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Abstract

Robotic ecologies are systems made out of several robotic devices, includ-
ing mobile robots, wireless sensors and effectors embedded in everyday en-
vironments, where they cooperate to achieve complex tasks. This paper
demonstrates how endowing robotic ecologies with information processing
algorithms such as perception, learning, planning, and novelty detection can
make these systems able to deliver modular, flexible, manageable and depend-
able Ambient Assisted Living (AAL) solutions. Specifically, we show how the
integrated and self-organising cognitive solutions implemented within the EU
project RUBICON (Robotic UBIquitous Cognitive Network) can reduce the
need of costly pre-programming and maintenance of robotic ecologies. We il-
lustrate how these solutions can be harnessed to (i) deliver a range of assistive
services by coordinating the sensing & acting capabilities of heterogeneous
devices, (ii) adapt and tune the overall behaviour of the ecology to the pref-
erences and behaviour of its inhabitants, and also (iii) deal with novel events,
due to the occurrence of new user’s activities and changing user’s habits
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Machine Learning, Planning.

1. Introduction

Current smart home solutions utilize sensors and microprocessors perva-
sively deployed throughout the home to collect information which is then
exploited to perform useful tasks, as monitoring the daily activity, safety,
health and security of the house occupants.

One of the key drivers of this type of solutions is the need to assist the
ageing population, and address the associated social impact due to the in-
crease on the cost of formal health care and the shortage of caregivers by
delivering Ambient Assisted Living (AAL) services.

Notwithstanding its potential benefits to the user life style, such as allow-
ing elderly persons to live independently in their own homes and postponing
or perhaps even avoiding a potential move to a residential care facility, the
technology is far from reaching widespread adoption by consumers. Commer-
cial products are mostly limited to basic monitoring services and suffer from
a low user’s acceptance rate due to their poor reliability and still prohibitive
costs, which often include installation, certification, testing, customization
charges and monthly monitoring fees. The perceived value and trust in this
type of solution can be seriously undermined and curbed by constant moni-
toring and by ill-advised or poorly-timed interventions, especially when they
are based on pre-programmed models of user behaviour and/or by relying
solely on knowledge that was imbued in the system at design time.

A key source of the complexity associated with effective smart environ-
ments in general is the inherent heterogeneity of the end-user population,
their housing arrangements, their individual situations and requirements.
On one hand, complete off-the-shelf systems that successfully addresses such
disparate requirements are unlikely to materialise. On the other hand, cus-
tomized solutions for individual circumstances don’t have the ability to re-
spond to the users’ in-situ response or smoothly adapt to changing contexts
and evolving users’ needs, habits and preferences.

We argue that maximum gain will be attained only by factoring the need
for evolution and adaptivity into the design and implementation of smart
environments. These should not only be robust and easily maintainable, but
must also be able to self-configure and even evolve to meet the requirements
of individuals as their needs and circumstances change. Adaptation should
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be supported both in the way these systems adapt to circumstances in the
physical world they inhabit, and in the modular way they combine existing
approaches and use available components and computational resources.

The traditional devices found in a smart environment are being increas-
ingly augmented by the rapid introduction of robots in homes. The service
robot market, including domestic robots, is predicted to experience a ten-fold
growth in the next 20 years [1]. Evidence of their role in domestic settings
range from autonomous but specialized products, such as the Roomba vac-
uum cleaner [2]; to telepresence robotic healthcare solutions (e.g. [3]); and to
the networked robots being validated in the AAL domain [4].

The view presented in this paper is that the increasing addition of net-
worked devices, cheap robotic hardware, wireless sensors, actuators and other
smart artefacts to our environment provides a powerful impetus for building
assistive smart environments through a cognitive robotic approach. Specifi-
cally, Robotic Ecologies [5] can provide complex services with their ability to
acquire and apply knowledge about their environment, exploit the flexibility
given by robots’ mobility, and coordinate actions and information exchange
between heterogeneous, and simple devices. Recent advancements developed
within the EU project RUBICON (Robotic UBIquitous COgnitive Network
[6, 7]) make these system able to pro-actively assist the users in their ac-
tivities by learning to adapt to changes in the environment and in users’
habits.

The remainder of this paper is organized in the following manner: Section
2 discusses the benefits of a robotic ecology design. It also reviews relevant re-
lated work and outlines the challenges associated to build integrated systems
and re-use many of the machine learning and artificial intelligence techniques
already proposed in the literature. Section 3 outlines the architecture of the
integrated system developed in RUBICON, before examining in detail each
of its components. Section 4 illustrates how the interplay between these
components can be harnessed to deliver a family of assistive services, while
allowing to adapt to dynamic situations and also to newly discovered habits
and user activities. To this end, we provide an exemplification of the cog-
nitive ecology operation within a real-world case study. The case study is
documented with supplemental material, attached to this paper, in the form
of a video that captures all the key phases of our experiments.
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2. Cognitive Robotic Ecologies

In [8], Saffiotti and Broxvall discuss the implications of their PEIS-Ecology
instantiation of the Robotic Ecology approach from an ecological point of
view, by conceiving the interaction between each device and its environment
in terms of mutuality and reciprocity. The devices in the ecology achieve
complex tasks by performing several steps in a coordinated fashion while
also exchanging sensor data and other useful information in the process.

