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Abstract

In this paper we explore the impact of different forms of model abstraction and
the role of discreteness on the dynamical behaviour of a simple model of gene
regulation where a transcriptional repressor negatively regulates its own expres-
sion. We first investigate the relation between a minimal set of parameters and
the system dynamics in a purely discrete stochastic framework, with the twofold
purpose of providing an intuitive explanation of the different behavioural pat-
terns exhibited and of identifying the main sources of noise. Then, we explore
the effect of combining hybrid approaches and quasi-steady state approxima-
tions on model behaviour (and simulation time), to understand to what extent
dynamics and quantitative features such as noise intensity can be preserved.

Keywords: gene regulatory networks, discrete modelling, hybrid system,
quasi-steady state approximation, stochastic noise

1. Introduction

Regulating gene expression is a complex work of orchestration, where the
instruments play with improvised variations without a fixed music sheet. Under
this regard, the regulation process, in which DNA drives the synthesis of cell
products such as RNA, and proteins, can be thought of as a stochastic process.
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The amount of RNA and proteins in living cells must be thoroughly tuned,
both to manage effectively housekeeping functions and to respond promptly to
upcoming needs (e.g. to adapt to environmental changes). To this end, gene ex-
pression is equipped with several control mechanisms and strategies that grant
both reliability and flexibility in terms of throughput. Nevertheless, when ob-
served at the single cell level, the amount of molecules involved in gene expres-
sion and its regulation fluctuates randomly [1]. This stochastic effect at the
molecular level turns out to play important roles in conditioning cell-scale phe-
nomena, e.g. cellular fate decision making, incomplete penetrance or enhanced
fitness through phenotypes variability [1].

Pioneering works [2, 3] showed that gene expression in populations of geno-
typically identical cells (i.e. with the same genetic constitution) is highly variable
even when epigenetic conditions (i.e. the ones that result from external rather
than genetic influence) are kept constant. In [4], the authors identified such a
population variability and decomposed the extrinsic and intrinsic contributions
therein. Also, in [5], it is shown that this variability it is controllable.

Recent developments in experimental techniques (see [1] for a review) have
made it possible to detect and count individual molecules and, therefore, to
measure the amount of mRNA and proteins in single cells. These measurements
have clearly shown that the number of mRNA and proteins can vary significantly
from cell to cell. This variability is caused by the fundamentally stochastic
nature of the biochemical events involved in gene expression [1] and is studied,
e.g., in [6, 7, 8], where population-level mathematical frameworks are introduced
and applied.

As a consequence, the phenotypical variability (i.e. the variability resulting
from the interaction of the genotype with the environment) exhibited by pop-
ulations of identical organisms can be directly caused by stochasticity at the
single cell level. Thus, it is becoming clear that noise and stochasticity underlie
critical events in cell’s life such as differentiation and decision making [9]. More-
over, some authors suggest that random phenotypic switching can represent an
efficient mechanism for adapting to fluctuating environments (see, e.g., [9, 10]).
These findings have raised new interest in analysing the role of noise in gene
expression.

The regulation process includes multiple steps leading from gene transcrip-
tion to the translation of the resulting mRNA to obtain the encoded protein.
Each step represents a possible control point, where several biochemical mech-
anisms play a role (see [11] for a comprehensive review and [12] for an applica-
tion to model selection). Characterising the contributions of each single control
point in the regulation process of gene expression is a complex task. Identifying
which strategies come into play in generating or dampening noisy behaviours
is even more challenging. The extensively studied regulation paradigm repre-
sented by the feedback control strategy can be used to explain the mechanisms
controlling gene transcription and translation. In such mechanisms, the global
intensity of the feedback depends on parameters related to every single control
point. Computational methods can significantly help investigating the syner-
gistic mechanisms underlying the regulation of gene expression.
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There are several modelling strategies that can lead to different kinds of
computational models, depending on both the particular purposes and on the
features of the available data. Models of biological systems proposed in the
literature can vary in terms of the abstraction level used to represent molecular
amounts (in this regard a model can be either discrete or continuous) and in
terms of the underlying paradigm used for describing the temporal evolution of
the system, which can be either deterministic or stochastic.

Ordinary Differential Equations (ODEs) have been extensively used over the
years to describe the behaviour of biological processes. They provide modellers
with powerful and well assessed analysis and simulation techniques. Never-
theless, ODE models implicitly assume continuous and deterministic change of
concentrations, abstracting away noise and randomness due to stochastic fluc-
tuations. This, for example, makes it difficult to capture qualitatively different
outcomes arising from identical initial conditions (e.g., [13, 14, 3]).

One way to represent noise is to couple a Gaussian noise term to the model
equations, obtaining a set of Stochastic Differential Equations (SDEs). This
approach succeeded in gaining insights on the stochasticity of gene expression
underlying circadian clocks [15] and genetic switches [16]. However, continuous
methods still fail to properly describe various phenomena arising from stochastic
fluctuations in systems involving small copy numbers of molecules [17], as in the
case of bimodal mRNA distributions generated by long transcriptional bursts,
during which mRNA level approaches a new steady state [1].

The copy numbers of molecules and individual entities in the cell space are
discrete and the reactions in which they are involved are stochastic events. Con-
sequently, approaches based on a discrete and stochastic formulation, such as
the ones built upon Continuous-Time Markov Chains (CTMCs) [18, 19], have
been successfully introduced to overcome the modelling limitations of continu-
ous methods. Stochastic systems are formally represented through a chemical
master equation and have also been studied, rather directly, in the form of auto-
catalytic reactions systems, with approaches such as the one described in [20].

However, since the analytic solution of the underlying equation is often infea-
sible for real size systems, these models are usually studied resorting to simula-
tion approaches, mostly based on (variants of) Gillespie’s stochastic simulation
algorithm [21]. Unfortunately, in some cases, even numerical simulation can be
computationally very expensive. A compromise between accuracy and efficiency
can be obtained by combining discrete and continuous evolution in so-called hy-
brid approaches [22, 23, 24]. In this context, we recall also [25, 26], where hybrid
approaches for stochastic simulation of gene networks have been developed.

In this work, we consider a simple model of gene regulation in a transcrip-
tion/translation genetic network, where a transcriptional repressor negatively
regulates its own expression. This model has been widely studied (e.g. [27, 28]),
because it is a minimal system that explicitly describes the processes of tran-
scription and translation and because it is a basic component of many complex
biological systems. Despite its apparent simplicity, understanding its behaviour
is not easy, because this is governed in a non-trivial way by several quantitative
parameters. Actually, different parameter combinations lead to a range of qual-
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itatively different dynamics. In particular, in [27], the intensity of noise in this
system is analysed in terms of various parameters, with special emphasis on the
strength of the negative feedback. That paper demonstrates how the application
of engineering principles to the role of feedbacks in a biological context could
be misleading. The authors show, indeed, that noise generally increases with
feedback strength, in contrast to the common knowledge. They also relate the
possible different dynamical regimes with the different regions of the parameter
space. The overall behaviour emerges from the complex interaction between
feedback strength and other parameters of the system, governing the dynamics
of the protein and of the mRNA.

Starting from the analysis proposed in [27], we investigate the model with two
goals in mind: (i) identifying the parameters that play a key role in the regulation
process, by systematically studying the impact of parameters variations on the
global dynamics of the system. In this way, we establish a link between the
parameter space and the observed temporal patterns, i.e. the diverse behavioural
phenotypes; (ii) quantifying the impact of each reaction of the modelled system
on the overall dynamics and on noise patterns. This allows us to identify those
reactions that, having a minor influence on the global noise pattern, can be
safely approximated in a deterministic fashion.

At a higher level and on a longer term, we aim at setting up a systematic
strategy for correctly building hybrid models of biochemical systems. In such
models, only the most relevant sources of noise will be represented via a fully
detailed stochastic description.

