences (92.4%) belonging to 37 species
- 322 out of 68 (54.4%).
- The impossible identification of the remaining 31 species was related to the absence of reference
- sequences or to the presence of problematic sequences (Table 5SM). In particular, identity values
- lower than 98% were obtained for A. pacificus, C. arctifrons, C. leucosteus, C. providens, D.
- 326 canariensis, D. gibbosus, D. spariformis, V. acromegalus, O. melanura and A. spinifer (Table
- 327 5SM).
- As for BOLD, when a sequence matched with more than one species, the highest identity value
- was attained for the species inferred from the morphological identification (Table 5SM).
- In the case of *D. puntazzo* and *P. aeneum*, the ambiguous identification was due to sequences of
- 331 D. labrax and P. sordida (Moronidae and Lutjanidae family), while in the case of D. holbrookii, D.
- vulgaris, E. cardinalis, P. bellottii, P. auratus, P. major, P. pagrus, and S. cantharus the
- identification problems were the same observed on BOLD (section 3.5.1). However, for all of them,
- with the exception of *E. cardinalis*, the system was able to correctly identify the sequences at the
- 335 genus level.

Summarizing, the BLAST analysis could clearly discriminate 44 species out of 68 (65%), 336 increasing the ability of the FDB in discriminating among Porgies species (Table 1), while it was 337 338 not able to identify 24 species (35.3%), due to absence of reference sequences (n=17) or due to 339 close phylogenetic relationships (n=7). 340 3.2.3 Full DNA barcoding (FDB): comparison between BOLD and GebBank.. Even though the DNA barcoding is a useful tool for the species identification, many cases of ambiguous results due 341 342 to species misidentification, wrong labeling or mistakes during sequences submission have been reported (Barbuto et al., 2010; Carvalho et al., 2010). These types of mistakes are readily detected 343 344 when specimens from different orders or families cluster together, but must be carefully considered 345 and analyzed when species belonging to the same genus are involved. 346 We observed that the discriminatory ability of the FDB was strictly related to the availability of correctly identified reference sequences. In fact, after the correction of the ambiguous results, 347 348 BOLD was able to identify 53 species (78%) while GenBank only 44 (64%). The higher resolution 349 of BOLD compared to GenBank agrees with the results obtained by Wong et al. (2008) and 350 Cawthorn et al. (2012), who analyzed different groups of fish. In our study, this could be due to the 351 fact that on BOLD only 9 reference sequences were missed, while on GenBank the lacking 352 sequences were almost twice. Our results are similar to those obtained by Barbuto et al. 2010, who, using the DNA barcoding 353 354 approach for the identification of *Palombo*, recognized at the species level 34 out of 45 (75.6%) 355 samples. In fact, in case of Mustelus spp., the high genetic correlations and morphological 356 similarities made difficult their recognition by the IDs system, as in the case of the species 357 belonging to the genus Acanthopagrus and Diplodus. On the contrary, in other studies the FDB 358 allowed to unequivocally identify a higher percentage of samples (Cawthorn et al., 2012; Keskin & 359 Atar, 2013). On the basis of this data, it seems that the DNA barcoding approach is more precise when applied to species belonging to different genus and families. 360

Interestingly to note that on BOLD the number of problematic sequences that could lead to misinterpretation and need thorough analysis were higher (n= 73) that on GenBank (n=59), making this latter database more suitable for "non-skilled" users. A systematic revision (elaboration process) of the "raw data" obtained by the IDs system should be performed to resolve "ambiguity" produced by unreliable sequences. Therefore, considering that published sequences are susceptible to occasional inaccuracies, a more stringent process of confirmation and validation is desirable.

- 3.2.4 Phylogenetic analysis of the full-barcode (FDB). The NJ phylogenetic analysis of the FDB

 allowed to solve the most part of issues highlighted with the DNA barcoding analysis. In particular,

 the most part of the species and subspecies formed discrete clusters (Fig. 1SM), with bootstrap

 values > 70%, showing the presence of unique and diagnostic polymorphism. However, a few

 species still could not be distinguished, such as: D. maroccanus from D. angolensis, P. auratus

 from P. major, A. sivicolus from A. schlegelliii, D. cervinus from D. cervinus hottentotus, S.

 chrysops from S. caprinus.
- 3.2.5 139bp mini DNA barcodes (MDB) sequence analysis and comparison with databases.

 Hajibabaei *et al.*, (2005) have tested "in silico" the possibility to use MDB of 218bp and 109bp for
 the identification of fishes, observing that they generally provided sequence variability comparable
 to that of FDB at both intraspecific and intrageneric levels.
- Meusnier, Singer, Landry, Hickey & Hebert, (2008) found that, even though the FDB performed slightly better (97% species resolution), 250bp MDB gave only slightly lower rates (95%), while with 100bp MDB resolution decreased to 90%.
- The MDB sequences were compared with BOLD and GenBank databases. The BINdr could not be performed due to the limit of the system in processing sequences shorter than 500bp.
 - Only 251 MDB were used on BOLD because sequences shorter than 80bp cannot be processed by the IDs. All the analyzed sequences retrieved a max identity value from 98 to 100% allowing to unequivocally identify 28 species (40%). Of the remaining species, 10 (14.3%) were not identified due to the absence of reference sequences, and 32 (45.7%) where not identifiable or showed

ambiguous results. After an interpretation process, the number of correctly identified species rose to 32 (45.7%) (Table 1). Furthermore, the MDB allowed identifying at the genus level 50% of the

remaining not identifiable 28 species

Two hundred fifty five sequences were analyzed by BLAST analysis on GenBank and a max identity value ranging from 98 to 100% was obtained for 243 sequences (95.2%). Sequences from C. arctifrons, D. macrophthalmus, D. spariformis, O. melanura, R. haffara, and V. acromegalus gave lower identity values (95-97%). MDB allowed to unequivocally identifying 26 species (37.1%). For the remaining species, 18 (25.7%) were not identified due to the absence of reference sequences, 26 (37.1%) showed ambiguous results or were not identifiable to the species level. Once that this issues have been resolved the number of correctly identified species rose to 29 (41.4%). However, the 139 mini-barcode allowed to identify at the genus level 13 (56%) of the unidentifiable 23 species (Table 1).

The analysis of the MDB highlighted a similar discriminatory power on both databases, with a comparable number of species correctly identified (32 and 29, respectively) (Table 1). Even though the discriminatory power was lower than the FDB the MDB allowed to identify 60% and 65% of the species correctly identified analyzing the FDB on BOLD and GenBank, respectively. The higher discriminatory power associated to GenBank could be explained considering that, in this database, also shorter sequences are used by the identification engine.

Finally, the MDB allowed to unambiguously identify all the reference sequences as belonging to the Sparidae family. This is a further advantage when Porgies species are replaced with species belonging to different group of fish.

3.2.6 Phylogenetic analysis of the mini-barcode (MDB). The NJ phylogenetic analysis obtained with the MDB (Fig. 2SM), despite the average lower bootstrap values at species and subspecies level, were able to correctly cluster most of the reference sequences with the exception of: D. maroccanus, D. angolensis, D. canariensis, P. auratus, P. major, E. cardinalis, P. edita, S. emarginatum, S. cantharus, C. nodosus, C. calamus, D. sargus, D. noct, D. holbrookii, D.

argenteus, A. sivicolus, A. schlegelliii, D. cervinus, D. cervinus hottentotus, S. chrysops and S. caprinus.

413

414

415

437

3.3 Factors affecting PCR amplification when using full (FDB) and mini barcodes (MDB)

416 The DNA electrophoresis clearly showed that the cooked samples had a more degraded DNA 417 with respect to the fresh ones (data not shown) and that the degradation was extremely variable 418 among the samples. In some cases, the degradation patterns revealed a scarce presence of fragments 419 longer than 300bp. In particular, the level of degradation was higher in fish of smaller dimensions. No marked differences were observed between cooking processes. 420 421 In case of ethanol preserved specimens the degradation patterns were variable, with a smear in 422 the range of 100 to 1000bp, not always comparable between samples belonging to the same batch 423 (Institution). 424 Considering that other DNA samples of the same species were amplified with the same primers, 425 the amplification failure of the DNA extracted from fresh samples cannot be explained with an 426 improper primers annealing, but it might be more likely caused by DNA degradation. In fact, in 427 some cases, the DNA obtained from fresh tissues after 5 days of storing at 4°C can be fully degraded (Rodriguez-Ezpeleta, Mendibil, Álvarez & Cotano, 2013). 428 429 The reduced amplificability of the DNA extracted from the cooked products agrees with the observed degradation patterns. Thermal treatments, ingredients and storage conditions are among 430 431 the most important factors that can induce DNA degradation (Armani et al., 2013; Armani, 432 Castigliego, Tinacci, Gianfaldoni & Guidi, 2012d; Rodriguez-Ezpeleta et al., 2013). In fact, even 433 though the cooking procedure used in this study was not comparable to that caused by canning 434 processes, the amplificability was strongly affected. Similar problems were reported by Wong & 435 Hanner, (2008) and Cawthorn et al., (2012), who were not able to produce the FDB from smoked, pickled and canned products, confirming that DNA degradation is the main obstacle to the 436

application of the "classical DNA barcoding" approach.

The lower rate of DNA amplificability of ethanol-preserved could be due to the preservation of samples in formalin or in ethanol for a long time. Many evidences suggest that formaldehyde induces DNA degradation (Diaz-Cano & Brady, 1997), whereas alcoholic reagents yield superior results in terms of DNA amplificability (Srinivasan, Sedmak & Jewell, 2002). Therefore it is generally difficult to recover the FDB from museum specimens (Hajibabaei *et al.*, 2005). Nevertheless, even short-term conservation can affect DNA integrity. Rodriguez-Ezpeleta *et al.*, (2013) found that fish muscle stored in ethanol for 120 days showed a lower DNA integrity than those stored for only 30 days. In accordance, we found that samples that were soaked in ethanol just before the shipping showed a higher rate of DNA amplificability than those preserved for a longer time.

In the light of the aforesaid issues, it would be advisable to collect many samples per species in order to obtain at least 3 reference barcodes.

3.4 Mislabeling of commercial samples

Fifty eight samples (43 from market and 15 from restaurant) have been collected throughout Italy. The 55 DNA FDB (average length 653bp) and 58 MDB (average length 139bp) (55 extrapolated from the FDB) obtained have been compared to the databases and used for the phylogenetic analysis.

3.4.1 Full-DNA barcodes (FDB) comparison with BOLD and GenBank. A maximum species identity in the range of 98–100% was obtained in BOLD for 54 sequences (98%) and in GenBank for 47 sequences (85%). On the basis of the identity value obtained and considering the correction factors already discussed (section 3.2) for the reference sequences, 45 samples (83%) and 38 samples (81%) were unambiguously identified at the species level on BOLD and GenBank, respectively. Only considering a top match of 100% the number of MS identify at the species level rises to 50 (91%) on BOLD and to 42 (89%) on GenBank (Table 3SM). Even though, on both databases 100% of the remaining MS not identified at the species level were identified at the genus level, this did not allow to verify the traceability information on the remaining samples.

- Overall, the analysis performed on both databases matched and allowed to highlight 21
- mislabeled samples (38%). In particular, we found 7 (33%) mislabeled restaurants products and 14
- 466 (67%) mislabeled samples from retail food and large-scale markets distribution.
- 3.4.2 Mini DNA barcodes (MDB)comparison with BOLD and GenBank. A maximum species
- 468 identities in the range of 98-100% were obtained in BOLD for 58 sequences (100%) and in
- 469 GenBank for 57 sequences (98.2%). On the basis of the identity value obtained, and considering the
- correction factors already discussed (section 3.2), 37 samples (64%) and 42 samples (74%) were
- 471 unambiguously identified at the species level on BOLD and GenBank, respectively. Only
- considering a top match of 100% the number of MS identified to species level rises to 47 (81%) on
- BOLD and to 51 (89%) on GenBank (Table 3SM). The MDB confirmed the mislabeling already
- detected by the barcode. No additional mislabeling was found for the three MS for which only the
- short fragment was amplified.
- In summary, we found that FDB and MDB applied to MS were characterized by a similar
- discriminatory power on GenBank (89% vs 89%) while on BOLD a discrepancy was observed
- 478 (91% vs 81%). Interestingly, all the MS were correctly identified with the NJ analysis using the
- FDB (Fig. 1SM), while using the MDB 5 MS could not be unequivocally assigned to a species (Fig.
- 480 2SM).
- 481 *3.4.3 Mislabeled products: what and why?*
- This study confirmed that, as reported by Cawthorn *et al.*, (2012) and Stiles, Lahr, Lahey, Shaftel
- 483 & Bethel, (2011) more than one third of the commercialized fish is mislabeled.
- On the contrary, our data are quite different from most of the studies reporting that the
- 485 mislabeling rate is usually higher in processed products (Carvalho et al., 2011; Cawthorn et al.,
- 486 2012). In this work, 71% of the mislabeled samples were sold as whole fish while the rest were
- 487 fillets. This could be explained taking into consideration the high morphological similarity among
- 488 Porgies.

Some of the mislabeling, such as *S. salpa* sold as *S. auratus*, *Diplodus* spp. sold as *O. melanura*, and *Spicara maena* sold as *S. salpa*, could be voluntary and aimed at charging higher prices on low commercial value species.

Other cases were due to the improper use of commercial denomination, such as the utilization of a generic name for the whole genus rather than the specific commercial name stated in the Italian list: Seabream (Pagello) instead of Red Pandora (Pagello fragolino) for *P. erythrinus*, Seabream (Sarago) instead of Sharp snout seabream (Sarago pizzuto) for *D. puntazzo*, Dentex (Dentice) instead of Canary dentex (Dentice atlantico) for *D. canariensis*.

In some European countries, such as Italy, many different commercial names have been issued for the different species of Sparidae, while in the UK, all the species of the family Sparidae except *Boops boops* (Bogue), *Diplodus sargus* (White sea bream) and *Pagrus auratus* (Golden seabream) can be referred to as Porgy. The ratio among the total number of commercial denominations and the total number of Porgies species considered in the official lists of seafood products analyzed in this study reflects the different national approaches for the management of seafood products. In particular, the percentage of family coverage varies from more than 79% (Australia, Canada and Italy) to 2% for UK (Table 3). This discrepancy is probably due to different culinary traditions and to a different attention paid to the preservation of the local products (D'Amico, Armani, Castigliego, Sheng & Gianfaldoni, 2014). In this light, trade names associated to single species, which often include geographical adjectives, can clearly differentiate national products from the imported ones.

Unfortunately, the different approaches adopted from different countries can enormously complicate the fair commerce of seafood species.

Conclusion

In this study, the DNA barcoding was confirmed as a reliable approach for supporting the traceability in the seafood chain and ensure the correct information of consumers, in agreement with what reported by the EU Reg. No. 1379/2013.

The analysis of MS sequences and their comparison with our dataset of reference sequences, supported by the comparison performed on BOLD and GenBank, allowed to highlight commercial frauds in the trade of Porgies' species.

Moreover, considering that targeting a shorter region would increase the likelihood of successful amplification from degraded DNA, for the first time a mini DNA barcoding approach was proposed for the identification of seafood species. In fact, considering that it is not possible to establish *a priori* the degradation level of a DNA sample, the utilization of a MDB represents a valid, and sometimes the only, approach to recover molecular information from an unknown sample.

Finally, our work highlighted that both BOLD and Genbank still lack of reference sequences and host different kind of problematic sequences. For these reasons, it would be beneficial to use both the databases, supported by a NJ analysis, and to perform a careful and aware analysis and elaboration of the raw data in order to solve ambiguous results that could create misidentification.

