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Abstract

Predicting the leakage condition is of primary importance when designing metal-to-metal flanges. The gap

between flange surfaces is regarded as a partially open crack with a zero stress intensity factor, then a model

based on fracture mechanics is proposed for predicting leakage pressure. An analytical solution was found,

with weight function, considering the condition of crack front at the most internal point of the bolt hole. Finite

element and experimental tests validated the effectiveness of the model. In addition, the dependencies on the

main flange dimensions were investigated and discussed, providing useful guidelines for optimal flange design.
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Nomenclature
LEFM Linear Elastic Fracture Mechanics.

SIF Stress Intensity Factor.

WF Weight Function.

FE Finite Element method or Finite Element analysis.

K Mode I SIF.

a Crack length.

x Local coordinate.

h(x,a) Weight Function.

ao Partially open crack length.

σn(x) Nominal stress distribution.

σ0,σ1 Nominal stress parameters.

K0,K1 Weight function integrations for uniform and linear nominal stresses.

β0,β1 Uniform and linear SIF coefficients.

DV Vessel diameter.

tV Vessel wall thickness.

PB Bolt pitch.

H Flange half height.

HS Stud height.

W Flange width.

Z Bolt axis position.

dH Bolt hole diameter.

dB Bolt stem diameter.

dN Nut circle diameter.

dt Stud thread diameter.

d′
H Model equivalent bolt hole diameter.

L Flange leakage length.

Lo Flange opening length.

σB Bolt preload stress.

p Vessel internal pressure.

FB Bolt preload force.

Fp Internal pressure opening force.

α Compressive stress distribution angle across the flange height.

F1,F2 Bolt pressure distribution compensation forces.

σn,B(x) Nominal stress distribution, bolt preload component.

σn,p(x) Nominal stress distribution, internal pressure component.

σn,B1(x) Nominal stress distribution with unitary bolt preload stress.

σn,p1(x) Nominal stress distribution with unitary internal pressure.

KL,B1 SIF with unitary bolt preload stress.

KL,p1 SIF with unitary internal pressure.

Cβ Weight function combination coefficient.

pL Leakage pressure: the value of the internal pressure that causes leakage.

p′L Leakage pressure, with no pressure at the partially open flange surfaces.

p′L,max Maximum leakage pressure, among the investigated vessels.

p′L,FE Leakage pressure predicted with the FE model.

Δ p′ Relative difference between analytical and FE models.



1. Introduction

Large centrifugal compressor cases are usually manufactured in two halves, connected by a bolted (or studded)

flange. Although using a gasket is strictly recommended for pressure vessels [1], this leakage prevention tech-

nique cannot be used for the kind of flange investigated here, primarily because the bolted perimeter is open at

the two ends in order to allow the shaft to pass through. This flange is usually called gasketless, or metal-to-
metal, and the leakage of the pressurized fluid inside the vessel is prevented by the bolt preload. Bolted flanges

have been widely investigated, however most studies are limited to the compact geometry design for connecting

pipes [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], while others are dedicated to the deformation behavior of the gasket

[14, 15, 16, 17, 18, 19, 20]. Research on flanges is usually focused on the structural stiffness, stress distributions,

and the strength optimization of the flange parts, under bolt preload and internal pressure or other external load-

ings [2, 3, 6, 7, 8, 9, 10, 11, 12, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29]. The main information from the literature,

on metal-to-metal flange leakage, regards the following:

1. The leakage rate is notably affected by the flange surface microgeometry [4, 5, 17, 30, 31, 32]:

• accurate surface flatness is required to avoid local contact discontinuity or limitation of the contact

pressure;

• reduced surface roughness is recommended in order to prevent micro-leakage;

• roughness orientation not parallel to the main leakage flux direction reduces the leakage rate.

2. The leakage promoted by unavoidable surface unevenness, and/or poor surface roughness, can be reduced

by specific sealants (e.g. any silicone based sealant) in order to fill in local irregularities on the surfaces,

which would otherwise be difficult to compensate for by metal deformation produced by the bolt tighten-

ing [4, 33].

3. The onset of leakage is usually associated with the loss of contact (zero pressure) between the flange

mating surfaces [7, 8, 23, 21, 33], or after a critical tensile stress (usually a few MPa) required to break

the sealant film [33, 34].

4. Bolt preload scatter, which generates leakage unreliability, is caused by many factors such as uncertainty

of the torque wrench relationship to preload force, bolt tightening sequence and subsequent relaxation,

and even thermal effects [24, 35, 36, 37, 38].