Especially when combined with basic human-robot interaction (HRI) ca-
pabilities, even simple domestic robots may be used to support a number
of useful and modular assistive services in this way. Consider these simple
examples. A robotic ecology can monitor the strength of the radio signals
emitted by wireless sensors pervasively embedded in the environment in or-
der to localize both the robots and the users. By analysing these signals, a
robot can inform the elderly person who lives alone that she has forgotten
to switch off the stove, or that the main door is not locked when she goes to
sleep. A robotic ecology with multiple robots may employ a vacuum cleaning
robot to help the user clean the apartment, while another robot may help
the user to manage and monitor her health conditions. For example, the
robot may remind the user to take her medicine, when the sensors in the
pill dispenser and those located in the kitchen show that the user had not
taken her prescribed pills after her meal. The robot may also prompt and
motivate the user to maintain a healthy and active life-style, for instance, by
reminding her to keep rehydrated, perform her daily exercise routine, and
control her heart rate afterwards.

Noticeably, the embodied nature of its devices is what makes confronting
an ecological view in a robotic ecology characteristically different from what
is usually done in pure software systems. Most importantly, there is no sens-
ing and interaction with the physical world in the domains usually addressed
with orchestration and dynamic composition of web-services. In addition,
self-configuration and self-adaptation are not the main focus of other ap-
proaches related to Robotic Ecologies. In particular, works in Cyber-Physical
Systems (CPS) put more emphasis on formal models and large scale deploy-
ments, while works in Internet of Things (IoT) systems put more emphasis
on knowledge services than on action services.

Building smart domestic spaces with a Robotic Ecology design reduces
application complexity and costs, and enhances the individual values of the
devices involved. However, robotic ecologies are not dissimilar to other smart
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environments in their basic requirements for assessing the state and the needs
of their users, and deciding how to best assist them.

First of all, machine learning techniques for human activity recognition
(HAR) can be harnessed to merge and interpret the information gathered by
multiple noisy sensors [9, 10, 11, 12, 13] in order to determine the state of the
user, and possibly predict their behaviour. For instance, by exploiting the
stream of sensor data gathered from pressure sensors placed under the cush-
ions of the sofa, and a networked bracelet equipped with a 3-axis accelerom-
eter, a HAR system may be trained to recognise when the user is exercising
and also distinguish that event from the one in which the user is relaxing
on the sofa. A number of initiatives have successfully exploited exploratory
data analysis techniques to discover users’ behavioural patterns [14]. The
same systems can be used to detect anomalies in users’ behaviour, such as
deviation from daily routines which may be symptoms of problems worthy
of notification to carers or to the users directly [15].

Secondly, pre-programmed domain knowledge, in terms of service rules
stating relations that a human domain expert has identified between sen-
sor data and/or inferred context, and robot services, may be used at this
point to know when to provide contextualized assistance to the users [16]. In
the active life-style scenario above, these techniques may be used to define
a rule such as remind the user to measure her heart rate five minutes from
the end of her daily exercise routine. Dedicated user interfaces can also be
exploited to involve the final user in the definition of personalised service
rules [17]. Alternatively, Q-learning or other adaptation policies based on
utility maximization can be exploited to automatically learn useful automa-
tion patterns [9, 18, 19]. The user can be involved also in this adaptation
process, for instance, with user interfaces enabling them to manually activate
or rate their automation preferences and the ones automatically selected by
the system [18].

Finally, plan-based control approaches [5, 20] can be used to decide which
robotic devices and/or software components must be activated, what they
need to achieve, and what information they should exchange in the process in
order to provide context-aware assistance to the user. One of the key advan-
tages of using planning techniques with robotic ecologies is the possibility
of using alternative means to accomplish application goals when multiple
courses of action are available, to increase the robustness of the overall sys-
tem. For instance, a robot may be able to localise itself through the use of
its on-board laser sensor, but also by detecting RFID tags placed under the
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floor, if the more precise laser-based localization fails for some reason [21].
Instantiating the right combination of the approaches discussed above is

not a straightforward decision. Each of them can suffer from a number of lim-
itations and there are difficulties also in the way they are usually combined,
especially if they need to be applied in a robotic ecology context:

First of all, the majority of HAR solutions relies exclusively on supervised
information available previously to system deployment, which demands time
consuming annotation of users’ activities to build up labelled training ex-
amples. Besides the cost and the technical problems associated with data
annotation, such an approach assumes that only activities for which training
data was available before system deployment will be recognized in the fu-
ture. This makes it impractical to account for novel users’ activities as well
as major changes in users’ habits.

Secondly, the majority of activity discovery techniques are poorly inte-
grated with HAR solutions. Rather, they take information collected by sen-
sors as a starting point and then discover frequent patterns by analysing the
history of sensor data that can be associated with different actions carried
out by the user [15, 22, 23, 24, 25, 19, 26]. Besides the missed opportu-
nity for building integrated, efficient and modular solutions, it is difficult for
these systems to account for the richness of heterogeneous sensor sources to
which HAR solutions are now accustomed. Consequently, it is common for
these systems to be limited to the offline analysis of only binary sensor data.
Only a few past attempts in the same domain have demonstrated the value
of combining activity detection with pattern discovery - although with solu-
tions not designed with a robotic ecology in mind. In particular, [27, 26] have
shown how unsupervised discovery can shed light on users’ behavioural pat-
terns by discovering patterns in the data that do not belong to a predefined
class. Segmenting the data into learnable classes has been proved to boost
the performance of activity recognition algorithms, while also reducing their
reliance on costly samples for supervised learning. However, only the activ-
ity recognition algorithm in those examples is able to run online, while the
pattern recognition algorithm is run offline, and only on binary sensor data.
Other solutions have built a hierarchical model of user’s behaviour, using
supervised methods to learn low-level activities (e.g. eating, walking, sitting,
standing), in combination with topic-based, unsupervised discovery of more
complex activities (e.g. having lunch, commuting, office work) [28, 29]. The
solution proposed by Wang et al. [30] considers that the home occupants
maintain a relatively regular routine. Their method performs online event
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segmentation by extracting different threshold parameters from past sensor
data. Contrary to our approach, they do so by relying on the assumption
that there will be no significant changes to the user’s daily routine.