Acknowledgments

The Authors wish to sincerely thank all the people who kindly provided reference tissues of Sparidae: Andy Bentley of Biodiversity Institute, University of Kansas (Lawrence KS, USA); Dr. Barbara A. Brown and Lowell Flanders of Department of Ichthyology, American Museum of Natural History (New York NY, USA); Christopher Caine and Peter Caine of Fishweights.net (Jeffreys Bay, South Africa); Dave Catania of California Academy of Sciences (San Francisco CA, USA); Dr. Prosanta Chakrabarty and Caleb McMahan of Louisiana State University, Museum of Natural Science (Baton Rouge LA, USA); Dr. Satoru Chiba of Center for Molecular Biodiversity Research, National Museum of Nature and Science (Ibaraki, Japan); Dr. Achille De Sanctis of Scoglitti Fish Market (Ragusa, Italy); Dr. Jonathan Deeds of US FDA Center for Food Safety and Applied Nutrition (College Park MD, USA); Dr. Arfang Diamanka of Laboratoire de Parasitologie Générale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar (Dakar, Sénégal); Dr. Paolo Galli of Biotechnology and Bioscience Department, University of Milan Bicocca (Milano, Italy); Gabriela M. Hogue of the North Carolina Museum of Natural Sciences

541 (Raleigh NC, USA); Erling Holm and Margaret Zur of Department of Natural History, Royal 542 Ontario Museum (Toronto, Canada); Dr. Seishi Kimura of Fisheries Research Laboratory, Mie 543 University (Mie, Japan); Mark Lisher of South African Institute for Aquatic Biodiversity (Grahamstown, South Africa); Terry A. Lott of Florida Museum of Natural History, University of 544 545 Florida (Gainesville FL, USA); Dr. Ione Madinabeitia of Department of Environmental Dynamics and Management, Hiroshima University (Hiroshima, Japan); Dr. Stefano Mariani of the School of 546 547 Environment & Life Sciences, University of Salford (Salford, UK); Mark McGrouther, Ichthyology, Australian Museum (Sydney, Australia); Dr. Gui M. Menezes of Departamento de 548 549 Oceanografia e Pescas, Universidade dos Açores (Horta, Portugal); Dr. Natacha Mesquita of Museu 550 Nacional de História Natural e da Ciência (Lisbon, Portugal); Dr. Gavin Partridge of Australian 551 Centre for Applied Aquaculture Research Challenger Institute of Technology (Fremantle, Australia); Dr. Mark Sabaj Pérez of Department of Ichthyology, The Academy of Natural Sciences 552 of Philadelphia (PA, USA); Dr. Matt E. Roberts of Mississippi Museum of Natural Science 553 554 (Jackson MS, USA); Dr. Hiroshi Senou of Kanagawa Prefectural Museum of Natural History (Kanagawa, Japan); Dr. Shao Kwang-Tsao of Biodiversity Research Center, Academia Sinica 555 (Taipei, Taiwan); Karen Shearer and Rod Asher of Cawthron Institute (Nelson, New Zealand); Dr. 556 557 Nir Stern of Steinhardt Museum of Natural History and National Research Center at Tel Aviv University (Tel Aviv, Israel); Dr. Jose Tavera of University of California, Davis (CA, USA); Dr. 558 559 Alfred W. Thomson and Molly Phillips of Florida Fish and Wildlife Conservation Commission, 560 Fish and Wildlife Research Institute (St. Petersburg FL, USA); Dr. Nicholas Tuckey of The New 561 Zealand Institute for Plant & Food Research (Nelson, New Zealand); Dr. H.J. Walker of Marine 562 Vertebrate Collection Scripps Institution of Oceanography, University of California (La Jolla CA, 563 USA) and Dr. Gregory J. Watkins-Colwell of Yale Peabody Museum of Natural History (New 564 Haven CT, USA)

References

- 1. Akazaki, M. (1962). Studies on the spariform fishes. Anatomy, phylogeny, ecology, and
- 569 taxonomy. Misaki Marine Biology Institute, Kyoto University, Spec. Rep. 1. Osaka: Kosugi Ltd.
- 2. Antonucci, F., Costa, C., Aguzzi, J., & Cataudella, S. (2009). Ecomorphology of Morpho-
- 571 Functional Relationships in the Family of Sparidae: A Quantitative Statistic Approach. *Journal of*
- 572 *Morphology*, 270, 843–855.
- 3. April, J., Mayden, R. L., Hanner, R., & Bernatchez, L. (2011). Genetic calibration of species
- diversity among North America's freshwater fishes. *PNAS*, 108(26), 10602–10607.
- 4. Armani, A., D'Amico, P., Castigliego, L., Sheng, G., Gianfaldoni, D., & Guidi, A. (2012)a.
- 576 Mislabeling of an "unlabelable" seafood sold on the European market: the jellyfish. *Food Control*,
- 577 26(2), 247-251.
- 578 5. Armani, A., Castigliego, L., Tinacci, L., Gandini, G., Gianfaldoni, D., & Guidi, A. (2012)b.
- 579 A rapid PCR-RFLP method for the identification of Lophius species. European Food Research and
- 580 *Technology*, 235(2), 253-263.
- 6. Armani, A., Castigliego, L., & Guidi, A. (2012)c. Fish fraud: The DNA challenge. CAB
- 582 Animal Science Reviews, 7, 227-239.
- 7. Armani, A., Castigliego, L., Tinacci, L., Gianfaldoni, D., & Guidi, A. (2012)d. Multiplex
- 584 conventional and real-time PCR for fish species identification of Bianchetto (juvenile form of
- 585 Sardina pilchardus), Rossetto (Aphia minuta), and Icefish in fresh, marinated and cooked products.
- 586 *Food Chemistry*, 133(1), 184-192.
- 8. Armani, A., Tinacci, L., Giusti, A., Castigliego, L., Gianfaldoni, D., & Guidi, A. (2013).
- What is inside the jar? Forensically informative nucleotide sequencing (FINS) of a short
- 589 mitochondrial COI gene fragment reveals a high percentage of mislabeling in jellyfish food
- 590 products. Food Research International, 54(2), 1383-1393.
- 9. Armani, A., Tinacci, L., Xiong, X., Titarenko, E., Guidi, A., & Castigliego, L. (2014).
- Development of a simple and cost-effective bead-milling method for DNA extraction from fish
- muscles. Food Analytical Methods, 7, 946–955.
- 10. Barbuto, M., Galimberti, A., Ferri, E., Labra, M., Malandra, R., Galli, P., & Casiraghi, M.
- 595 (2010). DNA barcoding reveals fraudulent substitutions in shark seafood products: the Italian case
- of "palombo" (Mustelus spp.). Food Research International, 43, 376–381.
- 11. Carvalho, D. C., Neto, D. A., Brasil, B. S., & Oliveira, D. A. (2011). DNA barcoding
- 598 unveils a high rate of mislabeling in a commercial freshwater catfish from Brazil. Mitochondrial
- 599 *DNA*, 22(S1), 97-105.

- 12. Cawthorn, D. M., Steinman, H. A., & Witthuhn, R. C. (2012). DNA barcoding reveals a
- 601 high incidence of fish species misrepresentation and substitution on the South African market. Food
- 602 Research International, 46, 30–40.
- 603 13. Clarke, S., (2009). Understanding China's fish trade and traceability. TRAFFIC, East Asia,
- Available at www.traffic.org/fisheries-reports/traffic_pub_fisheries9.pdf Accessed 22.03.13
- 605 14. Costa, F. O., Landi, M., Martins, R., Costa, M. H., Costa, M. E., Carneiro, M., Alves, M. J.,
- Steinke, D., & Carvalho, G. R. (2012). A ranking system for reference libraries of DNA barcodes:
- application to marine fish species from Portugal. *PloSone*, 7(4), e35858.
- 15. D'Amico, P., Armani, A., Castigliego, L., Sheng, G., Gianfaldoni, D., & Guidi, A. (2014).
- 609 Seafood traceability issues in Chinese food business activities in the light of the European
- 610 provisions. *Food Control*, 35, 7-13.
- 611 16. Díaz-Cano, S. J., &Brady, S. P. (1997). DNA extraction from formalin-fixed, paraffin-
- embedded tissues: Protein digestion as a limiting step for retrieval of high-quality DNA. *Diagnostic*
- 613 *Molecular Pathology*, 6(6), 342-346.
- 17. Di Pinto, A., Di Pinto, P., Terio, V., Bozzo, G., Bonerba, E., Ceci, E., & Tantillo, G. (2013).
- DNA barcoding for detecting market substitution in salted cod fillets and battered cod chunks. Food
- 616 Chemistry, 141, 1757–1762.
- 617 18. Environmental Justice Foundation (2012). Pirate fishing exposed: the fight against illegal
- 618 fishing in West Africa and the EU. Avaiable at:
- 619 http://ejfoundation.org/sites/default/files/public/Pirate%20Fishing%20Exposed.pdf
- 19. European Commission (EC) Council Regulation No. 104/2000 of 17 December 1999. (21st
- 621 January 2000). On the common organization of the markets in fishery and aquaculture products.
- 622 Official Journal of the European Union, L 17/22.
- 20. European Union (EU) Commission Implementing Regulation No. 404/2011 of 8 April 2011.
- 624 (30th April2011). Laying down detailed rules for the implementation of Council Regulation (EC)
- No 1224/2009 establishing a Community control system for ensuring compliance with the rules of
- the Common Fisheries Policy. Official Journal of the European Union, L 112/1.
- 21. European Union (EU) Regulation No 1379/2013 of the European Parliament and of the
- 628 Council of 11 December 2013 on the common organization of the markets in fishery and
- aquaculture products, amending Council Regulations (EC) No 1184/2006 and (EC) No 1224/2009
- and repealing Council Regulation (EC) No 104/2000
- 631 22. Golani, D. (1992). Rhabdosargus haffara (Forsskål, 1775) and Sphyraena flavicauda
- Rüppell, 1833—new Red Sea immigrants in the Mediterranean. Journal of Fish biology, 40(1),
- 633 139-140.

- 634 23. Hajibabaei, M., de Waard, J. R., Ivanova, N. V., Ratnasingham, S., Dooh, R. T., Kirk, S. L.,
- Mackie, P. M., & Hebert, P. D. N. (2005). Critical factors for assembling a high volume of DNA
- barcodes. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 1959-1967.
- 637 24. Hajibabaei, M., Singer, G. A. C., Hebert, P. D. N., & Hickey, D. A. (2007) DNA barcoding:
- 638 how it complements taxonomy, molecular phylogenetics and population genetics. Trends in
- 639 *Genetics*, 23, 167–172.
- 25. Handy, S. M., Deeds, J. R., Ivanova, N. V., Hebert, P. D. N., Hanner, R. H., Ormos, A.,
- Weigt, L. A., Moore, M. M., & Yancy, H. F. (2011). A single-laboratory validated method for the
- 642 generation of DNA barcodes for the identification of fish for regulatory compliance. Journal of
- 643 Association of Official Analytical Chemists International, 94, 201-210.
- 26. Hebert, P. D. N., Ratnasingham, S., & de Waard, J. R. (2003). Barcoding animal life:
- 645 cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the
- 646 *Royal Society of London. Series B*, 270, 596–599.
- 27. Hsu, T. H., Guillén Madrid, A. G., Burridge, C. P., Cheng, H. Y., & Gwo, J. C. (2011).
- Resolution of the Acanthopagrus black seabream complex based on mitochondrial and amplified
- 649 fragment-length polymorphism analyses. *Journal of fish biology*, 79(5), 1182-1192.
- 28. Iwatsuki, Y., Kume, M., & Yoshino, T. (2010). A new species, Acanthopagrus pacificus
- from the Western Pacific (Pisces, Sparidae). Bulletin of the National Science Museum, 36, 115-130.
- 652 29. Keskin, E., & Atar, H. H. (2013). DNA barcoding commercially important fish species of
- Turkey. *Molecular Ecology Resources*, 13(5), 788-797.
- 654 30. Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions
- 655 through comparative studies of nucleotide sequences. *Journal of Molecular Evolution*, 16, 111–120.
- 31. Meusnier, I., Singer, G. A., Landry, J. F., Hickey, D. A., Hebert, P. D., & Hajibabaei, M.
- 657 (2008). A universal DNA mini-barcode for biodiversity analysis. *BMC genomics*, 9(1), 214.
- 658 32. Nelson, J. S., (2006). Fishes of the world. (6th ed.). Hoboken, New Jersey: John Wiley &
- 659 Sons, Inc.
- 33. Ratnasingham, S., & Hebert, P. D. (2007) BOLD: The Barcode of Life Data System
- 661 (www.barcodinglife.org). *Molecular Ecology Notes*, 7, 355–364.
- 34. Ratnasingham, S., & Hebert, P. D. (2013). A DNA-based registry for all animal species: The
- Barcode Index Number (BIN) System. *PLoSOne*, 8(7), e66213.
- 35. Rodriguez-Ezpeleta, N., Mendibil, I., Álvarez, P., &Cotano, U. (2013). Effect of fish
- sampling and tissue storage conditions in DNA quality: considerations for genomic studies. Revista
- de Investigación Marina, AZTI-Tecnalia, 20(6), 77-87

- 36. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for
- reconstructing phylogenetic trees. *Molecular Biology and Evolution*, 4, 406–425.
- 37. Smith, J. L.B. & Smith M. M. (1986). *Sparidae*. In Smith, M. M., & Heemstra P. C. (Eds.),
- 670 Smiths' sea fishes. Berlin: Springer-Verlag.
- 38. Srinivasan, M., Sedmak, D., & Jewell, S. (2002). Effect of fixatives and tissue processing on
- the content and integrity of nucleic acids. *The American Journal of Pathology*, 161(6), 1961-1971.
- 39. Steffens, D. L., Sutter, S. L., & Roemer, S. C. (1993). An alternate universal forward primer
- for improved automated DNA sequencing of M13. *Biotechniques*, 15, 580-582.
- 40. Stiles, M. L., Lahr, H., Lahey, W., Shaftel, E., Bethel, D., Falls, J., & Hirshfield, M. S.,
- 676 (2011). Oceana, Bait and switch: how seafood fraud hurts our Oceans, our wallets and our health.
- http://oceana.org/sites/default/files/reports/Bait_and_Switch_report_2011.pdf
- 41. Summerer, M., Hanel, R., & Sturmbauer, C. (2001). Mitochondrial phylogeny and
- 679 biogeographic affinities of sea breams of the genus Diplodus (Sparidae). Journal of Fish Biology,
- 680 59(6), 1638-1652.
- 42. Tabata, K., & Taniguchi, N. (2000). Differences between *Pagrus major* and *Pagrus auratus*
- through mainly mtDNA control region analysis. Fisheries Science, 66(1), 9-18.
- 43. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular
- 684 Evolutionary Genetics Analysis version 6.0. *Molecular Biology and Evolution*, 30, 2725-2729.
- 685 44. Ward, R. D., Holmes, B. H., & Yearsley, G. K. (2008). DNA barcoding reveals a likely
- second species of Asian sea bass (barramundi) (Lates calcarifer). Journal of Fish Biology, 72, 458–
- 687 463.
- 45. Ward, R. D., Hanner, R., & Hebert, P. D. N. (2009). The campaign to DNA barcode all
- fishes, FISH-BOL. *Journal of Fish Biology*, 74, 329-356.
- 46. Wong, E.H.K., & Hanner, R.H. (2008). DNA barcoding detects market substitution in North
- 691 American seafood. *Food Research International*, 41, 828–837.
- 47. Yancy, H. F., Zemlak, T. S., Mason, J. A., Washington, J. D., Tenge, B. J., Nguyen, N. L.,
- Barnett, J. D., Savary, W. E., Hill, W. E., Moore, M. M., Fry, F. S., Randolph, S. C., Rogers, P. L.,
- & Hebert, P. D. (2008). Potential use of DNA barcodes in regulatory science: applications of the
- Regulatory Fish Encyclopedia. *Journal of Food Protection*, 71, 210-217.
- 48. Zhang, D.X., Hewitt G.M. (1996). Nuclear integrations: challenges for mitochondrial DNA
- 697 markers. *Trends in Ecology & Evolution*, 6, 247-251.