The handy dimension of our model of gene regulation allows us to play with
different models and techniques. On the one hand, we study a stochastic model
of the negative feedback loop to construct an exact picture of its possible be-
havioural patterns and of the effects of noise. This precision comes with a high
computational cost, especially for certain parameter sets. On the other hand,
we systematically apply various forms of model abstraction, in order to mitigate
the inefficiency of exact stochastic simulation methods. In particular, we ab-
stract the discrete stochastic dynamics into continuous deterministic dynamics
for some of the model components, thus obtaining a stochastic hybrid model.
Afterwards, we simplify the model structure reducing the number of model com-
ponents and reactions, by applying quasi-steady state approximations (QSSAs).

These abstractions are not blindly applied, but are rather considered only
in the regions of the parameter space for which the hypotheses underlying these
techniques are (reasonably) satisfied.

We believe that the methodology we adopt is a reliable approach for mod-
elling in systems biology, where too often in silico techniques based on abstrac-
tions or approximations are used off-the-shelf, without any concern on their
applicability and faithfulness.

2. The model

The model we consider, described among others in [27, 28], is a genetic
network composed by the reactions reported in Table 1 and schematically rep-
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resented in Figure 1(a).
The model is a minimal system that describes the self-regulated transcrip-

tion/translation of a gene into a protein. The gene (G) is transcribed into an
mRNA molecule (M), which in turn is translated into a protein P . P regulates
its own expression by means of a negative feedback loop: P can bind to G,
making it switch from its free active state to an inactive state (Gb). Finally,
both M and P can be degraded. All reactions are assumed to follow mass ac-
tion kinetics, i.e. the speed of the reaction is proportional to the product of the
amounts of each reactant and a kinetic constant. In the following, the amounts
of P , M , G, and Gb are denoted by XP , XM , XG, and XGb, respectively.

Similarly to [27], we ignore copy-number variations (CNVs) and assume to
have a single copy of the gene. The reason for this assumption is that CNVs
may rise from different structural rearrangements (e.g. deletions, duplications,
inversions) and can involve different genomic regions (e.g. enhancer, promoter,
coding), hence having potentially different and sometimes unpredictable effects
on the expression of the surrounding/overlapping genes. These effects may be
difficult to model and may introduce a level of variability that goes beyond the
aim of this work.

rate constant reaction description
prodM G→ G+M mRNA production (transcription)
prodP M →M + P protein production (translation)
degM M → ∅ mRNA degradation
degP P → ∅ protein degradation
bindP G+ P → Gb repressor binding
unbindP Gb→ G+ P repressor unbinding

Table 1: Biochemical reactions of the self-repressing gene network considered. All reactions
follow mass action kinetics and the units of their rate constants are s−1.

In [27], a very detailed phenomenological description of the different be-
haviours of the model has been carried out, changing parameters in order to
explore a large portion of the parameters’ space. The authors claim that this
simple feedback network has a counter-intuitive behaviour: while, in engineer-
ing, negative feedbacks are assumed to be a mechanism to decrease noise, the au-
thors show that in this network, instead, noise increases with feedback strength.

Following on from those results, in this section we provide a simpler pic-
ture of the possible behavioural patterns of the model; we found out, in fact,
that the seemingly counter-intuitive behaviour can be explained by analysing a
combination of a minimal set of parameters.

First of all, with a preliminary high level analysis of the stochastic dynamics
of M , P , gene repression, and of the interactions between dynamical regimes
involved in the model (partly reported in the Supplementary Material, Appendix
A), we identified the following two key parameters:

1) P binding/unbinding ratio α = bindP /unbindP ;
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Figure 1: Diagrammatic representation of the gene regulatory model described in this section
and of its variants with QSSAs described in Section 4. Arrows indicate the direction of
reactions; dot-headed and T-headed lines represent reaction catalysts (i.e. species which are
on both the left- and the right-hand side of the reaction) with, respectively, positive and
negative roles.

2) P/M degradation ratio β = degP /degM .

The first parameter α was used in [27] as an indicator of the strength of the
feedback regulation: the higher the value of α, the stronger the repression and
the smaller the number of mRNA molecules on average. While in [27] the au-
thors fix the binding rate and vary the unbinding rate (thus increasing feedback
strength by increasing the binding strength), in our work we fix the unbinding
rate and vary the binding rate (thus increasing feedback strength by increasing
the binding affinity), hence using a different mechanism to represent repression
intensity. This choice has an impact on the dynamics of the network, in partic-
ular on the behaviour of the bursty protein regime and on the feasibility of the
QSSA (see also Section 3 and Appendix A in the Supplementary Material).

The second parameter β is the ratio between the half-life of M and the half-
life of P . From a dynamical point of view, it describes the speed at which
production and degradation of the protein reach equilibrium, relative to the
mRNA. Essentially, it captures how the protein level reacts to fluctuations at
the mRNA level: the higher the value of β, the faster P ’s response. This means
that XM and XP will be highly correlated for high β, and so noise at the level
of XM level will propagate more effectively to XP .

The values of the stochastic rate constants we use are based on those from [27]
and their units are s−1. After a prescreening in which we used several values
according to [27] for stochastic simulations, we identified the values that proved
to be representative in reproducing the complete gamut of all the interesting
observable phenotypes. Therefore, in this work we choose to vary α in the set
{0.0166, 16.6, 16600}, and β in the set {0.01, 1, 100}. In the following, we refer
to these three values for α and β as low (L), medium (M), and high (H), and
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we refer to the combinations of parameters with the names listed in Table 2.
The parameter α is varied by fixing the value for unbindP to 1 and modifying

bindP , defined as α · unbindP . Similarly, we fixed the value for degM to 0.001
and vary degP = β · degM while varying β. Moreover, we define P production
rate as the product of P degradation rate and the steady state value for P
per M molecules, i.e. prodP = degP · Psteady with Psteady equal to 3500. We
have chosen this value because it allows us to obtain biologically meaningful
numbers of proteins for all the parameter combinations. However, reasonably
changing this parameter does not disrupt the observed behaviours. This enables
us to explore parameter combinations with a low degradation rate, ensuring that
translation rate does not become too large considering a maximum rate constant
of 108 – 1010 M−1s−1 [29] (see Appendix B in the Supplementary Material
for further details). We finally fix prodM to 35 considering an average RNA
polymerase transcription rate of 24 – 79 nucleotides/s and 1100 base pairs as the
average size of an mRNA molecule [30], i.e. an mRNA molecule is produced (on
average) in 14 – 46 s.

Analysis of stochastic behaviour. We proceed now by building a fully stochastic
model from our set of reactions, in order to undertake a thorough stochastic
analysis of its dynamics. The simulation tool we use is COPASI [31], a frame-
work that provides us with all the algorithms needed to run stochastic, hybrid,
and deterministic simulations.

In order to outline the possible dynamics, we partition our parameter space
into different regions, by creating nine different versions of our model, one for
each parameter combination. For each model we then set the initial amounts
of M and P to the corresponding steady state values and run 1000 stochastic
simulations with limit time 10000 s.1

As listed in Table 2, for combinations having low α, the initial XP and XM

are 86000 and 25, respectively. For combinations having medium α, the initial
XP and XM are 2700 and 1, respectively. Finally, for combinations having high
α, the initial XP and XM are 86 and 0, respectively.

Figure 2 shows, for each of the nine versions of the model, one representative
simulated trajectory of XP together with its coefficient of variation (CV) and
the correlation between XP and XM at time t = 10000. A comprehensive
summary of population statistics of XP and XM is reported in Table 3 (top
panel), and further details are in the Supplementary Material.