In conclusion, although the literature is useful in terms of surface preparation, there has been no a physical

description of the metal-to-metal flange leakage. We present a model which finds the value of the internal

pressure that generates the leakage. This model is based on the equivalence between the flange surfaces and

a partially open crack. The flange surfaces are assumed as being plain and initially flat, only deformed by the

opening effect of the internal pressure, which is compensated for by tightening the preloaded bolts (or studs).

The leakage was modeled as the condition when the opening front reaches the most internal point of the bolt

hole, from where the fluid can exit. The use of the weight function technique, after some assumptions on stress

distributions, produced a simple and effective analytical model for predicting leakage pressure. The model

was successfully verified with finite element simulations on various flange geometries. In addition, from an

experimental point of view, preliminarily tests were published on full scale cases [39]. A dedicated scaled

mockup was then manufactured and presented in this paper. The results highlight an evident and very accurate

validation of the model. Finally, parametric analyses and optimization guidelines are discussed, emphasizing

how the proposed model can be an effective engineering tool for metal-to-metal flange design.

2. Analytical model

2.1. LEFM background

The Weight Function (WF) is an analytical technique that can be used within the Linear Elastic Fracture Me-

chanics (LEFM) theory. The Stress Intensity Factor (SIF) can be efficiently calculated as the integral of the

nominal stress times the WF that only depends on geometry. The nominal is the stress if the crack itself were
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not present, evaluated at the crack surface (or at the crack line for a plane scheme). This integration is numeri-

cally very fast or analytical by assuming an approximate WF form which can be integrated. The mode I stress

intensity factor K, for an edge crack (plane scheme), can be calculated by the following relationship [40]:

K(a) =
∫ a

0
σn(x) h(x,a)dx (1)

where h(x,a) is the WF for the given crack geometry, x is the local coordinate ranging from zero to the crack

size a and σn(x) is the nominal stress distribution. Equation 1 is valid when the crack is fully open, e.g. if the

σn(x) is entirely tensile from the crack mouth position x = 0 to the crack tip position x = a. Under a nominal

stress distribution with a compressive region the crack can be partially open for a length ao and closed (with

crack faces in contact) for the remaining part of its length [41, 42, 43, 44, 45]. An example of this is shown

in Fig. 1 where the nominal stress is tensile at the surface, then becomes compressive, and the crack closes

before the tip. Without the mode II loading, the stress distribution of the closed part of the crack is equal to that

of a continuous (uncracked) body. Therefore, the open crack portion can be regarded as a crack itself with the

reduced length ao. The SIF can still be calculated with Eq. 1, for this newly introduced crack, after updating

the WF and limiting the domain of integration to ao. A fundamental feature of this study is that the SIF of a

partially open crack has to be zero. If the SIF were positive, a tensile (even singular) stress distribution would

result at the partially open crack tip, whereas the crack faces are just in contact with each other. A negative SIF

is also not possible otherwise the crack faces would be interpenetrating. Accordingly, the WF integral can be set

to zero, for the partially open crack length:

K(ao) =
∫ ao

0
σn(x) h(x,ao) dx = 0 (2)

If the nominal stress is imposed, the partially open crack length ao can be regarded as the unknown in Eq. 2.

Alternatively, after setting a certain ao length, a component of the nominal stress can be found to solve the

equation. This latter approach is implemented in order to find the flange leakage pressure. When the nominal

stress distribution σn(x) is linear, only two integrations are required for the two distributions reported in Fig. 2,

which are the uniform and the linearly variable (for example with zero stress at the surface edge) and then the

superimposition principle can be applied. The stress distribution self-similitude of both these two load cases

leads to a weight function integration expressed as a SIF configuration coefficient times the stress parameter and

the
√

πa term, Eq. 3:

K0 =
∫ a

0 σ0 h(x,a)dx = β0 σ0

√
πa

K1 =
∫ a

0 σ1 x/a h(x,a)dx = β1 σ1

√
πa

(3)

The coefficients for the two configurations reported in Fig. 2 are:

β0 = 1.1215

β1 = 0.6820

(4)

The reported coefficients can be deduced as a special case of the WF proposed in [40] and also in [46, 47] which

are valid after assuming boundary and loads as remote, i.e. an edge crack in a half-plane. Equations 3, 4 can be

equally used even for a partially open crack just by replacing a with ao and with σ1 being the nominal stress at

x = ao. Since only linear stress distributions were assumed, these two WF integrations suffice for the purpose of

our model. More specific weight function forms could be provided for future analyses. However, very accurate

results were already obtained, as confirmed by the finite element comparison and the experimental validation

reported below.
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2.2. Bolted metal-to-metal flange leakage model