*Highlights (for review)

- Similarities among Sparidae species complicate morphological identification
- DNA barcoding has proven to be a useful tool for seafood products inspection
- Full and mini-DNA barcodes have been compared for the identification of Sparidae
- Full-barcode shows higher discriminatory ability but a lower amplification rate
- Analysis of marketed samples confirmed widespread mislabeling in the seafood chain

		Full-DNA baı	rcodes (655bp)	Mini-DNA bar	rcodes (139bp)		
		IDs BOLD	BLAST NCBI	IDs BOLD	BLAST NCBI		
			Raw	data			
Correctly identified	Sequences	134 – 59.6%	127 – 56.4%	97 – 38.6%	97 – 38%		
Correctly identified	Species	39 – 57.4%	37 – 54.4%	28 – 40%	26 – 37.1%		
Problematic*	Sequences	73 –32.4%	59 – 26.2%	132 – 52.6%	112 – 44%		
r Toblematic.	Species	20 -29.4%	14 - 20.6%	32 – 45.7%	26 – 37.1%		
No reference company	Sequences	18 – 8%	39 – 17.3%	22 – 8.8%	46 – 18%		
No reference sequences	Species	9 – 13.2%	17 – 25%	132 – 52.6% 112 – 44% 32 – 45.7% 26 – 37.1% 46 – 18% 10 – 14.3% 18 – 25.7% 11t elaboration 110 – 43.8% 114 – 44.7% 32 – 45.7% 29 – 41.4%			
			After result elaboration				
Connectly identified	Sequences	187 – 83%	161 – 71.5%	110 – 43.8%	114 – 44.7%		
Correctly identified	Species	53 – 78%	44 – 64.7%	32 – 45.7%	29 – 41.4%		
No reference so successor	Sequences	18 – 8%	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	46 – 18%			
No reference sequences	Species	9 – 13.2%	17 – 25%	10 – 14.3%	18 – 25.7%		
Non identifiable	Sequences	20 – 9%	25 – 11.2%	119 – 47.4%	95 – 37.2%		
Non identifiable	Species	6 – 8.8%	7 –10.3 %	28 – 40%	23 – 32.8%		

Table 1. Summary of the results of the IDs analysis on BOLD and of the BLAST analysis on GenBank using the full and the mini DNA barcodes (655bp and 139bp, respectively), before and after the elaboration of the results. * Include the sequences that were not identified due to the presence of sequences belonging to misidentified specimens in the databases or to close relationship between species.

Identification	Conflicting Taxon in BIN	Rank of Conflict	BIN	BIN Total Members	BIN Tax Variation	Possible explanation	
Boops boops	Boops	Genus	BOLD:AAB7806	59	Boops [78], Oblada [2]	Sequence mislabeling	
Cheimerius nufar	Cheimerius	Genus	BOLD:AAE2592	25	Cheimerius [24], Pagrus [1]	Sequence mislabeling	
Evynnis cardinalis	Evynnis	Genus	BOLD:AAC2906	22	Evynnis [19], Parargyrops [3]	Sequence mislabeling	
Evynnis tumifrons	Evynnis	Genus	BOLD:AAD0508	11	Evynnis [11], Dentex [2]	Sequence mislabeling	
Pagellus acarne	Pagellus	Genus	BOLD:AAC3611	35	Pagellus [45], Oblada [2]	Sequence mislabeling	
Pagellus bellottii	Pagellus	Genus	BOLD:AAF8829	8	Pagellus [5], Pagrus [3]	Sequence mislabeling	
Pagellus erythrinus	Pagellus	Genus	BOLD:AAC8525	39	Pagellus [52], Oblada [2]	Sequence mislabeling	
Pagrus pagrus	Pagrus	Genus	BOLD:AAC8526	58	Pagrus [54], Oblada [4], Pagellus [2]	Sequence mislabeling	
Rhabdosargus haffara	Rhabdosargus	Genus	BOLD:ACG7708	3	Rhabdosargus [2], Sparus [1]	Misidentification of specimen	
Sarpa salpa	Sarpa	Genus	BOLD:AAE4266	41	Sarpa [41], Boops [1]	Sequence mislabeling	
Virididentex acromegalus	Virididentex	Genus	BOLD:ABX7583	8	Pagellus [5], Virididentex [3]	Sequence mislabeling	
Acanthopagrus pacificus	Acanthopagrus pacificus	Species	BOLD:ACF5415	7	Acanthopagrus pacificus [5], A. berda [2]	Misidentification of specimen	
Acanthopagrus schlegelii	Acanthopagrus schlegelii				Acanthopagrus schlegelii [13], A. schlegelii	Sub-species relationship	
Acanthopagrus sivicolus	Acanthopagrus sivicolus	Species	BOLD:AAF8876	29	schlegelii [11], A. sivicolus [3]	Close phylogenetic relationship	
Argyrops bleekeri	Argyrops bleekeri	Species	BOLD:AAB3719	13	Argyrops bleekeri [12], A. spinifer [1]	Sequence mislabeling	
Calamus proridens	Calamus proridens	Species	BOLD:AAU3000	3	Calamus leucosteus [2], C. proridens [1]	Close phylogenetic relationship	
Dentex angolensis	Dentex angolensis	Species	BOLD:AAE3470	10	Dentex macrophthalmus [5], D. angolensis [3], D.	Sequence mislabeling	
Dentex maroccanus	Dentex maroccanus	Species	BOLD.AAL5470	10	maroccanus [2]	Sequence mistabeting	
Diplodus cervinus hottentotus	Diplodus cervinus hottentotus	Species	BOLD:AAD3631	34	Diplodus cervinus [26], D. fasciatus[5], D. cervinus hottentotus [3]	Subspecies	
Diplodus noct	Diplodus noct				Diplodus sargus [42], D. capensis [11], D. noct [3],		
Diplodus sargus	Diplodus sargus	Species	BOLD:ACE3794	62	D. sargus helenae [2], D. sargus ascensionensis [2], D. sargus sargus [1], D. kotschyi [1]	Subspecies	
Diplodus vulgaris	Diplodus vulgaris	Species	BOLD:AAC2260	47	Diplodus vulgaris [60], D. prayensis [6], D. sargus [2], D. fasciatus [1]	Subspecies	
Pagrus major Pagrus auratus	Pagrus major Pagrus auratus	Species	BOLD:AAC0553	43	Pagrus major [21], Pagrus auratus [19]	Sub-species relationship (Tabata et al. 2000)	
Stenotomus caprinus Stenotomus chrysops	Stenotomus caprinus Stenotomus chrysops	Species	BOLD:AAC4538	29	Stenotomus chrysops [24], S. caprinus [4]	Misidentification of specimen	

 Table 2: BIN discordance report.

Country	N° of commercial denominations	N° of species	Percentage of coverage
Italy	28	35	80%
Spain	27	41	65%
UK	3	113	2%
France	36	47	76%
Germany	21	49	43%
USA	6	57	10%
Canada	23	29	79%
Australia	10	10	100%

Table 3. Percentage of coverage of the commercial denominations for the Sparidae family in different Countries.

Scientific Name	Sparidae Official Trade Denominations								
			Europe			English name			
	Italy	Spain	France	Germany	United Kingdom ^a	USA	Canada	Australia	
Acanthopagrus australis								Yellowfin Bream	Surf bream
Acanthopagrus berda						Seabream, Porgie		Pikey Bream	Goldsilk seabream
Acanthopagrus bifasciatus	Pagro bifasciato								Twobar seabream
Acanthopagrus butcheri								Black Bream	N.R.
Acanthopagrus latus								Western Yellowfin Bream	Yellowfin seabream
Acanthopagrus palmaris								Northwest Black Bream	N.R.
Archosargus probatocephalus			Rondeau mouton			Sheepshead	Sheepshead Porgy, Seabream, Porgy		Sheepshead
Archosargus rhomboidalis						Sea Bream			Western Atlantic seabream
Argyrops bleekeri						Bream	Taiwan Thai, Bream	FrypanBream	Taiwan tai
Argyrops filamentosus	Pagro indiano		Spare de l'Océan indien						Soldier bream
Argyrops spinifer	Pagro reale		Spare royal			Bream	Long- spinedRedBream		King soldier bream
Boops boops	Boga	Boga	Bogue	Gelbstriemen	Bogue	Bream or Bogu e	Bream		Bogue
Calamus arctifrons			Daubenet (Calamus spp.)			Porgy	Porgy (Calamus spp.)		Grass porgy
Calamus bajonado			Daubenet (Calamus spp.)			Porgy (Calamus spp.)	Porgy (Calamus spp.)		Jolthead porgy
Calamus brachysomus			Daubenet (Calamus spp.)			Porgy (Calamus spp.)	Porgy (Calamus spp.)		Pacific porgy
Calamus calamus		Pezpluma	Daubenet (Calamus spp.)			Porgy (Calamus spp.)	Porgy (Calamus spp.)		Saucereye porgy

Calamus campechanus			Daubenet (Calamus spp.)		Porgy (Calamus spp.)	Porgy (Calamus spp.)		N.R.
ситреспаниз			Daubenet					
Calamus cervigoni			(Calamus spp.)		Porgy (Calamus spp.)	Porgy (Calamus spp.)		N.R.
Calamus			Daubenet		Porgy	Porgy		N.R.
leucosteus			(Calamus spp.)		Torgy	(Calamus spp.)		IV.K.
Calamus mu			Daubenet		Porgy	Porgy		N.R.
			(Calamus spp.)		(Calamus spp.)	(Calamus spp.)		
Calamus nodosus			Daubenet (Calamus spp.)		Porgy (Calamus spp.)	Porgy		N.R.
			Daubenet			D		C1 1 1
Calamus penna			(Calamus spp.)		Porgy (Calamus spp.)	Porgy (Calamus spp.)		Sheepshead porgy
Calamus			Daubenet		Porgy	Porgy		
pennatula			(Calamus spp.)		(Calamus spp.)	(Calamus spp.)		N.R.
Calamus			Daubenet		Porgy	Porgy		Littlehead
proridens			(Calamus spp.)		(Calamus spp.)	(Calamus spp.)		porgy
Calamus taurinus			Daubenet		Porgy	Porgy		N.R.
Catamus taurinus			(Calamus spp.)		(Calamus spp.)	(Calamus spp.)		14.14.
Cheimerius nufar (Dentex nufar)	Dentale indiano (Dentice rosa)	Dentón nufar						Santer seabream
Chrysoblephus gibbiceps				Stumpfnase, Rote				Red stumpnose seabream
Pagrus auratus (Chrysophrys auratus)	Pagro rosa indo pacifico				Porgy		Snapper	N.R.
Dentex abei		Dentones (Dentex spp.)		Brasse, Meer, Dorade (Dentex spp.)				N.R.
Dentex angolensis	Dentice atlantico	Dentones (Dentex spp.)	Denté angolais	Brasse, Meer, Dorade (Dentex spp.)				Angolan dentex
Dentex barnardi	Dentice atlantico	Dentones (Dentex spp.)		Brasse, Meer, Dorade (Dentex spp.)				Barnard dentex
Dentex	Dentice	Denton Canario	Denté des	Brasse, Meer,				Canary

canariensis	atlantico		Canaries, Denté à tâche rouge	Dorade (Dorade and)			dentex
Dentex congoensis		Dentones (Dentex spp.)	Denté congolais	(Dentex spp.) Kongo-Zahn- Brasse			Congo dentex
Dentex dentex	Dentice	Denton, Denton europeo	Denté commun, denté	Zahn-Brasse	Porgy	Dentex , Common Dentex	Common dentex
Dentex fourmanoiri		Dentones (Dentex spp.)		Brasse, Meer, Dorade (Dentex spp.)			N.R.
Dentex gibbosus	Dentice gibboso	Sama de pluma	Denté rose	Brasse, Dickkopfzahn	Porgy		Pink dentex
Dentex macrophthalmus	Dentice occhione	Cachucho	Denté à gros yeux	Brasse, Großaugenzahn			Large-eye dentex
Dentex maroccanus	Dentice marocchino	Sama	Denté du Maroc	Brasse, MarokkanischeZ ahn			Morocco dentex
Dentex spariformis		Dentones (Dentex spp.)		Brasse, Meer, Dorade (Dentex spp.)			N.R.
Diplodus annularis	Sarago sparaglione	Raspallon	Sparaillon commun, sparaillon	Brasse, Meer, Dorade (Diplodus spp.)	Porgy (Diplodus spp.)		Annular seabream
Diplodus argenteus argenteus	Sarago atlantico ^b	Sargos (Diplodus spp.)		Brasse, Meer, Dorade (Diplodus spp.)	Porgy (Diplodusargen teus)		South American silver porgy
Diplodus argenteus caudimacula	Sarago atlantico ^b	Sargos (Diplodus spp.)		Brasse, Meer, Dorade (Diplodus spp.)	Porgy (Diplodusargen teus)		N.R.
Diplodus bellottii		Sargos (Diplodus spp.)	Sparaillon africain, sparaillon	Brasse, Meer, Dorade (Diplodus spp.)	Porgy (Diplodus spp.)		Senegal seabream
Diplodus bermudensis		Sargos (Diplodus spp.)		Brasse, Meer, Dorade (Diplodus spp.)	Porgy (Diplodus spp.)		N.R.
Diplodus capensis		Sargos (Diplodus spp.)		Brasse, Meer, Dorade (Diplodus spp.)	Porgy (Diplodus spp.)		N.R.
Diplodus cervinus cervinus	Sarago ^b	Sargo breado	Sar à grosses lèvres, Sar	Bänder-Brasse	Porgy (Diplodus spp.)		Zebra seabream
Diplodus cervinus hottentotus	Sarago ^b	Sargos		Brasse, Meer, Dorade	Porgy (<i>Diplodus</i> spp.)		N.R.

		(Diplodus spp.)		(Diplodus spp.)			
Diplodus cervinus omanensis	Sarago ^b	Sargos (Diplodus spp.)		Brasse, Meer, Dorade (<i>Diplodus</i> spp.)	Porgy (Diplodus spp.)		N.R.
Diplodus fasciatus		Sargos (Diplodus spp.)		Brasse, Meer, Dorade (Diplodus spp.)	Porgy (Diplodus spp.)		Banded seabream
Diplodus holbrookii		Sargos (Diplodus spp.)		Brasse, Meer, Dorade (Diplodus spp.)	Porgy	Salema	Spottail seabream
Diplodus noct		Sargos (Diplodus spp.)		Brasse, Meer, Dorade (Diplodus spp.)	Porgy (Diplodus spp.)		Red Sea seabream
Diplodus prayensis		Sargos (Diplodus spp.)	Sar à tête noire du Cap Vert	Brasse, Meer, Dorade (Diplodus spp.)	Porgy (Diplodus spp.)		Two-banded seabream
Diplodus puntazzo	Sarago pizzuto	Sargo picudo	Sar à museau pointu, sar	Spitz-Brasse	Porgy		Sharpsnout seabream
Diplodus sargus ascensionis	Sarago ^b	Sargo ^b		Weiß-Brasse, GroßeGeiß- Brasse ^b	Porgy (Diplodus spp.)		N.R.
Diplodus sargus cadenati	Sarago ^b	Sargo ^b		Weiß-Brasse, GroßeGeiß- Brasse ^b	Porgy (Diplodus spp.)		N.R.
Diplodus sargus helenae	Sarago ^b	Sargo ^b		Weiß-Brasse, GroßeGeiß- Brasse ^b	Porgy (Diplodus spp.)		N.R.
Diplodus sargus kotschyi	Sarago ^b	Sargo ^b		Weiß-Brasse, GroßeGeiß- Brasse ^b	Porgy (Diplodus spp.)		N.R.
Diplodus sargus lineatus	Sarago ^b	Sargo ^b		Weiß-Brasse, GroßeGeiß- Brasse ^b	Porgy (Diplodus spp.)		N.R.
Diplodus sargus sargus	Sarago ^b	Sargo ^b	Sarcommun, sar	Weiß-Brasse, GroßeGeiß- Brasse ^b	Porgy (Diplodus spp.)		White seabream
Diplodus vulgaris	Sarago	Mojarra	Sar à tête noire, sar	Zweibinden- Brasse	Porgy (Diplodus spp.)		Common two-banded seabream
Evynnis tumifrons					Sea Bream		N.R.