1We empirically identified 10000 seconds as a limit time that is long enough to allow us to
observe the specific steady state dynamics of P and M in all the parameters combinations we
considered. Moreover, we are taking the population average at the chosen time 10000, and
not the time average along a single trajectory, as commonly done. However, in our context,
these two approaches are equivalent as all the models we consider are ergodic. This is obvious
for the Continuous-Time Markov Chain (CTMC) models, but it can be shown also for the
hybrid models, by applying a result in [32], characterising ergodicity in terms of a Discrete-
Time Markov Chain (DTMC) obtained by sampling trajectories of the Piecewise Deterministic
Markov Process (PDMP) at random times.
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QQ
α
β

0.0166 16.6 16600

100 L-H M-H H-H

1 L-M M-M H-M

0.01 L-L M-L H-L

XP 0 86000 2700 86
XM 0 25 1 0

Table 2: Summary of the combinations of parameters considered and their respective initial
values for XP and XM .
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Figure 2: Sampled XP trajectories from the explicit stochastic model computed using the
Gibson-Bruck stochastic simulation algorithm [33] using different combinations of α and β
values. The coefficient of variation and correlation trends indicated by the arrows and in
the panels are reported in detail on the top panel of Table 3, described in Section 3, and
are computed from 1000 simulated trajectories, sampled at time t = 10000 s.1 Note that the
trajectories are reported for a longer time (t = 50000 s) to better visualise the long term
trends and to show that the choice of time t = 10000 for computing the statistics is valid.

With L-L combination we have that, since repression is weak, the average
XM value is relatively high and, consequently, XP steady state is also high.
Moreover, since P degradation is slower than M degradation, XP dynamics are
slower than XM ’s, i.e. XP fluctuates with a lower frequency than XM does;
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moreover, at steady state XP behaves like a simple birth-death process with
very low noise. We can say that XP is very close to its deterministic average
behaviour. It is not surprising that this is also the combination with the lowest
XP – XM correlation and coefficient of variation for XP . In case of M-L com-
bination P dynamics are still slower than M ’s but repression is stronger than
before, causing XM and XP steady state values to be much lower. In particu-
lar, XM starts to take very low values with fluctuations between 0 and 4 (see
Figure S1 for instances of XM simulated trajectories). This combination of dis-
creteness and possible absence of M is immediately reflected in P dynamics.
Indeed, such dynamics are still very close to a simple birth-death process but,
as indicated also by the increment of the coefficients of variation for XM and
XP , with higher noise. Combination H-L generates a strong gene repression
that causes XM to fluctuate between 0 and 1. Moreover, since P degradation
is very low, the effect of repression is even amplified by the almost constant
presence of P , hence XM is 0 most of the time. As a consequence, XP tends
to slowly degrade but displays some small “steps” corresponding to those rare
and short intervals in which XM takes value 1.

By increasing β to a medium value, we have that XM and XP start to show
a correlation higher than 0.5. In this parameter regions, each change in XM is
followed by a change in XP , that is quantitatively equivalent (when scaled on
XM ). With L-M combination XM fluctuates at steady state around a value
of 25, but in this case the coefficient of variation is higher, meaning that its
dynamics are noisier. Since the number of P molecules varies in accordance
with the number of M ones, we have that the noise in XM is reflected and
amplified at the level of XP , generating a behaviour that is noisier than in L-L.
With M-M combination we can observe that XP starts to present an irregular
fluctuating-like behaviour till reaching, with combination H-M, a behaviour
that exhibits bursts. This is evidently caused by the high degree of discreteness
in XM (i.e. XM takes very small values). In particular, bursts are emerging
because P degradation is fast enough to increase the frequency of the intervals
in which XM is equal to 1 and to allow XP to rapidly reach a low amount
when XM is back to 0. Note that the system alternates periods in which P is
degraded to periods in which M is produced in few copies, and so XP increases.

When β is high, P fluctuates with a higher frequency than M , hence it
reaches stochastic equilibrium faster than M . This causes, for all three values
of α, the correlation between XP and XM to be very high (greater than 0.98).
With combination L-H XP fluctuates around the mean value with high level of
noise. This increase in noise in all combinations having low α can be visually
observed also in the XP distributions in Figure S2. With the intermediate com-
bination M-H, the time course of P copy number starts to exhibit a multi-modal
behaviour. This can be explained by observing that XM fluctuates between 0
and 3 and considering that, for a high value of β, XP is able to reach its steady
state between successive changes in XM level. Hence, P dynamics look like M ’s
with discrete levels properly rescaled. From Figure S2 it is easy to see that we
have three main discrete levels of XP situated around 0, 3500, 7000 and 10500.
By further increasing the repression with H-H combination, we end up with a
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bimodal behaviour. This is clearly the consequence of the fact that, for high
values of α, XM fluctuates only between 0 and 1, a behaviour that is shown by
XP , which mainly alternates between two discrete levels. From Figure S2 we
can observe that these two levels are 0 and 3500.

Our exploration of the parameter space is clearly model-specific and cannot
be directly generalised to other models of gene regulatory networks; however,
from a methodological point of view, our results clearly illustrate that this kind
of thorough exploration is essential when studying genetic networks, in order
to understand the role of feedback loops in generating different patterns of
time courses of both mRNA and translated proteins. In particular, we showed
that certain parameter combinations are responsible for bursty temporal pat-
terns. While there is strong experimental evidence supporting transcriptional
bursts both in prokaryotes [34] and (especially) in eukaryotes [35], the under-
lying biological mechanism still remains unclear. Even though many complex
mechanisms, involving the biochemical machinery of DNA transcription, seem
to contribute to pulsatile transcription (as suggested in [34]), our study sup-
ports the fact that gene regulation mechanisms themselves (and the relative
speed of the different reactions involved) play an important role in determining
this pattern of transcription.

Our case study also shows the importance of modelling without abstracting
away any part of the feedback loop in order to reproduce the full spectrum of
possible behaviours. Indeed, in a study similar to ours, Peccoud and Ycart [36]
specified a Markovian model of gene regulation considering four parameters: λ
and γ, the rates of gene switching from active to inactive state and vice versa,
and µ and σ, the rates of mRNA transcription and degradation, respectively;
while their model can describe both fluctuating and bursty temporal patterns,
it does not account for bimodality in mRNA distribution. This suggests that
abstracting away details even in a simple biological model can result in a loss
of expressiveness. We will address this issue in Section 3.

Another result of our analysis which is worth considering in more detail is the
trend of XP – XM correlation. Evaluating this parameter in individual living
cells is not an easy task, due to technical problems in detecting single molecules
of mRNA and proteins in the same cell, at the same time [1]. Nevertheless
this correlation analysis can give us useful insights into the process of gene
expression, as it allows us to study the propagation of fluctuations in mRNA
levels to the amount of produced proteins. Among the few experimental results
currently available, it is worthwhile recalling those obtained by Raj et al. [35],
which show that mRNA and protein levels are strongly correlated when protein
lifetime is short, but that this correlation decreases when protein lifetime is
long. These results are consistent with the predictions of our model, where the
highest values for XP – XM correlation are obtained when β is high.

3. Model abstractions

In the previous section, we considered the explicit stochastic model of the
simple negative feedback loop. Modelling each part of the loop following Gille-
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Stochastic model with explicit binding and unbinding
α-β mean(XP ) CV(XP ) mean(XM ) CV(XM ) cor(XP ,XM )
L-L 85986.95 0.008 24.47 0.2037 0.196
L-M 86693.14 0.1027 24.908 0.1807 0.5633
L-H 85662.71 0.1527 24.49 0.1527 0.9926
M-L 2707.262 0.0425 0.788 0.8865 0.2433
M-M 3231.701 0.5176 0.936 0.8501 0.5904
M-H 4440.153 0.4492 1.27 0.4492 0.9803
H-L 84.058 0.2310 0.027 6.0061 0.2160
H-M 441.398 1.7066 0.165 2.2507 0.6555
H-H 2176.477 0.7728 0.622 0.7833 0.9824

Hybrid model with explicit binding and unbinding
L-L 85857.524 0.0077 24.752 0.1970 0.2052
L-M 86285.457 0.1048 24.667 0.1839 0.5815
L-H 86956.046 0.1467 24.881 0.1479 0.9910
M-L 2724.2987 0.0426 0.797 1.1114 0.2315
M-M 3313.9473 0.5245 0.962 0.8841 0.5635
M-H 4454.3658 0.4429 1.274 0.4504 0.9803
H-L 84.8464 0.246 0.024 6.3802 0.2677
H-M 433.6356 1.7359 0.128 2.6114 0.649
H-H 2201.9696 0.7615 0.628 0.7733 0.9897