Thirdly, existing plan-based and adaptive control solutions [31, 5, 32, 33]
are ill suited to be used in robotic ecologies operating in real settings, where
they will be subjected to multiple, dynamically changing and possibly con-
flicting goals (e.g. recharge batteries versus exploration, cleaning the kitchen
versus reminding the user to measure her heart rate). In addition, since they
will typically find multiple options to satisfy each goal, robotic ecologies need
the ability to evaluate different strategies in terms of resource utilization and
time-frames. Moreover, past examples used in AAL applications, such as
[5] have strictly relied on pre-defined models of the robots, of their users,
of the environment, and of its associated dynamics. These models can be
used to find strategies to coordinate the participants of the ecology and to
react to perceived situations, but they lack the ability to pro-actively and
smoothly adapt to evolving contexts. These limitations make such systems
still difficult to deploy in real world applications, as they must be tailored
to the specific environment and application. Relying on the same solutions
to support the operations of robot ecologies in real settings would quickly
become ineffective, unmanageable and prohibitively costly.

Finally, user-interfaces give the application designer and, to a limited
degree, the final user(s) some control on personalization and service customi-
sation features. However, such an approach puts an additional burden on
the developers to model each possible situation, and on the final users to
customize and adapt each service to their specific needs. We argue that such
solutions are only feasible if counter-balanced by systems with a degree of
autonomy and able to use their past experience to refine but also to extend
their capabilities.

3. The RUBICON Architecture

RUBICON adopts a modular design, which builds and integrates a num-
ber of different solutions, to deliver robotic ecologies with the ability to self-
adapt to their environment and to their user.

Such an approach stands upon a modular software suite made out of a
series of interacting layers, as depicted in Figure 1. Each layer is designed
to (i) attend to one of the pivotal roles in the system; (ii) exhibit a degree
of internal self-organization in order to suit gradually evolving settings; (iii)
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cooperate via well-defined interfaces with the other layers, so that the system
as a whole can more easily adapt to new situations.

Figure 1: High-level RUBICON architecture illustrating its modular integration between
its cognitive capabilities.

Sitting at the heart of the RUBICON system is a Communication Layer [34],
dealing with how data and functionalities are shared between system compo-
nents, including distributed software components, robots and heterogeneous
wireless sensor and actuator networks. The Communication Layer re-uses
and combines existing wireless sensor networks [35] and peer-to-peer com-
munication middleware [36]. This allows system developers to frame the
robotic ecology as a multiagent system in which each device is modelled as
an autonomous agent with sensing and acting capabilities [37].

The key factors to enable goal-oriented and adaptive behaviours in the
ecology are to (i) extract meaning from noisy and imprecise sensed data,
to (ii) learn what service to pursue, and (iii) how to pursue them, from
experience, rather than by relying on pre-defined goal and plan selection
strategies.

The first of these challenges is met by the Learning Layer [38], a dis-
tributed and adaptable learning infrastructure that can be used to support
a variety of learning requirements of a robotic ecology. The Learning Layer
processes streams of data gathered by the sensors in the ecology to classify
events and delivers predictions about the state of the ecology and of its users.
The Learning Layer can be trained, for instance, to forecast the exact loca-
tion of the user by examining the history of the RSSI measured between a
wearable device worn by the user and anchor motes embedded in the envi-
ronment, or to provide timely and predictive information on the activities
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being performed by the user, such as recognizing that the user is cooking by
analysing the signal and temporal pattern received from sensors installed in
the kitchen, such as switches triggered upon opening and closing the cup-
boards and refrigerator. Finally, the Learning Layer allows the incremental
acquisition and deployment of new computational learning tasks, in order to
adapt to new environmental and/or user conditions.

The second challenge is the responsibility of the Cognitive Layer [39, 40].
A distinct feature of the RUBICON’s Cognitive Layer is that it does not anal-
yse sensor data directly, but it reasons over the output of the Learning Layer.
These capabilities are exploited to learn to predict the need for activating
appliances and/or robotic services to suit the preferences and the require-
ments of each user. In addition, by examining the output of the Learning
Layer over time, the Cognitive Layer is capable of online novelty detection
to identify novel situations, for example, corresponding to previously user’s
activities. The system’s response to the detection of these new situations is
to trigger and feed the incremental learning mechanism of the Learning Layer
with teaching information related to their occurrence. In this manner, those
situations will be directly recognized by the Learning Layer, by exploiting its
distributed learning mechanisms, and thus also included in further reasoning
in the Cognitive Layer.

The final challenge is met by the Control Layer [41], a plan-based execu-
tive component providing high level control over the nodes within the ecol-
ogy. The Control Layer finds, realizes and monitors collective and adaptive
strategies to satisfy the goals set by the Cognitive Layer. It is also capable of
self-organisation in the way it uses available resources (e.g. robots, actuators,
sensors) in the process.

These layers are briefly discussed in the following sections, while reports
on both theoretical details and empirical evaluations of each layer can be
downloaded from [6].

3.1. Distributed Adaptive Memory for Sensor Timeseries

The Learning Layer realizes a distributed, adaptable and robust learn-
ing infrastructure for the RUBICON ecology that is specifically tailored to
deliver short-term predictions based on the temporal history of its input sig-
nals. These include information gathered from the sensors embedded in the
environment as well as from off-the-shelf software components running within
the ecology. It does so through a distributed neural computation comprising
independent learning modules deployed on the ecology nodes that interact

10



and cooperate through synaptic communication channels provided by the
Communication Layer.