					(Dentex tumifrons)		
Lagodon rhomboides					Porgy	Pinfish	Pinfish
Lithognathus lithognathus			Marbré d'Afrique, dorade-marbré				White steenbras
Lithognathus mormyrus	Mormora	Herrera	Marbré commun, dorade-marbré	Marmor-Brasse, Meer-Brasse, Dorade			Sand steenbras
Oblada melanura	Occhiata	Oblada	Oblade	Brand-Brasse			Saddled seabream
Pagellus acarne	Pagello	Aligote	Pageot acarné	Achselfleck- Brasse	Sea Bream (Pagellus spp.)	Sea Bream, Axillary Seabream, Axillary bream	Axillary seabream
Pagellus affinis	Pagello indiano	Besugo arabe	Pageot d'Arabie, Pageot de la mer d'Oman	Brasse, Meer, Dorade (<i>Pagellus</i> spp.)	Sea Bream (Pagellus spp.)		Arabian pandora
Pagellus bellottii	Pagello atlantico	Brecachata	Pageot à tache rouge, Dorade rouge	Brasse, Meer, Dorade (<i>Pagellus</i> spp.)	Sea Bream (Pagellus spp.)	Red Pandora, Pandora	Red Pandora
Pagellus bogaraveo	Pagello	Besugo	Pageot rose, Dorade rose	Grau-Barsch, See-Karpfen	Sea Bream (Pagellus spp.)	Seabream , Porgy	Blackspot (=red) seabream
Pagellus erythrinus	Pagello fragolino	Breca	Pageot mommun, Pageot	Rot-Brasse	Bream		Common pandora
Pagellus natalensis		Besugos (Pagellus spp.)		Brasse, Meer, Dorade (<i>Pagellus</i> spp.)	Sea Bream (Pagellus spp.)		Natal pandora
Pagrus africanus	Pagro africano			Brasse, Meer, Dorade (Pagrus spp.)			Southern common seabream
Pagrus auratus							Silver seabream
Pagrus auriga	Pagro	Urta	Pagre rayé	Brasse, Meer, Dorade (Pagrus spp.)			Redbanded seabream
Pagrus caeruleostictus	Pagro	Zapata	Pagre à points bleu, Dorade	Brasse, Meer, Dorade		Seabream, Porgy, Bluespotted	Bluespotted seabream

				(Pagrus spp.)		Seabream		
Pagrus major	Pagro del Giappone			Brasse, Meer, Dorade (Pagrus spp.)	Porgy, Sea Bream	Silver Seabream, Japanese Seabream, Genuine Porgy		Japanese seabream
Pagrus pagrus	Pagro	Pargo		Sack-Brasse	Porgy	Seabream, Red Porgy, Porgy		Red porgy
Polysteganus coeruleopunctatus			Denté à points bleu					Blueskin seabream
Pterogymnus laniarius			Panga de l'Atlantique S- E Spare panga		Porgy			Panga seabream
Rhabdosargus globiceps			Sargue de l'Atlangique SE.	Stumpfnase, Weiße				White stumpnose
Rhabdosargus sarba	Sarago dorato		Sarguedorée				Tarwhine	Goldlined seabream
Sarpa salpa	Salpa	Salema	Saupe	Goldstriemen				Salema
Sparidentex hasta							SobaityBream	Sobaity seabream
Sparus aurata	Orata	Dorada		Gold-Brasse		Gilthead Bream	Bream	Gilthead seabream
Spondyliosoma cantharus	Tanuta	Chopa	Griset, Doradegrise	Meer-Brasse Streifen-Brasse, Dorade				Black seabream
Stenotomus caprinus					Porgy	Shiner, Seabream, Porgy,Longspined Porgy		Longspine porgy
Stenotomus chrysops					Porgy, Scup	Scup,Porgy		Scup

Table 1 SM. Official Trade Names of the species of commercial interest belonging to the Sparidae family according to the lists of Italy (Ministerial Decree of the Italian Minister of Agriculture, Food and Forestry (MIPAAF) of 27th March 2002 and subsequent integrations), Spain (Resolución de 22 Marzo 2011 de la Secretaría General del Mar), France (http://www.economie.gouv.fr/dgccrf/Consommation/Etiquetage-des-produits/Produits-de-la-

mer-et-d-eau-douce/Listes-des-denominations-commerciales),

Germany

(http://www.fischinfo.de/pdf/HANDELSBEZEICHNUNGEN %28DEUTSCH%29.pdf), United Kingdom (Food Standard Agency of United Kingdom), USA (US Food and Drug Administration (USFDA), Regulatory Fish Encyclopedia (RFE), 2012), Canada (Canadian Food Inspection Agency, CFIA Fish List, 2012), Australia (Australia Government, Seafood Services Australia Ltd Fishery Research Development Corporation). Moreover, the FAO English names are reported (^aAquatic Sciences and Fisheries Information System (ASFIS) http://www.fao.org/fishery/collection/asfis/en).

^aFor all species of the family Sparidae except *Boops boops* the legal name is Sea bream or Porgy;

^bTrade denomination assigned to the species;

NR = Not Reported.

.

Species	Institution	Number of samples	Full-DNA barcoding region (655bp)	Mini DNA barcoding region (139bp)	Provenience (FAO Area)	
Acanthopagrus australis	Australian Museum, Sydney, NSW, Australia	1	1	-	81	
A cauthon a onua honda	Biodiversity Research Center, Academia Sinica Taipei, Taiwan	4	4	-	61	
Acanthopagrus berda	Museum of Natural Science, Louisiana State University Baton Rouge, LA, USA	1	1	-	71	
Acanthopagrus bifasciatus	Department of Biotechnology and Biosciences University of Milan Bicocca Milan, Italy	3	0	0	51.1	
	Academy of Natural Sciences, Ichthyology Drexel University Philadelphia, Pennsylvania, USA	1	0	0	57.5.2	
Acanthopagrus butcheri	Australian Center for Applied Acquaculture Research Challenger Institute of Technology Fremantle Freemantle, WA, Australia	7	7	-	57	
	Australian Museum, Sydney, NSW, Australia	1	1	-	81	
	Fisheries Research Laboratory, Mie University Mie, Japan	2	2	-		
Acanthopagrus latus	Center for Molecular Biodiversity Research National Museum of Nature and Science Tsukuba, Ibaraki, Japan	3	3	-	61	
	This study	1	1	-		
Acanthopagrus pacificus ^a	Center for Molecular Biodiversity Research National Museum of Nature and Science Tsukuba, Ibaraki, Japan	3	2	1	61	
Acanthopagrus palmaris	Australian Museum, Sydney, NSW, Australia	1	1	-	57	
	Biodiversity Research Center, Academia Sinica Taipei, Taiwan	4	3	1	61	
Acanthopagrus schlegelii ^a	Fisheries Research Laboratory, Mie University Mie, Japan	2	2	-		
	Kanagawa Prefectural Museum of Natural History Odawara, Kanagawa, Japan	1	0	0		
Acanthopagrus sivicolus ^a	Center for Molecular Biodiversity Research	3	3	-	61	

	National Museum of Nature and Science Tsukuba, Ibaraki, Japan					
	Biodiversity Institute, University of Kansas Lawrence, KS, USA	2	1	0		
	North Carolina Museum of Natural Sciences Raleigh, NC, USA	1	1	-		
Archosargus	Fish and Wildlife Research Institute St. Petersburg, FL, USA	1	1	-	31	
probatocephalus	Florida Museum of Natural History, Genetic Resources Repository, University of Florida Gainesville, FL, USA	1	1	-		
	Mississippi Museum of Natural Science Jackson, MS, USA	1	0	1		
Archosargus rhomboidalis	Biodiversity Institute, University of Kansas Lawrence, KS, USA	2	1	0	31	
	Biodiversity Research Center, Academia Sinica Taipei, Taiwan	1	1	-		
Argyrops bleekeri	Center for Molecular Biodiversity Research National Museum of Nature and Science Tsukuba, Ibaraki, Japan	2	2	-	61	
	Department of Ichthyology American Museum of Natural History New York, NY, USA	1	1	-		
Argyrops filamentosus	South African Institute for Aquatic Biodiversity Grahamstown, South Africa	2	2	-	51.8	
	Academy of Natural Sciences, Ichthyology Drexel University Philadelphia, Pennsylvania, USA	1	0	0	61	
Argyrops spinifer	South African Institute for Aquatic Biodiversity Grahamstown, South Africa	5	3	0	51.8	
	This study	2	2	-		
Argyrozona argyrozona ^a	FishWeights Cape Town, South Africa	3	3	-	51.8	
Boops boops	Department of Zoology, George S. Wise Faculty of Life Science Tel Aviv University Tel Aviv, Israel	3	3	-	37.2.2	
- F	Wholesale fish market of Scoglitti Ragusa, Italy	2	1	0	-	
Calamus arctifrons	Academy of Natural Sciences, Ichthyology	1	0	0	31	

	Drexel University Philadelphia, Pennsylvania, USA				
	Florida Museum of Natural History , Genetic Resources Repository, University of Florida Gainesville, FL, USA	5	2	1	
	Fish and Wildlife Research Institute St. Petersburg, FL, USA	1	1	-	
Calamus bajonado	Academy of Natural Sciences, Ichthyology Drexel University Philadelphia, Pennsylvania, USA	1	0	0	31
	Fish and Wildlife Research Institute St. Petersburg, FL, USA	4	3	0	
	Institution of Oceanography, University of California La Jolla, CA, USA	1	1	-	77
Calamus brachysomus	Centro de Investigaciones Biologicas del Noroeste La Paz, México	1	1	-	77
	University of Kansas - Biodiversity Institute, Dyche Hall Lawrence, KS, USA	3	3	-	
Calamus calamus	Florida Museum of Natural History –Genetic Resources Repository, University of Florida Gainesville, FL, USA	1	0	0	31
	US FDA Center for Food Safety and Applied Nutrition College Park, MD, USA ^b	US FDA Center for Food Safety and Applied Nutrition College Park, MD, USA ^b NS		NS	
Calamus leucosteus ^a	Biodiversity Institute, University of Kansas Lawrence, KS, USA	3	1	0	31
	Fish and Wildlife Research Institute St. Petersburg, FL, USA	2	2	-	
	Biodiversity Institute, University of Kansas Lawrence, KS, USA	2	1	1	31
Calamus nodosus	Fish and Wildlife Research Institute St. Petersburg, FL, USA	3	3	-	31
Calamus penna	Fish and Wildlife Research Institute St. Petersburg, FL, USA	2	1	1	31
Calamus pennatula	Academy of Natural Sciences, Ichthyology Drexel University Philadelphia, Pennsylvania, USA	1	0	0	31

	Fish and Wildlife Research Institute St. Petersburg, FL, USA	4	1	1	
Calamus proridens	Florida Museum of Natural History, Genetic Resources Repository, University of Florida Gainesville, FL, USA	1	0	0	31
Cheimerius nufar	South African Institute for Aquatic Biodiversity Grahamstown, South Africa	5	4	1	51.6 51.8
Chrysoblephus cristiceps ^a	FishWeights Cape Town, South Africa	3	3	-	51.8
Chrysoblephus gibbiceps	FishWeights Cape Town, South Africa	1	1	-	51.8
Chrysoblephus laticeps ^a	FishWeights Cape Town, South Africa	3	3	-	51.8
Chrysoblephus puniceus ^a	School of Environment & Life Sciences, University of Salford Salford, United Kingdom	1	1	-	51
Crenidens crenidens ^a	Australian Museum Sydney, NSW Australia	1	1	-	51
Dentex angolensis	California Academy of Sciences San Francisco, CA, USA	3	1	1	34.3.1 34.3.4
	This study	2	2	0	34
Dentex canariensis	Aquatic Animal Health Laboratory, College of Veterinary Medicine Michigan State University East Lansing, MI, USA	1	0	0	34.3.1
	This study	1	1	0	34
Dentex congoensis	California Academy of Sciences San Francisco, CA, USA	1	0	0	34.3.1
Dentex dentex	Academy of Natural Sciences, Ichthyology Drexel University Philadelphia, Pennsylvania, USA	1	0	0	37
	This study	4	3	1	37.1.3
	This study	1	1	0	34
Dentex gibbosus	Aquatic Animal Health Laboratory, College of Veterinary Medicine Michigan State University East Lansing, MI, USA	1	1	-	34.3.1
Dentex macrophthalmus	Department of Zoology, George S. Wise Faculty of Life Science Tel Aviv University Tel Aviv, Israel	3	3	-	37.3.2
Dentex maroccanus	Department of Zoology, George S. Wise Faculty of Life Science	3	2	0	37.3.2

	Tel Aviv University Tel Aviv, Israel				
Dentex spariformis	Australian Museum Sydney, NSW Australia	1	1	-	81
Diplodus annularis	Department of Zoology, George S. Wise Faculty of Life Science Tel Aviv University Tel Aviv, Israel	3	3	-	37.3.2
	This study	2	2	-	
Diplodus argenteus	Academy of Natural Sciences, Ichthyology Drexel University Philadelphia, Pennsylvania, USA	1	0	0	31
Diplodus bellottii	Aquatic Animal Health Laboratory, College of Veterinary Medicine Michigan State University East Lansing, MI, USA	1	0	0	34.3.1
D: 1.1	South African Institute for Aquatic Biodiversity Grahamstown, South Africa	2	0	2	51.8
Diplodus cervinus	Department of Ichthyology, American Museum of Natural History New York, NY, USA	1	0	0	Unknown
Diplodus cervinus	Institution of Oceanography, University of California La Jolla, CA, USA	1	1	-	47
hottentotus	Biodiversity Institute, University of Kansas Lawrence, KS, USA	1	1	-	47.2.2
Diplodus holbrookii	Academy of Natural Sciences, Ichthyology Drexel University Philadelphia, Pennsylvania, USA	2	0	0	31
	Fish and Wildlife Research Institute St. Petersburg, FL, USA	3	2	0	
Diplodus noct	Department of Biotechnology and Biosciences, University of Milan - Bicocca Milan, Italy	2	2	-	51.1
•	Australian Museum Sydney NSW Australia	1	1	-	51
Diplodus puntazzo	This study	5	4	1	37.1.3
Diplodus sargus	Department of Zoology, George S. Wise Faculty of Life Science, Tel Aviv University Tel Aviv, Israel	3	2	1	37.3.2
	Museu Nacional de História Natural e da Ciência Lisboa, Portugal	1	0	0	27 IXa

