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Abstract The Perspective Reformulation (PR) of a Mixed-Integer NonLinear Program with semi-
continuous variables is obtained by replacing each term in the (separable) objective function
with its convex envelope. Solving the corresponding continuous relaxation requires appropriate
techniques. Under some rather restrictive assumptions, the Projected PR (P?R) can be defined
where the integer variables are eliminated by projecting the solution set onto the space of the
continuous variables only. This approach produces a simple piecewise-convex problem with the
same structure as the original one; however, this prevents the use of general-purpose solvers, in
that some variables are then only implicitly represented in the formulation. We show how to
construct an Approzvimated Projected PR (AP?R) whereby the projected formulation is “lifted”
back to the original variable space, with each integer variable expressing one piece of the obtained
piecewise-convex function. In some cases, this produces a reformulation of the original problem
with exactly the same size and structure as the standard continuous relaxation, but providing
substantially improved bounds. In the process we also substantially extend the approach beyond
the original P?R development by relaxing the requirement that the objective function be quadratic
and the left endpoint of the domain of the variables be non-negative. While the AP?R bound can
be weaker than that of the PR, this approach can be applied in many more cases and allows direct
use of off-the-shelf MINLP software; this is shown to be competitive with previously proposed
approaches in some applications.

Keywords Mixed-Integer NonLinear Problems, Semi-continuous Variables, Perspective Refor-
mulation, Projection
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1 Introduction

Mixed-Integer NonLinear Programs (MINLP) involving only convex function in their description
have the advantage that solution methods can be devised by extending approaches designed for
the (mixed-integer) linear case. It is not surprising, then, that this class of problems is the subject
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of a very intense research; see e.g. [1,7,22,26] for surveys on applications and solution algorithms.
In this paper we study convex separable MINLP with n semi-continuous variables p; € R for
i€ N ={1,...,n}. That is, each p; either assumes the value 0, or lies in some given compact
nonempty interval P; = [p’ .., Phras] (—00 < P < Pl o, < 00); this allows the usual modeling
trick where the semi-continuity of each p; is expressed by using an associated binary variable wu;
as in

min h(z) + > ;e filpi) + ciwi (1)
Phinti < pi <Pt 1 €N (2)
(p,u,z) € O (3)

ue{0,1}" , peR" , xR (4)

We assume that the functions f; are closed convex; w.l.o.g. we assume f;(0) = 0 and that they
are finite in the interval (pi ;. ,pl,..)- Indeed, if, say, f;(p) = +oo for p < pt, .. then one could
set pl. .. = P as by convexity fi(p) = +oo for all p > p (however, cf. §2.3 for an example where
fi(P!,4z) = +00). The function h in the “other variables z” and the “other constraints (3)” do not
play any role in our development and we make no assumptions on them. However our technique
is especially well-suited for the case where the objective function and all the constraints in (1)—(3)
are convex, so that the corresponding continuous relaxation is a convex program. Indeed, in all
applications presented in this paper everything but the functions f; is actually linear.

Problem (1)—(4) can be used to model many real-world problems such as distribution and
production planning problems [33,11,16], financial trading and planning problems [12,9], and many
others [5,6,21,22,20,23]. As we shall see, in some applications (§4.3, §4.4) the binary variables u;
are not only useful to prescribe the semi-continuous status of the corresponding p;, but also for
representing some of the other constraints of the model; however, in some other cases (§4.1, §4.2)
this does not happen, and the only source of non-convexity in (1)—(4) lies in the fact that one is
actually dealing with the nonconvex functions

0 U; = 0 s Pi = 0
filpi,w)) =< filps) +eiwi =1, ploin < Pi < Phnaw
+00 otherwise

One can therefore strive to devise tight convex under-estimators of this function in order to guide
exact or approximate solution approaches; this is the approach that has been most successfully
followed in general-purpose approaches to MINLP (e.g. [7,19,30] among the many others). In this
particular case it is actually possible to characterize its convex envelope, i.e., the best possible such
under-estimator. Indeed, the convex hull of the (possibly, disconnected) domain {0} UP; of each p;
can be conveniently represented in a higher-dimensional space, which allows to derive disjunctive
cuts for the problem [27]; this leads to the Perspective Reformulation of (1)—(4) [8,11]

(PR) min { h(z) + > ,cn filpisws) +cuy = (2), (3), (4) } (5)

where f;'(pi, u;) = u; fi(pi/u;) is the perspective function of f;(p;). This actually applies even if p;
is a vector of variables and P; a general polytope, but since in our subsequent development we
actually need p; to be a single variable we directly present this case. It is well-known that, since f;
is convex, ﬁ is convex for u; > 0; indeed, it coincides with the convex envelope of f;(p;,u;) on the
set { (pi,wi)  ploinu < pi < phoau, ui € (0,1]}, and it can be extended by continuity in (0, 0)
assuming 0f;(0/0) = 0. In other words, the continuous relaxation of (5), dubbed the Perspective
Relazation (PR), is (often, significantly) stronger than the continuous relaxation of (1)—(4), and
therefore is a more convenient starting point to develop exact and approximate solution algorithms
[6,11,12,16,21]. This, however, hinges on the ability to solve PR with efficiency comparable to
the ordinary continuous relaxation, despite the fact that optimizing fz can be significantly more
difficult than optimizing the original f; (e.g., it is nondifferentiable in (0, 0)). For instance, one can
reformulate (5) either as a Mixed-Integer Second-Order Cone Program (MI-SOCP) [6,13,21,32]
(provided that the original objective function is SOCP-representable) or as a Semi-Infinite MINLP
(SI-MINLP) [11].
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Recently, another approach has been proposed [14] for the case where the functions f; are
quadratic, that transforms PR into a piecewise-convex optimization problem. By standard tricks,
this is in turn equivalent to a QP of roughly the same size as the standard continuous relaxation,
with at most 2n continuous variables replacing the n variables py, pa, ..., pn, but with no w vari-
ables. When O has some valuable structure, this leads to the development of specialized solution
approaches for PR that can be significantly faster than those available for the continuous relax-
ations of the MI-SOCP or SI-MILP formulations, ultimately leading to better performances of the
corresponding enumerative approaches. However, this comes at the cost of significantly restrictive
assumptions on the data of the original problem (1)—(4), possibly the most binding one being
that each u; only appears in the corresponding constraint (2), but not in constraints (3). While
there are applications where this holds (§4.1, §4.2), in other cases the wu; variables are also used
to express structural constraints of the problem (§4.3, §4.4) and therefore the technique cannot
be used. Further negative side-effects of this removal are that valid inequalities concerning the wu;
variables cannot be added to the relaxation, and that ad-hoc solution approaches must be devel-
oped, losing the possibility of exploiting off-the-shelf, general-purpose, state-of-the-art solvers that
are both simpler to use and potentially more powerful given the huge amount of ingenuity and
development /testing time that has been invested in them.

In this paper we show that a simple reformulation trick can be used to overcome the above
difficulties, although (potentially) at a cost. In Section 2 we generalize the P?R approach of [14],
where only the quadratic case is considered; instead, we show that only a simple condition on the
functions f;, satisfied by several classes of functions in addition to quadratic ones, is required to
apply the P2R technique. We also show that one further assumption in [14], p! . > 0, can be
relaxed, albeit at the cost of a somewhat more involved analysis that is deferred to the appendix.
Then, in Section 3 we introduce the reformulation trick that allows us to construct an Approzimated
Projected PR (AP2R). This is done in two steps: first the problem is reformulated over the variables
p and x only, like in the P2R approach, as if no constraint of type (3) contained variables u. Once
this is done, an MINLP reformulation is constructed which re-introduces the integer variables
u in a different way to entirely encode the obtained piecewise-convex function. The continuous
relaxation of P?R (hereafter denoted as P2R) and that of AP?R (AP2R) are equivalent only when
there are no constraints of type (3) linking the variables u; in general, AP?R provides a weaker
lower bound (§3.1). Nevertheless, the new approach allows us to extend the PR idea to many
more applications. Perhaps more importantly, it allows to use off-the-shelf MINLP software to
solve it, thereby benefiting from all the sophisticated machinery it includes. On the contrary,
P2R requires the development of ad-hoc B&C codes and PC requires advanced features such
as callback functions. Then we also present an alternative way to derivate the AP?R model by
the Reformulation Linearization Technique (RLT, cf. §3.2). Even if this second derivation does
not prove any strong relationship with the PR (on the contrary to first derivation), it opens
interesting research lines on the RLT and on some simple ways to improve continuous relaxation
bounds. Finally, we show the benefits of the AP2R approach in some practical applications; in
particular, the idea is tested on one-dimensional sensor placement problems (cf. §4.1), single-
commodity fixed-charge network design problems (cf. §4.2), mean-variance portfolio optimization
problems with min-buy-in and portfolio cardinality constraints (cf. §4.3), and unit commitment
problems in electrical power production (cf. §4.4).