Stochastic model with QSSA on binding/unbinding
L-L 85978.76 0.0079 25.539 0.2034 0.2178
L-M 85991.76 0.102 24.688 0.1759 0.5939
L-H 88768.61 0.14 25.37 0.1400 0.9847
M-L 2705.874 0.0429 0.751 1.1683 0.2280
M-M 3259.29 0.5105 0.921 0.9133 0.6054
M-H 4369.297 0.4506 1.249 0.4538 0.9828
H-L 85.423 0.2427 0.026 6.1236 0.1210
H-M 576.304 1.9408 0.21 2.753 0.6294
H-H 3386.57 0.3392 0.967 0.3553 0.9569

Hybrid model with QSSA on binding/unbinding
L-L 85832.168 0.0077 24.457 0.2001 0.2124
L-M 86562.663 0.105 24.608 0.1784 0.5904
L-H 85935.261 0.1397 24.55 0.141 0.99
M-L 2727.1072 0.04431 0.799 1.1134 0.2287
M-M 3266.9487 0.5245 0.894 0.9301 0.5913
M-H 4503.4732 0.445 1.289 0.4482 0.9766
H-L 84.8650 0.2343 0.019 7.1891 0.1727
H-M 526.3546 1.8783 0.199 2.5999 0.6442
H-H 3407.6452 0.3234 0.972 0.3370 0.9689

Table 3: Statistics for different abstractions of the explicit stochastic model, computed from
1000 simulated trajectories, sampled at time t = 10000. 1

spie’s computational approach, we obtain an exact stochastic model (under the
assumption that molecules are well stirred), whose analysis gives us a precise
picture of the patterns of dynamical behaviour and of the effects of noise. How-
ever, even for this simple genetic network, the computational analysis can be
difficult to carry out because exact simulation algorithms can be very inefficient
under certain parameter configurations. This happens, for instance, for low α
and high β, where P ’s dynamics are much faster than M ’s, and the number
of P molecules ranges close to 100000; in this situation, the number of firing
P production and degradation events is so large that explicit simulations are
severely slowed down. When exact simulation is not feasible, one can either use
approximate simulation algorithms, such as τ -leaping [37], or adopt some form
of model abstraction (see, e.g., [38, 33, 39]).

Here we discuss methods in the latter category, focusing both on techniques
that abstract the dynamics, from discrete stochastic to continuous determinis-
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tic, and on techniques, like quasi-steady state approximation [40], that simplify
the model structure reducing the number of reactions and components. In par-
ticular, we consider three abstraction approaches: (i) an approximation of the
stochastic discrete dynamics with continuous deterministic ones, applied to all
model components, thus obtaining a model defined by a set of ordinary differ-
ential equations (ODEs), (ii) a replacement of the stochastic discrete dynamics
with continuous deterministic ones, localised to some of the components of the
model, thus obtaining a stochastic hybrid model, and (iii) an approximation ob-
tained by the removal of specific model reactions performed by the computation
of quasi-steady state values.

Establishing the quality of an abstraction a priori is a difficult issue, as there
are no simply derivable analytic formulae to invoke. We will however discuss
and use heuristic arguments, to justify the use of abstractions in certain regions
of the parameter space, justifying them by a though a posteriori statistical
evaluation.

Continuous deterministic abstraction. The most common approach for dynam-
ics abstraction is to replace the stochastic model with a fully deterministic one
based on ODEs. It is known that this type of approximation is exact in the
thermodynamic limit [41] and it usually works well, provided that the number
of molecules in the system is sufficiently large, while it fails if noise plays a rel-
evant role in the system dynamics. Evaluating the system of ODEs associated
with our model, we can easily verify that the molecule numbers for the different
species converge to stable steady states for all parameter configurations consid-
ered. This behaviour is different from the one observed by performing stochastic
simulations, in which not all the parameter configurations yield patterns that
converge to a steady state (see Figure 2). A configuration of parameters where
the deterministic approximation of the whole system turns out to be appro-
priate (with respect to the behaviour of P ) corresponds to low α and β (low
repression and slow P ). In this case, in fact, the amount of M ranges around
25 and P ’s slow dynamics have the effect of averaging the noise at the level of
M , so that noise at the level of P is extremely low. This also holds for G’s
dynamics. In general, for small β the approximation is reasonable, although
less accurate as feedback strength increases, corresponding to a decrease in the
number of M molecules (see Figure 2).

Hybrid abstraction. From the discussion above, it follows that the inherent dis-
creteness of M and G evolution, especially in the high repression regime, plays
a central role in determining the qualitative pattern of dynamical evolution.
Then, noise at the level of M propagates more or less rapidly to P ’s dynam-
ics. The intrinsic noise of P ’s dynamics, instead, should be less relevant in this
respect if the steady state of XP is sufficiently high. Therefore, a reasonable ab-
straction of this model would see P as a continuous quantity evolving according
to an ODE, while maintaining discrete dynamics of M and gene repression.

Mathematically, this gives rise to a stochastic hybrid model, belonging to
the class of Piecewise Deterministic Markov Processes (PDMPs) [42]. These
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Figure 3: Comparison of multi-modal (medium α, high β) and peak-like (high α, medium β)
trajectories of P for three different abstractions. Results for the stochastic model with explicit
binding and unbinding can be found in the corresponding panels in Figure 2.

processes are described by a set of continuous variables and a set of discrete
variables. Continuous variables are subject to continuous evolution, while dis-
crete changes happen spontaneously at times determined by exponential dis-
tributions, as in CTMCs. In particular, as rates of discrete jumps can depend
on the value of continuous variables, the discrete process is non-homogeneous
in time. PDMPs can be analysed by simulation or even by numerical solution
of their master equation, which is a partial differential equation, although the
latter approach is computationally rather demanding [43]. Hybrid simulation
algorithms for biochemical systems based on PDMPs [22, 44] usually implement
some heuristic rule for partitioning species into discrete and continuous ones,
in general according to their copy numbers in order to minimise errors caused
by the continuous approximation. The partitioning rule can be either static or
dynamic. Static partitioning is performed before simulation, after a screening of
the current parameter set. Dynamic partitioning, instead, is performed during
simulation: molecules that at a certain time fall below a specific threshold are
treated discretely and stochastically.
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We applied dynamic partitioning to our system2, setting the continuous-to-
discrete switching threshold to 10 (hence, when the number of molecules falls
below 10 we switch to a fully stochastic system) and the discrete-to-continuous
switching threshold to 20. The use of separate thresholds helps to avoid too
many switches due to noise effects. These two thresholds have been heuristically
selected to avoid unnecessary switching between discrete and stochastic models.

We expect this hybrid scheme to work well in most cases, with a possible
loss of precision for high feedback repression (which reduces the overall number
of P molecules).

In Table 3 and Figure 3 we compare the behaviour of the hybrid model with
dynamic partitioning to the behaviour of the fully stochastic model. We can
see that the hybrid simulation works very well, and essentially all behaviours
of the fully stochastic model are qualitatively captured. In Figure 3 we report
the most interesting combinations. At the quantitative level, the hybrid model
seems to be also able to capture quite accurately the first two moments of the
distribution as well as the correlation between XM and XP (Table 3), with
some loss of precision for M and large values of α. This supports our initial
conjecture that the inherent discrete and stochastic dynamics of G and M are
what mainly determine noise modes of protein expression. Intrinsic fluctuations
of the protein due to stochastic production and degradation are less relevant in
this respect, hence can be safely abstracted away.

