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This contribution aims to be a critical presentataf the studies conducted by the authors over the
last ten years on the mechanical response of masocines and vaults. More precisely, we focus on a
study of masonry arches conducted in parallel oith Imonlinear elastic and limit analyses. The one-
dimensional elastic model for masonry arches ino@ies a simple but effective nonlinear
constitutive law. In turn, collapse analysis isfpened by the so-called ‘method of stability areas’
originally proposed by Durand-Claye (1867). Rattiman offering two alternative paths, the two
approaches may be considered two complementaryspafiview on the same problem.

A reasoned illustration of the concepts in questiom furnished by the topics addressed: an analysis
of the possible failure mechanisms of a pointedh abject to its own weight; the search for explici
solutions to the equilibrium problem of a depresasezh subject to a uniformly distributed load; the
study of arches of different shapes subject ta theh weight and the weight of a superimposed wall.

1. Introduction

Determining the structural response of masonry esclvaults and domes, in terms of both
displacements and stresses, still represents &ebalg task. In fact, a well-known property of
masonry structural elements is that their respasdgpically characterized by a pronounced
nonlinear trend even for load intensities thatcarige low with respect to the collapse values.

The need to take into account the nonlinear catisté relations for “masonry” material
represents a further challenge that must be faezgpt in some special cases. For this reason,
especially in the not-so-rare cases of complexdingl shapes, the solution is sought by recurring
to large-dimension numerical analyses, even whemgé&ic nonlinearities are not accounted for
(Alfano et al. 2000; Lourenco 2005).

The present work aims to analyze the mechanicgdorese of one of the most common
structural elements in masonry constructions: tich.arhe two theoretical models that will be
used in this regard belong to different, but com@atary frameworks, as we shall see: limit
analysis, on the one hand, and nonlinear elastioitythe other hand. Although the two models,
which will be illustrated in the first two sectiorte follow, differ in many respects, they
nonetheless share the goal of simplicity as onbeaf main features. In this regard, it should be
noted that the use of simple schemes is motivateéebmly by reasons of an operational nature,
but also by two further considerations regarding éimalysis results. First, the simple models
generally enable simpler, more concise verificabbnhe results, as they focus attention on the
main aspects of the phenomenon in question. Funibrer, to be used effectively, the more
complex models - which in principle would allow alsting more accurate results in closer
agreement with experiment - often require knowinglaege number of mechanical and
geometrical parameters, which are generally uniceatad difficult to determine experimentally.
One example that effectively illustrates the mamynplexities involved in the analysis of
masonry structures is offered by the basic, ancdgmply easy-to-solve, case of a masonry arch
subjected to its own weight and the weight of aesimpposed wall. Determining the mechanical
response of such a system represents a challepgoidem due to at least three aspects: the
strong material nonlinearities typical of the coexlmechanical behavior of masonry, the
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pronounced heterogeneity of the masonry, and tige laumber of geometrical and mechanical
parameters involved, which include shape, spanthittness of the arch, the strength of the
masonry (usually accounted for by considering sapproximate or average values), the
inclination of the wall extrados, the consideredifdary conditions on the walls’ vertical sides
and at the arch springings, as well as othersattiqular, determining the actual load distribution
transmitted from the wall to the arch is by no ngartrivial matter, and approximate solutions
obtained via finite-element computation codes dtermatively, by means of elementary
calculation schemes, are often considered accepialhe literature (see, for instance, Cavicchi
and Gambarotta, 2005).

In this paper, the two simplified methods that via# used to obtain the solution to some
equilibrium problems for a masonry arch will beicated as thestability areas methddand the
“nonlinear elastic modgl respectively. The first solution technique issed on an expressly
developed extension of the historical method siBbility area$ introduced by Durand-Claye
(1867). It aims at determining the set of staticallimissible solutions within the limits imposed
by the ultimate compressive and tensile strengtitsthe limited shear capacity of the joints.
When the extent of thestability ared goes to zero, a limit equilibrium condition igahed for
the whole system (Foce and Aita 2003; Aita et @04 2007). This methodology preserves the
fundamental concepts of limit analysis and, at shene time, embodies some aspects of the
nonlinear elastic analysis by imposing a restrico the stress level.

The second solution technique instead focuses @sttiess and strain fields generated in the
arch, which is considered as a one-dimensional esiémmade of a material offering poor
resistance to tension. Such mechanical behaviobeamodeled, as a first approximation, via a
nonlinear elastic constitutive relation. The problés tackled by studying and numerically
integrating systems of nonlinear equations (Barsatid Bennati 2001). The condition of
incipient collapse is considered to be reached wthenresidual stiffness of the system falls
below a predetermined fraction of its initial valll'gom a historical point of view, this approach
has his roots in the contribution of Signorini, whist proposed direct-method studies of the
mechanical behavior of elastic materials unables@r tensile stresses (Signorini 1925a, 1925b).

The two methods achieve complementary purposes:stitality area method allows for
readily determining a collapse load value, while tlonlinear elastic analysis provides a helpful
and, in some aspects, essential check of its maaiaignificance by following the evolution of
the displacement field and extension of the noalineegions where cracking and crushing
phenomena arise as the load increases.

In the following, the two theoretical frameworkgroduced above are used in the search for
the solution to three problems, which are describetthe third and last section. All three cases
presented, which are a selection of case studi@sieed over the past ten years, refer to plane
arches subject to in-plane vertical loads.