2 P2R for non-quadratic functions

We start by generalizing the analysis in [14] to a much larger class of functions. Since in this
paragraph we only work with one block at a time, to simplify the notation we will drop the index
“¢”, thus concentrating on the fragment

min{ f(@)+ecu : pmint <P < Prazu, u € {0,1} } (6)
and on its PR
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min{f(pvu) = f(p,u)—i—cu D Pmin¥ S P < Dmaatl , U E [Ovl]} : (7)

The basic idea in [14] is to recast (7) as the minimization of the following (convex) function

Z(p) = min, f(p, U) = min, { f(p7 U) F U Prmintt P < Prggtl, U E [07 1] } (8)
of p alone; by convexity, the domain of z contains at least conv( {0} U [Dmin,Pmaz] ). The
function z(p) can be algebraically characterized by studying the optimal solution u*(p) of the
convex minimization problem in (8). In turn, u*(p) is easily obtained by the solution @(p) (if any)
of the first-order optimality conditions of the unconstrained version of the problem

of

L (p,u) = ¢+ f(pfw) — ' (pfupfu=0 . )

If a(p) satisfying (9) exists and it is unique, it can be used to algebraically describe u*(p). In
fact, if @W(p)pmin < P < UP)Pmaz and 0 < a(p) < 1 then clearly u*(p) = u(p); otherwise, u*(p)
is the projection of @(p) over the feasible region of (8). If instead (9) has no solution then the
derivative always has the same sign and v*(p) can be similarly found by projection. Then, one has
a case-by-case analysis of u*(p), which finally allows to obtain

2(p) = f(p,u*(p)) + cu™(p) -
In [14] this is done for the quadratic case f(p) = ap? + bp, where (9)

of . ap*
Fplw=c— -z =0

has the solution (that, by convexity of f(p,u), is a minimum)

- pyajc if p>0

i) = plyare={ _Pvere £r = (10)
if and only if ¢ > 0. We will now show that the P2R approach can be extended provided that the
following property holds:

Property 1 Either (9) has no solution, or it has a unique solution of the form

_ o pgtifp>0
i) ={ 220 (11)

for some values g* > 0 and g~ > 0 independent from p.

As we shall see, the fact that 0 lies in the interval (pyin, Pmasz) has a significant impact on the
analysis; to simplify the presentation, we initially assume, as in [14], that p,,, > 0; since f(p,u)
is only defined for w > 0, this implies that any solution —pg~ to (9) is actually not relevant.
Extending the analysis to the case where p,,;, < 0 (where —pg~ becomes relevant) is actually
possible, but somewhat more cumbersome, and therefore is avoided here for the sake of clarity of
presentation; the details are available in the appendix.

To further simplify the presentation, we will assume py;,, > 0, i.e., we will assume that p/pmin
is always a well-defined quantity. If p,,;, = 0, the constraint p,,;,u < p is redundant, and one can
take p/pmin = +00; it can be easily verified that all the obtained formulae extend to this case.

Proposition 1 If Property 1 holds, then z(p) defined in (8) has the form

_ {21(17) = ( f(pint)/Pint + ¢/Pint )P 0 < p < Pins

12
22(]9) = f(p) +c Pint S p S Pmazx ( )

where Pint € {Pmin, 1/97, Pmax} can be determined a-priori by a case-by-case analysis on the data
of the problem.

Proof We start by rewriting the constraints in (8) as

(0<) Sugmin{

,1}. (13)

Pmax Pmin

Then we consider the following cases:
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a. Equation (9) has no solution and the global minimum in (8) is attained at one of the two
bounds for w in (13). So, there are two subcases:
a.l. The derivative %(p, u) is negative for all u € [0, 1], and therefore u*(p) = min{ p/pPmin , 1 }.
This gives two sub-sub cases:
a.l.1. p/pmzngl<:>p<pmzn:>U*(p) p/pmm:>

( ) ( f( mzn)/pmzn + C/pmm )p; (14)
2(p) = () +c . (15)

In other words, z(p) is the piecewise function

{ ( f(pmin)/pmin + C/pmin )p if 0 < p < pmin
f(p) +c if Pmin < p < Pmaz

z(p) = (16)

a.2. The derivative is always positive, and therefore u*(p) = p/Pmaz (note that 0 < u*(p) < 1).
This gives
Z(p) = ( f(pmax)/pmaw + C/pmaa: )p . (17)

b. The only solution to (9) is given by (11). We consider three sub cases:
b.1. @(p) =p g% < p/Pmaz = Pmaz < 1/97 = v*(p) = p/Pmas and (17) holds.
b.2. p/Pmaz < U(p) < p/Pmin <= Pmaz = 1/ > Dmin; two further sub cases arise:
b.2.1. (Pmaz =) p > 1/9" (> Pmin), which implies both w(p) > 1 and p/pmin > 1, so that
u*(p) = 1 and therefore (15) holds;
b.2.2. Pmin S p S 1/g+ (S pmax)a which giVGS a(p) S 1. NOW7 lfpmzn S p then p/pmln Z 15
and therefore u*(p) = @(p). However, because ppin < 1/g7 we always have p/pmin >
pgt = a(p), thus even when 0 < p < ppi, we have u*(p) = @(p), which finally implies

z(p) = (9" f(1/g") +ecg™ )p . (18)

Thus, z(p) is the piecewise function

2(p) = (97f(1/g") +cg® )p if0<p<1/g* 19)
fp) +c if 1/9% <p < prmas
b.3. {L(p) Z p/pmzn <~ (pmaw Z) Pmin Z 1/g+ Aad U*(p) = mln{p/pmzna 1} = (16) U
Z
2
21
[’min p‘im‘ Pmax P

Fig. 1 The piecewise function z(p)

Clearly, 2z1(p) = (22(Pint)/Dint )p, which immediately shows that zi(pint) = 22(pint), and
therefore allows us to write z(p;n¢) without further qualification. The analysis implies that zo(p) >
z(p), since z3(p) = z(p) for p > pPint, and 22(p) > 2z1(p) = z(p) for p < pins. Furthermore,
assuming pmin < 1/9% < pmaz one has that (9) computed at p/a(p) = 1/g" = pins gives (for
a differentiable function f) (¢ + f(pint))/Pint = [/ (Pint), 1., 21 (Dint) = 25(Dint) as depicted in
Figure 1. Thus, except in the two degenerate cases pint = Pmin = 0 and pint = Pmaz, 2(p) is a two-
piecewise function where the second piece coincides with the original objective function; moreover,
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if pins = 1/g™, the breakpoint is at the place where the first-order linearization of f targets the
origin. Note that, in this case, the first piece of (19) is precisely this first-order linearization and
z(p) is also continuously differentiable.

Of course, the quadratic case is covered by the analysis (cf. (10)); an illustration of the process
is provided by the following example.

Ezxample 1 Consider the quadratic case such that a = 2, b = 0, ¢ = 8, Pmin = 1, Dmaz = 10.
According to (10), @(p) = py/a/c = p/2, i.e., gt = 1/2. This means that we are in case b.2 in the
proof of Proposition 1, as 10 = ppas > 1/97 = pine = 2 > pmin = 1. Hence z(p) has the form of

(19)
( 8p ifo<p<2
zZ =
202 +8 if2<p<10

Obviously, the above formula can be statically computed once the problem is completely defined.

2.1 The rational exponent case

Consider the function f(p) = ap*/", where a > 0 and k > h integers. We will also ask ppin > 0 if
k is odd to ensure that we use it only in the region where it is convex. In this case, (9) reduces to

c—a<z—1> (%)%zo (20)

which, provided ¢ # 0, has only one real root @(p) = pg™ if k is odd and two roots u(p) = +pg™

if k is even, where N
k—ha\*
+_ (X "7
o= (5)

Note that if ¢ < 0 then the derivative is always negative (cf. point a.l in the proof of Proposition
1) for p > 0, while, if ¢ > 0 and k is odd, the derivative is always positive (cf. point a.2 in the
proof of Proposition 1) for p < 0; in both cases (20) has no solution. In all other cases, @(p) has
the form (11), with g~ = g* when k is even, and the analysis in points b. of propositions 1 and 2
apply depending on k odd or even, respectively.

Ezample 2 If k =3 (odd case), h=2,a=1, c=4, and 0 < ppin <4 < Pimaz, one has

2
11\% 1 3p f0<p<4
t=(22) == d th =
g <24> ;g ondthen 2(p) {p3/2+4 if 4 < p < Prmaa,

2.2 The exponential case

In the case f(p) = e®?, (9) reduces to
e+ e (1 —ap/u) =0 .

