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This contribution aims to be a critical presentation of the studies conducted by the authors over the 
last ten years on the mechanical response of masonry arches and vaults. More precisely, we focus on a 
study of masonry arches conducted in parallel via both nonlinear elastic and limit analyses. The one-
dimensional elastic model for masonry arches incorporates a simple but effective nonlinear 
constitutive law. In turn, collapse analysis is performed by the so-called ‘method of stability areas’, 
originally proposed by Durand-Claye (1867). Rather than offering two alternative paths, the two 
approaches may be considered two complementary points of view on the same problem. 
A reasoned illustration of the concepts in question are furnished by the topics addressed: an analysis 
of the possible failure mechanisms of a pointed arch subject to its own weight; the search for explicit 
solutions to the equilibrium problem of a depressed arch subject to a uniformly distributed load; the 
study of arches of different shapes subject to their own weight and the weight of a superimposed wall.  
 

 
1. Introduction 

Determining the structural response of masonry arches, vaults and domes, in terms of both 
displacements and stresses, still represents a challenging task. In fact, a well-known property of 
masonry structural elements is that their response is typically characterized by a pronounced 
nonlinear trend even for load intensities that are quite low with respect to the collapse values. 
The need to take into account the nonlinear constitutive relations for “masonry” material 
represents a further challenge that must be faced, except in some special cases. For this reason, 
especially in the not-so-rare cases of complex building shapes, the solution is sought by recurring 
to large-dimension numerical analyses, even when geometric nonlinearities are not accounted for 
(Alfano et al. 2000; Lourenço 2005). 

The present work aims to analyze the mechanical response of one of the most common 
structural elements in masonry constructions: the arch. The two theoretical models that will be 
used in this regard belong to different, but complementary frameworks, as we shall see: limit 
analysis, on the one hand, and nonlinear elasticity, on the other hand. Although the two models, 
which will be illustrated in the first two sections to follow, differ in many respects, they 
nonetheless share the goal of simplicity as one of their main features. In this regard, it should be 
noted that the use of simple schemes is motivated not only by reasons of an operational nature, 
but also by two further considerations regarding the analysis results. First, the simple models 
generally enable simpler, more concise verification of the results, as they focus attention on the 
main aspects of the phenomenon in question. Furthermore, to be used effectively, the more 
complex models - which in principle would allow obtaining more accurate results in closer 
agreement with experiment - often require knowing a large number of mechanical and 
geometrical parameters, which are generally uncertain and difficult to determine experimentally. 
One example that effectively illustrates the many complexities involved in the analysis of 
masonry structures is offered by the basic, and apparently easy-to-solve, case of a masonry arch 
subjected to its own weight and the weight of a superimposed wall. Determining the mechanical 
response of such a system represents a challenging problem due to at least three aspects: the 
strong material nonlinearities typical of the complex mechanical behavior of masonry, the 
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pronounced heterogeneity of the masonry, and the large number of geometrical and mechanical 
parameters involved, which include shape, span and thickness of the arch, the strength of the 
masonry (usually accounted for by considering some approximate or average values), the 
inclination of the wall extrados, the considered boundary conditions on the walls’ vertical sides 
and at the arch springings, as well as others. In particular, determining the actual load distribution 
transmitted from the wall to the arch is by no means a trivial matter, and approximate solutions 
obtained via finite-element computation codes or, alternatively, by means of elementary 
calculation schemes, are often considered acceptable in the literature (see, for instance, Cavicchi 
and Gambarotta, 2005). 

In this paper, the two simplified methods that will be used to obtain the solution to some 
equilibrium problems for a masonry arch will be indicated as the “stability areas method” and the 
“nonlinear elastic model”, respectively. The first solution technique is based on an expressly 
developed extension of the historical method of “stability areas” introduced by Durand-Claye 
(1867). It aims at determining the set of statically admissible solutions within the limits imposed 
by the ultimate compressive and tensile strengths and the limited shear capacity of the joints. 
When the extent of the “stability area” goes to zero, a limit equilibrium condition is attained for 
the whole system (Foce and Aita 2003; Aita et al. 2004; 2007). This methodology preserves the 
fundamental concepts of limit analysis and, at the same time, embodies some aspects of the 
nonlinear elastic analysis by imposing a restriction on the stress level.  

The second solution technique instead focuses on the stress and strain fields generated in the 
arch, which is considered as a one-dimensional element made of a material offering poor 
resistance to tension. Such mechanical behavior can be modeled, as a first approximation, via a 
nonlinear elastic constitutive relation. The problem is tackled by studying and numerically 
integrating systems of nonlinear equations (Barsotti and Bennati 2001). The condition of 
incipient collapse is considered to be reached when the residual stiffness of the system falls 
below a predetermined fraction of its initial value. From a historical point of view, this approach 
has his roots in the contribution of Signorini, who first proposed direct-method studies of the 
mechanical behavior of elastic materials unable to bear tensile stresses (Signorini 1925a, 1925b). 

The two methods achieve complementary purposes: the stability area method allows for 
readily determining a collapse load value, while the nonlinear elastic analysis provides a helpful 
and, in some aspects, essential check of its mechanical significance by following the evolution of 
the displacement field and extension of the nonlinear regions where cracking and crushing 
phenomena arise as the load increases. 

In the following, the two theoretical frameworks introduced above are used in the search for 
the solution to three problems, which are described in the third and last section. All three cases 
presented, which are a selection of case studies examined over the past ten years, refer to plane 
arches subject to in-plane vertical loads.  