Figure 2 provides an high-level view of the learning system that highlights
how the learning modules are distributed across a variety of ecology partic-
ipants. Online learning functionalities are distributed on each device in the
ecology, while the bulkier learning mechanisms, as well as a mirror copy of
the distributed learning modules, are deployed on a Learning Gateway.

Figure 2: High-level view of the Learning Layer distributed learning system: blue boxes
with solid contours denote different devices (of various computational capabilities); or-
ange boxes with dashed contours identify relevant software agents composing the learning
system. A special device, called the Learning Gateway, hosts the bulkier learning mecha-
nisms, such as feature selection and incremental learning, as well as a mirror copy of the
distributed learning modules. Online learning functionalities are instead distributed on
the single host devices. The parameterization of the Echo State Network model is shown
on a zoomed view of an ecology node.

The learning modules are the key learning machinery underlying the
Learning Layer and they have been designed based on two cornerstones,
namely: (i) the need to deal with time-dependent and noisy data typically
observed in AAL solutions, and (ii) the heterogeneity of the computational
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resources of the ecology devices, which demands learning models with lim-
ited computational requirements. Based on such considerations, the learning
modules have been realized by Echo State Networks (ESNs) [42], a recur-
rent neural model from the Reservoir Computing paradigm, characterized by
a good trade-off between computational efficiency and ability to deal with
dynamic systems and noisy data. ESNs are used to implement non-linear
dynamical systems, being composed of a recurrent non-linear part, called
reservoir and of a non-recurrent linear part, called readout. From a dynam-
ical system point of view, by updating a network state at each time step of
computation, the reservoir provides the model with a non-linear dynamical
memory of the past input history. The extreme efficiency of training of the
ESN approach, with respect to standard recurrent neural networks, stems
from the fact that only the readout component (i.e. Win and Wout in Fig.
2) is trained, while the reservoir part (i.e. Ŵ in Fig. 1) is left untrained af-
ter being initialized under the constraint of the Echo State Property [42, 43].
The Learning Layer provides a variety of learning mechanisms that allow
to continuously adapt the knowledge captured by the distributed memory.
A Training Agent component (deployed on the Learning Gateway) manages
the training information received by the Learning Layer and takes respon-
sibility for running the more computationally demanding processes. These
include (i) an Incremental Learning mechanism, which allows to incremen-
tally acquire new learning tasks (i.e. new predictions to be performed) or
to re-train from scratch the existing ones by exploiting the mirrored copy of
the learning models in the Network Mirror, and (ii) a set of Feature Selec-
tion mechanisms to allow to automatically filter out those input sources that
are either redundant or provide irrelevant information. Finally, a lightweight
Online Learning mechanism is implemented on all the ecology nodes that
allow to refine the predictions of the embedded learning modules based on
instantaneous supervised or reinforcement teaching signals.

3.2. Cognitive Layer

There are three core modules in the Cognitive Layer; namely (i) a cog-

nitive memory module, (ii) a cognitive reasoning module and (iii)
a cognitive decisions module. The cognitive memory module is respon-
sible for holding current and historical states of the RUBICON ecology as
perceived and processed by the Learning, Control and Cognitive layers. This
is implemented through a MySQL database and allows interaction between
the layers via PEIS middleware. The two primary components of the Cogni-
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tive Layer [39, 40], which utilise this information, are the reasoning module,
based on a self-organising fuzzy neural network (SOFNN), and the decision
module, based on a Type-2 fuzzy neural network (FNN).

Reasoning Module : The SOFNN [44] is a hybrid network which has
both reasoning and learning capabilities that can be used to model and fore-
cast complex nonlinear systems. It is a five-layered network consisting of an
input layer, an Ellipsoidal Basis Function (EBF) layer, a normalised layer,
a weighted layer, and an output layer. Adding and pruning strategies are
utilised to enable the self-organising capability to produce a fuzzy neural
network with a concise and flexible structure. This capability ensures the
SOFNN structure is continually adapting to the input data to decrease errors
during learning such that the cognitive layer maintains good performance in
dynamic AAL applications. The SOFNN is also ensures model compactness
as its structure and parameters are determined from the available data. The
number of inputs to the network is normally fixed although the architecture
employed in this work includes the capability to adapt its input structure
based on variations of the dimension of the input data.

Decision Making Module : The decision module integrates the status
outputs generated by the reasoning module to generate decision signals that
are then interpreted as goals of the RUBICON ecology. To accommodate
noise and uncertainty of the generated status outputs, the decision module
needs to show a high level of robustness. To this end, an SOFNN based
on Type-1 fuzzy sets is developed, which provides a degree of robustness to
noise due to the inherent approximate reasoning capability of the Type-1
fuzzy sets. However, it has been demonstrated that an additional level of
uncertainty can be mitigated by exploiting Type-2 fuzzy sets [45] which de-
scribe the membership functions as a fuzzy set rather than as crisp numbers.
Incorporating a Type-2 approach in a fuzzy neural network enhances its abil-
ity to handle uncertainty which is important in the AAL settings where the
robotic ecology operates.

The Type-2 FNN is created by combining the SOFNN and a Type-2 fuzzy
learning system; the strategy for development exploits the following steps:

1. A trained SOFNN structure, which is a Type-1 fuzzy structure, is ob-
tained.

2. This Type-1 fuzzy structure is then used to initialise the parameters of
a Type-2 fuzzy neural network structure.

3. The initialised Type-2 structure is trained off-line using gradient de-
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Figure 3: High-level view of the Cognitive Layer architecture, illustrating the combination
between the Type-1 and Type-2 Fuzzy reasoning components.

scent and Kalman filtering algorithms.