In each of the two first applications the attentisnfocused on one of the two methods in
order to highlight its main aspects. In particultre first case illustrates application of the
method of %tability area$ to the collapse of pointed arches, while alsartigknto account the
limited shear strength of the masonry. The secas® shows how nonlinear elastic analysis
enables obtaining the explicit solution in termsdadplacements, stresses, strains and extension
of the nonlinear zones in which cracks and damagee@pected in the masonry in the case of
depressed arches subjected to uniformly distribustical loads. Finally, the parallel use of
both analysis methods is illustrated in the lasecan which we examine the mechanical system
consisting of an arch and a superimposed wall. ptablem, which commonly occurs in
masonry buildings and bridges, is investigated &ches of different shapes: pointed,
semicircular and elliptical.



2. The Durand-Claye method

In 1867, Durand-Claye introduced a graphical procedaimed at assessing whether
admissible thrust’s values at the crown sectiormmfarch could be determined for symmetric
equilibrium problems. The object of the procedwjch is now commonly indicated dke
Durand-Claye methqds to draw a particular plane figure named steility area Each point
belonging to such area is the extreme of a veejoresenting an admissible value for the crown
thrust, i.e. a thrust that allows for verifying taquilibrium of any given part of the arch andts a
the same time compatible with the masonry strerigis.worth observing that here the method
proposed by Durand-Claye has been suitably moddm®ds to account for a nonlinear stress
distribution both in tension and compression. la following we briefly describe the thusly-
modified method (a more detailed description igiin Aita et al., 2004).

We consider a symmetric masonry arch. We indicatie g¢ and ¢; the masonry compressive
and tensile strength, respectively. We assumethfoisake of simplicity, that the arch is loaded
by its own weight only.

We begin by examining the ideabussoircomprised between the crown joicyd, and a
generic jointcd; (Figure 1). We indicate withV the weight of thesoussoir with N; the normal
force at jointcd;, with P the thrust at the crown section, and waghand g the eccentricity of
their corresponding application points.

If we set the value for the crown eccentricigy, a first limitation for the thrust value at the
crown sectionP, can be obtained by requiring it to be compatvald the masonry compressive
and tensile strength. Unlike the original versidntlee stability area method, here, any given
cross-section of the arch may be subdivided inteetldifferent parts: two parts where the normal
stress is constant and equaldoand ¢, respectively, and a third part where the strestes
linearly between these two threshold values. Byingrey, simple calculations allow for drawing
the correspondingoapdy curve, bounding the admissible region. Analogoubly considering
the axial force transmitted across t joint, N;, the corresponding ad; curve is obtained.

By imposing rotational equilibrium on theussoir further limitations are introduced. In fact,
it is an easy matter to show that, when the extrefhibe vector representing the axial forblg,
moves along the wd; curve, the corresponding extreme of the thrutteicrown belongs to the
hyperbolasa; and 5.

The last limitation follows directly from theoussoirtranslational equilibrium and adoption of
Coulomb’s friction law. The latter requires the magde of the shear force transmitted along the

¢d; joint not to exceed the limit valu&\; tang, where ¢ is the internal friction angle. In turn,
from the translational equilibrium in the directionrmal to thecid; joint, it is straightforward to

conclude that two limit values for the horizonthtusts at the crown section can be assessed,
corresponding to the limit inward and outward shieaces, respectively. The two vertical red

lines drawn in Figure 1, labeleg andy/, correspond to these two thrust limit values.

The admissible thrust® with respect to both theoussoirequilibrium and masonry strength
are then represented by the horizontal vectors eteodremes are contained within the area
rispigi, internal to thecoapdy curve, and comprised between the hyperbateend 43, and the

straight linesy; and /.



Figure 1. The stability areax(= 0)

By repeating the foregoing for every jointthe stability area, A,common to all the areas
can be determined. & has a finite extension, there are infinite adrbissthrust values (and
infinite corresponding eccentricities), ranging it a suitable interval. On the contrary Aifis
empty, no admissible thrust value exists. Finalywe shall see later, when the stability akea
shrinks to a point or to a segment, the limit ctindiis attained, and a unique admissible thrust
value exists.

3. The non-linear one-dimensional elastic model

In order to build a simple but effective model, eansider the masonry arch as a deformable
curved beam. As usual in the theory of the bendihbeams, the cross-section of an arch of
heighth and, for the sake of simplicity, unit width is asgd to remain plane and normal to the
longitudinal fibers after bending, thus neglectiangy shear strain. Moreover, the longitudinal
normal stressegy are assumed to depend on the corresponding styaacgording to the same
relation holding in a uniaxial state of stress.

The longitudinal strain is linear over any givenss-section. Thus, the kinematics of the arch
can be described by three functions of the cumdmabscissa along the line of axis, namely:
the displacement componentsandv of the points of the axis of the arch in the tarigg and
radial directions, and the rotatignof the cross-section, positive if clock-wise (FigR).

Simple calculations, omitted here for the sake refvity, show that, in the case the arch is
circular with radiusR, the radial displacemenfd) is a solution to the differential equation

V'+v=-R’y-Re, (1)



where& andy are the axial strain and curvature of the linexas, respectivelyd = SR+6,, the
prime denotes differentiation with respectt@ndé, is the starting angle of the circular arc. The
integral of egn. (1) is

V(0) = (R¢, —U,)sin(@ - &) +V,cos@ - 6,) +

- jesin(ﬁ —t)(R®x(t) + Re(t))dt. )
In turn,
#(0) = ¢, - [ Rx(tdt, (3)
and
u(@) =-v'+R¢ =u,cos@-6g,) +v,sin@-6,) + Ry, (1—cos@-8,)) +
(4)

+ f[cos(é’—t)(Rz)((t) +Re(t)) - RO x(t)]dt,

while up, Vo and ¢p are the tangential and radial components of tepl@ement and the rotation
of the initial cross-section, #= 6.

Figure 2. Symbols and notations adopted in thedimensional model.

Following Signorini’'s idea, we adopt for the masorthe piecewise-linear constitutive
relation between the longitudinal straim, and stresss,, showed in Figure 3.