In each of the two first applications the attention is focused on one of the two methods in 
order to highlight its main aspects. In particular, the first case illustrates application of the 
method of “stability areas” to the collapse of pointed arches, while also taking into account the 
limited shear strength of the masonry. The second case shows how nonlinear elastic analysis 
enables obtaining the explicit solution in terms of displacements, stresses, strains and extension 
of the nonlinear zones in which cracks and damage are expected in the masonry in the case of 
depressed arches subjected to uniformly distributed vertical loads. Finally, the parallel use of 
both analysis methods is illustrated in the last case, in which we examine the mechanical system 
consisting of an arch and a superimposed wall. The problem, which commonly occurs in 
masonry buildings and bridges, is investigated for arches of different shapes: pointed, 
semicircular and elliptical. 



 

 

 
2. The Durand-Claye method 

In 1867, Durand-Claye introduced a graphical procedure aimed at assessing whether 
admissible thrust’s values at the crown section of an arch could be determined for symmetric 
equilibrium problems. The object of the procedure, which is now commonly indicated as the 
Durand-Claye method, is to draw a particular plane figure named the stability area. Each point 
belonging to such area is the extreme of a vector representing an admissible value for the crown 
thrust, i.e. a thrust that allows for verifying the equilibrium of any given part of the arch and is at 
the same time compatible with the masonry strength. It is worth observing that here the method 
proposed by Durand-Claye has been suitably modified so as to account for a nonlinear stress 
distribution both in tension and compression. In the following we briefly describe the thusly-
modified method (a more detailed description is given in Aita et al., 2004). 

We consider a symmetric masonry arch. We indicate with σc and σt the masonry compressive 
and tensile strength, respectively. We assume, for the sake of simplicity, that the arch is loaded 
by its own weight only.  

We begin by examining the ideal voussoir comprised between the crown joint c0d0 and a 
generic joint cidi (Figure 1). We indicate with W the weight of the voussoir, with Ni the normal 
force at joint cidi, with P the thrust at the crown section, and with e0 and ei the eccentricity of 
their corresponding application points.  

If we set the value for the crown eccentricity, e0, a first limitation for the thrust value at the 
crown section, P, can be obtained by requiring it to be compatible with the masonry compressive 
and tensile strength. Unlike the original version of the stability area method, here, any given 
cross-section of the arch may be subdivided into three different parts: two parts where the normal 
stress is constant and equal to σc and σt, respectively, and a third part where the stress varies 
linearly between these two threshold values. By varying e0, simple calculations allow for drawing 
the corresponding c0ω0d0 curve, bounding the admissible region. Analogously, by considering 
the axial force transmitted across the cidi joint, Ni, the corresponding ciωidi curve is obtained. 

By imposing rotational equilibrium on the voussoir, further limitations are introduced. In fact, 
it is an easy matter to show that, when the extreme of the vector representing the axial force, Ni, 
moves along the ciωidi curve, the corresponding extreme of the thrust at the crown belongs to the 
hyperbolas αi and βi.  

The last limitation follows directly from the voussoir translational equilibrium and adoption of 
Coulomb’s friction law. The latter requires the magnitude of the shear force transmitted along the 
cjdj joint not to exceed the limit value φtaniN , where φ  is the internal friction angle. In turn, 

from the translational equilibrium in the direction normal to the cidi joint, it is straightforward to 
conclude that two limit values for the horizontal thrusts at the crown section can be assessed, 
corresponding to the limit inward and outward shear forces, respectively. The two vertical red 
lines drawn in Figure 1, labeled γ i

−  andγ i
+ , correspond to these two thrust limit values. 

The admissible thrusts P with respect to both the voussoir equilibrium and masonry strength 
are then represented by the horizontal vectors whose extremes are contained within the area 
r isipiqi, internal to the c0ω0d0 curve, and comprised between the hyperbolas αi and βi, and the 
straight lines γ i

−  and γ i
+ . 

 



 

 
Figure 1. The stability area (σt = 0)  

 

By repeating the foregoing for every joint i, the stability area, A, common to all the areas Ai 
can be determined. If A has a finite extension, there are infinite admissible thrust values (and 
infinite corresponding eccentricities), ranging within a suitable interval. On the contrary, if A is 
empty, no admissible thrust value exists. Finally, as we shall see later, when the stability area A 
shrinks to a point or to a segment, the limit condition is attained, and a unique admissible thrust 
value exists. 

 
 
3. The non-linear one-dimensional elastic model 

In order to build a simple but effective model, we consider the masonry arch as a deformable 
curved beam. As usual in the theory of the bending of beams, the cross-section of an arch of 
height h and, for the sake of simplicity, unit width is assumed to remain plane and normal to the 
longitudinal fibers after bending, thus neglecting any shear strain. Moreover, the longitudinal 
normal stresses σθ are assumed to depend on the corresponding strains εθ according to the same 
relation holding in a uniaxial state of stress.  

The longitudinal strain is linear over any given cross-section. Thus, the kinematics of the arch 
can be described by three functions of the curvilinear abscissa s along the line of axis, namely: 
the displacement components u and v of the points of the axis of the arch in the tangential and 
radial directions, and the rotation ϕ of the cross-section, positive if clock-wise (Figure 2). 