4. The final output of the system can be generated after information has
passed through type-reduction and defuzzification. This results in a
decision module (illustrated in Fig 3) that responds well to high levels
of noise, thus adding robustness to the cognitive architecture.

Finally, the decisions process is supplemented with a secondary system
which supports the cognitive role in the form of novelty detection. Novelty
detection can be defined as the process of identifying interesting new stimuli
that are different from anything known before [46, 47]. In this sense, novelty
detection can be seen as a form of selective learning which treats any experi-
ence which falls outside of those seen during training as novel. A number of
novelty detection methods have been proposed in the literature, mainly fo-
cussing on detecting anomalies and outliers, i.e. identifying patterns that do
not conform to expected behaviour [46, 47, 48, 49]. Typically for these prob-
lems there are substantial data about the normal classes but very little data
displaying the novel features that should be detected. Hence, it is essential to
learn a model of what is normal and then attempt to detect deviations from
this model. Within an AAL application, novelty detection serves to com-
pile a list of an inhabitants activities in terms of sensor readings emanating
from the Learning Layer during a training period. This set becomes what is
deemed normal. Significant deviations from what is normal are considered
novel and cause the system to act on this new information by presenting the
Learning Layer with teaching information related to a possible new activity.
Further details on this secondary support system, including how its memory
is managed is presented in [50].
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3.3. Configuration Planning
At the heart of the Control Layer lays a configuration planner : a planner

system that generates fine-grained plans which specify the causal, temporal,
resource and information dependencies between the different components of
the robots and devices in the robotic ecology. For example, a configuration
plan may indicate that robot-1 must navigate to the kitchen while taking lo-
cation input from the camera-based localization system, and after the kitchen
automatic door has been opened. The type of configuration planning used
in RUBICON was initially developed in the context of PEIS Ecologies [33],
but similar approaches were proposed, e.g., by Parker and Tang [31] and by
Vig and Adams [32].

The configuration planner is a constraint based planner (see [41] for a
more detailed technical description). It is grounded on the notion of state
variable, which models elements of the domain whose state in time is repre-
sented by a symbol. State variables represent parts of the real world that are
relevant for the planners decision processes. These include the actuation and
sensing capabilities of the devices in the RUBICON ecology, as well as phys-
ical features in the environment. For instance, a state variable can represent
the actions of a given robot, whose meaningful states might be ”navigating”,
”grasping” and ”idle”. Another state variable can represent the state of a
given light which can be ”on”, ”off” or ”broken”. Goals are also represented
through specific values of state variables. The possible evolution of state
variables in time are bound by temporal constraints, e.g., stating that navi-
gation must occur while the light is on, or that after navigation is completed
the robot will be located at the kitchen. We represent temporal constraints
by an extension of Allens Interval Algebra [51].

State variables and constraints are maintained in a constraint network.
The configuration planning process manipulates this network by incremen-
tally adding variables and constraints, until the network contains a feasible
plan that connects the initial state to the goals. The resulting constraint
network represents one or more temporal evolutions of the state variables
that guarantee the achievement of the goals under nominal conditions. The
configuration planner is itself composed of several solvers which all manip-
ulate the same shared constraint network. Each solver takes into account a
specific type of constraint, e.g., causal, topological, information, temporal, or
resource constraints. The solvers are orchestrated by a meta-CSP approach
[16]. The configuration planner operates in closed loop at a cycle of about
1Hz. At each cycle, the constraint network in the planner is updated by an

15



Figure 4: Schematic view of the configuration planner. The observed state and the current
goals are continuously injected in the shared constraint network. Several solvers (yellow
boxes) complete this network with a plan that connects the current state to the goals.
(From [41] with permission.)

observer to account for the current state of the RUBICON ecology as well
as goals newly posted by the Cognitive Layer, and the solvers are re-invoked
to update the plan if needed. The conceptual structure of the configuration
planner is shown in Figure 4.

4. Powering AAL solutions with RUBICON

The solutions outlined in the previous section have been evaluated both
in isolation and as part of integrated systems [41, 52, 21, 53]. In our previous
publications we have discussed the performances of the multi-layered RUBI-
CON approach in a smart home environment. In such a context, we have
described how our system can identify and react to user needs, activities and
preferences, learning to automatically perform robotic services in relation to
the activities of the user, e.g. cleaning the floor after having recognized that
the user has had her meal.

We begin here from an initial system configuration in which the Learning
Layer has been trained to provide timely and predictive information on users’
location, i.e. in the hall, in the living room, in the kitchen, in the bedroom or
outside, and on whether the user is performing a range of daily-life activities,
i.e. eating, setting table, cleaning, washing dishes, preparing food, exercising,
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relaxing, sleeping or entering the house. Such a system is trained under
factory conditions using a purposely collected HAR dataset, comprising a
large set of sensor data streams and ground-truth information gathered in
a smart-home environment. Although out of the scopes of this paper, a
detailed analysis of the overall training phase and of predictive performance
achieved on the considered HAR tasks (reaching test accuracy in the range of
[0.84, 1.00] for the different indoor locations and baseline daily-life activities)
is contained in our reports (see [6]).

In here we focus on the operations of the integrated systems and, more
specifically, on its ability to evolve from its initial configuration. Noticeably,
while the initial training phase of the RUBICON relies on the provisioning of
supervised information to the Learning Layer, a robotic ecology can use this
as a starting point, while it adapts to its new environment and to its user.