In terms of simulation time, the hybrid model outperforms the stochastic
simulation in those parameter regions in which P ’s dynamics are the bottle-
neck for stochastic simulation (Table S6), as expected [44]. In fact, since we
are approximating only P ’s dynamics as continuous, our hybrid abstraction
will improve stochastic simulation only when the number of P production and
degradation events dominates the simulation cost. In all other cases, the over-
head introduced by hybrid simulation3 can overcome the gain in computational
efficiency. In our system, for instance, the hybrid approach is faster for high
β. Indeed, for low α and high β, we obtain a 277-fold speed-up, while the
performance is less appealing for larger feedback strength, as the P number is
reduced, hence so is the translation frequency and P degradation reactions in
the stochastic model. However, notice that the execution time of the hybrid
model is essentially constant for all parameter sets, allowing us to study the be-
haviour of the system for parameter combinations in which stochastic simulation

2We do not consider further static partitioning, as it turned out to be not very accurate
for high feedback values (data not shown). In this case, in fact, P trajectories often approach
zero, and treating P as always continuous can introduce significant errors. In particular, in
such an extreme, feedback strength is increased, as now P exerts a repression also when its
value lies between 0 and 1.

3In hybrid simulation, the ODE integration engine needs to be coupled with an event
detection mechanism [45] that requires to find the roots of non-linear equations to identify
the firing time of stochastic events [22]. This is because the stochastic part of the process in
the hybrid system is time inhomogeneous, with rates that depend on the continuous variables.
Approximate hybrid strategies can avoid this overhead [22, 31], at the price of reducing the
integration step of ODE solvers in order to avoid significant loss in accuracy.
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is computationally unfeasible (e.g. for large values of β).
We stress that the choice of which hybrid or ODE solver to use is crucial.

For large values of β, e.g. P ’s deterministic dynamics are stiff; in this case, a stiff
solver [45] should be used. If a non-stiff integrator is employed (such as methods
belonging to the explicit Runge-Kutta family [45]), then no speed-up may be
observed at all (data not shown) compared to exact stochastic simulation.

Quasi-steady state approximation. A different abstraction technique consists in
reducing the number of model variables and reactions, using the Quasi-Steady
State Approximation (QSSA) [40, 46, 47]. The idea behind QSSA is that, if a
set of reactions acting on one (or more) molecular species is very fast, then their
dynamics will quickly reach an equilibrium. Therefore, one can remove these
reactions from the model, assuming that the entities involved only in these
reactions are at their steady state. In practice, model variables are partitioned
into fast and slow, and the steady state of fast variables conditional on the
slow ones being constant is computed. For a stochastic model, one obtains
a steady state distribution for fast variables (assuming ergodicity). Then, a
reduced system is constructed, containing only the slow species, averaging out
the fast variables from the rate functions depending on them according to the
previously computed steady state distribution. Since analytical expressions are
rarely obtained in this way, such averaged rates can be approximated either by
stochastic simulation [48, 49], or using the deterministic steady state distribution
of fast variables, i.e. the one obtained from the ODE model.

In our model the binding and unbinding of the gene repressor turns out to
be a natural candidate for QSSA due to the dynamics of the reaction. Indeed,
QSSA of gene dynamics is assumed in the majority of models of genetic net-
works. For the simple binding/unbinding mechanism considered in our model,
applying QSSA we obtain a nice closed form for the production rate of mRNA.
In fact, keeping XM and XP fixed, we get that Gsteady = 1 with probabil-
ity 1/(1 + α · XP ).4 Then, the two species describing the gene state (G and
Gb) and the binding and unbinding reactions can be removed from the model,
and the transcription rate, with the gene variable G averaged out, becomes
prodM/(1 + α · XP ). In this case, this expression coincides with the one that
can be obtained from the ODE model. The resulting model contains only four
reactions and two species, and is schematically illustrated in Figure 1(b). In Fig-
ure 3 and Table 3, we show the results of stochastic simulation of this reduced
model, assuming QSSA on binding and unbinding (also in this case Figure 3
reports the most interesting combinations).

A typical “rule of thumb” to apply QSSA [44, 46, 49] consists in comparing
the time scales of the reactions that are to be removed by QSSA with the time
scales of the remaining reactions. If the former are much smaller that the latter,

4Conditional on XM and XP , the remaining Markov chain has two states, one for G = 1
and one for G = 0. The rate of going from G = 1 to G = 0 is then α · unbindP ·XP , while
the rate of going in the other direction is unbindP . The steady state probability π for G = 1
can be obtained by solving the balance equation α · unbindP ·XP · π = unbindP (1− π).
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i.e. the corresponding rates are faster, then QSSA is usually safe. Practically, we
have to check if the binding and unbinding rates are a few orders of magnitude
larger than the remaining rates. This is not always the case in our system: for
large β, the unbinding rate is comparable to P ’s speed (more precisely, it is only
one order of magnitude larger). Therefore, QSSA is predicted to be valid only for
medium to low β. However, simulating the model we observed that the dynamics
are qualitatively similar to those of the explicit model for all parameters and, in
most cases, they are in good agreement also from a quantitative point of view.
This can be explained by observing that gene repression influences directly only
M and that the dynamics of binding/unbinding reactions are much faster than
those of production/degradation ofM and, thus, the dynamics of gene repression
reach equilibrium (in the stochastic sense) much sooner than M ’s.

If the unbinding rate is reduced then the QSSA assumption on equilibrium
of gene repression will cease to be valid. In this case, it is known that the QSSA
can introduce large errors in the stochastic dynamics [46], and this is indeed
the case in our model, as observed also in [27]. This is confirmed in Figure 4,
where we compare the behaviour of the full and the QSSA models for different
parameter combinations. In particular, we fixed β as medium and varied only α
but, differently from Section 2, we fixed the binding rate to bindP = 0.0166 and
varied the unbinding rate accordingly to unbindP = bindP /α. Note how the
model with QSSA severely underestimates noise and exhibits more and much
lower peaks w.r.t. the full stochastic model for large α (i.e. very low unbinding
rate).
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Figure 4: Comparison of P trajectories for the explicit stochastic model (continuous blue line)
and the QSSA stochastic model (dotted red line) for medium β, different values of α, and
variable unbinding rates (decreasing from left to right).

The application of QSSA is by no means restricted only to gene dynamics:
it can be applied to any variables and sets of reactions that are sufficiently
fast (with respect to the species they interact with). For instance, in our model
we may apply it to P itself, when β is large.

For example, consider a variation of the model in which we apply QSSA to
both G and P , for high β and varying α (with unbinding rate fixed, as in Sec-
tion 2). In this case, the model has only one molecular species left, namely M ,
and two reactions, transcription and M degradation. In particular, we approx-
imate the stochastic QSSA by computing reduced rates from the deterministic
system, giving a rate of transcription of the form prodM/(1 + α · prodP /degP ·XM ),
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where XP is replaced by its deterministic steady state value prodP /degP ·XM .5

This version of the model is illustrated in Figure 1(c), and simulation results are
shown in Figure 5. As we can see, from a qualitative point of view, the dynamics
are preserved for low and medium α. From a quantitative point of view, as well,
if we compare the XM distributions for the full stochastic model and those for
this minimal model, we obtain that the two models are very similar for low and
medium α (Table S5). We stress that QSSA on P can be applied only for large
values of β, i.e. when the correlation between P and M is close to 1.

It is clear that the hybrid abstraction and the QSSA can be combined to-
gether [44]. In Figure 3 and Table 3, we show the results of hybrid simulation
of the reduced model where QSSA is used to abstract binding and unbinding.
Also in this case the dynamics are essentially similar to those of the explicit
model. This can be explained following and combining the considerations we
already made for the two abstractions separately.

Some statistical insights. Looking at the histograms of the distribution of the
amounts of P and M at time t = 10000 s (see Figures S2, S3, S4, S5 for
the distributions of P ) for all the models considered, we can observe that the
distributions look visually quite similar. This is confirmed by statistically testing
the difference between the empirical distributions of the abstract models and
the empirical distribution of the stochastic model.