	This study	3	2	1	37.1.3
Diplodus vulgaris	Department of Zoology, George S. Wise Faculty of Life Science, Tel Aviv University Tel Aviv, Israel		3	-	37.3.2
	This study	3	3	0	37.1.3
Evynnis cardinalis ^a	Biodiversity Research Center, Academia Sinica Taipei, Taiwan	8	2	3	61
Enwage tumifrons	Graduate School of Biosphere Science, Hiroshima University Hiroshima, Japan	2	2	-	- 61
Evynnis tumifrons	Biodiversity Research Center, Academia Sinica Taipei, Taiwan	3	3	-	01
	US FDA Center for Food Safety and Applied Nutrition College Park, MD, USA ^b	1		NS	
	Biodiversity Institute, University of Kansas Lawrence, KS, USA	3	3	-	
Lagodon rhomboides	Florida Museum of Natural History, Genetic Resources Repository, University of Florida Gainesville, FL, USA	1	1	-	31
	Museum of Natural Science, Louisiana State University Baton Rouge, LA,USA	1	1	-	
	School of Environment & Life Sciences, University of Salford Salford, United Kingdom	1	1	-	37.1.1
Lithognathus mormyrus	Department of Zoology, George S. Wise Faculty of Life Science, Tel Aviv University Tel Aviv, Israel	3	2	0	37.3.2
	This study	3	3	-	
	School of Environment & Life Sciences, University of Salford Salford, United Kingdom	1	0	1	37.1.2
Oblada melanura	This study	10	2	5	37.1.3
Pachymetopon aeneum ^a	FishWeights Cape Town, South Africa	3	3	-	51.8
Pagellus acarne	Department of Zoology, George S. Wise Faculty of Life Science, Tel Aviv University Tel Aviv, Israel	3	3	-	37.2.2
	Wholesale fish market of Scoglitti Ragusa, Italy	3	2	0	

Pagellus bellottii	Aquatic Animal Health Laboratory, College of Veterinary Medicine Michigan State University East Lansing, MI, USA	1	1	-	34.3.1
	Wholesale fish market of Scoglitti Ragusa, Italy	3	3	-	37.2.2
Pagellus bogaraveo	Academy of Natural Sciences, Ichthyology Drexel University Philadelphia, Pennsylvania, USA	1	0	0	37.1.3
	This study	4	4	-	37.1.1
Pagellus erythrinus	School of Environment & Life Sciences, University of Salford Salford, United Kingdom	1	-	1	37.1.2
	This study	5	4	0	37.1.3
Pagrus africanus	Departamento de Oceanografia e Pescas – Universidade dos Açores, Açores, Portugal	1	0	1	34.3.2
	Academy of Natural Sciences, Ichthyology Drexel University Philadelphia, Pennsylvania, USA	1	0	0	77
Pagrus auratus	Seafood and Marine Extracts, Plant & Food Research Nelson Nelson, New Zealand	6	6	-	- 81
	Cawthron Institute, Nelson, New Zealand	1	1	-	01
Pagrus auriga	Aquatic Animal Health Laboratory, College of Veterinary Medicine Michigan State University East Lansing, MI, USA	1	1	-	34.3.1
	This study	1	1	-	
	Department of Zoology, George S. Wise Faculty of Life Science, Tel Aviv University Tel Aviv, Israel	3	2	1	37.3.2
Pagrus caeruleostictus	California Academy of Sciences San Francisco, CA, USA	2	2	-	34.3.1 34.1.3
	This study	2	1	0	37.1.3
Danier	Biodiversity Research Center, Academia Sinica Taipei, Taiwan	4	3	1	61
Pagrus major	Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan	2	2	-	01
Danwis nanwis	Wholesale fish market of Scoglitti Ragusa, Italy	3	2	1	37.2.2
Pagrus pagrus	US FDA Center for Food Safety and Applied Nutrition College Park, MD, USA ^b	1		NS	31

	This study	5	3	2	37.1.3
Pterogymnus laniarus	FishWeights Cape Town, South Africa	3	3	-	51.8
Rhabdosargus haffara	Department of Biotechnology and Biosciences University of Milan - Bicocca Milan, Italy	1	1	-	51.1
Rhabdosargus holubi ^a	Australian Museum Sydney, NSW Australia	1	1	-	47
	Biodiversity Research Center, Academia Sinica Taipei, Taiwan	2	0	2	
Rhabdosargus sarba	Fisheries Research Laboratory, Mie University Mie, Japan	2	2	-	61
Knabaosargus sarba	Kanagawa Prefectural Museum of Natural History Odawara, Kanagawa, Japan	1	0	0	
	Australian Museum Sydney, NSW Australia	1	1	-	81
Sarpa salpa	Mercato Ittico Scoglitti Ragusa, Italy	2	2	-	37.2.2
surpu surpu	This study	3	3	-	37
Sparus aurata	This study	5	5	-	37.1.3
Spondyliosoma cantharus	Museu Nacional de História Natural e da Ciência Lisboa, Portugal	1	0	0	27 IXa
Specially seems and seems and seems are seems and seems are seems are seems and seems are seems	This study	5	5	-	37.1.3
	Academy of Natural Sciences, Ichthyology Drexel University Philadelphia, Pennsylvania, USA	1	0	0	
Stenotomus caprinus	Biodiversity Institute, University of Kansas Lawrence, KS, USA	1	1	-	31
	Fish and Wildlife Research Institute St. Petersburg, FL, USA	2	2	-	
	Biodiversity Institute, University of Kansas Lawrence, KS, USA	4	4	-	21.6
Stenotomus chrysops	Academy of Natural Sciences, Ichthyology Drexel University Philadelphia, Pennsylvania, USA	1	0	0	21.6B
	North Carolina Museum of Natural Sciences	1	1	-	31

	Raleigh, NC, USA				
	Herpetology and Ichthyology, Division of Vertebrate Zoology Yale Peabody Museum of Natural History New Haven, CT, USA	1	1	-	21.6A
	US FDA Center for Food Safety and Applied Nutrition College Park, MD, USA ^b	1	I	NS	21
Virididentex acromegalus ^a	Departamento de Oceanografia e Pescas – Universidade dosAçores Açores, Portugal	2	1	1	34.3.2

Table 2 SM. Reference samples collected in the study, with the indications of the Institutions, the geographical origin and the number of full and mini barcode obtained. ^aSpecies not considered in the International Official Trade lists; ^bDNA samples only used for testing the amplification performance of primers; NS: Not Sequenced.

	Place of		Label information	on				Species identif	ication	
Code	collection	Market name	International accepted name	Scientific name	Product	bp	BOLD Species Level Barcode Records	MI	GenBank	MI
MS1	Market	Dentale	Santer seabream	Cheimerius	Whole	655	C. nufar	99.54	C. nufar	99
WIST	Warket	indiano	Santer scatteam	nufar	WHOIC	139	C. nufar	100	C. nufar	100
MS2-		Dentice		Dentex		655	D. angolensis D. macrophthalmus D. maroccanus	100 99.84 99.84	D. angolensis D. macrophthalmus	100 98
MS3	Market	atlantico	Angolan dentex	angolensis ^a	Fillets	139	D. angolensis D. macrophthalmus D. maroccanus D. canariensis	100 99.28 99.28 98.55	D. angolensis D. macrophthalmus	100 99
						655	D. canariensis	100	D. canariensis	100
MS4		Whole	139	D. canariensis D. macrophthalmus D. maroccanus D. angolensis	100 99.28 99.28 98.55	D. canariensis D. macrophthalmus	100 99			
						655	No match		Cheimerius nufar	95
MS5	Market	Dentice	Dentex	NR	Whole	139	C. nufar D. gibbosus	98.55 98.55	Cheimerius nufar	98
MS6-	Market	Dentice rosa	Santer seabream	NR	Whole	655	C. nufar	99.08	C. nufar	99
MS7	Market	Dennice rosa	Samer seabream	INK	WHOLE	139	C. nufar	100	C. nufar	100
MS8	Market	Dentice rosa	Santer seabream	NR	Whole	139	C. nufar	100	C. nufar	100
MS9	Restaurant	Dentice	Dentex	NR	Whole	655	D. dentex	100	D. dentex	99
MS9	Restaurant	Dentice	Dentex	INK	WHOIC	139	D. dentex	100	D. dentex	99
MS10	Restaurant	Mormora	Sand steenbras	L. mormyrus	Whole	606	L. mormyrus	100	L. mormyrus	100
MSTO	Restaurant	Monitora	Sand steenbras	L. mormyrus	whole	139	L. mormyrus	100	L. mormyrus	100
MS11	Market	Occhiata	Saddled seabream	O. melanura	Whole	139	O. melanura D. capensis D. vulgaris D. sargus D. bellottii D. puntazzo D. sargus subspecies D. noct	100 99.28 99.21 98.55 98.55 98.55 98.55	D. sargus D. argenteus D. holbrookii	99 98 98
MS12	Market	Occhiata	Saddled seabream	O. melanura	Fillets	655	D. sargus D. capensis D. sargus subspecies D. argenteus D. holbrookii	100 99.54 99.39 -98.46 98.16 98.15	D. sargus D. sargus kotschyi D. holbrookii D. argenteus	100 99 98 98

						139	D. capensis D. sargus kotschyi D. sargus D. bellottii D. sargus subspecies D. noct D. holbrookii D. argenteus D. cervinus D. fasciatus	100 100 100 100 100 100 99.28 99.28 99.05 98.55	D. sargus D. argenteus D. holbrookii D. cervinus	100 99 99 99
			Saddlad			655	D. vulgaris D. sargus D. prayensis D. fasciatus	100 99.69 98.73 98.62	D. sargus D.vulgaris	99 99
MS13	Saddled	O. melanura	Fillets	139	D. sargus D. prayensis D. puntazzo D. fasciatus O. melanura	100 99.28 99.28 99.28 98.41	D. sargus	100		
MC14	Pastourant	Occhiata	Saddled	NR	Whole	655	O. melanura O. melanura	99.69 99.21	O. melanura O. melanura	95 97
WIS14	MS14 Restaurant	Geemata	seabream	INK	Whole	139	D. vulgaris	99.21 98.41	D. sargus	97
			Gilthead		Fillets	655	S. salpa	100	S. salpa	100
MS15	Market	Orata	seabream	S. aurata	Tillets	139	S. salpa	100	S. salpa	100
MS16-			Gilthead			655	S. aurata	100	S. aurata	100
MS17	Restaurant	Orata	seabream	S. aurata	Fillets	139	S. aurata	100	S. aurata	100
MS18-			Gilthead			655	S. aurata	100	S. aurata	100
MS19	Market	Orata	seabream	S. aurata	Fillets	139	S. aurata	100	S. aurata	100
		_	Gilthead			655	S. aurata	99.85	S. aurata	99
MS20	Market	Orata	seabream	NR	Whole	139	S. aurata	100	S. aurata	100
MCC	M 1 .	D "	Sea).TD	XX/1 1	655	P. acarne O. melanura	100 100	P. acarne O. melanura	99 99
MS21	Market	Pagello	Bream	NR	Whole	139	P. acarne O. melanura	100 100	P. acarne	100
MS22	Market	Pagello	Red pandora	P. bellottii	Whole	655	P. bellotii P. pagrus (3 seq.) P. natalensis	100 99.53 99.21	P. bellotii P. natalensis	99 99
		atlantico	ica pandora			139	P. bellotii P. pagrus (3 seq.)	100 98.55	P. bellotii P. natalensis	100 98
MS23	Market	Pagello	Common	P. erythrinus	Whole	655	P. erythrinus	100	P. erythrinus	100

		fragolino	pandora				O. melanura (2 seq.)	99.19	O. melanura	99	
			•			139	P. erythrinus	100	P. erythrinus	100	
						655	P. erythrinus	99.85	P. erythrinus	99	
MS24	Market	Pagello	Seabream	NR	Whole	033	O. melanura (2 seq.)	99.19	O. melanura (2 seq.)	99	
						139	P. erythrinus	100	P. erythrinus	100	
MS25-						655	P. erythrinus	99.85	P. erythrinus	99	
MS26-	Market	Pagello	Seabream	NR	Filletts		O. melanura (2 seq.)	99.19	O. melanura (2 seq.)	99	
MS27						139	P. erythrinus	100	P. erythrinus	100	
MS28-						655	P. erythrinus	100	P. erythrinus	100	
MS29	Restaurant	Pagello	Seabream	NR	Whole		O. melanura (2 seq.)	99.19	O. melanura (2 seq.)	99	
W1529						139	P. erythrinus	100	P. erythrinus	100	
						655	P. pagrus	100	C. nufar	99	
MS30	Restaurant	Pagello	Seabream	NR	Whole	033	C. nufar	99.23	C. Hujui	,,,	
MISSO	Restaurant	1 ageno	Scattcain	INIX	VV HOIC	139	C. nufar	100	C. nufar	100	
							P. pagrus	100	C. hujur	100	
MS31	Market	Pagro	Redbanded	P. auriga	Whole	655	P. auriga	100	P. auriga	100	
MISSI	Warket	1 agro	seabream	1. auriga	WHOIC	139	P. auriga	100	P. auriga	100	
MS32-	Market	Pagro	Bluespotted	Р.	Whole	655	P. caeruleostictus	100	P. caerulosticus	100	
MS33		ragio	seabream	caeruleostictus	Wildle	139	P. caeruleostictus	100	P. caerulosticus	100	
MS34-						655	P. pagrus (1seq.)	100	C. nufar	99	
MS35	Market	Pagro	Seabream	NR	Whole	033	C. nufar	99.23	C. nujar	99	
_		Pagro	ragio	Scaulcain	INIX	vv iioie	139	C. nufar	100	C. nufar	100
MS36							P. pagrus (1seq.)	100	C. najar		
						655	A. spinifer	100	A. filamentosus	96	
MS37-	Market	Pagro rosa	NR	NR	Whole		A. spinifer	100	A. spinifer	99	
MS38	Warket	indo pacifico	TVIX	TVIX	vv noic	139	A. blekeeri	98.55	Porcostoma dentata	98	
								70.55	A. filamentosus	98	
						592	A. spinifer	100	A. spinifer	100	
MS39	Market	Pagro reale	King soldier	A. spinifer	Whole		A. spinifer	100	A. spinifer	100	
111000	Market	r agro reare	bream	11. spinijer	vv note	139	A. blekeeri	98.72	P. major	98	
									E. japonica	98	
		_	King soldier				A. spinifer	100			
MS40	Market	Pagro reale	bream	A. spinifer	Whole	139	A. bleekeri (1seq.)	98.72	A. spinifer	100	
			O I O WITT				E. tumifrons	98.15			
MS41-	36.1	_	~ .			655	P. caeruleostictus	100	P. caeruleostictus	99	
MS42- MS43	Market	Pagro	Seabream	NR	Whole	139	P. caeruleostictus	100	P. caeruleostictus	100	
MS44	Pastourent	Colno	Salema	NR	Whole	655	Spicara maena	100	Spicara maena	100	
WI344	Restaurant	Salpa	Salema	INK	whole	139	Spicara maena	100	Spicara maena	100	
MS45	Restaurant	Salpa	Salema	NR	Whole	655	Spicara maena	100	Spicara maena	100	