It is easy to verify that g(z) = e*(1 —z) < 1 (the maximum being attained at = = 0); this implies
that for ¢ < —1 the system cannot have a solution, the derivative is always negative (cf. a.1). For
¢ = —1, the unique solution requires ap/u = 0, that is undefined in the variable u. Otherwise,
the above equation defines one or two stationary points (depending on ¢ > 0 or —1 < ¢ < 0,
respectively). In both cases, there is only one local minimum that is defined by

ap
1+ PL(c/e)
where the PL(z) (known as the “ProductLog” function) gives the principal solution for w in
x = we", which is real for all z > —1/e; this can be efficiently computed numerically for a fixed
argument such as c/e. Since in our case x = c¢/e, u(p) is well-defined, e.g., whenever ¢ > 0. If
a < 0, then e®/%(1 — ap/u) > 0 and the derivative is always positive (cf. a.2). For a > 0 instead,
a(p) has the form (11) with g™ = a/(14 PL(c/e)) > 0; therefore, it is possible to apply the above
analysis to this case, too.

a(p)
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Ezample 3 For ¢ = €% and 0 < prin < 2 < Prmaz One has w =1, g7 = 1/2, 4(p) = p/2, and hence

e?p ifo<p<2
z(p) = 2 .
e’ +e 1f2§p§pmam

2.3 The Kleinrock delay function case

Another interesting non-quadratic objective function is the Kleinrock delay function f(p) =
a/(Pmaz — P), which is often used to model delay in a communication network when the flow
p over a given arc nears its maximum capacity pma. (€.g. [25]). The function is convex as long as
0 < Pmin < P < Pmaz and a > 0; then, by applying the Perspective Relaxation (7)

au?
flp,u) = uf(p/u)+cu= P— +cu
with constraints p € [upmin, UPmaz) and u € [0, 1]. For this case, (9) reduces to
N au aup 0
c — =0 ;

UPmax — P (upmaac - p)2
this (using upmaez — p > 0) reduces to a simple quadratic form with non-negative quadratic
coefficient praz(CPmaz + @). For ¢ > —a/pmaq, the form has the two roots

~ P a
U = 1+,/——
i(p) Pmax ( CPmax + a)

and therefore df/0u < 0 for 4_(p) < u < uy(p) (even assuming it is defined there, which is not
necessarily the case). In other words, @4 is the unconstrained minimum, and (11) gives

1
RS S e
pma:c Cpmaz +a

so that the above analysis can be applied. If ¢ < —a/pmaqs instead, then 9f/0u is always positive,
i.e., f(p,u) is always non increasing with respect to u, which gives u*(p) = 1 and again the above
analysis applies.

Ezample 4 For a =4, ¢ =1, and pyqe = 12 one has g™ = 1/8, i(p) = p/8, and hence

) = p/4 if0<p<8
) 4/(12-p)+1 if8<p<12

3 Project and Lift

As already mentioned in the introduction, one of the main limitations of the P?R approach lies
in the fact that the u; variables are removed from the formulation; this makes it impossible to
use off-the-shelf software to solve the corresponding problem. In this section we show how to “lift
back” the obtained piecewise characterization of the convex envelope in the original space. The
result is somewhat surprising, since (at least if p,,;, > 0) what one ends up with is a (convex,
if the original continuous relaxation was) program with ezactly the same size and structure as
the original one, but which provides a (much) better bound. This in turn allows us to apply the
approach in the case where the constraints defining O bind different variables u; together, albeit
at the cost of accepting a weaker lower bound than that provided by PR. The idea is simple:
even if constraints (3) involve the u variables, one disregards them and proceeds to compute the
projected function z(p) as in the previous section. Of course, this provides a lower bound on what
the computation of the “true” projected function would achieve, since one is disregarding some
constraints, i.e., solving a relaxation of the real projection problem.

We start by introducing the required reformulation trick. Just like the previous section, we
analyze the somewhat simpler case where p,,;, > 0 first and postpone the case pyn < 0 to the
appendix.

The projected function z(p) of Proposition 1 can always be formulated in terms of an appro-
priate nonlinear program by exploiting the following very well-known result (e.g., see [14]).
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Lemma 1 Let vy(p) be a generic convez function with a k-piecewise description

v(p) = v (p) if i1 <p< oy i=1,...,k

(with each ~;(p) convex, obviously). Then v(p) can be rewritten as

min v (p1 + o) + Zfzg (’Yi(pi +ai_1) — %‘(04141))
v(p) = 0<p;i<a;—a;1 i=1,...,k . (21)

k
o + Zi:1 pbi=Dp

Moreover, for any p € o, ax] let h be the smallest index such that p € [ap—1,ap]: there always
exists an optimal solution p* = [p},...,p}] to problem (21) such that p} = a; — a;—1 for i < h,
p; =0 fori>h, and p;, =p — an_1.

Intuitively, Lemma 1 comes from the fact that a convex function has increasing slope, so the
leftmost intervals are “more convenient” than the rightmost ones; thus, to obtain a given value p
the best way is to “fill up the intervals starting from the left”.

Theorem 1 For z(p) defined in (12) and
ming ., h(u,q) = uz(Pint) + 22(q + Pint) — 2(Pint)
Z(p) = (Pmin = Pint)t < ¢ < (Pmaz — Pint)t (22)
D= Pinttl +q , u € [0,1]
we have Z(p) = z(p) for any p € |0, Pmaz]-

Proof We start by applying (21) to (12): we have k = 2, ag = 0, a1 = Pint, @2 = Prmaz, and
recalling that z(pint) = 22(pint) We obtain that (12) can be alternatively computed as

Z(p) _ { minpl,pg Z1 (pl) + ZZ(PQ + pznt) - Z(plnt) (23)

ngl Spint ) OSPQ Spmax_pint ) p:P1+P2

In order to prove the thesis we have therefore to show that (22) and (23) are equivalent, i.e., they
have the same objective function value for all p.

The identification p; = p;nsu and ps = ¢ readily shows that the two problems are very similar.
In fact, the constraints u € [0,1] and p = pipu + ¢ in (22) are then identical to the constraints
p1 € [0, pint] and p = py + pa, respectively, in (23). Also, the two objective functions are easily seen
to be identical (recall that z; is linear). The only non obvious argument is that the constraint

(pmzn - pznt)u S q S (pmax - pint)u (24)
in (22) is not equivalent to 0 < py < Prmas — Pint 0 (23); indeed, its right-hand side is stronger
(u < 1) while its left-hand side is weaker (pmin — pint < 0). Nonetheless, the two problems are
equivalent: for any fixed p, we can prove that there exists an optimal solution (pi, p3) of (23) that
is feasible for (22), and an optimal solution (¢*,u*) of (22) that is feasible for (23).

For the first part, we take an optimal solution (pf,p3) of (23) and we construct an equivalent
(¢*,u*) for (22). This is easily done: due to Lemma 1, (p], p}) satisfies

1. either p < pine, in which case pf < pine (= @1) and p; = 0, so that we set ¢* = 0 (= p3) and
u* = pi/pint <1;

2. 0r p > Dint, in which case pj = pint (= a1) and 0 < p5 (< Prmaz — Pint), S0 that we set
ps=¢q* (>0) and u* = 1.

It is immediate to verify that in either case the thusly constructed (¢*,u*) is feasible for (22)—
in particular, (24) is satisfied—and equivalent to the original (pj,p3) in terms of the objective
function value. Hence, zZ(p) < z(p).

For the other direction, we consider (¢*,u*) optimal for (22). It is easy to see that if ¢* > 0
then (p3,p5) = (pintu™, ¢*) is feasible for (23), which proves that zZ(p) > z(p), and hence our thesis.
We therefore want to prove that there always exists an optimal solution to (22) with ¢* > 0. As
before, we separately analyze the two cases p > p;n: and p < pjn¢. In the former, necessarily ¢* > 0.
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Indeed, the constraint p = p;piu + ¢ implies u* = (p — ¢*) /pint, s0 ¢ < 0 (together with p > pint)
would imply u* > 1. Therefore, only the case p < p;n¢ still needs to be examined. It is easy to
prove that, in this case, (u*,¢*) = (p/Pint,0) is optimal (and hence, as desired, ¢* > 0). In fact,
due to the constraint p = p;u + ¢, any alternative feasible solution of (22) can be written in the
form (u,q) = (u* + €/pint, —€), where ¢ is arbitrary in sign. The objective function value of such
a solution is

Z(pznt) +€Z(pznt)

Dint Dint

Now, because z; is linear we have z(pint)/Dint € 02(p) for each p € [0, pine], and taking in particular
D = pint We can write the subgradient inequality

h(u,q) =p

+ 220(Pint — €) — 2(Pint) -

Z\Pi Z\Pint
(int — ) > 2(pin) + (it — € — Pina) 22 = 5(p) — 2 Pint)
Pint Pint
Since z9 > 71 for p € [0, pine] one has
2(p;
EM + 22(Pint — €) — 2(pint) > 0
Dint

and therefore h(u*, ¢*) = p(2(Dint) /Pint) < h(u,q). Since (u, q) is arbitrary, (u*,¢*) is optimal. O

3.1 Approximated Projected Perspective Reformulation

We are now in the position to introduce the new approach, which we call the Approximated
Projected Perspective Reformulation (AP?R) of the MINLP (1)—(4). This is given by the following
MINLP
min h(z) + >,y hi(us, ¢)

(p;nzn - pﬁnt)ui <¢ < (pfnaa: - pznt)ul ieN

Di = DipgWi + G ie€N (25)

(pyu,x) € O

uef{0,1}" , pgeR" , zeR?

where for each i € N, h;(u;, q;) is defined as h(u, q) in (22). Note that if, e.g., all other constraints
of the problem involving p; are linear, then one can use p; = pi, ,u; +q; in (25) as a redefinition for
p; and substitute the latter away in the problem, producing a formulation with exactly the same
number of variables as the original one. We numerically illustrate the approach on the same data
of Example 1.

