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Abstract — With reference to a network consisting of sensor nodes connected by wireless 
links, we approach the problem of the distribution of the cryptographic keys. We present a 
solution based on communication channels connecting sequences of adjacent nodes. All the 
nodes in a channel share the same key. This result is obtained by propagating the key 
connecting the first two nodes to all the other nodes in the channel. The key propagation 
mechanism is also used for key replacement, as is required, for instance, in group 
communication to support forms of forward and backward secrecy, when a node leaves a 
group or a new node is added to an existing group.  
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1. INTRODUCTION 

We shall refer to a network consisting of sensor nodes connected by wireless links. We 

make no hypothesis on the network topology, which is subject to dynamic modifications due, 

for instance, to node mobility and changes of the wireless transmission strength of the nodes 

(if the transmission power increases, new links are generated between contiguous nodes; if the 

transmission power decreases, existing links tend to disappear [1], [2]). Moreover, new nodes 

can be added to the network, and existing nodes can leave the network (e.g. as a consequence 

of a battery exhaustion). 

In a network of this type, stringent limitations exist in terms of hardware complexity, 

computational power and energy consumption [3], [4]. In fact, the design of a wireless sensor 

network is largely different from that of a traditional wired-line or wireless network. As a 

consequence of the energy costs of wireless communications, the number of messages trans-

mitted across the network must be kept low, for instance. Similarly, the processor time has an 

energy cost that must be kept to a minimum. These constraints, and the modern tendency to 

support new applications taking advantage of an always increasing number of nodes [5], 

complicate the incorporation of security protocols, as are necessary in most applications be-

cause of the lack of physical protection and the unattended positioning [6], [7].  

A relevant problem is the distribution to nodes of the cryptographic keys, which are re-

quired to support basic services such as data integrity, confidentiality and authenticity [8], [9]. 

This problem has been widely investigated and several schemes have been proposed for 

link-level key establishment [10], [11], node-to-node key agreement [12], and group rekey-
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ing [13], [14]. The so-called basic scheme [10] is a well-known example of a probabilistic key 

sharing scheme. In the basic scheme, a large pool P of key values is generated in the key 

pre-distribution phase; we shall use the term global keys to denote these key values. Each 

node is pre-loaded with a set of p global keys, chosen at random out of P. Two network nodes 

can communicate if they share at least one global key; the probability that this actually hap-

pens is a function of quantity p and the cardinality of P, e.g. the probability is 0.5 if p = 75 

and P contains 10,000 key values [10]. For adequate levels of network density (i.e. the num-

ber of nodes in a neighborhood), the probability that a node is disconnected from the network 

is negligible.  

Of course, probabilistic key sharing is unable to support sequences of three or more 

nodes: the probability that all these nodes share the same global key is vanishingly low. In 

this paper, we shall present an approach to node-to-node key agreement that supports the cre-

ation of secure communication channels between nodes. A communication channel connects a 

start node, an end node and a sequence of intermediate nodes in the path between the start 

node and the end node. All the nodes in a communication channel share the same key. This 

result is obtained by propagating the key connecting the start node and the first subsequent 

node to all the other nodes in the channel. Communication channels are bidirectional; they can 

be used to deliver reply messages as well as to transmit a message from/to any intermediate 

node. 

Our key agreement scheme integrates with routing. Creation of a secure communication 

channel proceeds while the first message is routed along the path from the start node to the 

end node. We take advantage of a pre-existing link-level key establishment so that link keys 

are used to protect confidentiality and integrity of the propagating key. However, once a se-

cure channel has been established, no hop-by-hop encryption/decryption is necessary, with 

evident advantages in terms of performance. 

Similarly to the SPINS set of security protocols for sensor networks [12], our key man-

agement scheme achieves a form of secure key agreement; however, in SPINS a centralized 

approach is followed that relies on a base station playing the role of a key distribution center. 