Simple calculations, omitted here for the sake of brevity, show that, in the case the arch is 
circular with radius R, the radial displacement v(θ) is a solution to the differential equation 

εχ RRvv −−=+′′ 2 ,     (1) 



 

where ε and χ are the axial strain and curvature of the line of axis, respectively, θ = s/R+θ0, the 
prime denotes differentiation with respect to θ, and θ0 is the starting angle of the circular arc. The 
integral of eqn. (1) is  
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while u0, v0 and ϕ0 are the tangential and radial components of the displacement and the rotation 
of the initial cross-section, at θ =θ0 . 

 
Figure 2. Symbols and notations adopted in the one-dimensional model.  

 

Following Signorini’s idea, we adopt for the masonry the piecewise-linear constitutive 
relation between the longitudinal strain, εθ, and stress, σθ, showed in Figure 3. 



 

 
Figure 3. The σθ - εθ relation. 

 

The simple elastic stress-strain constitutive relation used here reduces to the basic linear case 
for stresses comprised within the threshold values σc and σt, denoting the material’s resistance to 
compression and tension, respectively. Outside this range, strain may grow at constant stress. 
Consequently, denoting by E the material’s Young’s modulus, we have 
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where εt = σt /E and εc = σc /E. This simple nonlinear equation, already adopted by the authors in 
previous works (Bennati and Barsotti, 2001; Aita et al. 2003; 2009; 2012), enables accounting for 
masonry’s weak tensile strength and bounded compressive strength. One drawback is that, in the 
case σt ≠ 0, the material is unrealistically assumed to be able to transmit low tensile stresses, even 
in the presence of high strains. 

From constitutive equation (5), and by using the kinematical assumption made on the cross-
section, we can build the set of corresponding nonlinear constitutive equations that hold at the 
cross-sectional level between the kinematic parameters, axial strain ε and curvature χ, and the 
internal actions, axial force N and bending moment M. Figure 4 shows a plot of the elastic 
domain in the (n, m) plane, where hNn cσ/=  and 2/ hMm cσ−=  indicate the dimensionless axial 

force and bending moment, and t = σt / σc the masonry tensile to compressive strength ratio.  
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Figure 4. The elastic domain for the arch cross-section. 

 

In each of the seven regions of the elastic domain, the axial strain ε and the curvature χ are 
known functions of the dimensionless axial force and bending moment, n and m. By way of 
example, the constitutive relations between generalized strains and dimensionless internal actions 
holding in the B+ region are 
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or, in inverse form, 
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Analogous relations, omitted here for the sake of brevity, hold in the other regions of the elastic 
domain. 

Except for very special cases, the equilibrium problem for the arch is statically indeterminate. 
Thus, the sequence of linear and nonlinear regions along the arch is not known a priori, and the 
set formed by the nonlinear kinematic equations (2) - (4), the constitutive relations (6) and the 
equilibrium equations is usually solved numerically through an iterative procedure (Bennati and 
Barsotti, 1999; 2001). However, for simple cases, such as uniformly loaded flat or depressed 
arches, an explicit solution can be found, as will be shown in one of the following examples (Aita 
et al. 2003; 2004). 

 

4. Some case studies 

The two different solution methods described in the previous sections, namely, the method of 
stability areas, on the one hand, and nonlinear elastic analysis, on the other, are used to solve the 
three equilibrium problems illustrated in this third and last section. The applications clearly show 
that the two methods, though independent, prove to be fruitful when applied complementarily to 



 

each other. On the one hand, thanks to its simplicity of use, the method of stability areas allows 
for relatively quick determination of the value of the collapse load, while nonlinear elastic 
analysis allows for following the evolution of displacements, stresses, and extension of nonlinear 
regions, and hence evaluating the actual conditions of an arch that is subjected to an assigned 
distribution of loads. 

Some of the main distinctive features of each of the two analysis methods are examined in the 
first two applications. In particular, an illustrative example application of the stability areas 
method is shown in the first case, which addresses pointed arches. The method allows for taking 
into account the influence of masonry’s limited shear strength on arch collapse. The case dealt 
with, in which the arch is subject to its own weight alone, reveals the influence of the thickness 
and the friction coefficient on arch collapse. 

The second case examines the nonlinear elastic analysis of masonry arches, modeled as one-
dimensional elements. This example aims to demonstrate that it is possible to obtain an explicit 
solution in terms of displacements, stresses and extension of the regions in which the behavior is 
nonlinear, where the onset and progression of cracking and material damage would be expected 
in the case of greatly depressed arches subject to uniformly distributed vertical loads. The 
analysis is conducted by assuming an increasing loading process, so as to describe the evolution 
of the solution up to collapse. 

Lastly, the parallel use of both analysis methods is illustrated in the last of the three cases, in 
which the mechanical system formed by an arch and an overlying wall is considered. The 
problem, which occurs commonly in masonry buildings and bridges, has been examined for 
arches of different shapes: pointed, circular and elliptical. The main objective is to determine the 
stress levels as a function of the main geometrical and mechanical parameters, and thereby assess 
the safety margin under conditions of incipient collapse, as well as the actual mechanism by 
which such collapse would occur (Aita, Barsotti and Bennati 2012). 

 

4.1 Pointed arches under their own weight 

The “stability areas” method, suitably modified to account for masonry’s limited compressive 
strength, allows for easily determining the limit values for the thrust corresponding to the 
attainment of some limit condition along a generic cidi joint by considering the corresponding 
stability area, Ai. As already described in Section 2, when the extreme point of the crown thrust 
vector is on the border of Ai, a limit condition is attained on the cidi joint (Figure 1). If the 
bending moment at the cidi joint reaches the limit value (which in turn depends on the 
eccentricity and magnitude of the axial force), the corresponding limit condition concerns the 
rotational equilibrium of the voussoir between the crown and the joint in question. If, instead, the 
shear force at the cidi joint reaches the limit value, a limit condition for the translational 
equilibrium of the same voussoir ensues. By scanning every joint along the arch, we determine 
the arch’s overall stability area A as the intersection of all Ai areas. 