In particular, we computed the histogram distance [50] and we performed
both a Mann-Withney test [51] and a Kolmogorov-Smirnov test [52] (Tables S1,
S2, and S3). The histogram distance is used in Monte Carlo simulation to cal-
culate the distance between histogram functions that approximate probability
density functions of different group of samples. The Mann-Whitney test is a
non-parametric test used to check for a significant statistical dominance be-
tween two samples. Its two-sided version can be used to check for a significant
difference between two populations. It is also used as a test for detecting a dif-
ference between locations (means or medians), assuming that the two samples
come from distributions with the same shape. The (two-samples) Kolmogorov-
Smirnov test, instead, is a classical test for goodness of fit between two samples,
testing the null hypothesis that the two samples come from the same distribu-
tion (for the two-sided case). These three tests can detect different aspects of
differences between distributions, hence we present the results of all of them in
the Supplementary Material.

All these tests reported no significant difference between the empirical dis-
tributions for most parameter combinations. However, some statistically signif-
icant differences are detected, mainly for large values of α and in relation to the

5If we apply the recipe of stochastic QSSA [40, 49], to get the correct QSSA mRNA
production rate we need to compute the steady state distribution of the gene and the protein
simultaneously, and then compute the marginal probability that Gsteady = 1. In this case, we

obtain that this probability equals
∑∞
k=0

1
1+αk

1
k!
e−λλk, with λ = Psteady · XM . However,

we are not aware of a closed form solution of the previous summation, hence we preferred to
stick to the simpler deterministic approximation.
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Figure 5: Comparison of M trajectories for the explicit stochastic model and the stochastic
model with QSSA both on gene repression and protein dynamics, for high β and different
values of α (increasing from top to bottom).

hybrid approach. Moreover, the tests give different results for some combina-
tions of parameters (with Kolmogorov-Smirnov and Mann-Withney detecting
more significant differences). There could be several reasons for these differ-
ences, related to the number of samples considered, or to the particular shape
of the density functions.

4. Discussion

Aiming at defining a rigourous strategy for building correct hybrid models
of biochemical systems, we studied the dynamics of a simple and paradigmatic
gene regulatory network. In this context, we set up a systematic investigation for
evaluating the relative importance of different sources of noise (i.e. the reactions
composing the model) in determining the overall behaviour.

The results of this analysis allowed us to identify which of the considered
reactions can be specified through a deterministic formalisms, while preserving
the accuracy of the corresponding fully stochastic model in reproducing the
described dynamics.
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First, we identified two main parameters that govern the system’s behaviour,
grounding on the fundamental information about the basic “building blocks” of
the system (i.e. protein, mRNA, and gene dynamics) and checking the validity of
different plausible hypotheses. We also identified biologically reasonable ranges
for the values of these parameters. Subsequently, in order to carry out numer-
ical analysis, we considered several possible abstractions of the exact discrete
stochastic model, relating their validity to the possible values of parameters
identified. The use of different abstract models also allowed us to identify the
key species and interactions that determine the overall behaviour of the system.
Finally, we analysed the model quantitatively, also comparing the viability of
different abstractions.

Different dynamic behaviours: role of parameters. A collection of distinct dy-
namic behaviours emerged, and we were able to link (relative) values of model
parameters with observed behaviours, covering (to the best of our knowledge)
the full landscape of behaviours reported in the literature. This analysis justified
our assumption that feedback repression strength and relative degradation speed
are good descriptors of the network behaviour. We provided a quantitative anal-
ysis of the relative contribution of various parameters to the global dynamics,
correlating precise parameter combinations with a corresponding “behavioural
phenotype”. For instance, low values of both α and β yield the “continuous
phenotype”, while high values of α and β correspond to the “multi-modal phe-
notype”. It is interesting to notice that gene expression dynamics switching
from continuous to oscillating behaviours are common in biological systems and
can be used as mechanisms to trigger alternative responses [53].

Different dynamic behaviours: emergence and relation to model abstraction.
Analysing different abstract models allowed us to better clarify which inter-
actions in the model are crucial for distinct behavioural phenotypes to emerge.
All the used abstractions are compared in terms of computational cost and of
the potential of the underlying model to faithfully reproduce exact behaviours
and on the deriving cost/benefit ratio. We showed that while the fully continu-
ous approximation failed to capture relevant behaviours (as expected), a hybrid
approximation scheme, where only the protein is treated continuously, worked
very well also for moderately low protein numbers. However, a discrete treat-
ment of the protein was shown to be necessary for very small numbers in order
to avoid significant loss in accuracy. We finally investigated the use of QSSAs
on gene dynamics and its interaction with hybrid abstraction, recovering known
patterns in the accuracy of this approximation also for the hybrid case [46].

Noise sources. The hybrid and QSSA abstractions allowed us to selectively turn
on and off the different (internal) noise sources of the system, i.e. the different
reactions, by treating them as continuous or removing them via QSSA. In this
way, we were able to identify the reactions which are essential for producing the
observed noise patterns. Our experimentation showed that the key reactions
are those involved in modifying the value of molecular species present in low
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numbers and that are slow (hence not amenable to QSSA). To analyse to what
extent noise patterns are correctly reproduced, a model describing a negative
feedback loop can be safely simplified abstracting away the non-key reactions.
Our methodology of screening and targeting key reactions can be generalised to
more complex models. Hence, it is the intrinsic discreteness of the system (in
terms of low copy numbers of some molecular species) that drives the noise
dynamics.

In summary, we systematically analysed a fully detailed discrete stochastic
model of a negative feedback loop, collecting interesting insights on its dynamics;
in this respect, our results can be considered an extension of the ones presented
in [27]. Furthermore, we precisely analysed the impact of abstractions on the
viability of model analysis. By systematically comparing the exact model with
its abstractions, we highlighted the key interactions that determine the different
behavioural phenotypes exhibited by the model.

We believe that our methodology, i.e. a preliminary computational screening
for identifying the key structural parameters and the regions in which different
abstractions are applicable, followed by an extensive computational analysis,
allows us to gain a deep understanding of the model behaviour and, at the same
time, it reduces the overall computational effort compared to a more blind and
extensive exploration of the parameter space. In this sense, our approach can
be extended to a thorough analysis of more complex genetic networks. On a
more general level, the methodology proposed here for the study of feedback
loops is based on the following assumptions and considerations:

• fully discrete stochastic models are the most reliable and can be used as
“benchmarks” for the evaluation of alternative models;

• a complete and detailed landscape of parameter values must be determined
and tested for each proposed model;

• it is important to identify the “hot points” in control structures, i.e. the key
points for the regulation dynamics. Furthermore, for each control point,
it is crucial to investigate to which extent the different approximations
capture the emerging behaviours, possibly using deductive arguments;

• the best trade-off between computational costs and biological faithfulness
is to be found in hybrid models preserving such “hot points”;

• large genetic networks may be studied by exploiting an extensive analysis
of the simpler modules composing them. In particular, the noise properties
of simple feedback mechanisms of genetic networks and a precise charac-
terisation of the validity of hybrid and QSSAs can be used to construct
accurate abstract models in a modular way.