Although effective, this approach suffers from a limited scalability (the whole key establish-

ment traffic passes through the base station and the nearby sensor nodes) and a single point of 

failure (when the base station is unavailable, no end-to-end secure channel can be estab-

lished). We overcome these limitations in a fully decentralized approach whereby the key 

management traffic is completely sustained by the start node, the end node and the intermedi-
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ary nodes. 

A similarity exists between our key propagation scheme and directed diffusion key man-

agement; in both cases, keys are propagated by localized interactions, i.e. message exchanges 

between neighbors. However, directed diffusion is a data centric communication paradigm, 

which facilitates attribute-based naming and in-network processing to reduce network traffic 

[15]; thus, it is particularly well suited for group key management [14], [16]. In contrast, our 

key propagation scheme has been conceived to fit a communication model whereby nodes are 

identified by name, and inter-node communication is layered on an end-to-end delivery ser-

vice provided within the network. Thus, key propagation is especially well suited to 

end-to-end key establishment. 

The rest of this paper is organized as follows. Section 2 presents our connection model 

with special reference to the propagation of the cryptographic keys and key replacement. Sec-

tion 3 discusses the connection model from a number of salient viewpoints including group 

communication and storage requirements. Section 4 gives concluding remarks. 

2. THE CONNECTION MODEL 

We model a message as consisting of a control part and a data part. Let us refer to mes-

sage m sent by a start node, say node A, to an end node, say node B, and let N0, N1,..., Nr be 

the intermediate nodes in the path from A to B. The control part is generally read by the in-

termediate nodes. This may be necessary for message routing, for instance. On the other hand, 

the data part is only read by the end node, B. 

In a possible approach, a cryptographic key is associated with each consecutive pair of 

nodes and is used to establish a form of secure communication between these nodes taking 

advantage of a symmetric-key cipher. In this approach, let K0 be the cryptographic key shared 

by nodes A and N0; the control part of message m is encrypted in A and is decrypted in N0 by 

using K0. Similarly, let K1 be the key shared by node N0 and the subsequent node N1; the con-

trol part of m is encrypted in N0 and is decrypted in N1 by using key K1. The process is ex-

tended to all the subsequent nodes. The data part is encrypted in the start node A by using a 

cryptographic key in common with the end node B; this message part is simply forwarded by 

each intermediate node to the subsequent node until the end node B is reached, where it is fi-

nally decrypted. 

In contrast, in our approach, we create a communication channel between nodes A and B 

through nodes N0, N1,..., Nr. A message transmitted through the communication channel is 

transformed to ciphertext only once, by the start node A. All the subsequent channel nodes 
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N0, N1,..., Nr possess the cryptographic key used in the transformation; they will use this key 

to read the control part of the message and then forward the whole message to the next node, 

until the end node B is reached. Of course, significant advantages follow in our approach from 

the point of view of the number of transformations from plaintext to ciphertext. 

2.1. Cryptographic keys 

We shall refer to a local network consisting of up to 2d nodes. Two set of keys are stored 

in each node, the local keys and the global keys. Each key has a name and a value. The name 

K of a local key consists of two components, i.e. K = <Knode, Kincr>. Quantity Knode is codified 

in the d most significant bits of K, and is equal to the name of the node where the key was 

generated. This node is called the principal of the key, and is denoted by P(K). Thus, Knode = 

P(K). Quantity Kincr, codified in the least significant bits of K, is called the incremental name 

of K. A simple technique for generation of incremental names is a sequential generation that 

takes advantage of a local key counter in each node. At any given time, the local key counter 

of a given node contains the incremental name of the next local key that will be generated in 

that node. The local key counter is initialized to 0 when the system is generated, and is incre-

mented by 1 after every action of local key generation taking place in that node.  

Let K be the set of all possible key values, and let f : K → K be a key conversion func-

tion (a one-way hash function that is efficient to compute and hard to invert [17]). A master 

value v is associated with each local key K, and is used to determine the value k of this key by 

applying the key conversion function, i.e. k = f(v). As will be shown shortly, the master value 

of a given key is used when the value of that key should be replaced, to certify the key re-

placement messages. 