Figure 3. Theyg - ¢4 relation.

The simple elastic stress-strain constitutive i@atised here reduces to the basic linear case
for stresses comprised within the threshold valgemdo;, denoting the material’s resistance to
compression and tension, respectively. Outside rdmge, strain may grow at constant stress.
Consequently, denoting liythe material’s Young’'s modulus, we have

o, &,<e,
o,={Eg, &,<¢,<&, (5)
o, &26,

whereg; = ot /[E ande. = o /E. This simple nonlinear equation, already adoptethk authors in
previous works (Bennati and Barsotti, 2001; Aitale2003; 2009; 2012), enables accounting for
masonry’s weak tensile strength and bounded comipeestrength. One drawback is that, in the
caser; # 0, the material is unrealistically assumed to lile o transmit low tensile stresses, even
in the presence of high strains.

From constitutive equation (5), and by using theeknatical assumption made on the cross-
section, we can build the set of correspondingineal constitutive equations that hold at the
cross-sectional level between the kinematic pararsgtxial straire and curvature, and the
internal actions, axial forc&l and bending momer¥l. Figure 4 shows a plot of the elastic
domain in therf, m) plane, wheren=N/o.h and m=-M/g.h* indicate the dimensionless axial

force and bending moment, ahd a; / o the masonry tensile to compressive strength ratio.
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Figure 4. The elastic domain for the arch crossi@ec

In each of the seven regions of the elastic donthm,axial straire and the curvaturg are
known functions of the dimensionless axial forcel &ending momenty and m. By way of
example, the constitutive relations between gerredlistrains and dimensionless internal actions
holding in the B region are

£ _,,8n -1)%(n-1+3m) ’ xh 8(n-1)3 (6)

e=—=1 5 c=%L—= 5
£ 9(n-1+2m) g, 9(n-1+2m)

C c

or, in inverse form,

—1\2 _ _1\3
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Analogous relations, omitted here for the sakerefiby, hold in the other regions of the elastic
domain.

Except for very special cases, the equilibrium pobfor the arch is statically indeterminate.
Thus, the sequence of linear and nonlinear regiborsg the arch is not known a priori, and the
set formed by the nonlinear kinematic equations- (@), the constitutive relations (6) and the
equilibrium equations is usually solved numericdlyough an iterative procedure (Bennati and
Barsotti, 1999; 2001). However, for simple caseshsas uniformly loaded flat or depressed
arches, an explicit solution can be found, as malshown in one of the following examples (Aita
et al. 2003; 2004).

4. Some case studies

The two different solution methods described in phevious sections, namely, theethod of
stability areas on the one hand, amnlinear elastic analysjon the other, are used to solve the
three equilibrium problems illustrated in this thand last section. The applications clearly show
that the two methods, though independent, proyeettruitful when applied complementarily to



each other. On the one hand, thanks to its sintylafiuse, the method of stability areas allows
for relatively quick determination of the value tife collapse load, while nonlinear elastic
analysis allows for following the evolution of diapements, stresses, and extension of nonlinear
regions, and hence evaluating the actual conditadren arch that is subjected to an assigned
distribution of loads.

Some of the main distinctive features of each efttho analysis methods are examined in the
first two applications. In particular, an illusire example application of the stability areas
method is shown in the first case, which addrepsé#ed arches. The method allows for taking
into account the influence of masonry’s limited ahstrength on arch collapse. The case dealt
with, in which the arch is subject to its own weigione, reveals the influence of the thickness
and the friction coefficient on arch collapse.

The second case examines the nonlinear elastigssmalf masonry arches, modeled as one-
dimensional elements. This example aims to dematesthat it is possible to obtain an explicit
solution in terms of displacements, stresses ateheton of the regions in which the behavior is
nonlinear, where the onset and progression of argcknd material damage would be expected
in the case of greatly depressed arches subjeciiformly distributed vertical loads. The
analysis is conducted by assuming an increasingjriggorocess, so as to describe the evolution
of the solution up to collapse.

Lastly, the parallel use of both analysis methaddlustrated in the last of the three cases, in
which the mechanical system formed by an arch amnd\eerlying wall is considered. The
problem, which occurs commonly in masonry buildireged bridges, has been examined for
arches of different shapes: pointed, circular dhgtieal. The main objective is to determine the
stress levels as a function of the main geometandlmechanical parameters, and thereby assess
the safety margin under conditions of incipientlapte, as well as the actual mechanism by
which such collapse would occur (Aita, Barsotti &ehnati 2012).

4.1 Pointed arches under their own weight

The “stability area$ method, suitably modified to account for masosriynited compressive
strength, allows for easily determining the limialwes for the thrust corresponding to the
attainment of some limit condition along a genexd; joint by considering the corresponding
stability areaA. As already described in Section 2, when the edreoint of the crown thrust
vector is on the border o4, a limit condition is attained on thgd; joint (Figure 1). If the
bending moment at thed; joint reaches the limit value (which in turn degenon the
eccentricity and magnitude of the axial force), togresponding limit condition concerns the
rotational equilibrium of the@oussoirbetween the crown and the joint in question.néteéad, the
shear force at thed; joint reaches the limit value, a limit conditioorfthe translational
equilibrium of the sam&oussoirensues. By scanning every joint along the archdetermine
the arch’s overall stability are®as the intersection of aif areas.

If Ais empty, equilibrium of the arch is not possilbleother words, the internal forces are not
statically admissible. If the areA is greater than zero, there are (infinite) valwésthe
eccentricity and magnitude oP that correspond to statically admissible interrfiafce
distributions. Lastly, the limit case is whénshrinks to zero: as we shall see later, when A
becomes a segment, only one statically admissibleevof the magnitude d® can be found,
while in the case tha becomes a single point, only one statically adiliss/alue of both the
eccentricity and magnitude can be found. In thatterl cases, the arch is in a limit condition.