The flange investigated has bolts distributed along a straight line profile, Fig. 3 (a). This flange can be either

with bolts or with studs, Figs. 3 (b) and (c). The geometry parameters are: DV vessel diameter, tV vessel wall

thickness, PB bolt pitch, H flange half height, HS stud height (only for stud geometry), W flange width, Z bolt

axis position, dH bolt (or stud) hole diameter, dB bolt (or stud) stem diameter, and dN nut circle diameter. This

flange geometry is different from the usual compact flange for pipes, where the profile curvature radius is quite

small compared to the flange width and height. Our model can also be developed for small flanges, however, the

present paper results are limited to the half-plane crack solution which is consistent with the bolt straight line

profile. This study is based on the similitude between the flange contact interface and an edge partially open

crack. The leakage condition is when the partially open length Lo equals the flange length L, hereafter referred

to as the leakage length, Fig. 4. After reaching this situation the pressurized fluid can exit the vessel through the

bolt hole and eventually through the bolt thread. This leakage assumption follows Galai and Bouzid [13], who

investigated the flange surface separation specifically at the bolt circle. In accordance with the WF approach,

the leakage onset can be stated as zero SIF of a length L partially open crack, Eq. 5:

K(L) =
∫ L

0
σn(x) h(x,L)dx = 0 (5)

The flange interface nominal stress σn(x) has two components: the stress distribution generated by the bolt

preload σn,B(x) and the stress generated by the internal pressure σn,p(x). Since σn,B(x) is proportional to the bolt

preload FB and σn,p(x) is proportional to the internal pressure p, the flange nominal stress can be written as:

σn(x) = σB σn,B1(x)+ p σn,p1(x) (6)

where the bolt preload stress is defined as: σB = FB/(
π
4

d2
B), and σn,B1 is the flange stress distribution generated

by the unitary bolt preload stress σB (without internal pressure) and σn,p1 is the unitary internal pressure flange

stress distribution, without bolt preload, and assuming bonded flange surfaces to allow tensile stress. The nomi-

nal unitary stress distributions σn,B1(x),σn,p1(x) are dimensionless, while σB and p have a stress unit (e.g. MPa

or ksi). The leakage condition Eq. 5 can be rewritten as:

σBKL,B1 + pLKL,p1 = 0 (7)

where pL is the leakage pressure and KL,B1 and KL,p1 are unitary SIFs obtained as the integrations of the bolt

preload and pressure unitary nominal stress distributions, respectively, Eq. 8:

KL,B1 =
∫ L

0 σn,B1(x) h(x,L)dx

KL,p1 =
∫ L

0 [σn,p1(x)+1] h(x,L)dx
(8)

The unit of KL,B1 and KL,p1 is the square root of a length (e.g.
√

m), the same unit as the WF. The second of Eq. 8

also takes into account the effect of the pressurized fluid inside the partially open flange, as the fluid immediately

fills the open gap between the deformed flange surfaces, Fig. 4. This pressurization introduces a further term

that can be easily included in the WF calculation by integrating the fluid pressure times the WF kernel [48]. A

unit term is therefore added to σn,p1(x) being KL,p1 calculated with the unitary internal pressure.

In order to reduce the entire problem to a bi-dimensional scheme, the flange geometry was approximated to a

plane configuration reproducing the bolt hole sequence as a continuous slot, Fig. 5. The dimension d′
H was

introduced and calculated by imposing the equivalent area of the slot, Eq. 9:

d′
H =

π d2
H

4 PB
(9)

By following the approach reported in many machine design textbooks (e.g. Shigley [49]) the flange contact

pressure, generated by the bolt preload, was assumed to be distributed over a double conical volume extending

from the nut base. We approximated the bolt array to a plane scheme and then the bolt preload conical pressure
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was reduced to a trapezoidal distribution, in line with this plane geometry assumption. The bolt compressive

region is usually larger than the flange surface width W and the axis position of the bolt is typically very close

to the inner side of the vessel. The pressure distribution outside the contact (equivalent to the forces F1,F2) is

redistributed over the flange surface width, and then superimposed on the trapezoidal distribution, thus obtaining

the contact pressure σn,B(x), reported in Fig. 6 (a). The nominal stress distribution at the flange interface, gener-

ated by the internal pressure, was evaluated by considering normal stress and bending (linear stress distribution)

and again imposing the load equivalence. Figure 6 (b) shows the stress distribution obtained from the internal

pressure opening force: Fp = p PBDV/2 by assuming its axis aligned with the mid plane of the vessel wall

thickness. Figure 6 shows the stresses at the internal diameter position and at the leakage length, generated by

the bolt preload and the internal pressure: σn,B(0),σn,B(L),σn,p(0),σn,p(L). The unitary stresses can be easily

obtained as:

σn,B1(0) =
σn,B(0)

σB
, σn,B1(L) =

σn,B(L)
σB

σn,p1(0) =
σn,p(0)

p
, σn,p1(L) =

σn,p(L)
p

(10)

These unitary stresses σn,B1(0),σn,B1(L) and σn,p1(0),σn,p1(L) can be calculated by the procedure reported in the

appendix, which implements the stress distribution assumptions introduced above. Since both stress distributions

are assumed as linear across the leakage length L, the WF integrations in Eq. 8 can be solved with the unitary

stresses according to the results reported in Eq. 3. Unitary bolt preload and pressure SIFs are calculated as the

sum of two terms, uniform and linear:

KL,B1 = β0 σn,B1(0)
√

πL +β1 [σn,B1(L)−σn,B1(0)]
√

πL

KL,p1 = β0 [σn,p1(0)+1]
√

πL+β1 [σn,p1(L)−σn,p1(0)]
√

πL
(11)

The leakage pressure can be obtained by solving Eq. 7 after introducing Eq. 11 unitary SIFs:

pL = σB

|σn,B1(0)|+Cβ |σn,B1(L)|
σn,p1(0)+Cβ σn,p1(L)+Cβ +1

(12)

It is worth noting that σn,B stresses (as well as σn,B1) are negative, thus the absolute values are required here.

Alternatively, they could be introduced with a positive sign regarding them as pressures. The coefficient Cβ is a

combination of the SIF factors β0,β1:

Cβ =
β1

β0 −β1
= 1.552 (13)

A different leakage pressure prediction result is obtained if the fluid pressure penetration is not taken into ac-

count, by removing the unit term in the second of Eq. 11:

p′L = σB

|σn,B1(0)|+Cβ |σn,B1(L)|
σn,p1(0)+Cβ σn,p1(L)

(14)

The former result pL is the actual leakage pressure, since fluid penetration in the flange gap is unavoidable. The

latter result p′L is still useful e.g. for comparisons with finite element simulations (as reported in the next section)

where the gap pressurization is not modeled. Obviously, p′L is higher than pL since the penetrated fluid has a

further detrimental effect of tearing apart the flange surfaces.

More complex nominal stress distributions rather than just linear could also be considered. A numerical integra-

tion with a generic weight function (e.g. Beghini et al. [40]) would give the unitary bolt preload and pressure

SIFs: KL,B1,KL,p1 and the leakage pressure pL could be solved from Eq. 7, however not resulting an explicit

form as Eq. 12.
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3. Finite element model validation

The Finite Element (FE) modeling of threaded connections and bolted flanges has been widely investigated, as

summarized in Mackerle’s reviews [50, 51, 52]. Some of these studies have focused on the tightening process

[36] and the bolt-up sequence of a flanged connection [37, 53]. The stiffness of bolted joints was investigated

in [54, 55, 56, 57, 58] and the bolt self-loosening was examined in [59, 60, 61]. Recent analyses of flanged

joints have proposed FE simulations to investigate the contact pressure distributions between the two flange

mating surfaces [2, 10, 62]. By following the guidelines derived from the literature, a parametric FE model was

implemented. ANSYS software was used with solid three-dimensional 8-node elements with surface-to-surface

Contact & Target placed at the flange interface. The total number of elements was approximately 160000.

Although the flange material was modeled as linear elastic structural steel (Young’s modulus 205 GPa and Pois-

son’s ratio 0.3), the analysis was nonlinear because of the unilateral contact of the flange. As shown in Fig. 7

(a), the modeled portion was limited to half of the bolt pitch having the flange cyclic symmetry. The constraints

and loads applied to the model are:

• Symmetry at the axial mid plane in order to model just one flange side.

• Further symmetry with respect to a plane perpendicular to the case axis at the position of the bolt or the

stud.

• Zero relative longitudinal displacement on the other side of the FE model.

• Bolt (or stud) preload obtained by imposing a separation between the lower surface of the nut and the

upper surface of the flange.

• Internal pressure applied to the inner vessel surfaces.

• Axial load, caused by the internal pressure acting on the lateral surfaces of the vessel, uniformly distributed

on the non-fixed section plane.