Figure 5 illustrates an extract of the outputs of the Learning Layer, when
the user has carried out her daily exercise routine and then relaxed on the
sofa. At this point, the user has also measured her heart rate by using a
bluetooth-enabled pulsometer. We use a magnetic sensor in order to detect
whenever the user takes the pulsometer from its box. The outputs in Figure
5 correspond to relevant user activities to be recognized, where a value ap-
proaching +1 denotes maximum confidence on the activity being performed,
while values approaching 0 denote increasing confidence on the activity not
being performed.

Over time, the Cognitive Layer successfully learns to use the outputs
of the Learning Layer to predict the occurrence of the event raised by the
opening of the box with the pulsometer. Figure 5 also shows the Cognitive
Layer’s response to the expected state of the ecology in the situation where
the user was relaxing after her exercise but forgotten to measure her heart
rate. Based on the analysis of past instances, the Cognitive Layer signals to
the system when it is time for the user to do that.

The signal received from the Cognitive Layer is interpreted by the Control
Layer as a request to have one of the robots in the household approach and
remind the user to measure her heart rate. In this example, the resulting
plan is straightforward. Since the robot was previously idle, it is tasked
to approach and prompt the user. Figure 6 shows a sequence of frames
(extracted from the video attached to this paper) showing the events just
described.
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Figure 5: Example output of the Learning Layer (a-c) while the user performs her daily
exercise routine, and output of the Cognitive Layer (d), after it has learnt to request the
delivery of the heart monitoring (HM) equipment while the user relaxes after her exercise.

4.1. Driving System Adaptation

The events described in the previous section stand as a template for a
family of useful and robust AAL services. Similar plans can be activated
whenever there is a mismatch between the output of the Cognitive Layer
and one of the events that are raised by an action of the user. The system
can be programmed to prompt the user when something out of the ordinary
is taking (or some user’s routine is not taking) place and may require her
attention and/or further instructions, thus ultimately helping the system to
gather feedback and gradually adapt its behaviour to the needs of its users.

In the remainder of this section, we show how a similar process can be
exploited to account for un-modelled user behaviors and activities in the AAL
application discussed above. Consider, for instance, what would happen in
the heart-monitoring example if our user injures herself and is instructed by
her doctor to perform a rehabilitation activity in place of her usual exercise
routine, in order to accelerate her recovery. The resulting activation of sensor
readings will now be new to the Learning Layer. The user’s rehabilitation
routine is considerably different from her previous exercise, shown in Figure
6, as the user’s movements are different (causing different readings from the
accelerometer on her wrist) and the user performs her rehabilitation routine
in a different position (e.g. sitting on the sofa instead of standing in front
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Figure 6: Extract from the video attached as supplemental material. From top left, clock-
wise: user exercising; user relaxing; robot approaching and reminding the user to measure
her heart rate; user using the pulsometer after she fetched and opened the pulsometer’s
box from the table

of the TV). This will result in events being presented to the Cognitive Layer
with a lower confidence than is usually expected. Consequently, the system
might stop to help the user just when the user needs it the most!

Our final aim is to take advantage of the layered architecture described in
Section 3 to determine when a change in user routine becomes incorporated
into the reasoning system. To this end, the Incremental Learning mecha-
nisms described in Section 3.1 empower the ecology with a dynamic memory
formation process that can be exploited to learn to account for new user
habits, activities and situations. This can have the effect to further relieving
the ecology from the need of human supervision, allowing it to self-cater the
training information needed to acquire knowledge on the novel situations. In
our reports (e.g. in [21]) we have described how the incremental learning
functionalities in the Learning Layer can be exploited by the Control Layer
to learn un-modelled context-dependent plan-selection policies.

To further validate these mechanisms in our example AAL scenario, we
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have implemented a novelty detection feature inspired by cognitive models
of habituation of neural responses and synaptic decay. This is implemented
within the Cognitive Layer through a three tiered system. The first tier
searches all active incoming events for synchronous activity groups and as-
signs them to the suspected event tier if they are recorded at lower confidences
than expected. Over time, new groups are promoted to the potential event
tier, and, eventually, recognized as new events. The progression over these
three stages is represented by the dashed lines in Figure 7, where it is super-
imposed to the output of the Learning Layer in one live episode in which the
user was carrying out her rehabilitation exercise.

Figure 7: a) Exercising and b) Relaxing events pertaining to the Rehabilitation exercise
with the associated c) habituation values of the potential event leading to its discovery

Upon recognition of a new event, the Cognitive Layer notifies the system
with the timings of all the instances in which such an event occurred in the
past.

At this point, the Control Layer invokes the Learning Layer’s mechanisms
to, respectively:

1. initialize a new HAR learning task corresponding to the newly detected
user activity;

2. notify an approximated indication of the sensory sources that should
be considered as candidate inputs for the new learning task (these are
simply the union of the sensor sources that were used by the Learning
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Layer to detect the events grouped by the first tier of the novelty detec-
tion, i.e. the user relaxing and user exercising events in our example);

3. train the Learning Layer by exploiting the information on new event
timings and associated sensory sources to assemble appropriate training
datasets. Noticeably, through its built-in feature selection mechanisms,
the Learning Layer can refine the preliminary superset of sensor sources
by extracting a subset of non-redundant and highly-predictive inputs
relevant for learning the new task.

After this re-training, the Learning Layer will produce a new output event
that will present with high confidence whenever the user will engage in the
new activity. As shown in Figure 8, the Rehabilitation exercise has now been
added to the detectable range of events processed via the Learning Layer and
as a result of this, the Cognitive Layer has also added it as one of its inputs.

Noticeably, at this point the Control Layer may also be instructed to ask
the user what she is doing. This may help the system to give an actual label
to the new activity (Rehabilitation) but it is irrelevant to how that event
will be treated in the future. The system can now use the new event in its
cognitive reasoning, which will ultimately lead to the restoration of its ability
to assist the user.