Ezxample 5 Consider a fixed index i, that for the sake of clarity we omit in the following. If a = 2,
b=0,c=38, pmin =1, Pmaz = 10, then the original problem is

min {2p* +8u : u<p<10u , ue{0,1}}. (26)
As seen in Example 1, z3(p) = 2p? + 8, pint = 2 and z(pine) = 16, thus the AP2R is
min{ [2(¢+2)*+8]+16u—16 : —u<g<8u, p=2u+q , ue{0,1}} . (27)

It is easy to verify (27) provides a better bound for fractional values of u. For instance, the solution
(p,u) = (2,1/5) in the relaxation of (26) has objective function value 9.6, whereas the equivalent
(g,u) = (8/5,1/5) in the relaxation of (27) has value 21.12. The fair comparison, however, is
between the minimal objective values attained for a fixed value of p (see also Example 6 and
Figure 2); for p = 2, u = 1/5 is indeed optimal for (26), whereas u = 1, ¢ = 0 is optimal for (27)
(cf. Theorem 1), yielding the (larger) bound 16.
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This justifies the introduction of the somewhat troubling constraint (pmin — Pind)u < ¢ in
place of the natural (and stronger) g > 0, because then not only (22) is a reformulation of the
PR, but if one adds the integrality constraint u € {0,1} it also provides a reformulation of the
original integer program (6) whose ordinary continuous relaxation is (equivalent to) PR if there
are no constraints in O containing the u. This clearly requires that g can span the whole interval
[Pmin — Pint, Pmaz — Pint] Wwhen uw = 1, so that p = p;n: +¢ can span the whole interval [prin, Pmaz],
which in turn requires that the constraint ¢ > 0 must not be present. AP?R is a simple algebraic
reformulation to a problem with “the same degree of nonlinearity” as the original problem. The
“Approximated” tag is related to the fact that the continuous relaxation of AP?R (denoted as
AP2R in the following) is in general a relaxation of PR. The interesting properties of AP2R are:

— the integer variables u are present and play exactly the same role as in the original formulation,
therefore (unlike in [14]) AP2R can be passed to any general-purpose MINLP solver that can
handle the original problem, exploiting all of its sophisticated machinery: branching rules,
preprocessing, heuristics, any valid inequality for (1)—(4) concerning the u variables (cf. §4.2);

— AP?R has (at least in the linear case) as many variables and constraints as the original for-
mulation, and thus is more compact than any other readily solvable PR: even the MI-SOCP
formulation [32,6,13,21] has at least one more variable (per block), while the SI-MILP formu-
lation [11] has one variable and infinitely many more constraints (cf. §4.3).

Thus AP?R is a promising reformulation for (1)—(4), but it also has some potential drawbacks:

— TIts continuous relaxation AP?R may provide weaker bounds than PR when there are constraints
in O binding the u (cf. §4.3 and §4.4);

— Unlike P?R, AP?R does not get any specific advantage of the combinatorial structure embedded
in PR (e.g., single-commodity Min-Cost Flow problems when it is applied to single-commodity
Network Design problems, cf. §4.2) unless the general-purpose solver used is able to detect and
exploit it;

— as already noted, in the extreme cases pint = Pmin = 0 and pint = Pmas the z(p) function is
actually a single-piece one, and thus P2R is much simpler than AP?R: if pini = DPmae for all
variables (not an impossible event, cf. §4.1), for instance, P2R has a linear objective function,
whereas AP2R keeps having the original nonlinear term (only, the constraints in (22) have the
slightly simpler form (pin — Pmaz)t < ¢ < 0);

— compared with the MI-SOCP formulation [32,6,13,21], AP?R has roughly the same size and
degree of nonlinearity, so the relative performance of the two formulations should be expected
to depend on fine details of the implementation, such as whether a solver is available which
exploits the specific structure of f better than what interior-point methods can do for the
MI-SOCP formulation (this is the case, e.g., when f is quadratic and the constraints linear, as
one can use active-set quadratic solvers);

— compared to the SI-MILP formulation [11], AP?R has roughly the same advantages as the
MI-SOCP formulation (a compact and fixed formulation rather than the need for dynamically
adding a potentially large number of constraints) as well as the same potential drawback: if
the only nonlinearity in the model is that of f, the SI-MILP formulation solves sequences of
Linear Programs, which can be faster than solving one nonlinear program especially when done
iteratively during an enumerative approach thanks to the excellent reoptimization capabilities
of LP codes (cf. §4.4).

Thus, the actual computational benefits of AP2R over P?R and the MI-SOCP and SI-MILP
formulations can only be fully gauged experimentally.

3.2 An interesting relationship

It is worth remarking that an alternative, purely algebraic way exists for obtaining (22) from (6)
in the quadratic case. In fact, applying the variable transformation p = pi,:u + g to (6) leads to
the reformulation
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min a(q + pintw)? + b(q + pintu) + cu
(Pmin — Pint)t < ¢ < (Pmaz — Pint)t -
D= Pintth +q , u € {0,1}
This is not a simple separable MIQP like the original problem, due to the bilinear term in v and

q produced by the expansion of the quadratic term (which also contains a “u?” term). However,
since u € {0,1} and u = 0 = ¢ = 0 due to (2) one can use the relationships

u? =u qu=gq (28)
and therefore (6) can be reformulated as
min aq? + (2apins + b)q + (ap?,;, + bpint + ¢)u
(Pmin — Pint)t < ¢ < (Pmaz — Pint)U (29)
p=pmut+q , uec{01}
which is easily seen to coincide with (22). The above process is closely related to the Reformulation
Linearization Technique (RLT) [2,3,4], which strengthens the continuous relaxation of mixed-

integer programs by exploiting the strengthening relations (28) (since for u € [0,1], u > u? and
q > qu). The development of §3 is more general, for at least two reasons:

1. the RLT approach does not seem to easily extend beyond the polynomial case;
2. in order to obtain the best possible bound p;,: has to be properly chosen, but (29) in itself
provides no clue about how to do it.

The following example shows the importance of the second point above:

Ezample 6 Consider the quadratic case of examples 1 and 5. Without our analysis, the natural
way to apply (28) would be to define p = pyinu+ ¢ with 0 < ¢ < (prmaz — Pmin)u. In our case this
would yield
min {26 +4t+10u : 0<t<9u , p=u+t , ue{0,1}}

This reformulation, that only differs from AP?R in the choice of the translation (using ppin instead
of a carefully chosen p;,;) is weaker than the AP?R of Example 5. To see that one can project it
on the p variable only, minimizing over uw and ¢ similarly to the development of §2; some tedious
algebra shows that this results in

p(230+81p)/50 0<p<5/3
ip)=4 —9/2+10p  5/3<p<5/2
8 + 2p? 5/2<p<10

This can be compared with z(p) (cf. Example 1). We also compare it with the function z(p)
obtained by projecting away w in the original formulation (cf. Example 5), which turns out to be
z(p) = (4/5)p + 2p?, in order to show once again the improvement of the bound due to the PR
technique. The three functions are plotted in Figure 2 in the interval [0,5/2], after which z(p)
coincides with Z(p), showing that while the application of the strengthening relationships (28)
does a large part of the gap closing, an appropriate choice of the origin for the translation obtains
an even better bound. Besides, AP?R results in a more compact formulation than the three-piece
(whose initial piece is not even linear) Z(p), hence there is no reason to choose any other initial
point than the one prescribed by our analysis.