The bolt separation displacement to induce preload was preliminarily calculated by a linear analysis to find the

overall stiffness of the flange. An arbitrary interference value was inputted, the bolt force obtained as output,

and their ratio calculated. The specific separation value was given as the ratio between the bolt preload to be

imposed and the flange stiffness. The compressive zone induced by bolt preload widens from the nut (or the

bolt head) across the flange height by an angle α . According to the literature, α ranges from 30◦ to 45◦ both

for bolts and studs [49, 63, 64]. This angle is also a parameter of the analytical model, as reported in the

appendix. An intermediate value α = 35◦ was verified to show the best accurate comparative results between

the analytical and the FE models, and is in line with the simulated compressive stress distribution, Fig. 7 (b).

The FE contact pressure at the flange interface and the comparison with the model is reported in Fig. 8 (a). FE

analysis overcomes any stress distribution assumption while the model is limited to a linear spline. However, the

overall trend of the contact pressure is well reproduced and the trapezoidal distribution, and also the asymmetry

due to the limited flange width, are evident. The internal edge of the flange is merely a sharp notch of a solid

structure, thus a singular stress distribution appears. This singularity vanishes if tangent contours are introduced

in order to replace the sharp notch with a rounded profile. Accurate prediction and the sharp notch singularity

issue are also evident in terms of the stresses induced by the internal pressure, Fig. 8 (b). Being this flange stress

component tensile, the latter validation was obtained with bonded contact FE model. The sharp notch stress

concentration had a limited consequence on the predicted leakage pressure, mainly because it acts similarly on

both bolt preload and internal pressure stress components.

The FE model leakage prediction was found by increasing the internal pressure, with a significant number

of small steps, and monitoring the contact elements with imposed unilateral behaviour. Consistently to the

analytical model, the leakage condition was assumed when the opening front reached the inner point of the bolt

hole circle. Figure 9 shows the flange contact and its opening at different internal pressure increments. A rapid

shift of the front was observed after reaching a threshold pressure, thus the uncertainty associated with the FE
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model result was quite small. Several vessel geometries were investigated, with different sizes and dimensional

ratios, reproducing actual centrifugal compressor cases. The FE model leakage pressure p′L,FE and the analytical

model p′L are reported as normalized values in Table 1. The leakage pressure p′L, without the effect of the fluid

inside the flange gap, can be compared to the FE model results where the flange surfaces were not loaded by

the pressure. The relative difference Δ p′ was never larger than a few percentage points and the correlation

coefficient between the two models was R2 = 0.996, hence the approximations introduced in the model were

acceptable in terms of result accuracy, at least in the considered range of geometry parameters that are typical of

actual vessel flanges. The ratio between leakage pressures pL and p′L was also calculated and reported for each

vessel in Table 1. This ratio was shown to weakly depend on the geometry and its value is approximately 0.9. A

wide range of leakage pressure was found, as reported in the table. One of the main influencing parameters was

the vessel diameter DV. A large diameter generated high opening force Fp, hence the leakage pressure was low,

whereas higher p′L, pL were obtained with smaller vessel diameters.

4. Experimental validation

The successful validation with FE analyses confirmed the ability of our model to predict the internal pressure

that drives the open front up to the bolt hole circle. However, the effect of the unevenness of the flange surfaces

(not perfect flatness and surface roughness) is obviously not considered in the simulations. We designed an

experimental setup specifically to reproduce a small scale flanged vessel with bolts. The size of the vessel was

approximately 300 mm and the tests were performed in a laboratory environment, Fig. 10 (a). In order to

efficiently detect the leakage, colored water was used as an internal fluid, instead of a gas. Measuring the bolt

(or stud) preload is critical. The use of strain gauges attached to the bolt stem is the most accurate and reliable

solution for bolt preload monitoring [7, 11, 12, 15]. Two couples of strain gauges (grids at 0◦ − 90◦) were

attached to each bolt in accordance with the full-bridge configuration, Fig. 10 (b), to neutralize any bending

and only measure the axial tensile load with an amplification coefficient: 2(1+ν) = 2.6, where ν = 0.3 is the

bolt steel Poisson’s ratio. The load measurement of each bolt with strain gauges was preliminarily calibrated

with a tensile testing machine. Several loads were applied to all the instrumented bolts and the corresponding

strain gauge readings saved. Before the pressurization tests, these values were replicated in order to be able

to set accurate preloads. After wrenching the bolt preload tended to slightly decrease within a few percentage

points, as is usual for bolted connections. The bolts were retightened until stable strain gauge measures were

obtained, as close as possible to the values recorded during the tensile test calibration. This relaxation correction

procedure lasted a few minutes and the resulting strain gauge discrepancy, with respect to the reference, was

within a range of ±2%. The testing region was limited to a small portion of the flange perimeter. The strain

gauges were applied only to four bolts in the middle of one longer side, Fig. 10 (a). The preload applied to the

other bolts, controlled with a torque wrench, was substantially larger to avoid leakage in a region with preloads

not accurately known, and the transition from the central leakage bolts was gradual.