By varying both the arch thickneds, and friction coefficienty, the Durand-Claye method
enables finding the pair#,(1) that correspond to a limit condition for the arth each of these



cases, the limit value of the eccentricity and/@gmnitude ofP is determined. It is worth noting
that, although masonry is considered here as astamdard material, we can nevertheless find
the collapse mechanism that may actually ariseomespondence to each limit thrust value
(some further considerations on this can be foun8imopoli et al. 2007). For any given collapse
mechanism, each portion of the arch between anydwsecutive joints that attain a limit
condition will undergo rigid motion. We classifyeldifferent types of rigid motion, together
with the corresponding symbols adopted for the arélvust, in the following Tables 1 and 2,
where the centers of rotation and the applicatiomtp of the thrust at the crown are defined
assuming infinite compressive strengiy; in the case of limitedr, the terms "intrados",
"extrados" are to be interpreted as "near the dosa and "near the extrados"”, while a limit
condition is reached at the crown or at jaiaf.

Centre of rotation  Application point of  Thrust value

at joint ¢;d; thrust at crown
Extrados Prin (6)
Intrados Intrados P! ()
Internal P (8)
Extrados P (8)
Extrados Intrados Prac(8)
Internal Prax(6)

Table 1. Notation for limit thrust values corresgiong to hinging mechanisms.

Direction Thrust value

Downwards Prn(8)
Relative sliding

Upwards P°.(8)

Table 2. Notation for limit thrust values corresging to sliding mechanisms.

By settingl = R= 10 m,y= 20 kN/n?, o; = - 20 MPa,&; = 0, and varying the thicknebsand
friction coefficient y, different collapse modes for the pointed arch barfound. These have
been identified and classified according to thel‘kebwn eight collapse modes of a symmetric
arch illustrated by Michon in 1857. The resultpared in the following, are taken from (Aita et
al., 2004; 2007).

Sliding collapse (Modes 5 and 6)

When the stability area reduces to a vertical lthe,range of admissible thrusts shrinks to a
single value and collapse can occur by Mode 5 od&/#® (Figure 5). In particular, it is an easy
matter to verify that Mode 5 (Figure 5a) can oosben the condition



P = maxpn?in (9) = I:)r:in (gl ) =

8
- minP2, (6)= P, (o0") ©

for the crown thrust is fulfilled. The angle valée corresponding to the joint between the crown
and the abutment where the shear force attaimsiadondition, depends on the particular values
chosen foh and. Condition (8) is verified for:

h>128cmand u < 019.
Analogously, Mode 6 (Figure 5b) can occur when:
P=minP: (8)=P: (6)=

max

-maxez, (0)=rfo) M"Y ©

min (‘9) =P,

min

Once again, the angle valugsand g, corresponding to the joints where the shear fattans a
limit condition, depend on the particular valuess#n forh andx. Condition (9) is verified for
86 cm <h <128 cm andg = ws(h),

wheres takes values in the range of 0.1%< 0.21.

\
aMode 5 (b) Mode 6
Figure 5. Sliding collapse mechanisms (modes 56and

The transition between modes 5 and 6 takes placg f0.19 and h=128 cm (Figure 6b).
Such limit condition corresponds to

P =P;,(352°) = B3, (525°) = P, (90°) = 05 kN.

In the @, &) plane, the corresponding stability area is theticad orange line shown in Figure
6a.
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Figure 6. Transitional collapse 5 - 6;
(a) stability area in theR, &) plane, ) scheme of the collapse mechanism.
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Mixed-mode collapse (Mode 4*)

For any given thickness value in the range of 40<cm< 86 cm, the stability area reduces to
a single point if the friction coefficient equaldimit thresholdi4, whose values depend brand
fall within the range of 0.21 <4 < 0.33. In such cases, by referring to tRe &) plane, the
straight line corresponding to the limit thrust tbe translational equilibrium at some jood;
and the two curves corresponding to limit rotatleeguilibrium at two other joints;d; andcidq
intersect each other at the same point (Figure tha),mixed sliding-hinging collapse mode
schematized in Figure 7b can occur, and the linnitst condition is:

P=minP;,(6)= Fiul@)= Pral6)= Pia(6).  wiha<g<a. (10)
We indicate this collapse mode as Mode 4*, becausesomewhat similar to Michon’s Mode

4, according to which, however, the limit sheanja@ghould be located between the two joints
where a rotational limit condition is reached.

al 0)

Figure 7. Mixed sliding-hinging collapse mode 4*;
(a) stability area in theR, &) plane, ) scheme of the collapse mechanism.

By decreasing the thickness down ho=86 cm, it can be seen that foz=0.21 the two
curves corresponding to limit rotational equilibniuat joint & = 37.4° andd = 69.5° and the



straight line corresponding to the limit thrust fbe translational equilibrium (Mode 6, with =

34.4° andgq = 52°) all intersect each other at the same pdin& yellow circle in Figure 8a). In

this case, the stability area shrinks to that poamd the transitional mixed sliding-hinging

collapse mode illustrated in Figure 8b may occucHimit condition corresponds to
P=P;,(344°)= P, (374°) = B3, (52)= P} (695°)= 0.32kN.
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Figure 8. Transitional mixed-mode collapse 6 - 4*;
(a) stability area in theR, &) plane, ) scheme of the collapse mechanism.

Hinging collapse (Mode 2)

For h = 40 cm andu > 0.33 the stability area reduces to a single point (Fig@a), and the
hinging collapse mode represented in Figure 9bammur. The corresponding limit condition

becomes
P=minP (8)=P (396°)= (11)

max max

=maxP. (6)= P

min

(692°) = 0.19 kN.