The above observation is potentially interesting because the computation of convex envelopes
for specially-structured functions of “a few” variables is an important field in which several ad-
vances are being made; for instance, one of the most investigated structures is that of functions
¢(p,u) = f(p)g(u) where f is convex and g is concave [24,29,31]. The recent paper [24] shows
that the characterization of the convex envelope is possible in terms of piecewise functions similar
to those of §2; however, the development in [24] requires p and u to live in a Cartesian product of
intervals, while our development precisely rests on the assumption that “linking constraints” with
a specific form exist between p and u. Yet, it is possible that techniques may be usefully exchanged
between the two different settings, and that the idea of appropriately choosing a translation of the
variable to improve the lower bound in MINLP problems may find even wider application.
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Fig. 2 Comparison of three reformulations: z(p) (solid), z(p) (dashed), Z(p) (dotted)

4 Computational results

In this section we report results of computational tests performed on four classes of (MIQP)s with
semi-continuous variables. For all the problems, it has already been clearly shown [11,12,13,14]
that approaches based on the PR are largely preferable to the ordinary formulation; therefore,
we will not report results for the latter, focussing only on the comparison between different forms
of PR. Among these, the SI-MILP formulation has been shown to be consistently more effective
than the MI-SOCP one [13], and therefore we will refrain from testing the latter, too. Hence, we
will compare three possible approaches: the SI-MILP formulation, denoted as “PC”, the Projected
Perspective Relaxation of [14], denoted as “P?R”, when Assumption A2 holds and a specialized
solver is available, and the newly proposed approach, denoted as “AP?R”. We will also denote
as PC, P?2R and AP2R, respectively, the continuous relaxations for the problem at hand (to be
deduced from the context) corresponding to the three reformulation approaches.

The experiments have been performed on a computer with a 3.40 Ghz 8-core Intel Core i7-3770
processor and 16Gb RAM, running a 64 bits Linux operating system. All the codes were compiled
with gcc 4.6.3 and -03 optimizations, using Cplex 12.6.0 (ran single-threaded). PC and AP?R
entirely rely on the (sophisticated) B&C machinery of Cplex. We have used as much as possible
the standard parameters setting; in particular, the stopping condition of the B&C is an optimality
gap below 0.01%. The only exceptions are that for using PC some reductions have to be de-
activated, as this is necessary in order to be able to insert “lazy constraints”, which is how Cplex
12 now handles formulation with a very large number of constraints (the mechanism was somewhat
different in previous versions). Furthermore, due to the nonlinear nature of the PR, sometimes
the cuts produced by PC are rather badly scaled, which may create numerical problems. In order
to solve them, it was occasionally needed (in particular, for the instances of §4.1) to turn on the
“numerical emphasis” switch in Cplex and to sharpen the numerical tolerances, such as those for
RHS violation; when this is done, it is done uniformly for all approaches. P?R instead requires a
“hand-made” B&B, in one case using Cplex to compute the lower bounds, and in another being
entirely independent from it; of course, the stopping criterion has been set to the same 0.01%.

As suggested by the Referees, we tested several options to see if they significantly impacted
the results. Among them:

— We experimented with providing to the solver the optimal solution and disabling the heuris-
tics, so as to gauge the effect of the different formulations to the bound computation only,
removing any side effect on the heuristics. The results quite closely matched the ones where
the heuristics are ran, proving that the heuristic do not behave significantly differently for the
two formulations.

— We verified if the option for dynamic linearization of the quadratic objective function in Cplex
(“mip strategy miqcpstrat 2”) improved the performances of AP?R. However, this did not
happen: the performances were very similar, usually slightly worse. This confirmed the results
of [13], obtained in the context of the MI-SOCP formulation.

— We tested different configurations for the presolver and the strong branching (disabling it,
forcing it) in Cplex. For AP2R, neither of these options had a significant impact on the efficiency
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of the algorithm. For PC, some combination of these options did have a more visible impact
but there was no clear winner, i.e., there were both instances where the performances improved
as well as instances where they deteriorated.

For all these reasons, we found it appropriate to just report results using as much as possible the
default parameters, and we don’t further discuss the details of those experiments in the paper.

As far as P2R is concerned, the B&B used is not particularly sophisticated (see [14] for details),
and it could surely be improved. On the other hand, general-purpose solvers like Cplex keep
improving all the time, usually at a much faster rate than the developers of any specialized solver
can afford, and require almost no programming (except for setting appropriate callback functions
for PC). Besides, they have several sophisticated options that can be activated or improved by
appropriate parameter tuning, which, as discussed above, we purposely refrained from doing. Thus,
while the results could possibly be improved somewhat for all the tested approaches, we believe
this way of testing to be appropriate in that it shows the relative performance experienced by a
non-expert user.

4.1 Sensor Placement problem

The (one-dimensional) Sensor Placement (SP) problem requires placing a set N of sensors to cover
a given area while minimizing the fixed deployment cost plus an energy cost that is quadratic in
the radius of the surface covered. The MIQP formulation

min{ZieNciui—i—ZieNaipf C D enPi=1,0<p; <wu;, u; €{0,1} iEN}

exhibits structure (3), and P2R boils down to a continuous convex quadratic knapsack problem
with at most 2n variables that can be solved in O(nlogn) [18].

We tested 210 random instances of SP, grouped in 10 classes. The first 4 classes, with 30
instances each, contain random instances with either 2000 or 3000 sensors and either “high” (“h”)
or “low” (“1”) quadratic costs. The following two “P” classes, with 36 instances each, derive from
random instances of the PARTITION problem, according to the A'P-hardness proof for SP [5]. All
these have already been used in [14], to which the interested reader is referred for further details.

Because these instances were almost invariably solved at the root node by both P2R and AP?R
(cf. Table 1), we also developed and tested some additional more difficult instances. These have
been obtained by replicating the PARTITION and SUBSET SUM instances that can be found at

http://people.sc.fsu.edu/~jburkardt/datasets/partition_problem/partition_problem.html

and then applying the reduction procedure from PARTITION problem to the SP problem as in
[5] (it is well-known that SUBSET SUM can be reduced to PARTITION, and therefore to SP). We
constructed 9 instances with n = 50 and 9 instances of n = 100 sensors; of each group, 3 (denoted
by p«) are derived from PARTITION and the rest (denoted by s*) from SUBSET SuM. All the
instances can be freely downloaded from

http://www.di.unipi.it/optimize/Data/RDR.html

The results are displayed in Table 1. For each class of instances we report the gap between the
continuous relaxation and the optimal solution (column “gap”) only once since, as predicted by
the theory, it is identical for all three formulations; note that we here intend the gap w.r.t. the
“natural” relaxation, prior than Cplex starts adding cuts (for PC and AP?R). However, for this
class of problems cuts have little to no effect, which is hardly surprising due to the clear lack
of exploitable combinatorial structure. For each approach individually we then report, averaged
among the instances of each group, the number of B&B nodes required to solve the problem
to optimality (column “nodes”), the total running time (column “avg”), the relative standard
deviation of the running times (i.e., the ratio between the standard deviation and the mean,
column “dev”) and the time it took to solve the root node relaxation (column “root”). The
smallest average running time in each row is emphasized in bold.

Table 1 shows that, as already reported in [14], projected formulations are by far the most
effective way to solve this (simple, yet NP-hard) problem. While PC is more effective than the
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PC P2R AP2R
nodes time nodes time nodes time gap
avg dev  root avg dev root avg dev root

2000-h 9 742 0.28 6.68 0 0.07 0.08 0.04 0 0.11 046 0.08 0.000
3000-h 6 18.08 0.22 16.85 0 0.16 0.02 0.09 0 0.16 0.40 0.12 0.000
2000-1 0 3.27 0.00 3.26 0 0.02 0.33 0.01 0 0.05 0.12 0.03 0.000
3000-1 0 7.65 0.00 7.66 0 0.04 0.13 0.02 0 0.07 0.09 0.04 0.000
P-2000 287 63.70 0.67 9.94 0 0.07 0.07 0.04 2 119 0.22 1.04 0.001
P-3000 514 181.46 0.67 23.97 0 0.17 0.03 0.09 1 255 020 235 0.001
p50 72 0.12 0.60 0.01 583 0.06 0.87 0.00 23 0.02 0.75 0.00 0.003
p100 104 0.48 0.60 0.07 10897 3.86 0.77 0.00 73 0.06 0.32 0.01 0.003
s50 231 0.22 0.52  0.02 747 0.07 1.09 0.00 143 0.04 0.85 0.00 0.029
s100 1411 1.45 0.50 0.07 23396 7.53 1.15 0.00 1109 0.61 1.12 0.00 0.029

Table 1 Results of the SP problem

MI-SOCP formulation, and much more so than using the standard continuous relaxation [14], it is
considerably outperformed by P?R among all instances that require a few or no branching nodes.
This is partly due to the fact that P?R is much faster to solve than PC, as the “root” columns
clearly show. Furthermore, very accurately solving P2R pays off surprisingly well in this case: while
the exact solution of P?R produces a feasible solution which often immediately closes the gap, the
approximate solution of PC (due to the fact that it has, in fact, an infinite number of constraints)
can require a significant amount of branching to achieve the same effect (e.g., on the P instances).