							Spicara flexousa (1 seq.)	99.84		
						139	Spicara maena Spicara flexousa (1 seq.)	100 100	Spicara maena	100
MS46	Market	Salpa	Salema	S. salpa	Whole	655	S. salpa	100	S. salpa	100
W1540		Saipa	Saleilla	s. saipa	WHOIC	139	S. salpa	100	S. salpa	100
MS47	Restaurant	Salpa	Salema	S. salpa	Whole	655	S. salpa	100	S. salpa	100
WIS47		-		5. saipa	Whole	139	S. salpa	100	S. salpa	100
MS48	Market	Sarago	Annular	NR	Whole	655	D. annularis	100	D. annularis	99
WISHO		sparaglione	seabream	TVIX	WHOIC	139	D. annularis	100	D. annularis	100
							D. vulgaris	99.67		
						655	D. sargus	99.53	D. sargus	99
						033	D. prayensis	98.75	D. vulgaris	99
		_					D. fasciatus	98.75		
MS49	Market	Sarago	Annular	NR	Fillets		D. sargus	100		
		sparaglione	seabream				D. vulgaris	100		
						139	D. prayensis	99.26	D. sargus	100
							D. puntazzo	99.26	D. cervinus	98
							D. fasciatus	99.26		
							O. melanura	98.52	D. labrax	00
						655	D. puntazzo	100		99 96
		Sarago	Charnenout	Diplodus			D. vulgaris	100	D. puntazzo	90
MS50	Market	Sarago pizzuto	Sharpsnout seabream	puntazzo	Whole		D. vutgarts D. puntazzo	100	D. sargus	99
		pizzuto				139	O. melanura	99.21	D. labrax	98
							D. sargus	98.55	D. tabrax	76
							D. sargus	100		
							D. capensis	99.55		
							D. sargus subspecies	99.39-98.46	D. sargus	100
						655	D. noct	99.23	D. holbrookii	98
							D. holbrooki	98.16	D. argenteus	98
							D. argenteus	98.16		
							D. sargus	100		
MS51	Market	Sarago	Seabream	NR	Whole		D. capensis	100		
MISSI	Market	Sarago	Scaulcain	INIX	WHOLE		D. bellotii	100	D. sargus	100
							D. sargus subspecies	100	D. argenteus	99
						139	D. noct	100	D. holbrookii	99
						137	D. holbrooki	100	D. cervinus	99
							D. argenteus	99.28	D. Corriens	
							D. cervinus	99.28		
							D. cervinus hottentotus	99.05		
							D. fasciatus	98.55		

								98.55		
						655	D. vulgaris D. sargus D. prayensis D. fasciatus	100 100 98.92 98.92	D. sargus D. vulgaris	100 99
MS52	Market	Sarago	Seabream	D. vulgaris	Whole	139	D. vulgaris D. sargus D. prayensis D. puntazzo D. fasciatus O. melanura	100 100 99.28 99.28 99.28 98.41	D. sargus	100
MOSO	Marilia	Sarago	Annular	ND	XX71 1 .	655	D. annularis	100	D. annularis	99
MS53	Market	sparaglione	seabream	NR	Whole	139	D. annularis	100	D. annularis	99
	MS54 Restaurant Sarago				655	D. puntazzo	100	D. labrax D. puntazzo	99 96	
MS54		Sarago	Sarago Seabream	NR	Whole	139	D. vulgaris D. puntazzo D. sargus D. capensis	100 100 98.89 98.89	D. vulgaris D. sargus D. labrax	100 100 99
	MS55 Restaurant	Sarago Seabre				654	D. puntazzo	99.85	D. labrax D. puntazzo	99 95
MS55			Seabream	NR	Whole	139	D. vulgaris D. puntazzo O. melanura D. sargus	100 100 99.21 98.55	D. sargus D. labrax	99 98
						655	D. puntazzo	100	D. labrax D. puntazzo	99 96
MS56	Restaurant	Sarago pizzuto	Sharpsnout seabream	NR	Whole	139	D. vulgaris D. puntazzo O. melanura D. sargus	100 100 99.22 98.55	D. sargus D. labrax	99 98
	MS57 Restaurant					655	D. sargus D. vulgaris D. prayensis D. fasciatus	100 100 98.92 98.92	D. sargus D. vulgaris	100 99
MS57		Sarago S	Seabream	NR	Filletts	139	D. sargus D. vulgaris D. prayensis D. puntazzo D. fasciatus O. melanura	100 100 99.28 99.28 99.28 98.41	D. sargus	100

						655	S. cantharus	99.84	S. cantharus	99
MS58	Market	Tanuta	Black seabream	S. cantharus	Whole	139	S. cantharus S. emarginatum	100 99.28	S. cantharus	99

Table 3SM. Results of the IDs analysis (BOLD) and of the BLAST analysis (GenBank) of market samples (MS), with the information reported on the label. Mislabeled samples are highlighted with a grey background. ^a Sequences not available on both databases; ^b Sequences not available in Genbank; MI: Max Identity.

Primer name	Sequence code	Amp. Lenght (bp)	Ref.
LCO1490	GGTCAACAAATCATAAAGATATTGG	708	Folmer, 1994
HC02198	TAAACTTCAGGGTGACCAAAAAATCA	708	Politici, 1994
FishF1	TCAACCAACCACAAAGACATTGGCAC		
FishF2	TCGACTAATCATAAAGATATCGGCAC	703/706	Ward, 2005
FishR1	TAGACTTCTGGGTGGCCAAAGAATCA	/03/706	waru, 2003
FishR2	ACTTCAGGGTGACCGAAGAATCAGAA		
COIF-ALT	ACAAATCAYAARGAYATYGG	698	Mikkelsen, 2006
COIR-ALT	TTCAGGRTGNCCRAARAAYCA	098	Mikkeisell, 2000
FF2d	TTCTCCACCAACCACAARGAYATYGG	707	Ivanova, 2007
FR1d	CACCTCAGGGTGTCCGAARAAYCARAA	707	Ivanova, 2007
FISH-BCL	TCAACYAATCAYAAAGATATYGGCAC	706	Baldwin, 2009
FISH-BCH	TAAACTTCAGGGTGACCAAAAAATCA	700	Daldwill, 2009
COI-Fish-F	TTCTCAACTAACCAYAAAGAYATYGG	709	Kochzius, 2010
COI-Fish-R	TAGACTTCTGGGTGGCCRAARAAYCA	709	Kochzius, 2010
FISHCOILBC_ts	CACGACGTTGTAAAACGACTCAACYAATCAYAAAGATATYGGCAC	705	II I 2011
FISHCOIHBC_ts	GGATAACAATTTCACACAGGACTTCYGGGTGRCCRAARAATCA	705	Handy, 2011
SPACOIREV	GGATAACAATTTCACACAGGACTTCYGGGTGNCCRAARAATCA	705*	This study
REVshort1	GGATAACAATTTCACACAGG GGYATNACTATRAAGAAAATTATTAC	192*	This study

Table 4SM. Universal primers for the amplification of the *COI* gene from fish (Armani et al, 2012c with modification). * The length refers to the amplicon generated using the forward FISHCOILBC_ts

Species name			COI fragment		Species identifica	tion (BLAST)	
(morphological identification)	BOLD	NCBI	(bp)	BOLD Species Level Barcode Records	Max identity	GenBank	Max identity
A - mode - m - mode - li-	CD 4 220 14 COL 5D	C4:11:4:	655	A. australis	100	A. australis	100
Acanthopagrus australis	SPA239-14.COI-5P	Still waiting	139	A. australis	100	A. australis	100
	SPA202-13.COI-5P	Still waiting	655	A. berda	100	A. berda	98
	SPA003-13.COI-5P	KJ012251					
Acanthopagrus berda	SPA002-13.COI-5P	KJ012252	139	A. berda	100	A. berda	99
	SPA004-13.COI-5P	KJ012253	139	A. pacificus	98.55	A. beraa	99
	SPA203-13.COI-5P	KJ012254					
	SPA208-13.COI-5P	KJ012255	655; 653	A. butcheri	100	A. butcheri	100
	SPA207-13.COI-5P	KJ012256					
	SPA206-13.COI-5P	KJ012257					
Acanthopagrus butcheri	SPA205-13.COI-5P	KJ012258	139			A. butcheri	100
	SPA211-13.COI-5P	KJ012259		A. butcheri	100	A. schlegelii	99
	SPA210-13.COI-5P	KJ012260				A. berda	98
	SPA209-13.COI-5P	KJ012261					
	SPA240-14.COI-5P	Still waiting					
	SPA006-13.COI-5P	KJ012262	655	A. latus	100	A. latus	99-100
	SPA005-13.COI-5P	KJ012263					
A court con a court latera	SPA008-13.COI-5P	KJ012264		A. latus			
Acanthopagrus latus	SPA007-13.COI-5P	KJ012265	139		100	A. latus	100
	SPA009-13.COI-5P	KJ012266					
	SPA010-13.COI-5P	KJ012267					
		110027902	120	A. pacificus	100	A 11	99
		HG937802	139	A. berda	100	A. berda	99
	CDA 100 12 COL 5D	KJ012269	592	A. pacificus	99.83	A 1 1	07
· c · b*	SPA189-13.COI-5P	KJ012269	583	A. berda (2 seq.)	99.83	A. berda	97
Acanthopagrus pacificus ^{b*}			655	A. pacificus	100	4.7.7	07
	CD 4 022 12 COL 5D	1/1012260	655	A. berda (2 seq.)	100	A. berda	97
	SPA022-13.COI-5P	KJ012268	139	A. pacificus	100	4.7.7	00
			139	A. berda	100	A. berda	99
			655	A. berda	98.05	A. berda	98
Acanthopagrus palmaris ^a	SPA242-14.COI-5P	Still waiting	120	A. pacificus	100	4.7.7	00
			139	A. berda	99.28	A. berda	99
4 4 11 105	GD 4 02 4 12 GGT 57	171012272	655	A. schlegelii	100	A. schlegelii	100
Acanthopagrus schlegelii*	SPA024-13.COI-5P	KJ012273	655	A. schlegelii schlegelii	99.85	A. schlegelii schlegelii	99

				A. schlegelii	100	A. schlegelii	100
			139	A. schlegelii schlegelii	99.28	A. schlegelii schlegelii	100
				A. butcheri	98.55	A. butcheri	99
	CD 4 020 12 COL 5D	K1012270	CEE	A. schlegelii	100	A. schlegelii	100
	SPA029-13.COI-5P	KJ012270	655	A. schlegelii schlegelii	100	A. schlegelii schlegelii	100
	SPA027-13.COI-5P	KJ012271			100	A. schlegelii	100
	SPA025-13.COI-5P	KJ012272	139	A. schlegelii	100	A. schlegelii schlegelii	100
	SPA028-13.COI-5P	KJ012274		A. schlegelii schlegelii	100	A. butcheri	98
				A	100	A. schlegelii	100
		HG937803	139	A. schlegelii		A. schlegelii schlegelii	100
				A. schlegelii schlegelii	100	A. butcheri	98
	SPA032-13.COI-5P	KJ012275	655	A. schlegelii	99.85-100	A. schlegelii	99-100
A41	SPA032-13.COI-5P SPA031-13.COI-5P	KJ012273 KJ012276	033	A. schlegelii schlegelii	99.85-100	A. schlegelii schlegelii	99-100
Acanthopagrus sivicolus ^{a*}	SPA030-13.COI-5P	KJ012270 KJ012277	139	A. schlegelii	100	A. schlegelii;	100
	SFA030-13.COI-3F	KJ012277	139	A. schlegelii schlegelii	100	A. schlegelii schlegelii	100
	SPA011-13.COI-5P	KJ012278	655	A. probatocephalus	100	A. probatocephalus	99-100
A	SPA012-13.COI-5P	KJ012279					
Archosargus probatocephalus	SPA013-13.COI-5P	KJ012280	132-139	A. probatocephalus	100	A. probatocephalus	100
5	SPA014-13.COI-5P	KJ012281					
		HG937804	138	A. probatocephalus	100	A. probatocephalus	100
Anah asanana uhambai dalia	SPA023-13.COI-5P	KJ012282	655	A. rhomboidalis	100	A. rhomboidalis	100
Archosargus rhomboidalis	SPA025-15.COI-3P		139	A. rhomboidalis	100	A. rhomboidalis	100
	SPA016-13.COI-5P	KJ012283	655	A. bleekeri	100	A:-:-:-	00. 100
4	SPA018-13.COI-5P	KJ012284	633	A. spinifer	99.38-99.69	A. spinifer	99; 100
Argyrops bleekeri ^b	SPA204-13.COI-5P	KJ012285	120	A. bleekeri	100	A	00. 100
	SPA017-13.COI-5P	KJ012286	139	A. spinifer	99.85-100	A. spinifer	99; 100
Argyrops filamentosus	SPA019-13.COI-5P	KJ012287	655	A. filamentosus	100	A. filamentosus	100
Argyrops juamentosus	SPA020-13.COI-5P	KJ012288	139	A. filamentosus	100	A. filamentosus	100
			645-655	A. spinifer	100	A. spinifer	100
						A. spinifer	100
	SPA035-13.COI-5P	KJ012289				P. major	98
	SPA033-13.COI-5P	KJ012290	139	A. spinifer	100	E. japonica	98
	SPA034-13.COI-5P	KJ012293	139	A .blekeeri	98.72	E. cardinalis	98
Argyrops spinifer						P. edita	98
						P. auratus	98
			655	A. spinifer	99.69; 99.85	A. filamentosus	96
	SPA191-13.COI-5P	KJ012291		A aminifor	99.28	A. spinifer	99
		KJ012292	139	A. spinifer A. blekeeri	99.28 98.55	P. dentata	98
			137	A. olekeeri	90.55	A. filamentosus	98

	SPA236-14.COI-5P	Still waiting	655	A. argyrozona	99.84; 100	A. argyrozona	99; 100
Argyrozona argyrozona*	SPA237-14.COI-5P SPA238-14.COI-5P	Still waiting Still waiting	139	A. argyrozona	100	A. argyrozona	100
	SPA036-13.COI-5P	KJ012294	654-655	B. boops	100	B. boops	100
D	SPA119-13.COI-5P	KJ012295	034-033	O. melanura (2 seq.)	99.67-99.84	O. melanura (2 seq.)	99
Boops boops	SPA037-13.COI-5P	KJ012296	120	B. boops	100	D 1	100
	SPA038-13.COI-5P	KJ012297	139	O. melanura (2 seq.)	100	B. boops	100
			655	No match		C. brachysomus	93
	SPA041-13.COI-5P	KJ012298	033	No match		C. penna	93
	SPA039-13.COI-5P	KJ012299				C. brachysomus	96
Calamus arctifrons ^a	SPA232-13.COI-5P	KJ012300	139	No match		C. penna	96
Catamus arctifrons						C. calamus	96
						C. brachysomus	96
		HG937805	139	No match		C. penna	96
						C. calamus	96
	SPA043-13.COI-5P	KJ012301	655	C. bajonado	99.54	Calamus sp.	99
Calamus bajonado ^b	SPA042-13.COI-5P	KJ012302	139	C. bajonado	99.28	Calamus sp.	99
	SPA044-13.COI-5P	KJ012303			99.20	-	77
			655; 654	C. brachysomus	100	C. brachysomus	100
				C. brachysomus	100	C. brachysomus	100
Calamus brachysomus	SPA045-13.COI-5P	KJ012304		C. nodosus	100	C. calamus	99
Catamas oracnysomas	SPA243-13.COI-5P	Still waiting		C. leucosteus	99.28 99.22	C. penna	99
				C. calamus		Calamus sp.	99
				C. penna	98.55	-	"
	SPA046-13.COI-5P	KJ012305	655	C. calamus	100	C. calamus	100
Calamus calamus	SPA047-13.COI-5P	KJ012306		C. calamus	100	C. calamus	100
Caramas caramas	SPA048-13.COI-5P	KJ012307	139	C. nodosus	99.28	Calamus sp.	100
	5171040 15.001 51	10012307		C. brachysomus (1seq.)	100	C. brachysomus	99
			655	C. leucosteus	100	C. brachysomus	94
	SPA049-13.COI-5P	KJ012308		C. leucosteus	100	C. brachysomus	99
Calamus leucosteus ^{b*}	SPA050-13.COI-5P	KJ012309	139	C. brachysomus	100	C. penna	98
	SPA051-13.COI-5P	KJ012310	137	C. nodosus	99.15	C. calamus	98
				C. calamus	98.45		
						Actinopterygii spp.	99
	SPA235-14.COI-5P	Still waiting	655	C. nodosus	100	Calamus spp.	98
Calamus nodosus ^b	SPA056-13.COI-5P	KJ012311				C. calamus	98
Сиштиз поиозиз	SPA055-13.COI-5P	KJ012312		C. nodosus	100	C. calamus	99
	SPA054-13.COI-5P	13.COI-5P KJ012313	139	C. brachysomus	100	Calamus spp.	99
				C. calamus	99.28	C. brachysomus	99