An interesting extension of this work would be the definition of a (semi)-
automatic procedure which, following the analysis steps presented here, will
aid in building hybrid models of biological networks. Such methodology should
proceed with an attempt to (semi-)automate parameters and (especially) “hot
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points” search exploiting modularity and it would have as ultimate goal the
identification of the “right” level of abstraction of a network, with respect to
the fully discrete stochastic model. This approach should produce a classifica-
tion of relevance/weight of each point in the overall evaluation of the chosen
level of abstraction: a classification certainly useful from a biological point of
view, but very difficult to realise without a systematic modus operandi. In this
setting, it would be also interesting to investigate to what extent the proposed
methodology can be extended to preserve specific classes of behaviours. This
would in principle allow to select for abstractions exhibiting a dynamics that
closely relates to the expected dynamics of the real system under consideration.
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Histogram distance for protein
α-β Self QSSA Hybrid QSSA+Hybrid Self bound
L-L 0.268 0.262 0.296 0.354 1.0488
L-M 0.348 0.316 0.324 0.34 1.1248
L-H 0.185 0.402 0.234 0.160 1.0747
M-L 0.26 0.316 0.364 0.358 1.1728
M-M 0.34 0.282 0.266 0.284 1.1008
M-H 0.124 0.132 0.646 0.996 1.0088
H-L 0.176 0.32 1.194 1.45 0.9688
H-M 0.240 0.136 0.234 0.13 1.0568
H-M 0.108 0.652 0.746 1.108 0.9808

Histogram distance for mRNA
L-L 0.252 0.166 0.16 0.156 0.9090
L-M 0.16 0.19 0.206 0.228 0.8170
L-H 0.185 0.347 0.211 0.223 1.1118
M-L 0.152 0.038 0.038 0.038 0.4322
M-M 0.052 0.006 0.05 0.046 0.3321
M-H 0.028 0.04 0.006 0.026 0.2838
H-L 0 0 0 0 0.1981
H-M 0 0.038 0 0.024 0.1981
H-H 0.004 0.078 0 0.074 0.2328

Table S1: Histogram distance for protein P and mRNA M between the explicit stochastic
model and different abstract models. The histograms are based on 1000 trajectories sampled
at time t = 10000. In the column Self, we report the self distance [50] between two histograms
of the explicit stochastic model. In the column Self bound, we add to such self distance three
standard deviations, estimated from an upper bound as in [50], as a (very conservative)
significance threshold for comparing histogram distances of abstract model. Distances above
this threshold are very unlikely to be due to random effects related to the limited amount of
samples compared.

Kolmogorov-Smirnov test for protein
α-β Self QSSA Hybrid QSSA+Hybrid
L-L 0.9022 0.9689 9.0800e-05 9.0800e-05
L-M 0.2574 0.0257 0.2193 0.5003
L-H 0.8971 0.0558 0.1847 0.6555
M-L 0.8186 0.5004 0.5066 3.8958e-03
M-M 0.6654 0.5004 0.5726 0.6475
M-H 0.6654 0.2193 <1.0e-16 <1.0e-16
H-L 0.8632 1.1148e-06 <1.0e-16 <1.0e-16
H-M 0.0815 0.0692 0.2877 0.2193
H-M 0.0693 <1.0e-16 <1.0e-16 <1.0e-16

Kolmogorov-Smirnov test for mRNA
L-L 0.9959 0.9999 0.1082 0.8592
L-M 0.9987 0.7944 0.8279 0.3135
L-H 0.9748 0.1790 0.8452 0.95334
M-L 0.1725 0.9987 0.9688 1
M-M 0.9895 1 0.9969 0.9540
M-H 1 0.9987 1 1
H-L 1 1 1 1
H-M 0.9780 0.9936 0.4324 0.9999
H-H 0.9959 <1.0e-16 1 <1.0e-16

Table S2: Results of the Kolmogorov-Smirnov test to compare the empirical distributions of
mRNA and protein of the explicit stochastic model at time t = 10000 with different abstract
models. We report p-values of the test at 95% confidence level. Values in bold represent
statistically significant differences between the two histograms. In the column Self, we report
the result of the Kolmogorov-Smirnov test of two samples of the explicit stochastic model.
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Mann-Withney test for protein
α-β Self QSSA Hybrid QSSA+Hybrid
L-L 0.7381 0.7217 2.1225e-05 9.9179e-07
L-M 0.4150 0.0617 0.1612 0.6930
L-H 0.7424 0.1455 0.4591 0.9729
M-L 0.7850523 0.6461 1.6075e-03 5.1110e-04
M-M 0.4955 70.6832 0.4141 0.7696
M-H 0.7717 0.0985 0.6343 0.9958
H-L 0.8278 2.4536e-07 8.7372e-04 3.5874e-03
H-M 0.1127 0.0423 0.2431 0.9903
H-M 0.1499 3.6361e-38 0.7018 1.8533e-42

Mann-Withney test for mRNA
L-L 0.7559 0.7695 0.1305 0.9166
L-M 0.8414 0.5699 0.5496 0.2749
L-H 1 0.0948 0.3456 0.8820
M-L 0.0464 0.3879 0.631 0.6891
M-M 0.4192 0.6860 0.4669 0.2444
M-H 0.8835319 0.3066 0.9944 0.5885
H-L 0.5588 0.8894 0.6706 0.2329
H-M 0.2037 0.8964 0.0139 0.6767
H-H 0.4212 3.1888e-61 0.7126 1.9916e-68

Table S3: Results of the Mann-Withney test to compare the empirical distributions of mRNA
and protein of the explicit stochastic model at time t = 10000 with different abstract models.
We report p-values of the test at 95% confidence level. Values in bold represent statistically
significant differences between the two histograms. In the column Self, we report the result
of the Mann-Withney test of two samples of the explicit stochastic model.

Appendix A. Dynamics of the feedback circuit

In this section, we carry out a high level discussion on the stochastic dynam-
ics of M , P , gene repression, and on the interactions between the dynamical
regimes involved in the model. Our goal is to illustrate the reasoning which led
us to identify the key parameters ruling the behaviour of this simple feedback
loop.

We start by discussing the simpler model with no repression, i.e. a model
containing just transcription, translation, and M and P degradation, where the
gene is always on [13].

Histogram distance, MW and KS test for protein with variable unbinding rate
α-β self distance stoch-QSSA distance self distance bound MW p-value KS p-value
L-M 0.288 0.306 1.1048 0.8838 0.9355
M-M 0.212 0.690 1.0289 1.9224e-10 <1.0e-16
H-M 0.036 0.626 0.8528 1.35e-110 <1.0e-16

Histogram distance, MW and KS test for mRNA with variable unbinding rate
L-M 0.252 0.136 0.8888 0.84341 0.9356
M-M 0.072 0.304 0.8888 0.1988 1.85e-10
H-M 0.004 0.026 0.4469 1.76e-40 1.55e-12

Table S4: Mann-Withney (MW) test, Kolmogorov-Smirnov (KS) test, and histogram distances
for comparing the empirical distributions of mRNA and protein of the explicit stochastic
model at time t = 10000 (with variable unbinding rate) with the stochastic model with
QSSA on binding, obtained from 1000 sampled trajectories. We report p-values of the test
at 95% confidence level. Values in bold represent statistically significant differences between
the two histograms. Histogram self distance is also reported, together with a (conservative)
significance threshold computed as above.

27



Histogram distance, MW and KS test for mRNA for QSSA on binding and protein
α-β self distance stoch-QSSA distance self distance bound MW p-value KS p-value
L-H 0.259 0.265 1.112 0.547 0.5468
M-H 0.028 0.036 0.283 0.679 0.6797
H-H 0.004 0.002 0.233 1.476e-103 <1.0e-16

Table S5: Mann-Withney (MW) test, Kolmogorov-Smirnov (KS) test, and histogram distances
for comparing the empirical distributions of mRNA of the explicit stochastic model at time
t = 10000 with the stochastic model with QSSA on binding and protein, obtained from
1000 sampled trajectories. We report p-values of the test at 95% confidence level. Values in
bold represent statistically significant differences between the two histograms. Histogram self
distance is also reported, together with a (conservative) significance threshold computed as
above.

Simulation CPU time
α-β full stoch stoch QSSA binding hybrid hybrid+QSSA binding stoch QSSA binding+protein
L-L 0.046 0.037 0.211 0.076 n.a.
M-L 0.037 0.028 0.207 0.072 n.a.
H-L 0.036 0.028 0.200 0.073 n.a.
L-M 0.864 0.865 0.215 0.075 n.a.
M-M 0.07 0.059 0.213 0.073 n.a.
H-M 0.04 0.039 0.157 0.071 n.a.
L-H 77.798 80.34 0.280 0.083 0.067
M-H 4.130 4.174 0.216 0.077 0.136
H-H 2.129 3.108 0.171 0.075 0.204

Table S6: Comparison of simulation times (in seconds) for single runs, for t = 10000 seconds,
for different abstraction methods.