Global keys are utilized according to a probabilistic key sharing scheme. The name of a 

global key is the order number of that key in the pool of key values generated in the key 

pre-distribution phase. Global keys are only aimed at the propagation of the local keys. 

2.2. Communication channels 

Two nodes are adjacent if they can communicate via a direct wireless link. Adjacent 

nodes A and B are connected on local key K if both of them hold this key. The connection is 

denoted by {A, B}K. In a situation of this type, a message can be sent by node A to node B 

encrypted by using K. Connections are bidirectional: if there exists connection {A, B}K, then 

there exists connection {B, A}K and a message can be sent by node B to node A encrypted by 

using K. 

The connection property can be extended to more nodes, as follows: nodes A, N0, N1,..., 
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Nr and B are connected on local key K if they all hold this key. In a situation of this type, we 

have a communication channel on local key K that is denoted by {A, N0, N1,..., Nr, B}K and 

extends from node A to node B through the intermediate nodes N0, N1,..., Nr. Key K is called 

the channel key. In a situation of this type, a message can be sent by A to B encrypted by us-

ing K. Each intermediate node will be in the position of decrypting the message, as it holds 

key K. Communication channels are bidirectional. A communication channel can be used by 

any node of the channel to send a message to any other node of the channel, in both direc-

tions, by using the channel key to encrypt the message.  

2.3. Key propagation 

In each given node M, three tables implement a form of distribution of the information 

concerning keys and connections, as follows (see Figure 1): 

• The connection table CTM features one entry for each node N that is connected to node 

M. The entry CTM,N reserved for N contains the name of that node and a list of local keys 

K0, K1, etc.. These keys are shared by M and N, and as such they give rise to connections 

{M, N}K0, {M, N}K1,... between these nodes. This means that it is possible to send mes-

sages between M and N encrypted by using anyone of these keys. As a consequence of 

the bidirectionality of connections, if CTM,N contains a given key, then CTN,M (i.e. the en-

try reserved for node M in the connection table CTN of node N) contains the same key.  

• The principal key table PTM features one entry for each key K for which Knode = M (i.e. M 

is the principal of K). The entry reserved for key K contains the incremental name Kincr of 

this key and the master value v of this key. 

• The local key table KTM features one entry for each local key K held by this node, for 

which Knode ≠ M (i.e. node M is not the principal of K). The entry reserved for a given key 

contains the name K and the value k of this key. 

In the following, we shall hypothesize that the control part of a message is preceded by a 

plaintext, which includes the name of the key that was used to encrypt the rest of the message. 

In this hypothesis, let A and B be two adjacent nodes, and let us suppose that node A is aimed 

at sending a message m to node B (e.g. the routing component on A has selected B as the next 

 
Figure 1. Tables in node M. 
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hop). Message delivery proceeds as follows (see Figure 2):  

 If an entry CTA,B is reserved for node B in connection table CTA, then nodes A and B are 

connected. Let K be a local key contained in CTA,B, corresponding to connection {A, 

B}K. Taking advantage of this connection, node A sends message m to node B enciphered 

by using key K. Node B is in the position of deciphering m by using K. 

 If no entry is reserved for node B in CTA, node A sends node B a message containing the 

names of its own global keys. On receipt of this message, node B performs a search for a 

global key shared with A and returns the name G of this key to A (G will be empty if no 

global key is shared between A and B). 

 On receipt of global key name G from B, node A generates a new local key name K = 

<Knode, Kincr> where Knode = A (i.e. node A is the principal of K) and a master value v for 

this key; pair <Kincr, v> is inserted into principal table PTA. Then, node A applies the key 

conversion function f to master value v to obtain the value k = f(v) of key K, and then uses 

key G to send pair <K, k> to node B. (If G is empty, node A performs a pairing attempt 

with a different adjacent node and communicates with B through this node. If all pairing 

attempts fail, A is disconnected from the network.)  