Among projected methods, P2R is faster than AP2R when little or no branching is required;
by a slim margin on the random instances, by a more significant one on the P ones. This is
essentially because, as it can be expected, the specialized O(nlogn) solution algorithm [18] used
to solve P?R is faster, as the “root” columns show (by up to more than an order of magnitude
on the P instances). It is worth remarking that the advantage of a specialized approach is at
times compounded by the fact P2R is a strictly smaller continuous program than AP2R because
the two-piece function is actually a single-piece one. Indeed, around 2% of the variables in “h”
instances and all the variables in “I” instances have p;n: = Pmaz, and therefore only the linear
piece is defined for P?R (this also explains why “I” instances are solved much faster than “h” ones).
Clearly, SP is a worst case scenario as far as AP2R vs. P?R goes: the latter never requires any
branching on those instances, so the faster relaxation pays off while the more efficient branching
and cutting techniques uniquely available to AP?R have no impact.

However, when branching is required (px and s* instances) because the root node gap is not
small enough, AP2R is competitive with P?R, outperforming it by as much as two orders of
magnitude. This is due to all the sophisticated machinery (preprocessing, branching, heuristics,
cutting planes, . ..) in Cplex, which allows a significant reduction of the number of nodes w.r.t. the
hand-coded enumerative approach required by P2R; despite each node taking longer to solve, the
final balance favors the new approach. Indeed, for larger instances even PC is competitive with
P2R for the same reason; yet, AP2R is even better.

4.2 Nonlinear Network Design problem

The quadratic, separable, single-commodity Network Design (ND) problem requires routing a
generic flow on a directed graph G = (V, A), where each node i € V has a deficit d; € R indicating
the amount of flow that the node demands. Each arc (i, j) € A can be used up to a given maximum
capacity pi ... paying a fixed cost ¢;; if a nonzero amount of flow p;; transits along the arc; flow

cost is a convex quadratic function b;;p;; + aijpfj. The MIQP formulation
min Y- o e a(Cijuig + bigpij + aipi;)
2GieAPii = 2 jeaPij = di ieV (30)
0 < pij < Phastiiy > uwij €{0,1}  (i,5) € A
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exhibits structure (3) together with a strong network structure, so that PR can be reduced to
a convex quadratic Min-Cost Flow problem on a graph with (at most) twice the number of arcs.
For this problem, we tested 180 of the 360 instances used in [14]. These are randomly generated
with the well-known netgen generator, different sizes (from 1000 to 3000 nodes) and fixed and
quadratic costs generated as to be “high” (“h”) or “low” (“1”) w.r.t. the original linear costs of
netgen; more details can be found in [14], and the instances can be freely downloaded from

http://www.di.unipi.it/optimize/Data/MCF.html

For the current tests we discarded half of the original instances, those with “high” quadratic
costs. The rationale for this choice is that all these instances are solved at the root node by all
the methods, similarly to what happens with the “easy” SP instances. The results for all these
instances are therefore easily inferred from those of the other half, many (but not all) of which are
also solved at the root node, as discussed below.

PC P2R AP2R
nodes time nodes time nodes time gap
avg dev  root avg dev root avg dev root
1000-1 3 13.58 0.27 4.38 4 0.17 4.20 0.02 3 026 033 0.21 0.002
1000-h 3 11.48 0.46 3.59 2 0.10 4.51 0.02 2 022 0.44 0.19 0.001
2000-1 144 48.58 1.69 21.98 759  96.46 6.83 0.03 109 1.10 1.75 0.58 0.004
2000-h 56 33.10 0.63 19.36 61 8.60 4.75 0.03 32 0.81 0.81 0.56 0.004
3000-1 230 98.59 1.60 48.27 670 111.09 6.33 0.05 143 2.06 146 1.08 0.005
3000-h 45 62.96 0.60 48.95 48 8.72 7.04 0.05 26 1.36 0.72 1.03 0.003

Table 2 Results of the ND problem

The results are reported in Table 2, with precisely the same organization as Table 1, and
confirm those for the SP problem. Again, Cplex cuts have no discernible effect on the root node
gap (this is not shown in the tables to save on space). PC is much more costly than P2R and
AP?R, which prevents PC from being competitive. For the small and “easy” instances with 1000
nodes, P?R outperforms somewhat AP?R; however, this is less so than the difference between P?R
(using a specialized network flow solver) and AP2R times would suggest. This is due to a few
outliers that require considerably more time than the average, skewing it (as the larger standard
deviations show). We can therefore assume that P?R would also be faster than AP?R on the other
half of the test bed of [14] that we left out. However, as the size of the instances grow all methods
start to require branching: here, exploiting Cplex machinery again pays off, as both PC and AP?R
require significantly less nodes than P?R. This in fact again makes PC occasionally competitive
with P2R (3000-1), but AP?R is much faster than both. It also has comparable standard deviations
as PC but much smaller ones than P2R, meaning that it is also significantly more stable.

4.3 Mean-Variance portfolio problem

The Mean-Variance (MV) portfolio problem with minimum and maximum buy-in thresholds re-
quires optimally allocating wealth among a set N of assets in order to obtain a prescribed level of
return p while minimizing the risk as measured by the variance of the portfolio. A non-separable
(MIQP) formulation is

mln{pTQp : Zig]\/‘pi =1 ) ZieN HiDi Z P, p:nznul § Di § pinaz“i , U S {07 1} { S N}
where p;, p.. and pi . are respectively the expected unitary return and the minimum and
maximum buy-in thresholds for asset i, while @ is the variance-covariance matrix. This apparently
simple model is rather demanding for general-purpose (MIQP) solvers, since the root node gaps

of the ordinary continuous relaxation are huge, and its very simple structure means that classical
polyhedral approaches to improve the lower bounds are scarcely effective. To apply PR techniques
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to this problem, first the objective function has to be modified to extract the “largest” possible
diagonal part; that is, one must find a “large” diagonal matrix D such that Q) — D is still positive
semidefinite. The PR technique is then applied to the diagonal part of the objective function
corresponding to D, while leaving the rest untouched; see [11] for details. In particular, efficient
and effective D can be found with SemiDefinite Programming techniques, ad discussed in [12]. For
our tests we used the 90 randomly-generated instances, 30 for each value of n e {200,300,400},
already employed in [11,12] and available at

http://www.di.unipi.it/optimize/Data/MV.html ;

the interested reader is referred to the cited sources for details. Here we only mention that each
group of 30 instances is subdivided into three sub-groups, denoted by “*”, “0” and “~”, accord-
ing to the fact that @ is strongly diagonally dominant, diagonally dominant, or not diagonally
dominant, respectively. This turns out to have a substantial effect on the quality of the diagonal
objective function that can be extracted and therefore on the effectiveness of the PR, making in-
stances more and more difficult (for a fixed size) as they become less and less diagonally dominant
[12].

An important remark is that, once the objective function is made separable, the problem is
actually suitable for P2R. It was not considered in [14] because it lacks exploitable structure to
develop specialized solution algorithms for P2R, and therefore does not seem to be a promising
candidate for the P?R approach; clearly, this makes it an ideal candidate for AP?R. Yet, in order
to test the effect of non-separability on the quality of the bounds, and therefore the effectiveness
of AP?R, we experimented with adding to MV the simple cardinality constraint

for some k < n = |N|. This provides a useful “gauge”: decreasing k “increases the amount of non-
separability” in the model, possibly impacting on the tightness of the AP2R bound. We therefore
tested all of the 90 instances twice: once with k£ = n, and once with k = 10. The latter is a quite
strict requirement, considering that the min-buy-in constraints (which actually are the only source
of difficulty in this problem) would allow about 20 assets to be picked. As we shall see, (31) does
impact on the tightness of the relaxation and on the performances of AP2?R.