Figure 8: Example output of the Learning Layer while the user performs a sequence
of rehabilitation and relaxation activities. The diagrams shows the outputs for known

events (Exercising and Relaxing) prior to the novelty detection, and the novelty-detected

Rehabilitation event after the Learning Layer has adapted.
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4.2. Dynamic Planning
The final experiment we describe was designed to show the operation of

the system now able to recognize and process the new event, together with
its ability to react to contingencies and reason about dynamic situations.

Specifically, the experiment shows the ability of the configuration planner
presented in Section 3.3 to consider multiple goals, as well as its ability to
reason about resources and times.

In this experiment, the robotic ecology employs two robots, each equipped
with a vacuum cleaner and with a container where the user can place little
objects for the robot to carry, such as a box with her pills or with the pulsome-
ter. We have also added two additional constraints to the planning domain:
The first constraint states that only the robot carrying the box with the
pulsometer should go close to the user when the Control Layer is instructed
to do so by the Cognitive Layer. In a real application, such a constraint
could be supported by placing an RFID tag on the box and by employing
an RFID reader on the robot to inform it when it is carrying the box in its
tray. The second constraint is used to enable the two robots to coordinate
their movements in the apartment. Specifically, since there is not space for
two robots to negotiate at the same time the narrow space between the sofa
and the wall, the area connecting the livingroom to the kitchen is modelled
by the planner as a single resource that cannot be accessed concurrently by
two robots.

Figure 9 shows a sequence of pictures (extracted from the last phase of
the video) starting from a situation in which the first robot is cleaning the
kitchen while the user is relaxing after her rehabilitation. Note the difference
between the user’s rehabilitation routine and her previous exercise, shown in
the first scenes of the same video.

After the user stops her rehabilitation routine, the Cognitive Layer in-
structs the Control Layer to bring the box with the pulsometer to the user.

Since the robot cleaning the kitchen is also currently carrying the box
with the pulsometer when the Cognitive Layer raises the heart monitor goal,
the Control Layer’s planner has to find a way to (i) use that specific robot
to prompt the user as soon as possible (and in the process bringing the pul-
someter to the user, who is currently indisposed), while (ii) also completing
the cleaning task (which is still far from completion at the moment the heart
monitoring goal is issued).

Figure 10 and the accompanying video show how the planner solves this
problem by re-allocating the cleaning task, i.e. asking the second robot
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Figure 9: Extract from the video attached as supplemental material, showing the task
re-allocation between the two robots after the system has recognized the need to bring
the pulsometer to the user. From top left, clockwise: robot 1 cleaning the kitchen (in the
top right corner); robot 1 moving toward the living-room; robot-2 moving to he kitchen
while the user collects the pulsometer from robot-1; robot-2 taking over the cleaning duty
in the kitchen while the user uses the pulsometer

(previously idle) to go to clean the kitchen, while the first robot, now relieved
of its cleaning duty, is asked to move to the living room and approach the
user. However, rather than instructing both robots at the same time, the
planner successfully orchestrates their movements to resolve their use of the
single resource representing the narrow passage. Firstly, the planner instructs
the first robot to dispense the heart monitoring tool, since its task has a
tighter deadline. Secondly, the planner instructs the second robot to go to
the kitchen and take over the cleaning task. A graphical representation of
the activities of the planner are superimposed to the final scene of the video.

5. Discussion

Thanks to an adaptive, open and general purpose learning infrastructure
and its innovative combination with online novelty detection functionalities,
a RUBICON system can more easily adapt to evolving situations and achieve
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Figure 10: The final plan, which is refined by the scheduler to make sure that the robots
will not have to traverse the narrow space between the wall and the wall at the same time
(they both consume a resource of capacity one)

useful services that are not restricted to only those situations that are envi-
sioned by their designer. Successful goals and novel events are absorbed into
the cognitive model which shows an ability to evolve and grow to accommo-
date and account for new situations.

Such a process allows the system to be driven by using easily identifiable
rules, while delegating, over time, symbolic reasoning to data-driven inference
for the purpose of increasing flexibility, robustness and adaptation.

This is a clear improvement on past solutions, which demanded for all
context and goal rules to be specified a priori.

To the best of our knowledge, the integration approach discussed in this
paper constitutes a novel way to design adaptive robotic ecologies by extend-
ing plan-based control mechanisms with a combination of machine learning
methods for context recognition, and cognitive reasoning for goal deliberation
and novelty detection.

A useful characteristic of such an integrated solution is its clear distinction
between (i) events, i,e, the result of the activity and context recognition
process performed by the Learning Layer on the basis of raw sensor data, (ii)
goals, i.e. the result of the cognitive reasoning performed by the Cognitive
Layer on the basis of the events originated by the Learning Layer, and (ii)
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plans describing the configuration and coordination strategies activated and
supervised by the Control Layer to achieve the goals set by the Cognitive
Layer.

Our implementation is an instance of such a modular design, whereas
each component may be replaced with possible alternative implementations
covering similar roles.

While it has been tested in a limited scenario, the two-layer interaction
between the Learning and Cognitive layers implemented in RUBICON has
shown a promising direction toward which to advance the results of past at-
tempts that have integrated activity detection with pattern discovery func-
tionalities in the same application domain. Compared to those methods,
which were discussed in Section 2, our system has the ability to account for
heterogeneous and noisy sensor data and can leverage a rich selection of both
binary and non-binary sensors while performing online novelty detection and
reasoning on context and automation patterns.