0=4=0___ P (daN)

5 10 \1\5\\)_(?( 25 30

-50

-100

Figure 9. Hinging collapse (mode 2);
(a) stability area in theR, &) plane, ) scheme of the collapse mechanism.



For h = 40 cm andx=0.33 the transitional mixed-mode collapse 2 - 4* caisearThe
corresponding limit condition is:

P=minP;,(6) = P5,.(336°) =
=minP},(60) = P (396°) =

=maxP. (9) = P.i (692°) = 0.19 kN

The foregoing results are summarized in Figure d0terms of thickness and friction
coefficient. Each segment along the ‘safe’ domasndbr corresponds to one of the collapse
modes illustrated above; the transitional collapgehanisms correspond to points A, B, C.
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Safe domain
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Figure 10. Collapse modes in the () plane.
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Figure 11. §) Structural schemeb] line of thrust.



The nonlinear elastic model of the arch can be tgeatkal with the same problem already
studied using the Durand-Claye method. Although mamson of the two solutions is necessarily
incomplete, as the elastic model in its currentsiegr neglects shear deformability, it is
worthwhile underlining that the results of the noebr elastic analysis are in good agreement
with those obtained with the stability areas methidds is particularly evident for the limit case
corresponding to a pure flexural collapse mecharfisry thin arch). Some correspondences are
also evident between the two solution methods enatiher limit case (very thick arch), in which
a pure shear collapse mechanism takes place.

The nonlinear elastic model has been applied tosthectural scheme shown in Figure 11a,
and the equilibrium problem solved for differenickmess values, ranging from 45 cm to 150
cm. For a thin arch, the position of the line afugt (Figure 11b) reveals that the arch attains a
limit condition that can be considered near coka@uch a situation is confirmed by the diagram
of the normal stresses at the arch’s extrados maimddos (Figure 12a), characterized by high
compressions. It should be noted that the hingdipos for collapse mode 2 (Figure 9) are fully
compatible with the line of thrust in Figure 11.

TN

Stress [MPa]

30 40 50 60 70 80 90
Angle [deg] Angle [deg]

@) 0)

Figure 12. § Normal stress distributionb) shear over axial force ratib € 45 cm).
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Figure 13. Keystone vertical displacement as atfonof arch thickness.

Figure 13 shows the vertical displacement valuethatkeystone plotted against the arch
thickness. The rapid increase in displacement asttittkness approaches 45 cm once again
confirms that in this case the arch is close tangihg collapse mechanism. It should also be
noted that the sign of the displacement for the ¢ages corresponding to 45 cm and 150 cm are
consistent with the mechanisms determined viattigldy areas method.



4.2 A depressed circular arch subjected to a valfisad: some explicit solutions

Let us consider the problem for the depressed lairarch showed in Figure 14a, for which
we indicate with, R and 2z, the clear span, the radius of the line of axi e center angle of
the arch, respectively, and assume by hypotheatstiieratio I/R is smallwith respect to unity
(Aita et al., 2003). Here we will show that tackjia simplified version of the problem enables
finding the analytical expressions for the archispthcements and rotations by making some
simple but reasonable hypotheses.

As already pointed out in the foregoing, the euilim problem for the arch in question is all
but simple to solve because, among other reasorgerieral the load distribution that the wall
transmits to the arch, as well as the constramfssed on the arch end sections are all unknown.

We represent the masonry arch as a deformable duream. For the sake of simplicity, a
uniformly distributed vertical load will model thections exerted on the arch by the overlying
wall. Moreover, we will assume that at both ends tiorizontal thrustP, and the couple of
momentMg are assigned, while the vertical component ofdisplacement is fully restrained
(Figure 14b). It is worth noting that such a staticdeterminate problem could be considered a
first rough scheme somehow related to the casehinhathe structures supporting the arch (i.e.
piers and abutments) have attained a limit condlitio other words, the end actio®sandMg,
could be considered limit values for the reactweés exerted by the piers and abutments.
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Figure 14. §) Depressed circular arch loaded by a superimpasdid(b) the corresponding statically
determinate problemg) the mechanical scheme.

Symmetry enables limiting our analysis to the rigalf of the arch (Figure 14c), to which end
we indicated (with 0<@<a) as the angle formed between any given crosseseeind the
keystone. In order to obtain explicit expressiamsthie displacements and rotations of the cross-
sections, it is useful to make some simplificatidfisstly, since the values @ are sufficiently
small with respect to unity, the expressions fahltbe axial force and the bending moment will
be simplified according to a Taylor series up te second order. Moreover, by considering that
the axial force can, for a sufficiently thin ardie approximated as a constant and that the thrust
is of the same order of magnitude as the resultathie load, we assume that:



@=n, me)=m+ Pl (12)
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where we have sey, =-P/g.h, m, =-M /o.h*, p=-q/o, andp=h/R.