				C. leucosteus	98.55	C. penna	98
				C. nodosus	100	C. calamus	99
		HG937806	120	C. brachysomus	100	Calamus spp.	99
		HU937800	139	C. calamus	99.28	C. brachysomus	99
				C. leucosteus	98.55	C. penna	98
		110027007	120		00.20	C. penna	99
		HG937807	139	C. penna	99.28	C. brachysomus	98
Calamus penna			655	C. penna	99.54	C. penna	99
	SPA053-13.COI-5P	KJ012314	120		00.00	C. penna	99
			139	C. penna	99.28	C. brachysomus	98
			655	C. leucosteus	99.23	Actinopterygii spp.	97
	SPA058-13.COI-5P	KJ012315		C. leucosteus	100	Actinopterygii spp.	100
Calamus proridens ^a			139	C. pennatula	100	Calamus sp.	98
		*********	100	C. leucosteus		Actinopterygii spp.	100
		HG937808	139	C. pennatula	100	Calamus sp.	98
	SPA062-13.COI-5P	KJ012316		C. nufar	100		
	SPA060-13.COI-5P	KJ012317	655	P. pagrus (1 seq.)	98.92	C. nufar	100
	SPA064-13.COI-5P	KJ012318		C. nufar 100			
Cheimerius nufar	SPA061-13.COI-5P	KJ012319	139	P. pagrus (1 seq.)	100	C. nufar	100
				C. nufar	100		
	HG9	HG937809	139	P. pagrus (1 seq.)	100	C. nufar	100
			655	C. cristiceps	100	C. cristiceps	99
	SPA259-14.COI-5P	Still waiting Still waiting Still waiting		C. cristiceps	100	C. cristiceps	100
Chrysoblephus cristiceps*	SPA260-14.COI-5P		139	P. dentata	99.26	P. dentata	99
	SPA261-14.COI-5P		137	C. laticeps	98.89	C. laticeps	98
			655	C. gibbiceps	99.53	C. gibbiceps	99
Chrysoblephus gibbiceps	SPA244-14.COI-5P	Still waiting	139	C. gibbiceps	98.55	C. gibbiceps	99
	SPA255-14.COI-5P	Still waiting	655	C. laticeps	100	C. laticeps	100
Chrysoblephus laticeps*	SPA256-14.COI-5P	Still waiting	033	C. laticeps	100	C. laticeps	100
In ysobiephus uniceps	SPA257-14.COI-5P	Still waiting Still waiting	139	C. cristiceps	98.89	C. cristiceps	98
	31 A237-14.COI-31	Still waiting	655	C. cristiceps C. puniceus	100	C. cristiceps C. puniceus	99
Chrysoblephus puniceus*	SPA065-13.COI-5P	KJ012320	139	C. puniceus	100	C. puniceus C. puniceus	100
			655	C. crenidens	98.73	C. crenidens	98
Crenidens crenidens*	SPA258-14.COI-5P	Still waiting	139				
	CD 4 0 C7 12 CO L 5 D	KJ012321	655	C. crenidens	100	C. crenidens	98
	SPA067-13.COI-5P		033	D. macrophthalmus	99.84	D. macrophthalmus	98
Dentex angolensis ^a	SPA192-13.COI-5P SPA193-13.COI-5P	KJ012323 KJ012324	139	D. macrophthalmus	99.28	D. macrophthalmus	99
		HG937810	139	D. macrophthalmus	100	D. macrophthalmus	99
		110/3/010	010 137	Spicara alta	98.55	2. maci opinimimus	

D	CD 4 120 12 COL 5D	W1012225	655	No match		D. macrophthalmus	95
Dentex canariensis ^a	SPA120-13.COI-5P	KJ012325	139	No match		D. macrophthalmus	99
	SPA123-13.COI-5P	KJ012326	655	D. dentex	98.85; 100	D. dentex	99
	SPA194-13.COI-5P	KJ012327					
Dentex dentex	SPA124-13.COI-5P	KJ012328	139	D. dentex	99.28; 100	D. dentex	99
	SPA126-13.COI-5P	KJ012329			Í		
		HG937811	139	D. dentex	99.22	D. dentex	99
			655 No match P. caerulosticus 12330 P. acarne 98.55	P. caerulosticus	93		
Dentex gibbosus ^a	SPA222-13.COI-5P	KJ012330	120	P. acarne	98.55	C f	00
			139	V. acromegalus	98.55	C. nufar	98
	SPA069-13.COI-5P	KJ012331	655	D. macrophthalmus	99.69; 99.84	D. macrophthalmus	98
Dentex macrophthalmus	SPA071-13.COI-5P	KJ012332	120	-		_	0.6
•	SPA070-13.COI-5P	KJ012333	139	D. macrophthalmus	100	D. macrophthalmus	96
	GD 4 122 12 GOL 5D	171012224	655	D. macrophthalmus	99.84; 100	D. macrophthalmus	98
Dentex maroccanus ^a	SPA132-13.COI-5P	KJ012334	120	D. macrophthalmus	100	D 1.1.1	100
	SPA131-13.COI-5P	KJ012335	139	Spicara alta	98.55	D. macrophthalmus	100
.c h	SPA253-14.COI-5P	Still waiting	563	D. spariformis	100	D. tumifrons	94
Dentex spariformis ^b			139	D. spariformis	100	D. tumifrons	95
	SPA076-13.COI-5P	KJ012336	562-655	D. annularis	99.53-100	D. annularis	99
	SPA078-13.COI-5P	KJ012337					
Diplodus annularis	SPA196-13.COI-5P	KJ012338	120	D. annularis	100	D. annularis	00 100
	SPA195-13.COI-5P	KJ012339	139		100		99; 100
	SPA077-13.COI-5P	KJ012340					
				D. cervinus	100		
				D. cervinus hottentotus	100	D	100
		HG937812		D. fasciatus	100	D. cervinus	100 99
Diplodus cervinus		HG937812	139	D. sargus	99.26	D. sargus	98
		HG93/813		D. sargus subspecies	98.55-99.17	D. argenteus	
				D. bellottii	98.55	D. holbrookii	98
				D. vulgaris	98.41		
				D. cervinus	100		
			655	D. fasciatus	99.54; 99.69	D. cervinus	99; 100
				D. cervinus hottentotus	99.54		
	SPA130-13.COI-5P	KJ012341		D. cervinus hottentotus	100		
Diplodus cervinus hottentotus	SPA129-13.COI-5P	KJ012341 KJ012342		D. cervinus	100	D. cervinus	100
	51 A127-13.COI-3F	13012342	139	D. fasciatus	100	D. sargus	99
			139	D. sargus subspecies	98.55-99.26	D. argenteus	98
				D. bellotti	98.5598.55	D. holbrookii	98
				D. vulgaris	98.41		

			655	D. holbrookii Haemulon aurolineatum D. argenteus	99.02; 98.86 98.46; 98.77 98.62; 98.46	D. holbrookii D. argenteus D. sargus	99 98; 99 98
Diplodus holbrookii	SPA128-13.COI-5P SPA127-13.COI-5P	KJ012343 KJ012344	139	D. holbrookii Haemulon aurolineatum D. sargus subspecies D. argenteus D. bellottii	99.28 99.28 98.55-99.28 99.28 98.55	D. argenteus D. sargus D. holbrookii D. argenteus D. sargus D. sargus subspecies D. holbrookii D. argenteus D. sargus D. holbrookii D. argenteus D. cervinus Dicentrarchus labrax D. puntazzo D. sargus Dicentrarchus labrax D. centrarchus labrax D. sargus Dicentrarchus labrax D. sargus Dicentrarchus labrax D. sargus Dicentrarchus labrax D. sargus Dicentrarchus labrax	99 99 99
			655	D. sargus subspecies D. holbrookii D. argenteus	98.62-99.69 98.46 98.16	D. holbrookii	99 98 98
Diplodus noct ^a	SPA133-13.COI-5P SPA134-13.COI-5P SPA254-14.COI-5P	KJ012345 KJ012346 Still waiting	139	D. sargus subspecies D. bellottii D. holbrookii D. argenteus D. cervinus D. cervinus hottentotus D. fasciatus O. melanura	100 100 99.28 99.28 99.05 98.55 98.55 98.55	D. holbrookii D. argenteus	100 99 99 99
	SPA108-13.COI-5P	KJ012347	655	D. puntazzo	98.52-98.92		99 99
Diplodus puntazzo	SPA111-13.COI-5P SPA110-13.COI-5P SPA009-13.COI-5P	KJ012348 KJ012349 KJ012350	139	D. vulgaris D. puntazzo O. melanura D. sargus	100 99.28 99.21 98.55		99 98
		HG937814	139	D. vulgaris D. puntazzo O. melanura D. sargus	100 99.28 99.21 98.55		99 98
			655	D. sargus subspecies	98.46-100		99-100 98 98
Diplodus sargus (sargus)	SPA114-13.COI-5P SPA113-13.COI-5P SPA117-13.COI-5P SPA116-13.COI-5P	KJ012351 KJ012352 KJ012353 KJ012354	139	D. sargus subspecies D. bellottii D. holbrookii D. argenteus D. cervinus D. cervinus hottentotus D. fasciatus	100 100 99.28 99.28 99.05 98.55 98.55	D. argenteus D. holbrookii	100 99 99 99

				O. melanura	98.41		
				D. sargus subspecies	100		
				D. bellottii	100		
				D. holbrookii	99.28	D. sargus	100
		HG937815		D. argenteus	99.28	D. argenteus	99
		HG937816	139	D. cervinus	99.05	D. holbrookii	99
				D. cervinus hottentotus	98.55	D. cervinus	99
				D. fasciatus	98.55		
				O. melanura	98.41		
				D. vulgaris	99.84; 100	D. sargus	
				D. sargus	99.69; 100	D. vulgaris	99; 100
			655	D. prayensis	98.73; 98.92	21, 11, 11, 11	99
	SPA138-13.COI-5P	KJ012355		D. fasciatus	98.62; 98.92		
	SPA140-13.COI-5P	KJ012356		D. vulgaris	100	D. sargus	
	SPA135-13.COI-5P	KJ012357		D. sargus	100	D. surgus	
	SPA136-13.COI-5P	KJ012358		D. prayensis	99.28		100
	SPA139-13.COI-5P	KJ012360	139	D. puntazzo	99.28		100
Diplodus vulgaris				D. fasciatus	99.28		
Dipioaus vuigaris				O. melanura	98.41		
				D. sargus	99.37	D. sargus	99
	CDA 127 12 COL CD	W1012250	655	_	99.23	D. sargus D. vulgaris	99
				D. vulgaris D. vulgaris	100	D. vulgaris	99
				<u> </u>	99.28		
	SPA137-13.COI-5P	KJ012359	120	D. sargus		D	00
			139	D. prayensis	98.55	D. sargus	99
				D. puntazzo	98.55		
				D. fasciatus	98.55		100
				E. cardinalis	100	E. cardinalis	100
		HG937817		E. tumifrons	100	E. japonica	100
		HG937818	139	P. edita	100	P. edita	100
		HG937819		P. major	98.55	P. major	99
				P. auratus	98.55	P. auratus	99
				A. spinifer	98.55	A. spinifer	98
Evynnis cardinalis*				E. cardinalis	100	E. cardinalis	100
			655	E. tumifrons	100	E. japonica (1 seq.)	99
	SPA144-13.COI-5P	KJ012361		P. edita	99.69	P. edita	99
	SPA145-13.COI-5P	KJ012362		E. cardinalis	100	E. cardinalis	100
	5171175-15.001-31	13012302	139	E. tumifrons	100	E. japonica	100
			137	P. edita	100	P. edita	100
				P. major	98.55	P. major	99

				Pagrus auratus	98.55	P. auratus	99
				A. spinifer	98.55	A. spinifer	98
			583	E. tumifrons	100	E. tumifrons	99
	SPA146-13.COI-5P	KJ012364	67	<80		E. tumifrons	100
			07	100		D. macrophthalmus	98
Evynnis tumifrons	SPA150-13.COI-5P SPA147-13.COI-5P	KJ012363 KJ012365	655	A. spinifer	99		
	SPA148-13.COI-5P SPA149-13.COI-5P	KJ012366 KJ012367	139	•			100
			- C - C - C - C - C - C - C - C - C - C			7 7 7 1	100
ı	SPA155-13.COI-5P	KJ012368	655	L. rhomboides	100	L. rhomboides	100
Lagodon rhomboides	SPA152-13.COI-5P SPA153-13.COI-5P	KJ012370 KJ012371	139	L. rhomboides	100	L. rhomboides	100
Lagodon mombolaes	SPA156-13.COI-5P	KJ012369					
	SPA154-13.COI-5P	KJ012372	520; 540	L. rhomboides	100	L. rhomboides	100
	SPA221-13.COI-5P	KJ012373	655	L. mormvrus	99.65-100	L. mormvrus	99;100
	SPA220-13.COI-5P	KJ012374			77100 = 11		
	SPA079-13.COI-5P	KJ012375				L. mormyrus	
Lithognathus mormyrus	SPA151-13.COI-5P	KJ012376	139	L. mormyrus	100		100
	SPA197-13.COI-5P	KJ012377			100		200
	SPA219-13.COI-5P	KJ012378					
			655	O. melanura	99.52	O. melanura	95
		KJ012379			100		
	SPA157-13.COI-5P			D. sargus subspecies		- C	99
			139		99.21		98
					98.55		98
				D. puntazzo	98.55		
		HG937820			100	D. sargus	
		HG937821		D. sargus subspecies	98.55-99.28	=	99
Oblada melanura		HG937822	139	D. vulgaris	99.21	D. holbrookii	98
		HG937823		D. bellottii	98.55		98
		HG937824		D. puntazzo	98.55		
				O. melanura	99.28	D. sargus	
		HG816028	139	D. capensis	98.55	_	98
				D. vulgaris	98.41		
			655		99.69	O. melanura	95
	SPA198-13.COI-5P	KJ012380	120	O. melanura	99.21	O. melanura	97
			139	D. vulgaris	98.41	D. sargus	97
Dachymatona- acrawy	SPA250-14.COI-5P	Still waiting	655		100	Paracaesio sordida (1 seq.)	100
Pachymetopon aeneum*	SPA251-14.COI-5P	Still waiting	033	P. aeneum	100	P. aeneum	99