After setting the bolt preloads, the colored water was introduced inside the vessel and pressurized with a hand

pump. The liquid pressure was measured with an analog pressure sensor and an ordinary manometer was

also used to double-check the measurement. The vessel was slowly pressurized until the first leakage drop was

detected. First the mass of a single water drop was measured, then the leakage flow rate was valued by measuring

the number of drops within 10 minutes. During the leakage, the internal pressure decreased and consequently

the leakage rate also reduced. The test was continued until zero leakage and a stable internal pressure condition

was found. Although the measurement of the flow rate may not be very accurate, the aim of the experiment

was simply to detect a vanishingly small leakage rate. The corresponding internal pressure was assumed as the

experimental result, which was then compared to the analytical model pL. Leakage tests were carried out for

bolt preloads: 10,20,30,40 kN and for each preload, two tests were performed. The measured leakage rates

and the detection of the leakage pressures are reported in Fig. 11. Figure 12 shows the comparison between

the experimental tests and the model. It is evident how the experimental data were very close to the prediction

and that the difference between pL and p′L was noticeably larger than the discrepancy of the experimental tests,

confirming the postulated mechanism of fluid penetration inside the flange gap.
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The flatness of the flange surfaces was detected, before the tests, with a digital altimeter Mauser Capax 2000. At

the bolt holes of the leakage zone the flatness error was approximately 2−3 μm considering the contributions

of both surfaces. Preliminarily tests with a flatness error up to 25 μm produced notably lower leakage pressures,

approximately half the values obtained with ground surface finishing as shown here. This initial experiment

clearly showed how essential the flatness of the flange surfaces is.

The tests shown in Fig. 12 were performed without any sealing, but a silicone based sealant is recommended

at the flange interface. A final test was also performed after the sealant had been applied and leakage pressure

increased considerably. The highly deformable sealing film compensates for the micrometric deformation due

to the pressurization. We hypothesize that the effect of the sealing is more pronounced under small scale testing.

Full scale testing with sealing were previously performed in industry and a reasonable agreement was found

with the model prediction [39]. Large scale flange surface displacements are much higher than that the mockup

shown here, hence not easily compensated for by a thin sealing layer.

5. Parametric analysis

The effect of geometry parameters on the leakage pressure can be easily investigated, with the proposed analyt-

ical model, by using an electronic worksheet or implementing a short script in any programming language. In

contrast, FE analyses would require cumbersome mesh rebuilding and a nonlinear solution for any parametric

iteration. This section reports a sensitivity analysis of the main parameters. According to Eq. 12, the leakage

pressure and the bolt preload are linearly related. This linear dependency was less evident from the FE point of

view. The nonlinearity due to the contact actually has no effect on the relation between bolt preload and leakage

pressure, since the contact region is fixed by assuming the open front at the bolt hole circle. Obviously, a few

percentage points preload drop implies a similar effect on the leakage pressure. In addition, an increase in σB,

e.g. with a higher strength steel bolt, proportionally improves the leakage pressure of the flange. Using the bolt

preload force, rather than the bolt preload stress, can be misleading. In order to exploit the linearity between

preload and leakage pressure, a larger bolt size appears deceptively useful to increase the preload force. In fact,

a larger bolt diameter results in a higher axis position and higher bolt pitch, which are both detrimental for the

leakage pressure, as shown below.