If A is empty, equilibrium of the arch is not possible. In other words, the internal forces are not 
statically admissible. If the area A is greater than zero, there are (infinite) values of the 
eccentricity and magnitude of P that correspond to statically admissible internal force 
distributions. Lastly, the limit case is when A shrinks to zero: as we shall see later, when A 
becomes a segment, only one statically admissible value of the magnitude of P can be found, 
while in the case that A becomes a single point, only one statically admissible value of both the 
eccentricity and magnitude can be found. In these latter cases, the arch is in a limit condition. 

By varying both the arch thickness, h, and friction coefficient, µ, the Durand-Claye method 
enables finding the pairs (h, µ) that correspond to a limit condition for the arch. In each of these 



 

cases, the limit value of the eccentricity and/or magnitude of P is determined. It is worth noting 
that, although masonry is considered here as a non-standard material, we can nevertheless find 
the collapse mechanism that may actually arise in correspondence to each limit thrust value 
(some further considerations on this can be found in Sinopoli et al. 2007). For any given collapse 
mechanism, each portion of the arch between any two consecutive joints that attain a limit 
condition will undergo rigid motion. We classify the different types of rigid motion, together 
with the corresponding symbols adopted for the crown thrust, in the following Tables 1 and 2, 
where the centers of rotation and the application points of the thrust at the crown are defined 
assuming infinite compressive strength, σc; in the case of limited σc, the terms "intrados", 
"extrados" are to be interpreted as "near the intrados" and "near the extrados", while a limit 
condition is reached at the crown or at joint cidi. 

 
Centre of rotation 
at joint cidi 

Application point of 
thrust at crown 

Thrust value 

Intrados 

Extrados erP ,
min (θi) 

Intrados irP ,
min (θi) 

Internal ,*
min
rP (θi) 

Extrados 

Extrados erP ,
max(θi) 

Intrados irP ,
max(θi) 

Internal ,*
max
rP (θi) 

Table 1. Notation for limit thrust values corresponding to hinging mechanisms. 
 

 

 Direction Thrust value 

Relative sliding 
Downwards sPmin (θi) 

Upwards sPmax(θi) 

Table 2. Notation for limit thrust values corresponding to sliding mechanisms. 
 

By setting l = R = 10 m, γ = 20 kN/m3, σc = - 20 MPa, σt = 0, and varying the thickness h and 
friction coefficient µ, different collapse modes for the pointed arch can be found. These have 
been identified and classified according to the well-known eight collapse modes of a symmetric 
arch illustrated by Michon in 1857. The results, reported in the following, are taken from (Aita et 
al., 2004; 2007). 

 

Sliding collapse (Modes 5 and 6) 

When the stability area reduces to a vertical line, the range of admissible thrusts shrinks to a 
single value and collapse can occur by Mode 5 or Mode 6 (Figure 5). In particular, it is an easy 
matter to verify that Mode 5 (Figure 5a) can occur when the condition 
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for the crown thrust is fulfilled. The angle value θi, corresponding to the joint between the crown 
and the abutment where the shear force attains a limit condition, depends on the particular values 
chosen for h and µ. Condition (8) is verified for: 

128>h  cm and 19.0≤µ . 

Analogously, Mode 6 (Figure 5b) can occur when: 
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Once again, the angle values θi and θj, corresponding to the joints where the shear force attains a 
limit condition, depend on the particular values chosen for h and µ. Condition (9) is verified for  

86 cm < h < 128 cm and µ = µ6(h),  

where µ6 takes values in the range of 0.19 < µ6 < 0.21. 

 

 

 

 

 

 

 

                                     (a) Mode 5                              (b) Mode 6 

Figure 5. Sliding collapse mechanisms (modes 5 and 6). 

 

The transition between modes 5 and 6 takes place for µ = 0.19  and 128=h  cm (Figure 6b). 
Such limit condition corresponds to  

( ) =°= 2.35max
sPP ( ) =°5.52min

sP ( ) 5.090max =°sP  kN.  

In the (P, e0) plane, the corresponding stability area is the vertical orange line shown in Figure 
6a. 



 

 

 

 

 

 

 

 

                                                                           

 

                            (a)                                  (b) 

Figure 6. Transitional collapse 5 - 6;  
(a) stability area in the (P, e0) plane, (b) scheme of the collapse mechanism. 

 

Mixed-mode collapse (Mode 4*) 

For any given thickness value in the range of 40 cm < h < 86 cm, the stability area reduces to 
a single point if the friction coefficient equals a limit threshold µ4, whose values depend on h and 
fall within the range of 0.21 < µ4 < 0.33. In such cases, by referring to the (P, e0) plane, the 
straight line corresponding to the limit thrust for the translational equilibrium at some joint cidi 
and the two curves corresponding to limit rotational equilibrium at two other joints cjdj and ckdk 
intersect each other at the same point (Figure 7a), the mixed sliding-hinging collapse mode 
schematized in Figure 7b can occur, and the limit thrust condition is: 

( ) ( ) === i
ss PPP θθ maxmaxmin  ( ) =j

rP θ,*
max  ( )k

rP θ,*
min ,  with θi < θj < θk.  (10) 

We indicate this collapse mode as Mode 4*, because it is somewhat similar to Michon’s Mode 
4, according to which, however, the limit shear joint should be located between the two joints 
where a rotational limit condition is reached. 