PC AP2R
nodes time nodes time gap
avg dev root avg dev root
200F 4766 8.00 2.38 0.20 539 0.72 0.66 0.13 1.138

200° 6394 10.39 143 0.19 9212 7.02 1.55 0.11 2.137
200~ 109421 136.19 1.36 0.18 118159 7717 141 0.11 3.648
300% 5656 22.84 1.45 0.56 4291 6.02 2.06 0.33 1.301
3000 18342 60.25 1.24 0.54 23566 29.56 1.23 0.32 1.987
300~ 35990 114.40 1.76 0.55 33399 43.65 1.61 0.33 2.679
400* 27241 208.12 1.69 1.44 25616 52.17 226 0.80 1.430
4000 118869 722.60 1.69 1.17 132596 260.64 1.82 0.69 2.298
400~ 272348 1583.82 0.98 1.16 276225 553.26 0.92 0.68 3.063

Table 3 Results of the MV problem

The results are reported in Table 3 for the plain version of the problem, and in Table 4 for
that with the constraint (31). Each row of the tables reports average results between 10 instances
with the same characteristics, and the arrangement of the columns in Table 3 is the same as in the
previous cases. For Table 4, the only difference is that the root node gap is reported separately
for each approach, since, as the theory predicts, the one of AP2R is different (larger) than the one
of PC. Again, this is the gap of the continuous relaxation without cuts, which has the following
interesting behavior (not reported in the tables for clarity). Without the cardinality constraints,
the initial gaps are identical and cuts do help somewhat, fractionally reducing the gap (especially
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PC AP2R
nodes time gap nodes time gap
avg dev root avg dev root
200F 69 3.68 0.98 0.28 0.507 212 0.43 047 0.12 0.766

200° 8781 153.75 1.58 0.27 2.748 24868 22.01 127 0.12 3.139
200~ 38028 674.13 1.35 0.29 4.173 173844 157.54 1.48 0.12 4.745
300t 181 18.02 1.05 0.76 0.491 1303 2.66 0.69 0.33 1.080
3000 19731 824.02 1.24 0.77 2.344 69706 109.02 1.25 0.34 2.906
300~ 88286  3409.24 0.82 0.75 3.573 440656 704.32 1.35 0.35 3.923
400t 98 28.39 0.68 1.68 0.405 985 3.68 0.54 0.77 0.855
4000 42531 3608.04 1.79 1.69 2.336 329242 849.38 1.81 0.71 2.999
400~ 121777 13608.03 2.93 1.71 3.798 1821932 4769.89 1.11 0.71 4.528

Table 4 Results of the MV problem with the cardinality constraint

«0»

w—"

on “T” instances, less on ones and very little on ones); however, the reduction in the
gap is identical for PC and AP2R. With the cardinality constraints, the initial gaps are somewhat
different, as Table 4 shows, but cuts do not have any effect, so the difference remains the same.

The Tables clearly show that AP2R neatly outperforms PC. This is due to the fact that AP2R
is faster than PC. This is already true at the root node, as the “root” column shows, but it is even
more pronounced in reoptimization: AP2R is re-solved after branching much more efficiently than
PC. This is clearly visible e.g. in the 400~ instances in Table 3: the two approaches require very
nearly the same number of nodes, and AP2R is less than two times faster than PC at the root
node, yet overall it ends up almost three times faster. Even more dramatically, in Table 4 for the
400% instances AP2R is slightly more than two times faster than PC at the root node: yet, despite
requiring an order of magnitude more nodes, it ends up being almost an order of magnitude faster.

The introduction of the cardinality constraint (31) changes the behavior somewhat, but still
AP?R is clearly the best approach. This is despite the fact that the AP?R bound is somewhat
weaker, as testified by the visibly larger root node gap and by the fact that the number of nodes
is always larger, often by about one order of magnitude. In fact, with the exception of the “*”
instances, cardinality constrained MV problems are harder to solve than those without (31). How-
ever, this is true for PC as well, and overall the total running time of AP2R is always better than
that of PC by a significant margin.

4.4 Unit Commitment problem

The Unit Commitment (UC) problem in electrical power production requires optimally operating
a set of ¢t thermal and h hydro electrical generators to satisfy a given total power demand on the
hours of a day. Each thermal unit is characterized by a minimum and maximum energy output
0 < p™i™ < p™a% wwhen the unit is operational, by a convex quadratic energy (fuel) cost function
f(p) = ap® + bp of the produced power p, and by a fixed cost ¢ to be paid for each hour that the
unit is operational; therefore, it exhibits structure (3) with n = 24t, where w is the binary variable
indicating whether or not the unit is operational. The complete formulation is rather complex
and we refrain from discussing it in detail; the interested reader is referred, e.g., to [15,16]. For
the purpose of the present discussion, however, it is important to mention that thermal units are
subject to several complex constraints such as minimum up- and down-time and ramp rate ones,
linking energy and commitment variables for the same unit at different hours, as well as (possibly)
spinning reserve constraints linking energy and commitment variables for different units at any
given hour [28]. In other words, O contains many crucial constraints linking the u variables of
different blocks together.

We have compared PC and AP?R on a test bed of randomly generated realistic instances
already employed in [11,12,15,16,17], and freely available at

http://www.di.unipi.it/optimize/Data/UC.html
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In practical applications these problems need to be solved quickly, and therefore are solved with
low required accuracy [15,16,17]. Here we solved them with the default 0.01% accuracy as in the
other cases; hence like in [12] we only report results for the instances of small size (up to t = 75,
h = 35) and with a(n already unrealistic) time limit of 36000 seconds (10 hours). The results are
displayed in Table 5. In the table, “h” is the number of hydro units and “t” is the number of
thermal ones (hence, rows with & = 0 refer to “pure thermal” instances). Some instances, marked
with “*” in the table, did not terminate before the time limit; for these, besides that root node
gap (which, as in Table 4, is different between the two approaches), we then also have to report
the gap at termination (column “exit”). Note that while the root node gap is computed using the
(same) best known upper bound (for both approaches), the exit gap is that between the lower and
upper bounds produced by each approach. Since none of the instances in the groups marked with
“*7 are solved within the time limit, it makes no sense to report the relative standard deviations
of times (them being basically zero).

PC AP2R
nodes time gap nodes time gap
h t avg dev root root exit avg dev root root exit
0 10 299 8.40 0.96 0.04 1.460 - 467 45.59 048 0.14 1.469 -
0 20 12932 3123.76 0.87 0.11 1.229 - 23932  4835.06 0.93 0.41 1.238 -
0 50 27977 * - 0.50 1.139 0.08 36814 * - 2.30 1.164 0.09
0 75 22168 * - 0.79 1.208 0.11 20765 * - 6.18 1.222 0.12
10 20 4008 134.52 0.82 0.12 0.561 - 9665 178.00 0.41 0.74 0.578 -
20 50 24232 2596.84 0.85 0.61 0.565 - 178708 10098.49 0.62 1.92 0.573 -
35 75 53520 7874.43 044 1.26 0.480 - 112675 * - 5.46 0.489 0.02

Table 5 Results of the (UC) problem

Table 5 shows that AP2R is not competitive with PC on UC. As the theory predicts, the AP2R
lower bound is (very slightly, but visibly) worse than that of PC, albeit the difference is much less
than in MV for k = 10 (whose gap however can be much larger, cf. Table 4). Unlike in the MV
case, here Cplex cuts have a significant effect (not shown in the Table for clarity): the final root
gap for PC is smaller than for AP?R, the difference being in fact larger than that of the original
bounds. In other words, in this case the perspective cuts added by the SI-MILP formulations
act synergistically with the standard Cplex cuts, which results in a bound improvement larger
than the sum of these each family of cuts would separately produce. However, this is not the main
reason why PC is more efficient here: the crucial point is that solving one single QP in AP?R. takes
significantly longer than repeatedly solving several LPs in PC, as the root time shows. Somewhat
surprisingly, in this application approximating the objective function by cutting planes is actually
more convenient than having it explicitly represented as a 2-piece linear-quadratic curve. This is
likely due to the fact that UC instances are known to have a quite “flat” objective function (small
quadratic coefficients), so that a small number of cuts suffices for approximating the nonlinear
objective function quite well [15,16]. As a result, in this case solving PC only amounts at a short
sequence of LPs, and this turns out to be preferable to solving the single quadratic program AP?R.
Compounded with the worse root node gap, this implies that AP?R requires more nodes to solve
one instance, and each node requires more time. All in all, PC is faster for the instances both
approaches solve to optimality, solves more instances, and obtains better upper and lower bounds
for those that it cannot solve. These results show the limits of the AP2R technique: whenever
solving AP?R is not preferable to repeatedly solving the linearized version in PC, and especially
if O contains many linking constraints, the traditional PC approach is preferable.
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5 Conclusions

The paper presents results that considerably extend the significance of the Projected Perspective
Reformulation approach of [14]. The main contribution is the “project and lift” procedure giving
rise to the Approximated Projected Perspective Reformulation approach. AP2R allows to apply
the projection technique to any MINLP with nonlinear (separable) semi-continuous variables,
possibly (but not necessarily) at the cost of some bound degradation. Furthermore, AP2R allows
direct and easy use of off-the-shelf MINLP solvers rather than requiring the development of ad-
hoc codes. Moreover, the significant extension of the class of possible objective functions and
the chance to consider feasibility intervals having 0 in their interior (cf. the appendix) allows
to apply the P2R technique to a much wider class of problems than previously possible. The
computational experiments show that AP2R can be competitive with the best other available
PR approaches; this happens e.g., with Network Design and Mean-Variance problems. When the
problem is “easy” and with a very strong structure (cf. §4.1) the P?R approach may still be
preferable. On the contrary, when the problem contains many constraints linking the u; variables
and a few linear approximations suffice for constructing a good estimate of the nonlinear objective
function (cf. §4.4), the PC technique prevails. Clearly, the trade-off here is mostly a technological
issue, and it may change in the future according to the evolution of the relative efficiency of QP
solvers w.r.t. LP ones, in particular during reoptimization. Hence, we believe that AP?R can be
a useful tool to have available in the “bag of tricks” of MINLP, especially since it is simpler to
implement than the other alternatives. This is particularly relevant in view of the fact that the
list of applications that have been shown to benefit from PR approaches is steadily growing [6,9,
10,22,23].