Since the arch is a statically determinate strectiuhe internal forces are known, and
equations (12) enable establishing the mechangsgdanse (linear elastic, nonlinear in tension,
etc.) within each segment of the line of axis. Efi@e, at each cross-section we can choose the
suitable constitutive relation from those listedet (6) and obtain the explicit expressions fer th
cross-section’s rotation and displacement by iratidgy (2)-(4). To this end, we express rotations
@ and displacements,andyv, as

#(6) =9, +F(9), (13)
v(6) = (R¢, —uo>9+v{1—3—22j +G(6) - 6H(8), (14)
u(d) = u{1—6—22j +v, 0+ Rey6” —6—22 H(8) +6G(6) + L(6) , (15)
in which §,=0 and
F(@) = —f Rydt, (16)
G(6) =ft(R2)(+ Re)dt , (17)
H (6) :je(Rz)(+ Re)dt, (18)
L(6) ZT[Ré‘—%(RZ)(+ Re)]dt. (19)

The distributions of the curvature and axial strgif) and £6), can be determined from that
of the internal forces)(8 andm(8), and (16)-(19) can be integrated, thus yieldimg ¢xplicit
expressions foF(6), G(8), H(8 eL(6. Such integrals are easily assessed by subdgttim line
of axis into a finite number of segments, each attarized by a different mechanical response
(linear elastic, nonlinear in tension, etc.). Lasttonstantsuy, Vo and @o are determined by
imposing the boundary conditions at the arch erdfig®s. Further details can be found in a
forthcoming paper (Aita et al., 2015a).



Dimensionless parameters

n=hR=0.02 My = -Ma/ g, h? = 0.045
t=al/o,=-0.015 np=-Pla.h=0.1
& =0JE =-2.%10° p = o/g, = 0.006

& =te = 4.4¢ 10°

Table 3. Dimensionless parameter values.

As an example, let us now consider a 10 m spanctOthick depressed arch. The line of axis
Is a circular arc with radiuR = 50 m and central anglexdf 0.2 rad. For the sake of simplicity,
we assume that the arch is of unit width (1 m)a transverse direction. A horizontal thrust of
P =2000 kN and a bending momekts =-100 kNm are imposed on both the arch’s end
sections. A vertical load per unit length of therihontal projection of the line of axis,
g = 120 kN/m, is uniformly distributed throughoutetlarch (Figure 15). Lastly, we assume that
E =7 GPa is the masonry Young’'s modulus and that itfasonry tensile and compressive
strengths are equal i@ = 0.3 MPa andi; = - 20 MPa, respectively. The corresponding values
for the dimensionless parameters appearing inoeR(16)-(19) are listed in Table 3.

q = 120 kN/m
R R R E R R AR,

Mg= 100 kNm Mg= 100 kNm
A
P=2000kN —» & & <— P=2000kN

h=1m
E=7GPa
0; = 0.3 MPa
0, =-20 GPa

Figure 15. Statically determinate example: mecharsicheme.

As before, due to symmetry we can limit the analysithe arch’s right side alone. Ideally, the
arch’s line of axis may be subdivided into two pathe first, which starts at the keystone, is in a
mechanical regime that is nonlinear under tensiegign D+, Figure 4), while the response in
the second part is linear elastic (region E). Tingle@d, corresponding to the point separating the
arch’s D+ and E segments can be obtained via By2)mposing thatm(f) = m,we obtaing, =
0.072 rad. By suitably adapting (13)-(15) to thegent case, the following relations are easily
obtained:

_|FP (o), 0<6<4,
¢(0)_{FE(9)+F, 6,<b<a, (20)
V(@):V(l_e_z} G°*(8)-HP* (), 0<h<4, (1)
T 2) |GFO)+G, -GH T (O)+H,], f<6<a,



L°* () -

21y D+
HH (9)+a3D+(9)’ Osese,
2 1

u(@) =v,0+ (22)

E@+, =T O ) et gra), g<osa

in which
F=F>(8)-F5(6). G =G™(6)-G"(8). H,=H(6)-H (). L =L ()~ L(&).

The analytical expressions appearing in (20)-(282),functions of angled, are listed in
Table 4. The constang is determined by imposing

u(a)sina +v(a)cosa =0, (23)

as the constraint condition at the springing, whigtdsvy = 42.8 mm.

Region D+
ne(t- n, + 2mA) 2n°((t- no)(/7 ) +3mA)
c=t—-n, +3m, = 002 d=3W1"P)_ g
2n
k1 - — 4£c(t - nO)3 - _ 0155 k = _8R£c(t - nO)z[(t - nO)(’] _l) +3mA] - 0266
x(t - n, +2m,)* 2 x(t -n, +2m,)*
K = SREM)" _oaqy
° 9(t-n,+2m,)?
BJa 6 . b (a-b)6? &
Fo* () = k| 2@ G"*(6) =k,| — In(l+af*) + =————— |+ Rig,—
@ { Ja T 1vap? &)=k, 2a’ ( ) 2a(l+ad?) °2
N b) arctarg/a f(a—Db)
HO () = k,| B + +RO
( ) 2( Za\/a 2a(1+a92) [
o[ K(ac+d) k,(a—3b) k;(ac—d) Kk,(b-a) e
L°*(6) —[ o 24a5’2 arctargya + o 24a2 Y
+(Rt£C —thzJH— RE g
2a 6
Region E
- —Rac(lzmA _ noj =3843 j= _w = -71429 K = Rgc(zrnA _an - 641
7 7 7 6
FE(0)212£C |:mA0+(n0,7_2p)03:| GE(H):L92+ﬂ94
n &7 2 2
HE(6) =16+2]6° LE(0)=R£Cn09+k93—35]95

Table 4. Explicit expressions of the integrals apjpgy in (20) — (22).

The diagrams of the rotations and displacementbeline of axis are plotted in Figure 16,
together with the arch’s deformed shape. In the easler examination it is a straightforward
matter to verify that the nonlinear response ptedidy the model illustrated here differs from
that which would be obtained by assuming lineasteddehavior (Figure 16a, b, d). In particular,



the presence of an arch segment where the behawionlinear modifies the arch’s mechanical
response so that the displacements and rotati@ngripted with respect to the linear elastic
solution. Thus, the simple nonlinear model propdset is in agreement, at least qualitatively,
with the experimentally reported arch response.