 

 

 

 

 

 

 

 

                            (a)                    (b) 

Figure 7. Mixed sliding-hinging collapse mode 4*;  
(a) stability area in the (P, e0) plane, (b) scheme of the collapse mechanism. 

 

By decreasing the thickness down to cm86=h , it can be seen that for µ = 0.21 the two 

curves corresponding to limit rotational equilibrium at joint θ  = 37.4° and θ = 69.5° and the 



 

straight line corresponding to the limit thrust for the translational equilibrium (Mode 6, with θi  = 
34.4° and θj  = 52°) all intersect each other at the same point (the yellow circle in Figure 8a). In 
this case, the stability area shrinks to that point, and the transitional mixed sliding-hinging 
collapse mode illustrated in Figure 8b may occur. Such limit condition corresponds to 

( ) =°= 4.34max
sPP  ( ) =°4.37,*

max
rP  ( ) =°52min

sP  ( ) =°5.69,*
min
rP  0.32 kN. 

 

 
 

 

 

 

 

 

 

(a)                      (b) 

Figure 8. Transitional mixed-mode collapse 6 - 4*;  
(a) stability area in the (P, e0) plane, (b) scheme of the collapse mechanism. 

 

 

Hinging collapse (Mode 2) 

 

For h = 40 cm and µ > 0.33 the stability area reduces to a single point (Figure 9a), and the 
hinging collapse mode represented in Figure 9b can occur. The corresponding limit condition 
becomes  

( ) ( ) =°== 6.39min ,
max

,
max

irir PPP θ   (11) 

( ) ( ) =°== 2.69max ,
min

,
min

irir PP θ  0.19 kN.   

 

 

 

 

 

 

 

          (a)                 (b) 

Figure 9. Hinging collapse (mode 2);  
(a) stability area in the (P, e0) plane, (b) scheme of the collapse mechanism. 

 



 

For h = 40 cm and µ = 0.33 the transitional mixed-mode collapse 2 - 4* can arise. The 
corresponding limit condition is: 

( ) ( ) =°== 6.33min maxmax
ss PPP θ   

( ) ( ) =°== 6.39min ,
max

,
max

irir PP θ   

( ) ( ) =°== 2.69max ,
min

,
min

irir PP θ  0.19 kN 

The foregoing results are summarized in Figure 10 in terms of thickness and friction 
coefficient. Each segment along the ‘safe’ domain border corresponds to one of the collapse 
modes illustrated above; the transitional collapse mechanisms correspond to points A, B, C. 
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Figure 10. Collapse modes in the (h, µ) plane. 

 

 

                                 

(a)      (b) 

Figure 11. (a) Structural scheme; (b) line of thrust. 



 

 

The nonlinear elastic model of the arch can be used to deal with the same problem already 
studied using the Durand-Claye method. Although comparison of the two solutions is necessarily 
incomplete, as the elastic model in its current version neglects shear deformability, it is 
worthwhile underlining that the results of the nonlinear elastic analysis are in good agreement 
with those obtained with the stability areas method. This is particularly evident for the limit case 
corresponding to a pure flexural collapse mechanism (very thin arch). Some correspondences are 
also evident between the two solution methods in the other limit case (very thick arch), in which 
a pure shear collapse mechanism takes place. 

The nonlinear elastic model has been applied to the structural scheme shown in Figure 11a, 
and the equilibrium problem solved for different thickness values, ranging from 45 cm to 150 
cm. For a thin arch, the position of the line of thrust (Figure 11b) reveals that the arch attains a 
limit condition that can be considered near collapse. Such a situation is confirmed by the diagram 
of the normal stresses at the arch’s extrados and intrados (Figure 12a), characterized by high 
compressions. It should be noted that the hinge positions for collapse mode 2 (Figure 9) are fully 
compatible with the line of thrust in Figure 11. 
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Figure 12. (a) Normal stress distribution; (b) shear over axial force ratio (h = 45 cm). 
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Figure 13. Keystone vertical displacement as a function of arch thickness. 

 

Figure 13 shows the vertical displacement values at the keystone plotted against the arch 
thickness. The rapid increase in displacement as the thickness approaches 45 cm once again 
confirms that in this case the arch is close to a hinging collapse mechanism. It should also be 
noted that the sign of the displacement for the two cases corresponding to 45 cm and 150 cm are 
consistent with the mechanisms determined via the stability areas method. 



 

 

4.2 A depressed circular arch subjected to a vertical load: some explicit solutions  

Let us consider the problem for the depressed circular arch showed in Figure 14a, for which 
we indicate with l, R and 2α, the clear span, the radius of the line of axis and the center angle of 
the arch, respectively, and assume by hypothesis that the ratio l/R is small with respect to unity 
(Aita et al., 2003). Here we will show that tackling a simplified version of the problem enables 
finding the analytical expressions for the arch’s displacements and rotations by making some 
simple but reasonable hypotheses. 

As already pointed out in the foregoing, the equilibrium problem for the arch in question is all 
but simple to solve because, among other reasons, in general the load distribution that the wall 
transmits to the arch, as well as the constraints imposed on the arch end sections are all unknown.  