 Node B reserves an entry CTB,A for node A into its own connection table CTB, it inserts 

key K into this entry, and inserts pair <K, k> into its own local key table KTB. Then, B 

returns a positive reply message to A. 

 Node A sends message m to node B enciphered by using key K. Node B is in the position 

of deciphering m by using K. 

 
Figure 2. Sending a message from node A to node B, and final configuration of the connection tables and the 
key tables. 
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On termination, key K has been propagated to node B and connection {A, B}K has been set 

up.  

Let us now consider the case that node A sends a message m to node B through a third 

node N. We shall suppose that connection {A, N}K has been already set up. The delivery of 

message m proceeds as follows (see Figure 3): 

 Node A enciphers message m by using key K and sends this message to node N by means 

of connection {A, N}K; 

 If there exists connection {N, B}K between nodes N and B, node N forwards message m 

to B; otherwise 

 If there exists connection {N, B}K’ where K’ ≠ K, node N uses this connection to send a 

message to B encrypted by using K’ and containing pair <K, k> so as to set up connection 

{N, B}K; otherwise 

 A search is made for a global key G shared by nodes N and B1 (if N and B share no 

global key, node N performs a pairing attempt with a different adjacent node and com-

municates with B through this node). Then, node N uses key G to send pair <K, k> to B 

so as to set up connection {N, B}K. 

 Node N uses connection {N, B}K to forward message m to B.  

On termination, key K has been propagated to node B and communication channel {A, N, B}K 

has been set up.  

The actions delineated above can be extended to an arbitrary sequence of nodes A, N0, 

                                                 
1 It is important to note that global key G does not need to be shared by node A. 

 
Figure 3. Sending a message from node A to node B through node N. 
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N1,..., Nr, B. On termination, key K has been propagated from node A to node B as well as to 

all intermediate nodes, and communication channel {A, N0, N1,..., Nr, B}K has been set up.  

We may conclude that the delivery of a message encrypted by using key K from node A 

to node B through an arbitrary number of nodes causes the propagation of K to all the inter-

mediary nodes and generates a communication channel involving these nodes. A salient prop-

erty of a communication channel using key K and generated by propagation is that the princi-

pal node P(K) of K is always the first node of the channel. This means that, given the name K 

of the cryptographic key of a given communication channel, it is always possible to identify 

the first node of this channel by using the Knode component of key name K. We shall take ad-

vantage of this property in key replacement. 

2.4. Key replacement 

A local key replacement is the action of assigning a new value to an existing local key. 

The new key value will have to be inserted into the local key table of every node holding this 

key. Of course, a result of this type can be obtained by broadcasting a local key replacement 

message to all the network nodes. In an alternative approach, we avoid the high costs in terms 

of network traffic that are connected with message broadcasting by taking advantage of the 

mechanism for key propagation. In this approach, we only generate the messages necessary to 

reach those nodes that are part of a communication channel relying on the key being replaced.  

Let K be the key to be replaced, let v be the master value of this key, and let k be the cor-

responding key value. Furthermore, let v* be the new master value of K, and let k* be the 

corresponding new key value. We exploit the fact that the principal node of key K, say node 

A, is identified by the Knode component of quantity K (i.e. Knode = A), and all communication 

channels relying on K start from A. The actions involved in key replacement are as follows 

(see Figure 4): 

 Node A performs a search in its own connection table CTA to find all the entries that 

contain key name K. For each of these entries, let N be the corresponding node. 

 Node A performs a search in entry CTA,N of connection table CTA for a local key K’ ≠ K 

(if no such local key exists, a global key is used. If A and N share no global key, A per-

forms a pairing attempt with a different adjacent node and communicates with N through 

this node). 

 Node A assembles a key replacement message m that includes key name K, the old mas-

ter value v of this key and the new key value k*. Message m is sent to N. 