0 P =120 kN/m
P SRR SR NN
—0.002 b if of ratio: =|
Linear res ponse P R P =2000 kN
—0.004 | 4 | '
Deformed configuration | |
—0.008]- 4 My (nonlinear response) | | | Mp=100 kNm
| | |
—0.0081 ) I | R=50 m /
Nonlinear response | | |
—0.011 ] }LD‘ //
|
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Figure 16. Rotation (a) and axial and transversplacements (b, d) of the right side of the linexis;
(c) deformed shape, displacement magnified 10 times

The evolution of the reactive forces and the distion of the arch regions that behave non-
linearly can be followed for increasing loads. Mwrer, a conventional value of the limit load
based on the magnitude of the displacement at ¢lysténe can be proposed. The proposed
solution method described here can be readily egirio statically indeterminate problems.
Such an extension is illustrated in a forthcomiaggr by the authors (Aita et al., 2015b).

4.3 Pointed, circular and elliptical masonry archesaring vertical walls

Let us consider a masonry arch subjected to its weight and the weight of a superimposed
wall (Figure 17). Some interesting approximate gohs to this equilibrium problem can be
obtained by making some simplifying assumptions aAmgting the treatment to some cases
deemed particularly significant. In particular, \@esume that the superimposed wall can be
divided into vertical strips, the weight of eachistbeing sustained directly by the underlying
arch element. Such a hypothesis is commonly adoptetechnical practice and can be
considered conservative in terms of safety.
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Figure 17. Scheme of the arch-wall system
for circular (left), pointed (center) and elliptiqaight) arches.

The first aspect we focus on concerns the influesfcthe masonry’s limited compression
strength on the arch’s bearing capacity. The “ata$sresults of limit analysis under the
Heyman hypotheses (1966) can in effect be easitypaned with those obtained by applying the
Durand-Claye method (1867), modified as describeddction 2 in order to account for a
nonlinear stress distribution both in tension aachpression. For the sake of simplicity, in this
first application of the Durand-Claye method, wesumse the arch shear strength to be
unbounded. Since the arches considered here dreesfy thin, we assume that the influence
of shear forces on the solution may be disregarded.
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Figure 18. Maximum height of the wall vs. arch Kmiess for different values of the masonry compwessi
strength (circular arcti,= 10 m).

The stability area method allows for assessingntiagimum height, Hay of the overlying
vertical wall that a masonry arch, assumed hereetaircular, could sustain under equilibrium
conditions as a function of both the arch thicknbsand the masonry compressive strength,
Figure 18 shows the results obtained in terms gfMalues as a function of the arch thickness



for different constant; values. The effect of the limited compressiversitk is evident and,
what is more, turns out to be clearly non-negligileven for values of arch thickness and
masonry compressive strength that are likely tef®ountered in historical masonry structures.
As expected, by taking: to be infinite, we revert to the well-known resutibtained by Heyman
through limit analysis. Analogous sets of resutimjitted here for the sake of brevity, are
obtained for pointed and elliptical arches as well.

The second aspect under examination concerns thbameal response of the masonry arch
to growing loads. The stability area method camthe applied to studying various arch-wall
systems with different shapes. In all cases examis@me parameters were maintained constant:
the clear sparh = 10 m; the compressive strength=- 20 MPa; the tensile strength = 0.
These values have been chosen from among the nuesibfe alternatives in order to represent
masonry of medium strength (good brick or sandstoasonry).

Once the problem has been defined in terms ofeitsngtrical and mechanical aspects, it is a
relatively simple matter to determine the maximuatue of the wall height measured from the
springings, Hax corresponding to a limit condition for the archiivsystem. The results
illustrated in the following figures have been ohéal by means of an in-house, expressly
developed algorithm implemented in Mathematica.
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Figure 19. Maximum height of the wall vs. arch Kriess for circular, elliptical and pointed arches
(I =10 m,g. = - 20 MPa).

Figure 19 sums up the most significant resultsiobththrough the analyses. It shows a plot
of the maximum height of the overlying wall for semcular, elliptical and pointed arches. It is
noteworthy that for any arch thickness,pointed arches allow for much greater wall height
than circular and elliptical ones. From an architead point of view, such a result finds evident
corroboration in the characteristically great h&sghttained by slender gothic structures, in which
pointed arches are widely employed.

It is also rather interesting to note that for mamjues oth commonly used in construction,
elliptical flat arches also afford higher load-begrcapacities than circular arches of the same
thickness. Such outstanding performance of elltilat arches can easily be attributed to their
shape, which, in the presence of compressive sgessmpatible with the limited material
strength, evidentially manages to maintain the dhéhrust within the arch thickness for values
of Hmax that are decidedly higher than those attainabile @ircular and elliptical arches.



The analyses conducted via the stability area ndettere aimed at evaluating the maximum
height of the wall beyond which no equilibrium issgible for the arch in its initial configuration,
under the hypothesis of limited masonry compressivength. It cannot however be excluded
that, as the situation approaches impending calapad the structure’s stiffness falls
significantly, displacements will grow steadily, taxi accompanied by the emergence of
extensive cracking. Thus, the geometric and catistg nonlinearities could considerably
degrade the actual ultimate load. Accounting fochsaspects requires estimates of both the
displacement and strain fields.

The evolution of the displacement, strain and stfedds with increasing external loads has
been followed by making use of the simple one-dsra@mal nonlinear elastic model described in
(Aita, Barsotti and Bennati, 2012). The nonlineksgc analysis has been applied to study the
four arch-wall systems previously investigated tha stability area method. The same main
parameter values as before have been adopted|ddrespart was maintained constant at 10 m,
compressive strengtty, at - 20 MPa, and tensile strengthat O; lastly, a mean value of 4 GPa
was chosen for Young’s modulus, The maximum attainable value of the wall heidtax,
under equilibrium conditions, once again measurenh fthe springings and clearly dependent on
the arch thicknesd, is defined as the maximum wall height value fdrick the numerical
procedure results to be convergent (that is, inespondence to which the error associated with
the last iteration falls below the pre-set thredhaithin the maximum permitted number of
iterations, here set equal to 1,000).