We represent the masonry arch as a deformable curved beam. For the sake of simplicity, a 
uniformly distributed vertical load will model the actions exerted on the arch by the overlying 
wall. Moreover, we will assume that at both ends the horizontal thrust, P, and the couple of 
moment MB are assigned, while the vertical component of the displacement is fully restrained 
(Figure 14b). It is worth noting that such a statically determinate problem could be considered a 
first rough scheme somehow related to the case in which the structures supporting the arch (i.e. 
piers and abutments) have attained a limit condition. In other words, the end actions, P and MB, 
could be considered limit values for the reactive forces exerted by the piers and abutments. 

 

 
Figure 14. (a) Depressed circular arch loaded by a superimposed wall; (b) the corresponding statically 

determinate problem; (c) the mechanical scheme.  

 

Symmetry enables limiting our analysis to the right half of the arch (Figure 14c), to which end 
we indicate θ (with 0 ≤θ ≤ α ) as the angle formed between any given cross-section and the 
keystone. In order to obtain explicit expressions for the displacements and rotations of the cross-
sections, it is useful to make some simplifications. Firstly, since the values of θ  are sufficiently 
small with respect to unity, the expressions for both the axial force and the bending moment will 
be simplified according to a Taylor series up to the second order. Moreover, by considering that 
the axial force can, for a sufficiently thin arch, be approximated as a constant and that the thrust 
is of the same order of magnitude as the resultant of the load, we assume that: 
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Since the arch is a statically determinate structure, the internal forces are known, and 
equations (12) enable establishing the mechanical response (linear elastic, nonlinear in tension, 
etc.) within each segment of the line of axis. Therefore, at each cross-section we can choose the 
suitable constitutive relation from those listed in set (6) and obtain the explicit expressions for the 
cross-section’s rotation and displacement by integrating (2)-(4). To this end, we express rotations 
ϕ and displacements, u and v, as 
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The distributions of the curvature and axial strain, χ(θ) and ε(θ), can be determined from that 
of the internal forces, n(θ) and m(θ), and (16)-(19) can be integrated, thus yielding the explicit 
expressions for F(θ), G(θ), H(θ) e L(θ). Such integrals are easily assessed by subdividing the line 
of axis into a finite number of segments, each characterized by a different mechanical response 
(linear elastic, nonlinear in tension, etc.). Lastly, constants u0, v0 and ϕ0 are determined by 
imposing the boundary conditions at the arch end sections. Further details can be found in a 
forthcoming paper (Aita et al., 2015a).  
 



 

Dimensionless parameters   

η = h/R = 0.02 mA = -MA/σc h
2 = 0.045 

t = σt/σc = -0.015 n0 = -P/σc h = 0.1 

εc = σc/E = -2.9× 10-3 p = -q/σc = 0.006 

εt = tεc = 4.4× 10-5  

Table 3. Dimensionless parameter values. 
 

As an example, let us now consider a 10 m span, 100 cm thick depressed arch. The line of axis 
is a circular arc with radius R = 50 m and central angle 2α of 0.2 rad. For the sake of simplicity, 
we assume that the arch is of unit width (1 m) in the transverse direction. A horizontal thrust of 
P = 2000 kN and a bending moment MB = -100 kNm are imposed on both the arch’s end 
sections. A vertical load per unit length of the horizontal projection of the line of axis, 
q = 120 kN/m, is uniformly distributed throughout the arch (Figure 15). Lastly, we assume that 
E = 7 GPa is the masonry Young’s modulus and that the masonry tensile and compressive 
strengths are equal to σt = 0.3 MPa and σc = - 20 MPa, respectively. The corresponding values 
for the dimensionless parameters appearing in relations (16)-(19) are listed in Table 3. 

 

Figure 15. Statically determinate example: mechanical scheme.  

 

As before, due to symmetry we can limit the analysis to the arch’s right side alone. Ideally, the 
arch’s line of axis may be subdivided into two parts: the first, which starts at the keystone, is in a 
mechanical regime that is nonlinear under tension (region D+, Figure 4), while the response in 
the second part is linear elastic (region E). The angle θ1 corresponding to the point separating the 

arch’s D+ and E segments can be obtained via (12). By imposing that 1( )m mθ = ,we obtain θ1 = 

0.072 rad. By suitably adapting (13)-(15) to the present case, the following relations are easily 
obtained: 
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in which  
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The analytical expressions appearing in (20)-(22), all functions of angle θ, are listed in 
Table 4. The constant v0 is determined by imposing  

0cos)(sin)( =+ αααα vu ,  (23) 

as the constraint condition at the springing, which yields v0 = 42.8 mm. 
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Table 4. Explicit expressions of the integrals appearing in (20) – (22). 

The diagrams of the rotations and displacements of the line of axis are plotted in Figure 16, 
together with the arch’s deformed shape. In the case under examination it is a straightforward 
matter to verify that the nonlinear response predicted by the model illustrated here differs from 
that which would be obtained by assuming linear elastic behavior (Figure 16a, b, d). In particular, 



 

the presence of an arch segment where the behavior is nonlinear modifies the arch’s mechanical 
response so that the displacements and rotations are tripled with respect to the linear elastic 
solution. Thus, the simple nonlinear model proposed here is in agreement, at least qualitatively, 
with the experimentally reported arch response. 

 

 
Figure 16. Rotation (a) and axial and transverse displacements (b, d) of the right side of the line of axis;  

(c) deformed shape, displacement magnified 10 times. 
 

The evolution of the reactive forces and the distribution of the arch regions that behave non-
linearly can be followed for increasing loads. Moreover, a conventional value of the limit load 
based on the magnitude of the displacement at the keystone can be proposed. The proposed 
solution method described here can be readily extended to statically indeterminate problems. 
Such an extension is illustrated in a forthcoming paper by the authors (Aita et al., 2015b). 