 Node N authenticates message m as follows. Quantity v is extracted from the message 
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and is used to evaluate quantity f(v); the result is compared with the value k of key K, as 

contained in local key table KTN. If no match is found, the authentication fails and m is 

discarded. If the match is successful, the new key value k* of key K is extracted from m 

and is inserted in the entry corresponding to key K in local key table KTN. 

It should be clear that in the intermediate propagation phases, when the new key value 

has been distributed to only a subset of all the nodes involved in the key replacement, mes-

sages may well be sent using the old key. This will be the case, for instance, for a reply mes-

sage sent in a channel relying on key K in the reverse direction, from the end node to the start 

node, as long as the propagation of the new key value has not yet reached the end node. De-

tection of situations of this type occurs as follows. Each given message m includes the name 

K of the key that was used to encrypt that message both in plaintext and in the ciphertext form 

obtained by using the same key, K. When the generic node M receives message m, it deci-

phers the key name contained in ciphertext in m by using the key value contained in its own 

local key table KTN. If the result does not match the key name contained in plaintext in m, 

then either KTN contains the outdated value of K, or message m was encrypted by using the 

outdated value of K. In both cases, message m should be discarded. 

3. DISCUSSION 

A key is compromised if it has been acquired by an illegitimate agent. This can be the 

result of application of well-known techniques for data stealing [18], [19], for instance. When 

 
Figure 4. Local key replacement. The figure shows a situation in which the new value k* of key K has been 
propagated in channel {A, N, B}K from node A to the intermediate node N, and this node has not yet propa-
gated the new value to node B. 
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a global key is compromised, it should be eliminated from all the network nodes. This result 

can be obtained by broadcasting a key invalidation message. If more global keys have been 

compromised, the global key invalidation message will include a list of the names of these 

keys [20]. On receipt of a message of this type, each node will simply delete the compromised 

global keys. So doing, these keys will no longer be used to establish connections between 

nodes.  

When a local key has been compromised, it should be replaced. In our configuration of 

the node tables, replacing a given key means to insert the new key value into the local key ta-

ble of every node holding this key. Of course, a result of this type can be obtained by broad-

casting a local key replacement message to all network nodes. In an alternative approach, we 

take advantage of the key replacement mechanism, illustrated in Subsection 2.4. The ensuing 

reduction of the number of messages that are required for key replacement is especially im-

portant as far as energy consumption is concerned [21]. 

3.1. Group communication 

In the group communication model, sensor nodes that cooperate for the same task are 

logically placed in the same group [13], [22]. Several groups may well co-exist within the 

given sensor network. Interactions between the nodes that are members of the same group are 

frequent, whereas interactions between the members of distinct groups are comparatively rare. 

Groups can be organized hierarchically; in this case, interactions between different groups 

only involve the nodes at the highest hierarchy levels. Group organization is logical rather 

than physical. In the presence of different applications, the composition of the different 

groups may well overlap according to arbitrary topologies; nodes are grouped on the basis of 

application-specific requirements, and different applications may take advantage of the same 

node. 

Our key propagation mechanism is well suited to support the group communication mod-

el. In each group, a single key, the group key, will be shared by all group members. A node is 

chosen to be the group controller for the purpose of key distribution within the group. To this 

aim, the group controller (e.g. a base station) creates one or more communication channels 

relying on the group key, so as to propagate the group key to all group members. Each mem-

ber can communicate with the other nodes in the group by using this key. Multiple overlap-

ping group topologies are supported by the possibility of associating several local keys with 

the same given node. 

Group membership may well change. When a new node is added to an existing group, the 
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key of the group must be assigned to this node. This result can be simply obtained by sending 

a message to the new node using this key. The message can be sent by the group controller as 

well as by any other group member. A common requirement is that when a new node enters a 

group, the group key is replaced to prevent the new node from using the old group key to read 

messages exchanged before it joined the group if it has recorded these messages (backward 

secrecy) [13]. A result of this type will be obtained by taking advantage of our key replace-

ment mechanism; the new node will be included in a key replacement message. An important 

property is that, if a key is changed while a node is off-line, this node will be in the position to 

recover after coming back on-line. This will happen the first time that a message is sent to that 

node using the new group key. 