In order to compare the results of the nonlineasted analysis with those obtained through
application of the Durand-Claye method, the spriggiof all the arches studied are assumed to
be perfectly clamped. We moreover exclude the pesef any possible initial self-equilibrated
stress fields, such as those caused, for instéycsettling at the abutments. Without attempting
to delve further into the associated issues, welgimecall here the widely known fact that any
settling or initial self-equilibrated stress fiakbuld not in any event influence the value of the
collapse load.

Figure 20 shows the deformed lines of axis of tha Wifferent arches corresponding to the
maximum wall heights (because of symmetry, onlyf hathes are shown). The displacements
near collapse may be so great as to cast seriaustsdon the judiciousness of the commonly
adopted choice of writing the equilibrium equatiomshe undeformed configuration.

TN deformed shape ===
undeformed shape - — -

Figure 20. Deformed configurations of the archeselto collapse:
a) pointed; b) circular; c) elliptical; d) ellipatflat.



As a consequence, when seeking to accurately dgealua residual stiffness of the arch as it
approaches collapse conditions, the geometricallimearities stemming from the large
displacements should probably be taken into cacefusideration.
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Figure 21. Wall height vs. crown vertical displa@n(circular and elliptical flat arches,
| =10 m,g; = - 20 MPa).

As the height of the wall grows, the nonlinear oegi, under both tension and compression,
become larger and larger. This will lower the ollesach stiffness, which could thus become
very small relative to its initial value. The dease in the stiffness of the arch is evident in Fégu
21, where the vertical displacements measuredeatrbwn section are plotted against the wall
height values, as measured from the springinggaitticular, a 50 cm thick circular arch and a 59
cm thick elliptic flat arch are considered. Theidhpincreasing growth in the displacements as
the wall height reaches its limit value is notewugrt

The behavior of the elliptical flat arch exhibitswade linear elastic range, consistent with
expectations that, as the height of the wall ineesathe distribution of the nonlinear regions in
tension remains nearly unchanged, and nonlineaavi@hwould emerge under compression
only when the normal compressive strains becomg kaege. Moreover, when linear behavior
ceases, the arch is still capable of sustainingidenable increases in the height of the overlying
wall. Instead, the circular arch rapidly loseditear behavior and the subsequent collapse is not
heralded by any perceptible nonlinear increasesoau. Very good agreement is observed
between the limit load values determined throughrtbnlinear elastic analysis and the modified

Durand-Claye method.

5. Concluding remarks

The paper has addressed some equilibrium problenmedsonry arches subject to vertical in-
plane loads. The solutions are pursued by meassitible simplified schemes developed within
two different theoretical frameworks: more pregrseh parallel study of masonry arches is
performed via both limit and nonlinear elastic gsak.

The first solution technique is based on an expredsveloped extension of the historical
method of tability area$ introduced by Durand-Claye in 1867. Our aim indiiging the
method is to determine the set of statically adilbissolutions within the limits imposed by the
ultimate compressive and tensile strengths andlithiéed shear capacity of the joints. The
second solution technique, instead, focuses orsttlees and strain fields generated in the arch.
Masonry’s mechanical behavior, usually charactedribg very low resistance to tension, is



represented, as a first approximation, via a nealirelastic constitutive relation incorporated
into a one-dimensional model.

In the present work, the two different solutionheicues have been applied to three problems.
Each of the first two applications has focused pe of the two solution methods to highlight its
main features. In particular, the first case déssian example application of the stability areas
method to the collapse of pointed arches by acaaogirior masonry’s limited shear strength.
Among other things, the method has enabled detargithe range of values of the arch
thickness and the masonry friction coefficient tbatrespond to each different sliding collapse
mode.

The second case demonstrates that nonlinear elstigsis enables obtaining the explicit
solution, in terms of displacements, stresses atehsion of nonlinear regions, where masonry
cracking and damage are to be expected. It regewdse particular cases, such as that of
depressed arches subjected to uniformly distribwtatical loads, and calls for making some
reasonable approximations. However, the resultgindd suggest that the search for the solution
to more general cases could be much more demandity,s therefore likely to necessitate
recourse to suitable numerical techniques.

The last problem, concerning a mechanical systemposed of an arch and overlying wall,
serves to illustrate combined application of the twethods. The problem considered — actually
quite a common one in masonry buildings and bridgéas been solved for arches of different
shapes, namely: pointed, circular and ellipticdle Tesults obtained confirmed the well-known
fact that shape strongly affects the load capazitpa masonry arch and clearly indicate that
pointed arches are expected to exhibit better pmdiaces than circular and elliptical ones.

The solved examples highlight that the two methpeldorm complementary functions: the
stability area method allows for readily determgia collapse load value, while the nonlinear
elastic analysis provides a helpful and, in somgeets, essential check of its mechanical
significance by following the evolution of the digpement field and extension of the nonlinear
regions where cracking and crushing phenomena asisiee load increases.

In conclusion, the results reported in the pregpaper suggest that by simultaneously using
the two solution methods it is possible, on the loswed, to readily determine the collapse load by
accounting for both the joint’s limited shear sg#n and masonry’s limited compressive
strength, and, on the other, to reconstruct a sengiet often comprehensive, description of the
evolution of the displacement and stress fieldfiwiain arch subject to in-plane increasing loads.
In particular, the models presented here seemtalgeovide useful indications in all those cases
in which the actual conditions or the conservattate of existing masonry arches should be
assessed, or when planning restoration operations.
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