 

4.3 Pointed, circular and elliptical masonry arches bearing vertical walls 

Let us consider a masonry arch subjected to its own weight and the weight of a superimposed 
wall (Figure 17). Some interesting approximate solutions to this equilibrium problem can be 
obtained by making some simplifying assumptions and limiting the treatment to some cases 
deemed particularly significant. In particular, we assume that the superimposed wall can be 
divided into vertical strips, the weight of each strip being sustained directly by the underlying 
arch element. Such a hypothesis is commonly adopted in technical practice and can be 
considered conservative in terms of safety. 
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Figure 17. Scheme of the arch-wall system  
for circular (left), pointed (center) and elliptical (right) arches. 

 

The first aspect we focus on concerns the influence of the masonry’s limited compression 
strength on the arch’s bearing capacity. The “classical” results of limit analysis under the 
Heyman hypotheses (1966) can in effect be easily compared with those obtained by applying the 
Durand-Claye method (1867), modified as described in section 2 in order to account for a 
nonlinear stress distribution both in tension and compression. For the sake of simplicity, in this 
first application of the Durand-Claye method, we assume the arch shear strength to be 
unbounded. Since the arches considered here are sufficiently thin, we assume that the influence 
of shear forces on the solution may be disregarded.  

 

 
Figure 18. Maximum height of the wall vs. arch thickness for different values of the masonry compressive 

strength (circular arch, l = 10 m). 

 

The stability area method allows for assessing the maximum height, Hmax, of the overlying 
vertical wall that a masonry arch, assumed here to be circular, could sustain under equilibrium 
conditions as a function of both the arch thickness, h, and the masonry compressive strength, σc. 
Figure 18 shows the results obtained in terms of Hmax values as a function of the arch thickness 

l l l 



 

for different constant σc values. The effect of the limited compressive strength is evident and, 
what is more, turns out to be clearly non-negligible even for values of arch thickness and 
masonry compressive strength that are likely to be encountered in historical masonry structures. 
As expected, by taking σc to be infinite, we revert to the well-known results obtained by Heyman 
through limit analysis. Analogous sets of results, omitted here for the sake of brevity, are 
obtained for pointed and elliptical arches as well.  

The second aspect under examination concerns the mechanical response of the masonry arch 
to growing loads. The stability area method can then be applied to studying various arch-wall 
systems with different shapes. In all cases examined, some parameters were maintained constant: 
the clear span l = 10 m; the compressive strength σc = - 20 MPa; the tensile strength σt = 0. 
These values have been chosen from among the many possible alternatives in order to represent 
masonry of medium strength (good brick or sandstone masonry). 

Once the problem has been defined in terms of its geometrical and mechanical aspects, it is a 
relatively simple matter to determine the maximum value of the wall height measured from the 
springings, Hmax, corresponding to a limit condition for the arch-wall system. The results 
illustrated in the following figures have been obtained by means of an in-house, expressly 
developed algorithm implemented in Mathematica. 

 

 
Figure 19. Maximum height of the wall vs. arch thickness for circular, elliptical and pointed arches  

(l = 10 m, σc = - 20 MPa). 

 

Figure 19 sums up the most significant results obtained through the analyses. It shows a plot 
of the maximum height of the overlying wall for semicircular, elliptical and pointed arches. It is 
noteworthy that for any arch thickness, h, pointed arches allow for much greater wall heights 
than circular and elliptical ones. From an architectural point of view, such a result finds evident 
corroboration in the characteristically great heights attained by slender gothic structures, in which 
pointed arches are widely employed. 

It is also rather interesting to note that for many values of h commonly used in construction, 
elliptical flat arches also afford higher load-bearing capacities than circular arches of the same 
thickness. Such outstanding performance of elliptical flat arches can easily be attributed to their 
shape, which, in the presence of compressive stresses compatible with the limited material 
strength, evidentially manages to maintain the line of thrust within the arch thickness for values 
of Hmax that are decidedly higher than those attainable with circular and elliptical arches. 



 

The analyses conducted via the stability area method were aimed at evaluating the maximum 
height of the wall beyond which no equilibrium is possible for the arch in its initial configuration, 
under the hypothesis of limited masonry compressive strength. It cannot however be excluded 
that, as the situation approaches impending collapse and the structure’s stiffness falls 
significantly, displacements will grow steadily, often accompanied by the emergence of 
extensive cracking. Thus, the geometric and constitutive nonlinearities could considerably 
degrade the actual ultimate load. Accounting for such aspects requires estimates of both the 
displacement and strain fields.  

The evolution of the displacement, strain and stress fields with increasing external loads has 
been followed by making use of the simple one-dimensional nonlinear elastic model described in 
(Aita, Barsotti and Bennati, 2012). The nonlinear elastic analysis has been applied to study the 
four arch-wall systems previously investigated via the stability area method. The same main 
parameter values as before have been adopted. The clear span l was maintained constant at 10 m, 
compressive strength σc at - 20 MPa, and tensile strength σt at 0; lastly, a mean value of 4 GPa 
was chosen for Young’s modulus, E. The maximum attainable value of the wall height, Hmax, 
under equilibrium conditions, once again measured from the springings and clearly dependent on 
the arch thickness, h, is defined as the maximum wall height value for which the numerical 
procedure results to be convergent (that is, in correspondence to which the error associated with 
the last iteration falls below the pre-set threshold within the maximum permitted number of 
iterations, here set equal to 1,000).  