However, the goal of our work is not the classification of all users’ be-
havioural patterns, but only those whose prompt detection can facilitate the
robotic ecology in assisting its users. Indeed, as Wang et al.[30] also notes,
seeking to recognize every possible activity can be overly complex, and may
also be perceived by home occupants as unacceptably compromising to their
privacy. The only activities of interest are those that the occupant undertakes
which undermine their capability to function independently. The integration
approach discussed in this paper shows a way to do just that, by starting
from a system trained to recognize simple events, and by letting it learn,
over time, to recognize and adapt to evolving situations. In this concern, the
Incremental Learning mechanisms implemented in the Learning Layer (see
Section 3.1) provide the RUBICON system with the ability to deal with en-
vironmental changes by allowing re-training on existing computational tasks,
whenever a significant environmental change is identified by the Cognitive
Layer.

Noticeably, the effect of this process is similar to what is achieved by ap-
proaches addressing the concept drift problem [54] in activity classification,
as in [55]. Concept drift addresses slow changes in the mapping between sen-
sor signals and activity classes in the feature space. Usually, this is achieved
by monitoring drift over time, and by triggering either (i) a re-calibration of
the learning system (e.g., by adjusting the parameters of the classifier), or (ii)
a complete re-training (by taking advantage of many repetitive occurrences
of context in daily life). The solution implemented with the interaction be-
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tween the Cognitive and the Learning layers described in Section4.1 is an
example of the latter. However, in our architecture the same approach is
used both to account for changes in known activities corresponding to al-
ready trained learning module, and also for discovering new activities for
which the learning system had not received supervised training information.

In addition, activity classification is a by-product of our approach: new
events are internalized and detected by a distributed learning network. They
may not exactly match with recognizable users’ activities, but the outcome
is a system that can successfully adapt to new user habits and changing user
needs.

Supporting heterogeneous and distributed systems and varying computa-
tional constraints has been a cross-cutting concern addressed in each of the
solutions described in this paper. This was an important requirement, which
is not met by the centralized solutions traditionally used in smart environ-
ments, as robotic ecologies may contain devices such as computers with large
processing and bandwidth capacities, as well as much simpler devices such
as micro-controller-based actuators and sensor nodes, and even devices with
no (customizable) computational capability at all, such as Radio Frequency
Identifications (RFIDs). Sensor data in a cognitive robotic ecology is pro-
cessed as much as possible locally on computational constrained and robotic
devices. Information (e.g. goals) is extracted and exploited by the higher
layers. These are equipped with bigger computational capabilities, which
they exploit to deliberate and supervise the execution of complex tasks.

Our approach may inspire similar advancements in similar technical do-
mains. In particular, the Robotic Ecology vision shares many similarities
with the one pursued within the CSP and IoT communities: The ideal aim
in all those fronts is that arbitrary combinations of devices should be able
to be deployed in unstructured environments, such as those exemplified in
a typical household, and there, efficiently cooperate to the achievement of
complex tasks. A widespread solution in IoT system is to deploy high-level,
rule-based reasoning modules on cloud-based infrastructures. However, sys-
tems that need to close the loop between analysis and control may find it
useful to implement a similar approach to the one implemented in RUBICON,
and combine high-level, cloud-based system intelligence with data processing
and learning functionalities deployed on each device.
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6. Conclusions and Future Work

This paper has highlighted the challenges in endowing robotic ecologies
with cognitive capabilities, and has illustrated the general principles under-
lying the construction of self-adaptive robotic ecologies.

We have shown how adaptive, and proactive system behaviour can be
obtained by exploiting: (i) a learning infrastructure to extract meaning from
noisy, imprecise and heterogeneous sensed data, (ii) cognitive reasoning ca-
pabilities to learn what service goals to pursue, and (iii) advanced planning
solutions that are able to reason upon different objectives, resources, and
dynamic situations. Furthermore, this paper has shown how the dynamic
acquisition and modelling of new events can also be implemented as an in-
terlayer cooperative process.

All our solutions have been purposefully designed to be as open, flexible
and extensible as possible. Key components of our software suite can already
be downloaded from our project website[6].

These components can be applied, either in the fully-integrated form
presented in this paper, or by using only selected combinations, as we have
shown in[21]. This has the potential to drive the adaptation of many existing
smart environment scenarios, and also to inform the development of similar
integrated approaches.

However, more work is needed to improve the usability and manageabil-
ity of this type of integrated solutions. Building actual AAL applications
requires many researchers to program each part of the system using domain-
specific languages and research-oriented software and tools, before systems
prototypes can be evaluated. In addition, setting up each system still requires
a degree of manual configuration, for instance, to identify narrow passages
in the environment that must be considered as a single resource by the con-
figuration planner. The issue of whether this configuration could also be
automated, for instance, as part of autonomous exploration and mapping of
the environment, is still an open research question. Its resolution would be
an important step toward allowing fully autonomous systems able to adapt
to the settings where they are installed.

Moreover, further work needs to be directed towards improving both the
efficiency of these solutions and the user’s experience when dealing with them,
in order to enable us to carry out long-term evaluations with real users in
their own homes. To this end, the interplay between the different components
composing a cognitive robotic ecology provides flexible mechanisms, which
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can be used to define, at run-time, new learning requirements, and can adapt
to changes in the settings of the ecology or to newly discovered situations and
users’ activities. These mechanisms may be used by both internal ecology
components - as in our examples - as well as by external components, such
as user interfaces. These may be used to provide feedback to the learning
system, to drive its smooth adaptation to user preferences, but also to verify
and possibly accelerate its ability to adapt to novel situations. The research
question in this case is how to find ways for the human to meaningfully
interact with an opaque system that sometime may incorporate concepts
that do not correspond to recognizable activities. Future work should explore
scenarios in which users and cognitive robotic ecologies collaborate and learn
to exploit their different capabilities to their mutual benefit.
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