SPA252-14.COI-5P	Still waiting	139	P. aeneum	100	P. aeneum P. sordida (1 seq.)	100 100
SPA159-13.COI-5P	KJ012382	601; 655	P. acarne Oblada melanura (1 seq.)	100 98.84; 99.3	P. acarne Oblada melanura (2 seq.)	99 99
SPA082-13.COI-5P SPA080-13.COI-5P	KJ012383 KJ012385	139	P. acarne Oblada melanura (1 seq.)	100 100	P. acarne	99; 100
SPA083-13.COI-5P	KJ012381	655	P. acarne O. melanura (1 seq.)	99.45; 100 99.31; 100	P. acarne	99; 100
SPA081-13.COI-5P	KJ012384	66; 69	<80 bp		P. acarne	100
SPA162-13.COI-5P	KJ012386	655	P. bellotii P. pagrus P. natalensis	99.84 99.53 99.21	P. bellotii P. natalensis	99 99
		139	P. bellotii P. pagrus	100 98.55	P. bellotii P. natalensis	100 98
SPA225-13.COI-5P	KJ012387	655	P. bogaraveo	99.85; 100	P. bogaraveo	99; 100
SPA166-13.COI-5P SPA223-13.COI-5P SPA164-13.COI-5P SPA224-13.COI-5P	KJ012388 KJ012390 KJ012391 KJ012392 KJ012393	139	P. bogaraveo	100	P. bogaraveo	100
		557	P hogaraveo	99.82	P hogaraveo	99
			•	İ		100
SPA176-13.COI-5P SPA177-13.COI-5P	KJ012394 KJ012395	655	P. erythrinus O. melanura (2 seq.)	99.85; 100 99.19; 99.35	P. erythrinus O. melanura (2 seq.)	99; 100 99
SPA174-13.COI-5P SPA175-13.COI-5P	KJ012396 KJ012397	139	P. erythrinus	100	P. erythrinus	100
	HG937826	139	P. edita	98.1	P. major E. japonica E. cardinalis P. edita C. auratus	98
SPA212-13.COI-5P SPA218-13.COI-5P	KJ012398 KJ012399	655	P. auratus P. major	99.85; 100 99.54	P. auratus P. major	99; 100 99
SPA217-13.COI-5P SPA216-13.COI-5P SPA215-13.COI-5P SPA213-13.COI-5P SPA214-13.COI-5P	KJ012400 KJ012401 KJ012402 KJ012403 KJ012404	139	P. auratus P. major E. cardinalis E. tumifrons P.edita	100 100 98.89 98.55 98.55	P. major P. auratus E. japonica E. cardinalis E. tumifrons	100 100 99 99
	SPA159-13.COI-5P SPA082-13.COI-5P SPA080-13.COI-5P SPA081-13.COI-5P SPA081-13.COI-5P SPA162-13.COI-5P SPA166-13.COI-5P SPA1223-13.COI-5P SPA163-13.COI-5P SPA163-13.COI-5P SPA177-13.COI-5P SPA174-13.COI-5P SPA175-13.COI-5P SPA175-13.COI-5P SPA175-13.COI-5P SPA218-13.COI-5P SPA218-13.COI-5P SPA218-13.COI-5P SPA218-13.COI-5P SPA218-13.COI-5P SPA218-13.COI-5P SPA218-13.COI-5P SPA218-13.COI-5P SPA218-13.COI-5P SPA215-13.COI-5P SPA215-13.COI-5P	SPA159-13.COI-5P KJ012382 SPA082-13.COI-5P KJ012383 SPA080-13.COI-5P KJ012381 SPA081-13.COI-5P KJ012384 SPA162-13.COI-5P KJ012384 SPA162-13.COI-5P KJ012387 SPA166-13.COI-5P KJ012388 SPA223-13.COI-5P KJ012390 SPA164-13.COI-5P KJ012391 SPA224-13.COI-5P KJ012393 SPA163-13.COI-5P KJ012393 SPA165-13.COI-5P KJ012394 SPA177-13.COI-5P KJ012395 SPA174-13.COI-5P KJ012395 SPA174-13.COI-5P KJ012397 HG937825 SPA175-13.COI-5P KJ012397 HG937826 SPA212-13.COI-5P KJ012397 HG937826 SPA217-13.COI-5P KJ012399 SPA175-13.COI-5P KJ012397 HG937826 SPA218-13.COI-5P KJ012399 SPA217-13.COI-5P KJ012399 SPA217-13.COI-5P KJ012399 SPA218-13.COI-5P KJ012400 SPA216-13.COI-5P KJ012400 SPA215-13.COI-5P KJ012401 SPA215-13.COI-5P KJ012402 SPA213-13.COI-5P KJ012402 SPA213-13.COI-5P KJ012402	SPA159-13.COI-5P	SPA159-13.COI-5P KJ012382 SPA082-13.COI-5P KJ012385 SPA080-13.COI-5P KJ012385 SPA080-13.COI-5P KJ012381 SPA081-13.COI-5P KJ012381 SPA081-13.COI-5P KJ012384 G6; 69 SPA081-13.COI-5P KJ012384 G6; 69 SPA081-13.COI-5P KJ012386 SPA081-13.COI-5P KJ012386 SPA081-13.COI-5P KJ012387 SPA162-13.COI-5P KJ012388 SPA081-13.COI-5P KJ012388 SPA081-13.COI-5P KJ012388 SPA081-13.COI-5P KJ012390 SPA164-13.COI-5P KJ012391 SPA164-13.COI-5P KJ012392 SPA163-13.COI-5P KJ012393 SPA165-13.COI-5P KJ012394 SPA17-13.COI-5P KJ012394 SPA17-13.COI-5P KJ012396 SPA174-13.COI-5P KJ012396 SPA174-13.COI-5P KJ012396 SPA175-13.COI-5P KJ012397 SPA175-13.COI-5P KJ012397 SPA175-13.COI-5P KJ012397 SPA218-13.COI-5P KJ012399 SPA218-13.COI-5P KJ012399 SPA218-13.COI-5P KJ012399 SPA218-13.COI-5P KJ012399 SPA218-13.COI-5P KJ012399 SPA215-13.COI-5P KJ012400 SPA215-13.COI-5P KJ012400 SPA215-13.COI-5P KJ012400 SPA213-13.COI-5P KJ012400 SPA213-13.COI-5P KJ012400 SPA213-13.COI-5P KJ012401 SPA213-13.COI-5P KJ012402 SPA213-13.COI-5P KJ012403 SPA213-13.COI-5P	SPA159-13.COI-5P KJ012382 G01; 655 P. acarne Oblada melanura (1 seq.) 98.84; 99.3	SPA159-13.CO1-5P KJ012382 KJ012382 KJ012383 SPA082-13.CO1-5P KJ012381 SPA083-13.CO1-5P KJ012381 SPA083-13.CO1-5P KJ012381 SPA083-13.CO1-5P KJ012381 SPA083-13.CO1-5P KJ012384 G6; 69 Seb P. acarne SPA083-13.CO1-5P KJ012384 G6; 69 Seb P. acarne SPA083-13.CO1-5P KJ012386 G6; 69 Seb P. acarne SPA083-13.CO1-5P KJ012387 P. acarne SPA083-13.CO1-5P KJ012388 SPA083-13.CO1-5P KJ012389 SPA166-13.CO1-5P KJ012391 SPA166-13.CO1-5P KJ012391 SPA166-13.CO1-5P KJ012392 SPA166-13.CO1-5P KJ012393 SPA165-13.CO1-5P KJ012389 SPA163-13.CO1-5P KJ012389 SPA163-13.CO1-5P KJ012389 SPA163-13.CO1-5P KJ012394 SPA173-13.CO1-5P KJ012395 SPA173-13.CO1-5P KJ012395 SPA173-13.CO1-5P KJ012395 SPA173-13.CO1-5P KJ012395 SPA173-13.CO1-5P KJ012396 SPA173-13.CO1-5P KJ012397 SPA173-13.CO1-5P KJ012397 SPA173-13.CO1-5P KJ012397 SPA173-13.CO1-5P KJ012399 SPA173-13.CO1-5P KJ

				A. spinifer	98.55	P. edita	99
						A. spinifer	98
Daamus aurica	SPA161-13.COI-5P	KJ012405	655	P. auriga	99.85	P. auriga	99
Pagrus auriga	SPA226-13.COI-5P	KJ012406	139	P. auriga	100	P. auriga	100
	SPA167-13.COI-5P	KJ012407	655	P. caeruleostictus	99.82; 99.83;	P. caeruleostictus	99; 100
	SPA171-13.COI-5P	KJ012408		11 000 00000000000000000000000000000000	99.84; 100	110000000000000000000000000000000000000	>>,200
Pagrus caeruleostictus	SPA172-13.COI-5P	KJ012409				P. caeruleostictus P. caeruleostictus P. major P. auratus P. major P. auratus E. japonica E. cardinalis P. edita A. spinifer P. major C. auratus E. japonica E. cardinalis	
agras caerateosticas	SPA168-13.COI-5P	KJ012410	139	P. caeruleostictus	99.07; 100	P. caeruleostictus	99; 100
	SPA170-13.COI-5P	KJ012411				P. auriga P. auriga P. caeruleostictus P. caeruleostictus P. caeruleostictus P. major P. auratus P. major P. auratus E. japonica E. cardinalis P. edita A. spinifer P. major C. auratus E. japonica E. cardinalis P. edita A. spinifer P. major C. auratus E. japonica E. cardinalis P. edita A. spinifer P. pagrus P. auratus (2 seq.) O. melanura P. auratus P. pagrus P. pagrus P. pagrus P. pagrus P. auratus E. japonica E. cardinalis P. edita A. spinifer	
		HG937827	139	P. caeruleostictus	100	P. caeruleostictus	99
			655	P. major	100	P. major	99; 100
	SPA181-13.COI-5P	KJ012412	033	P. auratus	100	P. auratus	99
	SPA183-13.COI-5P	KJ012412 KJ012413		P. major	100	P. major	100
	SPA178-13.COI-5P	KJ012413 KJ012414		P. auratus	100	P. auratus	100
	SPA178-13.COI-5P		139	E. cardinalis	98.89	E. japonica	99
	SPA179-13.COI-5P SPA182-13.COI-5P	KJ012415 KJ012416	139	E. tumifrons	98.55	E. cardinalis	99
agrus major	SPA162-15.COI-3P			P. edita	98.55	P. edita	99
ragrus major				A. spinifer	98.55	A. spinifer	98
				P. major	100	P. major	100
		Still waiting	139	P. auratus	100	C. auratus	100
				E. cardinalis	98.85	E. japonica	99
				E. tumifrons	98.52	E. cardinalis	99
				P. edita	98.52	P. edita	99
				A. spinifer	98.52	A. spinifer	98
		HG937828		P. erythrinus	100		
		HG937829	139	O. melanura	100		99
		HG937830		P. pagrus	99.28	A. spinifer P. auriga P. auriga P. caeruleostictus P. caeruleostictus P. caeruleostictus P. major P. auratus P. major P. auratus E. japonica E. cardinalis P. edita A. spinifer P. major C. auratus E. japonica E. cardinalis P. edita A. spinifer P. major C. auratus E. japonica E. cardinalis P. edita A. spinifer P. pagrus P. pagrus P. auratus (2 seq.) O. melanura P. auratus E. japonica E. cardinalis P. pagrus P. pagrus P. pagrus P. pagrus P. pagrus P. auratus E. japonica E. cardinalis P. edita A. spinifer P. lanarius	99
						O. melanura	100
			655	P. pagrus	99.84; 100	P. auratus	99
	SPA101-13.COI-5P	KJ012417		O. melanura	99.84; 100		99
Pagrus pagrus	SPA102-13.COI-5P	KJ012418					100
	SPA103-13.COI-5P	KJ012419		_			100
	SPA104-13.COI-5P	KJ012420		P. pagrus	100		99
	SPA106-13.COI-5P	KJ012421	139	P. erythrinus	100		99
				O. melanura	100		99
							98
	SPA247-14.COI-5P	Still waiting	643; 655	P. lanarius	99.69-100	* *	99
Pterogymnus laniarius	SPA248-14.COI-5P SPA249-14.COI-5P	Still waiting Still waiting	139	P. lanarius	100	P. lanarius	99

			655	R. haffara	99.82	R. haffara	99
Rhabdosargus haffara	SPA227-13.COI-5P	KJ012422	033	S. aurata (1 seq.)	99.85	K. najjara	77
Khabaosargus hajjara	SI A227-13.COI-31	KJ012422	139	R. haffara	100	R. sarba	96
			137	S. aurata (1 seq.)	100	K. Sarva	70
Rhabdosargus holubi*	SPA246-14.COI-5P	Still waiting	652	R. holubi	100	R. holubi	99
Khabaosargus hotubt	SFA240-14.COI-3F	Still waiting	139	R. holubi	99.28	R. holubi	99
		HG937831		R. sarba	100	R. sarba	100
		HG937832	139	R. haffara	100	R. globiceps	98
		HU937832		R. globiceps	98.85	A. berda	98
	CDA 107 12 COLED	V1012422	655	R. sarba	99.85; 100	R. sarba	99; 100
Rhabdosargus sarba	SPA186-13.COI-5P	KJ012423		R. sarba	100	R. sarba	100
	SPA233-13.COI-5P	KJ012424	139	R. haffara	100	R. globiceps	98
				R. globiceps	98.85	A. berda	98
	GD 4 2 4 5 1 4 GOL 5 D	G.:II	655	R. sarba	100	R. sarba	100
	SPA245-14.COI-5P	Still waiting	139	R. sarba	100	R. sarba	100
	SPA085-13.COI-5P	KJ012425	655	S. salpa	99.85; 100	S. salpa	99
	SPA084-13.COI-5P	KJ012426				•	
Sarpa salpa	SPA199-13.COI-5P	KJ012427		S. salpa 99.85; 100			
	SPA087-13.COI-5P	KJ012428	139		99.85; 100	S. salpa	99; 100
	SPA086-13.COI-5P	KJ012429					
	SPA074-13.COI-5P	KJ012430	655	S. aurata	100	S. aurata	100
	SPA200-13.COI-5P	KJ012431					
Sparus aurata	SPA072-13.COI-5P	KJ012432	139	S. aurata		S. aurata	
	SPA075-13.COI-5P	KJ012433			100		100
	SPA073-13.COI-5P	KJ012434					
	SPA099-13.COI-5P	KJ012435	569; 643; 655	S. cantharus	100	S. cantharus	99
	SPA201-13.COI-5P	KJ012436		S. cantharus	100	S. cantharus	99
	SPA097-13.COI-5P	KJ012438	139	S. emarginatum	99.28; 98.55	S. emarginatum	98; 99
					,	S. cantharus	100
			655	S. cantharus	100	S. emarginatum	98
Spondyliosoma cantharus	SPA096-13.COI-5P	KJ012439		S. cantharus	100	S. cantharus	100
			139	S. emarginatum	99.28	S. emarginatum	99
			547	S. cantharus	100	S. cantharus	99
	SPA098-13.COI-5P	KJ012437				S. cantharus	100
			69	<80 bp		S. emarginatum	99
				S. caprinus	99.69- 100	S. chrysops	99; 100
,	SPA090-13.COI-5P	KJ012440	655	S. chrysops	99.85; 100	C. penna (1 seq.)	99
Stenotomus caprinus ^b	SPA089-13.COI-5P	KJ012441		S. caprinus	100	S. chrysops	100
	SPA088-13.COI-5P	KJ012442	139	S. chrysops	100	C. penna (1 seq.)	100

	SPA095-13.COI-5P SPA234-13.COI-5P	KJ012443 KJ012444	655	S. chrysops S. caprinus	100 99.69	C. penna (1 seq.) S. chrysops	100 99
Stenotomus chrysops	SPA091-13.COI-5P SPA092-13.COI-5P SPA093-13.COI-5P SPA094-13.COI-5P	KJ012445 KJ012446 KJ012447 KJ012448	139	S. chrysops S. caprinus	100	S. chrysops C. penna (1 seq.)	100 100
			655	V. acromegalus P. acarne	100 100	P. auriga	92
Virididentex acromegalus ^{b*}		KJ012449	139	V. acromegalus P. acarne	100 100	Porcostoma dentata A. spinifer	97 97
		HG937833	139	V. acromegalus P. acarne	100 100	Porcostoma dentata A. spinifer	97 97

Table 5SM: The results of the IDs analysis on BOLD and of the BLAST analysis on GenBank for the full and for the mini DNA barcode. The BOLD codes and the NCBI access number are reported when available (no code is assigned in BOLD to sequences <200bp). The species not reported in **bold type** have been considered originating from incorrectly identified or mislabeled specimens. When two or more values of MI are reported they are referred to a range (if separated by a -) or to different MI retrieved (if separated by a semicolon;). ^a No sequences were available for this species in consulted databases; ^bNo sequences were available for this species in Genbank database;*Species not considered in the International Official Trade lists; *D. sargus* subspecies: *D. sargus ascensionis*, *D. sargus capensis*, *D. sargus helenae*; *D. sargus kotschyi*, *D. sargus lineatus*, *D. sargus sargus*.