In order to compare the results of the nonlinear elastic analysis with those obtained through 
application of the Durand-Claye method, the springings of all the arches studied are assumed to 
be perfectly clamped. We moreover exclude the presence of any possible initial self-equilibrated 
stress fields, such as those caused, for instance, by settling at the abutments. Without attempting 
to delve further into the associated issues, we simply recall here the widely known fact that any 
settling or initial self-equilibrated stress field would not in any event influence the value of the 
collapse load.  

Figure 20 shows the deformed lines of axis of the four different arches corresponding to the 
maximum wall heights (because of symmetry, only half arches are shown). The displacements 
near collapse may be so great as to cast serious doubts on the judiciousness of the commonly 
adopted choice of writing the equilibrium equations in the undeformed configuration.  

 
Figure 20. Deformed configurations of the arches close to collapse:  

a) pointed; b) circular; c) elliptical; d) elliptical flat. 
 



 

As a consequence, when seeking to accurately evaluate the residual stiffness of the arch as it 
approaches collapse conditions, the geometrical nonlinearities stemming from the large 
displacements should probably be taken into careful consideration. 

 
Figure 21. Wall height vs. crown vertical displacement (circular and elliptical flat arches,  

l = 10 m, σc = - 20 MPa). 

 

As the height of the wall grows, the nonlinear regions, under both tension and compression, 
become larger and larger. This will lower the overall arch stiffness, which could thus become 
very small relative to its initial value. The decrease in the stiffness of the arch is evident in Figure 
21, where the vertical displacements measured at the crown section are plotted against the wall 
height values, as measured from the springings. In particular, a 50 cm thick circular arch and a 59 
cm thick elliptic flat arch are considered. The rapidly increasing growth in the displacements as 
the wall height reaches its limit value is noteworthy. 

The behavior of the elliptical flat arch exhibits a wide linear elastic range, consistent with 
expectations that, as the height of the wall increases, the distribution of the nonlinear regions in 
tension remains nearly unchanged, and nonlinear behavior would emerge under compression 
only when the normal compressive strains become very large. Moreover, when linear behavior 
ceases, the arch is still capable of sustaining considerable increases in the height of the overlying 
wall. Instead, the circular arch rapidly loses its linear behavior and the subsequent collapse is not 
heralded by any perceptible nonlinear increases in load. Very good agreement is observed 
between the limit load values determined through the nonlinear elastic analysis and the modified 
Durand-Claye method. 

 

5. Concluding remarks 

The paper has addressed some equilibrium problems for masonry arches subject to vertical in-
plane loads. The solutions are pursued by means of suitable simplified schemes developed within 
two different theoretical frameworks: more precisely, a parallel study of masonry arches is 
performed via both limit and nonlinear elastic analyses.  

The first solution technique is based on an expressly developed extension of the historical 
method of “stability areas” introduced by Durand-Claye in 1867. Our aim in modifying the 
method is to determine the set of statically admissible solutions within the limits imposed by the 
ultimate compressive and tensile strengths and the limited shear capacity of the joints. The 
second solution technique, instead, focuses on the stress and strain fields generated in the arch. 
Masonry’s mechanical behavior, usually characterized by very low resistance to tension, is 



 

represented, as a first approximation, via a nonlinear elastic constitutive relation incorporated 
into a one-dimensional model. 

In the present work, the two different solution techniques have been applied to three problems. 
Each of the first two applications has focused on one of the two solution methods to highlight its 
main features. In particular, the first case describes an example application of the stability areas 
method to the collapse of pointed arches by accounting for masonry’s limited shear strength. 
Among other things, the method has enabled determining the range of values of the arch 
thickness and the masonry friction coefficient that correspond to each different sliding collapse 
mode. 

The second case demonstrates that nonlinear elastic analysis enables obtaining the explicit 
solution, in terms of displacements, stresses and extension of nonlinear regions, where masonry 
cracking and damage are to be expected. It regards some particular cases, such as that of 
depressed arches subjected to uniformly distributed vertical loads, and calls for making some 
reasonable approximations. However, the results obtained suggest that the search for the solution 
to more general cases could be much more demanding, and is therefore likely to necessitate 
recourse to suitable numerical techniques.  

The last problem, concerning a mechanical system composed of an arch and overlying wall, 
serves to illustrate combined application of the two methods. The problem considered − actually 
quite a common one in masonry buildings and bridges − has been solved for arches of different 
shapes, namely: pointed, circular and elliptical. The results obtained confirmed the well-known 
fact that shape strongly affects the load capacity of a masonry arch and clearly indicate that 
pointed arches are expected to exhibit better performances than circular and elliptical ones. 

The solved examples highlight that the two methods perform complementary functions: the 
stability area method allows for readily determining a collapse load value, while the nonlinear 
elastic analysis provides a helpful and, in some aspects, essential check of its mechanical 
significance by following the evolution of the displacement field and extension of the nonlinear 
regions where cracking and crushing phenomena arise as the load increases. 

In conclusion, the results reported in the present paper suggest that by simultaneously using 
the two solution methods it is possible, on the one hand, to readily determine the collapse load by 
accounting for both the joint’s limited shear strength and masonry’s limited compressive 
strength, and, on the other, to reconstruct a concise, yet often comprehensive, description of the 
evolution of the displacement and stress fields within an arch subject to in-plane increasing loads. 
In particular, the models presented here seem able to provide useful indications in all those cases 
in which the actual conditions or the conservation state of existing masonry arches should be 
assessed, or when planning restoration operations. 
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