We also believe that the “project and lift” technique employed here could be useful in other
contexts as well, possibly (but not necessarily exclusively) in the growing field of the study of convex
envelopes for specially structured functions [24,29,31]; cf. §3.2. We find it particularly remarkable
that a very substantial improvement of the continuous relaxation bound can be obtained with
a technique that ultimately boils down to appropriately translating a continuous variable in an
MINLP, leaving a problem with exactly the same size and structure of the original one. If such
an approach could be replicated in other settings this could actually prove quite interesting for
general MINLP; research in this direction is currently underway.
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Appendix

In this appendix we show that P?R and AP2R can be extended to the case p,,i, < 0, albeit at
the cost of slightly larger formulations. We first prove an analogous result to Proposition 1.

Proposition 2 If pyin < 0 then z(p) defined in (19) has the form
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ZQ(P) = f(p) +c Z'fp’min < p < pi_nt
2 (0) = (F0ine) /Do + /P )0 if Diny <P <0

2(p) = + + + + . + (32)
21 (p) = ( F(Pint)/Pive + ¢/ Din )p if0<p<pj

2’2(17) = f(p) +c ifp;lt <p < Prmas
where p;,, € {Pmin,1/97,0} and p}, € {0,1/9", Pmaz}-

Proof In this case, the form (13) of the constraints in (8) is no longer valid; indeed, upmin < p
rather gives u > p/pmin, and therefore one obtains

max{ P P }gugl. (33)

)
Pmax Pmin

Yet, the result of the leftmost “max” only depends on the sign of p; in particular

p Z 0= max{ p/pmaw 5 p/pmin } = p/pma;r
P S 0= max{ p/pmaz 5 p/pmzn } = p/pmin .

Therefore, we can proceed by cases, mirroring the previous development with the necessary
changes:

a. If (9) has no solution, the global minimum in (8) is one of the bounds in (33), and there are
two sub cases:
a.l. The derivative is always negative, and therefore u*(p) = 1 = (15) holds (i.e., pmin =
Pmaz = 0)
a.2. The derivative is always positive, and therefore
for p < 0, u*(p) = p/Pmin — (14) holds,
for p > 0, u*(p) = p/Pmaz = (17) holds.

All in all, in this case

P _ ( f(pmin)/pmin + C/pmm )p ifp <0
= { (Do) (31)

maz)/Pmaz + ¢/Pmaz )P if p >0

b. If, instead, the only solution to (9) is (11), one has to separately consider [pmin, 0] and [0, Prmaz],
since u*(p) = u(p) if

P € [Pmin, 0] — P/Pmin < U(p) = —pg~ <1
P € [0, Prmag) = P/Pmaz < U(p) = pgT <1

That is, exactly two of the following four cases hold:
b.l. p >0 and @(p) < p/Pmaz <= Pmaz < 1/97 = w*(p) = p/Pmas = (17) holds.
b.2. p >0 and @(p) > p/Pmaz < Pmaz > 1/gT; two further sub cases arise:
b.2.1. (Pmaz =) p > 1/9" (> 0) = a(p) > 1 = u*(p) = 1 = (15) holds.
b.2.2. (0<)p <1/9" (< pmaz) = u(p) <1 = u*(p) = u(p) = (18) holds.
This again gives (19).
b.3. p <0 and a(p) < p/Pmin < (0>) Pmin > —1/97 = w*(p) = p/Pmin = (14).
b.4. p <0 and 4(p) > p/Pmin <= Pmin < —1/9~ (< 0); two further subcases arise:
b4.l. —-1/g- <p<0<=ilp) <1 = u*(p) = u(p) =

zp)=(—g f(=1/9g7)—cg™ )p (35)

bA2. ppin <p< —1/97 (<0) <= u(p) 21 = u*(p) =1 = (15).
All this gives

z(p) =

(—g f(=1/g7)—cg™ )p if =1/g~ <p<0
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To summarize, z(p) is the convex function with at most 4 pieces

flp) +c if prmin <p < —1/g”
(=9 f(=1g7)—cg” )p it —1/g~ <p<0
(g7f(1/g") +eg™)p  ifO<p<1/g*

f(p) +c if 1/9% <p < Prax

Under condition b.1, the two rightmost pieces are substituted with the linear piece (17)
(f(Pmaz)/Pmaz + ¢/Pmaz)p for 0 < p < Pmas and/or, under condition b.3, the two leftmost
pieces are substituted with the linear piece (14) (f(Pmin)/Pmin + ¢/Pmin)p for Pmin < p <0,
yielding a 3- or 2-piecewise convex function (piecewise-linear in the latter case as in (34)). O

z(p) = (37)

Ezample 7 We can extend the rational exponent case of § 2.1. For instance, if k = 4 (even case),
h=3,a=3,c=1, pmin = —2, and Pynaz = 2, one has

3ptP 41 if —2<p<—1

3
13\1¢ —4 if —1<p<0
+ -2 7Y p
g (31) =1 and then z(p) = ap if 0<p<1

3ptP 41 if 1<p<2

We now prove that also (32) can be reformulated as a compact NLP, thus extending the result of
Theorem 1 and the AP?R technique to the case pin < O.
Theorem 2 For z(p) defined in (32) and
minu*,u*,qu,q* h(u+7 u, q+a q_)
_p;tu+ S q+ S (pmaa: - pjnt)u_'_
2(p) = (pmin 7pi_nt)u7 <q¢ < 7pi_ntu7 s (38)
p=put +qt +pnuT +q
ut4+u” <1, utel0,1] , u= €[0,1]

where

hut u™, g%, q7) = w2 (0f) + 22(at i) — 2 (05h) Fu” 2 (D) +22(47 + i) — 21 (Pine)
=z

we have z(p) (p) for all p € [Pmin,Pmaz)-

Proof As in Theorem 1, the first step is to bring (32) in the form (21). Here k& = 4, and using a

slightly nonstandard numbering (to better highlight the fundamental symmetry of the function)

— — — — nt _ — I —
we have a_o = prin, 1 = Dints @0 = 0, @1 = pi sy Q2 = Dz, 2-2 = 22, 2-1 = 21, 21 = 27 .

Applying (21) to (32) gives

ming , p 1 prps 22(P—2 + Pmin) + 21 (D=1 + Dipt) — 21 (Pine) +
2 (p1) + 22(p2 + pive) — 2(Pie)
z(p) = 0<p_2<p—Pmin » 0<p_1<—p;, (39)
0<pi <pl, . 0< P2 < Prnaa — Piyg
D = Pmin +P—2+p-1+Dp1+Dp2

(remember that 2,7 (0) = 0), and we want to prove that z(p) given in (39) is equivalent to z(p)
given in (38) for all p € [Pmin, Pmaz]. To do that, we start by identifying

P—2+ DPmin =q +p;“£ , b-1= p;nt(ui - 1) , b1 = pitbtu+ , D2 = q+
to recover the objective function and most of the constraints in (38), as some simple but somewhat
tedious algebra shows. Then, the general result about (21) can be applied to the optimal solution
(pi27p*—17p>1kap;) (OI‘, eqUivalentIY7 (qiaﬁia ﬁJr’ QJF)) Of (39) fOI‘ any ﬁxed pa yleldlng
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p | Py [ T - I at gt
[p;ﬁ,t’ O] pi_nt — Pmin > 0 0 0 0 S [O, 1] 0 0
0,p5,,] | Ding = Pmin  —Dipy =0 0 | 0 0 €01 0
D} 0s Pmac) | Ping — Pmin - —Pipe P =0 | 0 0 1 >0
This shows that the constraints
_p;:ttqu < q+ < (pmaz - p;;t)lﬁ ) (pmin —P;mg)uf SqS Ppu o, uF ut <1

are satisfied by (4=, 4=, 4+, §") for each value of p. The issue is that —p; u* < ¢* is weaker than
0 < g¢" and ¢= < —p;,,u” is weaker than ¢= < 0 (p;,, < 0 < p;tlt). However, reasoning as in
Theorem 1 one easily shows that relaxing the constraints in this way does not change the optimal

solution to (39). O

Once again, the choice of (38) is motivated by the fact that, imposing integrality constraints
ut € {0,1}, u= € {0,1} and with the identification v = u™ + u~, one obtains a reformulation
of the original MINLP whose continuous relaxation is equivalent to PR if O does not contain
constraints linking the u variables, and weaker otherwise. This formulation has twice the number
of continuous and binary variables than the ordinary formulation (counting the semi-continuous
variables only), but possibly provides (much) stronger bounds.