In this case, XM is independent of XP ,6 and it is a birth-death process,
with constant birth rate prodM and linear death rate degM ·XM . Processes of
this kind have a dynamics that is well understood from a theoretical point of
view [54]: XM converges to a Poisson stationary distribution with mean (and
variance) equal to prodM/degM = Msteady. Due to linearity of production and
degradation rates, we can explicitly compute the transient dynamics of the mean
Et[XM ] and the variance VARt[XM ] of the process (assuming XM (0) = 0 for
simplicity):

Et[XM ] = VARt[XM ] =
prodM
degM

(1− e−degM ·t) .

From these equations, we can observe how the speed of convergence to the
stationary distribution depends only on the degradation rate degM , while prodM
has the effect of changing the average equilibrium value of M ; in other words,
prodM changes the scale of the process.7

The dynamics of XP , conditional on XM = m, is also a birth-death process

6This means that P(XM = m|XP = p) = P(XM = m), hence the joint probability
distribution P(XM = m;XP = p) can be factorised as P(XP = p|XM = m)P(XM = m): we
can study the processes XM and XP conditional on XM separately, and then discuss how the
dynamics of XM propagates to XP .

7The coefficient of variation of XM , a standard measure of the noise level of a stochastic
process (defined as its standard deviation divided by its mean), equals 1/

√
prodM/degM ,

hence noise is inversely proportional to the steady state level of XM .
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Figure S1: Sampled trajectories of M from the explicit stochastic model, using the Gibson-
Bruck stochastic simulation algorithm, for different combinations of α and β.

with birth rate prodP ·m and death rate degP ·XP , so that the average steady
state of XP is prodP · m/degP , while the speed of convergence to it depends
only on degP .

The combined dynamics of XM and XP can be understood by looking at the
ratio between their degradation rates (i.e. by the relative speed of the processes).
If the dynamics of P is slow with respect to M , degP � degM , then XM will
rapidly reach equilibrium and fluctuate on a faster time scale than XP , so that
XP tends to be insensitive to the fluctuations of XM (provided that the ratio
prodP /degP is not too large). On the other hand, if degP � degM then XP will
react quickly to each change in the value of XM , reaching a new steady state
value every time XM changes. If the ratio prodP /degP is sufficiently large (so
that the fluctuations of XP due to its birth-death dynamics are small with re-
spect to the variation of the steady state value), then the trajectories of XP will
“look like” those of XM , rescaled by a factor of prodP /degP , and XM and XP

will have a high correlation [13, 27]. This has the effect of increasing the noise
on P . Such noise can be large even for slow P dynamics if the production rate is
very large: in this case, a change in the value of M induces a very large change
in P steady state value, increasing the magnitude of P ’s fluctuations [13]. How-
ever, very large translation rates are not to be expected in a biological setting,
therefore we fixed the ratio prodP /degP and focussed on the ratio degP /degM
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Figure S2: Empirical histogram distributions at t = 10000 of the protein P for the explicit
stochastic model, obtained from 1000 sampled trajectories, using the Gibson-Bruck stochastic
simulation algorithm, for different combinations of α and β.

as a descriptor of the combined effects of transcription and translation on the
system dynamics.

The crucial point of the dynamics of XM and XP , in our network, is the
influence exerted by the negative feedback loop. Repression is obtained by
the binding of P to a promoter region of the gene. This event blocks the
transcriptional activity of the gene, usually by masking the binding site of the
RNA polymerase. Clearly, the intensity of repression depends both on binding
and unbinding rates: strong repression can be obtained either by a high binding
rate or by a low unbinding rate. In the former case, the probability that a
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Figure S3: Empirical histogram distributions at t = 10000 of the protein P for the stochastic
model with QSSA on binding, obtained from 1000 sampled trajectories, using the Gibson-
Bruck stochastic simulation algorithm, for different combinations of α and β.

molecule of repressor binds to the gene is (much) larger than the probability
of starting a transcription, hence this latter event will be less frequent. In the
latter case, the time for which P remains bound to the gene increases, de facto
reducing the time span in which the gene is available for transcription. In both
cases, the net effect is a reduction in transcription rate and, hence, in the amount
of M present in the system.

From a dynamical point of view, the repression mechanism, conditional to
XP = p, is a simple telegraph process [54] with constant rates bindP · p and
unbindP . The probability of the system being in the repressed state at time t
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Figure S4: Empirical histogram distributions at t = 10000 of the protein P for the explicit
hybrid model, obtained from 1000 sampled trajectories, using the COPASI LSODA hybrid
algorithm, for different combinations of α and β.

is bindP · p/(bindP · p + unbindP )(1 − e−(bindP ·p+unbindP )t). In particular, the
speed of convergence to the equilibrium distribution is bindP · p+ unbindP .

A standard way to evaluate the repression intensity is to consider the ratio
bindP /unbindP , as done in [27]. In order to study the effect of the feedback loop,
we vary such ratio fixing either the binding or the unbinding rate, and changing
the other one. The choice of which one to fix is not irrelevant, as these two rates
act on different aspects of the repression mechanism. If, as in [27], we fix the
binding rate, we can achieve strong repression by increasing the binding strength
between the repressor and the gene, so that P will remain bound for a long time.
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Figure S5: Empirical histogram distributions at t = 10000 of the protein P for the hybrid
model with QSSA on binding, obtained from 1000 sampled trajectories, using the COPASI
LSODA hybrid algorithm, for different combinations of α and β.

This choice reduces the dynamics repression speed (in bindP · p+unbindP both
p and unbindP are reduced; for p = 0, the speed equals unbindP , which can
be very small). In particular, if the dynamics of binding and unbinding are
slower than that of P and of M (i.e. unbindP < degP and unbindP < degM ),
then P will be partly or fully degraded when the gene is shut off. In this
case, we may observe a peak-like or burst-like behaviour. The magnitude of
bursts will depend on the speed of P dynamics (and on the translation rate):
the quicker P reacts to variations in M (and the larger the translation rate),
the larger the bursts. On the other hand, if we fix the unbinding rate and we
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increase the feedback strength by increasing the binding rate, then the speed
at which repression reaches equilibrium is bounded below by unbindP , which is
a constant. Therefore, if unbindP is greater than degM , as commonly happens
in real biological situations (including our parameter set), then the dynamics
of repression will quickly reach equilibrium (i.e. the probability of the gene
being repressed will be equal to the steady state probability [46]) between two
consecutive events changing the value of XM . Also in this case the transcription
rate is reduced, but we should not see the long repression windows caused by
a low unbinding rate. Therefore, the set of behaviours that we can observe
as a function of feedback strength can be different if we fix the binding or the
unbinding rate, especially at the strong repression regime. Here, we mostly stick
to a fixed unbinding rate, investigating the alternative option in Section 3.3 of
the main text, where we discuss a quasi-steady state approximation for binding
and unbinding.

Appendix B. Estimating the upper bound of enzymatic reactions

The most efficient enzymes (diffusion-controlled enzymes) catalyse reactions
with a rate in the range 108 – 1010 M−1s−1. These values are at the upper bound
of the observed rates and have been predicted by theoretical studies on bimolec-
ular reaction in solution [29]. Such enzymes are considered to be perfect, since
their rate-limiting step is not due to any chemical event but to the diffusional
association rate between the enzyme and the substrate [29]. These arguments
can be useful to estimate a theoretical upper bound for the translation rate
which is an enzymatically catalysed process. In our discrete framework the
rates indicated above should be converted from M−1s−1 to number of molecules
per second. Considering a cytoplasmic volume of ≈ 10−15l and the Avogadro’s
number ≈ 1024mol−1, the maximum rate will be ≈ 10 molecules/s. Consider-
ing that, in E. coli, each mRNA is translated by ≈ 90 ribosomes (maximum
value) [55], the highest possible rate value will be ≈ 103.
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