Geometry parametric analyses are reported in Fig. 13 regarding the vessels 3, 6, 8 in Tab. 1. Bolt axis position

Z, bolt pitch PB, flange width W and flange height H were investigated. These parameters were reported as

dimensionless after dividing by their default values for each the three vessels. The bolt axis position Z has a

significant effect on the leakage performance. If the bolt axis is distant from the vessel inner surface (large value

of Z), the absolute value of term σn,B(0) is low because the bolt pressure distribution on the flange interface

decreases away from the bolt axis. As a consequence, the higher the Z distance, the lower the leakage pressure

pL. This trend can be quantitatively assessed using the proposed model. Results for the three vessels investigated

are reported in Fig. 13 (a) where Z larger than the design values are reported. Clearly, the best configuration is

obtained with the smallest possible Z. The leakage pressure is also quite sensitive to bolt pitch. A larger bolt

pitch produces a lower leakage pressure because the total bolt closure force is distributed on a larger surface and

thus the terms σn,B(0),σn,B(L) decrease. Figure 13 (b) shows the leakage pressure sensitivity to the bolt pitch,

for the same three vessels, by taking into account lower and higher values with respect to the design bolt pitch of

each vessel. The bolt pitch should also be reduced as much as possible, the minimum bolt pitch is related to the

nut diameter and the space required for a tool. The leakage pressure initially increases with the flange width, but

it is almost insensitive after a certain size of W , Fig. 13 (c). If the flange width is small, similar portions of bolt

compression load F1,F2 fall outside the flange width. If the flange width is large the load portion opposite the

internal side (F2) vanishes, thus a more asymmetric pressure redistribution results and the terms σn,B(0),σn,B(L)
increase. After the minimum size for which F2 = 0, a further increase in the flange width does not produce any

significant effect. Finally, the sensitivity of the leakage pressure on the (half) flange thickness H is quite limited,

Fig. 13 (d). The nominal stress distribution produced by the internal pressure is not affected by the flange height,

and the redistribution (F1,F2) mitigates the flange height effect also about the bolt preload. The flange thickness

can thus be considered a secondary variable in terms of the pressure leakage design. Nevertheless, very small
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flange thickness would produce flexible plates, affecting the leakage pressure, whereas this is not considered in

the model given that the flange section is assumed as a half-plane.

6. Conclusions

The proposed analytical model for predicting flange leakage pressure is based on the similitude between the

flange interface and a plane edge partially open crack. The zero mode I stress intensity factor condition was

imposed by means of the weight function technique, and an analytical model was derived. The main findings of

this study are:

• One of the main advantages of this fracture mechanics similitude is that it is based on the knowledge of

nominal stresses alone, thereby avoiding finite element nonlinear calculations.

• A finite element three-dimensional nonlinear model was implemented to validate the prediction of the

leakage pressure. The analytical and the validating finite element models were compared on several

vessel geometries and the results were very similar with the maximum relative difference limited to a few

percentage points.

• Small scale experimental tests confirmed that the model predicts leakage pressure very accurately. The

flange surfaces were ground finished before the tests to reduce the flatness error up to a few microns in

the bolt region. The surface roughness and flatness can have a significant role on the leakage performance

of the metal-to-metal flange. However, these effects cannot be explained with our model, which assumes

that surfaces are perfectly flat.

• The analytical model can be quickly and efficiently used for geometry sensitivity analysis. A parametric

study was performed for different sized vessels by varying a few important geometry dimensions, and an-

alyzing their influence on the predicted leakage pressure. This analysis showed that the leakage pressure:

– obviously is proportional to the preload stress, thus bolt preload uncertainty directly affects the vessel

leakage performance;

– decreases by increasing the bolt axis distance and also by increasing the bolt pitch, and these results

highlight that these two distances should be kept as low as possible;

– is only marginally affected by the flange height and width after certain sizes.

This fracture mechanics approach is limited here to a linear bolt pattern. However, dedicated weight function so-

lutions could be proposed and the approach extended to any other bolt profile, for example with a high curvature

as circular compact flanges or flange corners.
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Appendix. Calculation procedure for nominal stresses

Leakage pressure Eq. 12 can be easily solved with the unitary nominal stresses σn,B1(0),σn,B1(L) and σn,p1(0),σn,p1(L).
Below is a procedure to calculate these stresses from the flange parameters.

Initially, the following geometry definitions are introduced:

α = 35◦ = 0.6109 rad

L = Z −dH/2

Bolt: D0 = dN +2H tan(α)
Stud: D0 = min{dN +2H tan(α); dH +2(HS +2dt −H) tan(α)}
L′ = (D0 −dH)/2

W ′ = min{W ; Z +dH/2+L′}

(15)

D0 is the flange contact overall width induced by bolt or stud. Specifically for studded flanges, D0 is usually

limited by the depth of the stud thread (right hand side term for D0), unless the thickness of the flange upper plate

is significantly smaller than the other plate, and dt is the thread diameter of the stud from where the compressive

zone widens. L′ is the net contact width after subtracting the hole diameter dH, and W ′ is the width the pressure

distribution is acting on, possibly limited by the external end side.