When a node leaves a group, the replacement of the group key is mandatory to prevent 

that node from taking advantage of communication with the group members any longer (for-

ward secrecy) [13]. Of course, the new key will be sent to all group members except the 

leaving node, and the new key cannot be sent using the old key, as the leaving member knows 

the old key. Once again, our key replacement mechanism is a solution to this problem. The 

new key will be sent using alternative connections relying on other local keys, or, if no such 

connection exists, on the global keys. A further application is a periodic rekeying, i.e. the ac-

tion of replacing the value of a local key regardless of changes in group topology [23], [24]. 

An action of this type may be carried out at regular intervals to safeguard key secrecy, and to 

maintain resilience to attacks and failures, for instance [25], [26].  

3.2. Storage requirements 

As anticipated in the introduction, as a consequence of the stringent limitations existing 

in sensor nodes on memory space, the cost of key storage is a significant parameter. Let us 

refer to a large-scale network consisting of up to 224 nodes, i.e. the size of the Knode compo-

nent of a key name is 24 bits (see Subsection 2.1). If we reserve 8 bits for the Kincr compo-

nent, then up to 256 keys can be generated in each node. In this hypothesis, the size of a key 

name is 4 bytes. For 64-bit key values, in the given node M the size of an entry of the princi-

pal table PTM is 9 bytes, and the size of an entry of the local key table KTM is 12 bytes. These 

memory costs correspond to a communication channel that departs from or includes M, re-

spectively.  

We hypothesized that the name of a global key is equal to its order number in the key 

pool P originally generated in the key pre-distribution phase. In this hypothesis, the size of a 

global key name descends from the cardinality of P. A size of 16 bits will accommodate a 
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large P. It follows that the memory requirement of a global key is 10 bytes (2 bytes for the 

key name and 8 bytes for the key value). As seen in the introduction, the total number p of 

global keys in each node is a parameter of the probabilistic key management scheme, and is a 

function of the desired degree of connectivity. We may well argue that the number of global 

keys in each node is significantly greater than the number of communication channels that 

depart from or include that node. We may conclude that the memory requirements for storage 

of the local keys are a negligible fraction of the total requirements for key storage. 

4. CONCLUDING REMARKS 

We have considered an important security problem of wireless sensor networks, the dis-

tribution of the cryptographic keys. We have presented a solution that supports the creation of 

communication channels connecting sequences of adjacent nodes. A salient feature of our ap-

proach is that all the nodes in a channel share the same key. This result has been obtained by 

propagating the key connecting the first two nodes to all the other nodes in the channel. We 

have obtained the following results: 

• A message transmitted through the communication channel is transformed to ciphertext 

only once, by the start node. All the subsequent channel nodes possess the cryptographic 

key; they will use this key to read the control part of the message and then forward the 

whole message to the next node. So doing, we obtain a significant reduction of the num-

ber of message transformations from plaintext to ciphertext, which is an important factor 

as far as energy consumption is concerned. 

• Communication channels are bidirectional. If a communication channel has been set up in 

the delivery of a message from node A to node B, then the same channel can be used in 

the reverse direction to deliver a reply message from node B to node A. A channel can be 

used for message transmission between any two channel nodes. In this way, we keep the 

number of actions of key distribution to a minimum. 

• Local key replacement takes advantage of the mechanism for key propagation. We avoid 

the high costs in terms of network traffic that are connected with message broadcasting. 

Instead, we generate only those messages that are necessary to reach the nodes that are 

part of the communication channels relying on the key being replaced.  

• Key propagation gives effective support to group communication. We can take advantage 

of the possibility of associating several local keys with the same given node to implement 

multiple groups with overlapping topologies. The key replacement mechanism is well 



– 13 – 

suited to support forms of backward and forward secrecy, replacing the group key when a 

new node enters an existing group or a node leaves a group.  
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