After the calculation of d′
H from Eq. 9, the contact area, the centroid and the second moment of area can be

obtained as the following:

AW = PBW ′ −π/4 d2
H

xW = (PBW ′2/2−π/4 d2
HZ)/AW

IW = (1/12 PBW ′3 +PBW ′(xW −W ′/2)2)− (π/64 d4
H +π/4 d2

H(xW −Z)2)
(16)

Given that the bolt stress is σB = FB/
π
4

d2
B, the unitary bolt preload is the corresponding force with σB = 1:

FB1 =
π
4

d2
B (17)

The trapezoidal nominal stress (or opposite sign pressure) initially calculated with no redistribution (NR) is:

σ NR
n,B1 =− FB1

PB(L′+dH −d′
H)

(18)

This stress then needs to be redistributed according to Fig. 6 (a). First if the pressure at the inner side is zero, the

proposed calculation is not possible. The condition to be verified is: L < L′, however, vessel geometries usually

have this condition well satisfied. The forces F1,F2 (with unitary bolt stress) need to be calculated along with

their moments:

F1 = σNR
n,B1PB(1−L/L′)(L′ −L)/2

M1 = F1((L′ −L)/3+ xW)
L2 =W ′ − (L+dH)
F2 = σNR

n,B1PB(1−L2/L′)(L′ −L2)/2

M2 =−F2(W ′+(L′ −L2)/3− xW)
F12 = F1 +F2

M12 = M1 +M2

(19)

When W ′ = Z+dH/2+L′ (i.e. the flange width is relatively long: W > Z+dH/2+L′) it follows that L2 = L′ and

then F2 is zero as well as its moment M2. Now the nominal stresses can be obtained including the redistribution

forces F1,F2:

σ t
n,B1 = F12/AW

σ b
n,B1(0) = M12xW/IW

σ b
n,B1(L) = M12(xW −L)/IW

σn,B1(0) = σNR
n,B1(1−L/L′)+σ t

n,B1 +σb
n,B1(0)

σn,B1(L) = σ NR
n,B1 +σ t

n,B1 +σ b
n,B1(L)

(20)
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where: σ t
n,B1,σb

n,B1 are the tensile and the bending component, respectively, to be superimposed.

Finally, the unitary internal pressure nominal stresses can be easily calculated since the geometry parameters are

already available:

Fp1 = PBDV/2

σ t
n,p1 = Fp1/AW

σ b
n,p1(0) = Fp1(xW − tV/2)xW/IW

σ b
n,p1(L) = Fp1(xW − tV/2)(xW −L)/IW

σn,p1(0) = σ t
n,p1 +σ b

n,p1(0)

σn,p1(L) = σ t
n,p1 +σb

n,p1(L)

(21)

Equations 20, 21 provide the four terms σn,B1(0),σn,B1(L) and σn,p1(0),σn,p1(L) to be inputted in Eq. 12.
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Figure 8: Nominal stresses induced by unitary bolt preload (a) and unitary internal pressure (b). Comparison between the analytical and

the FE models and effect of the internal edge geometry.
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Figure 9: Determination of the FE model leakage pressure.
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Figure 10: (a) Small scale vessel pressurization test and leakage detection. (b) Bolt with full-bridge configuration strain gauges.
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Figure 13: Leakage pressure sensitivity: bolt axis position (a), bolt pitch (b), flange width (c), and flange height (d).

21



Vessel DV/tV W/tV H/tV Z/tV PB/tV dB/tV dH/tV
pL

p′L

p′L
p′L,max

p′L,FE

p′L,max

Δ p′,%

1, stud 28.8 3.880 3.120 1.641 2.301 1.132 1.248 0.91 0.827 0.830 −0.3%

2, stud 28.3 4.571 3.486 1.614 2.306 1.200 1.286 0.91 0.512 0.519 −1.5%

3, stud 37.5 4.500 3.050 1.663 2.275 1.050 1.125 0.93 0.291 0.284 2.3%

4, stud 33.6 4.455 3.127 1.545 1.849 0.782 0.945 0.92 0.433 0.452 −4.2%

5, stud 22.6 3.826 3.130 1.496 2.233 1.035 1.139 0.89 0.920 0.915 0.5%

6, stud 28.9 4.000 2.867 1.467 1.768 0.733 0.944 0.91 0.595 0.592 0.4%

7, stud 28.8 3.880 3.040 1.560 2.209 1.012 1.128 0.91 0.699 0.684 2.2%

8, stud 22.2 3.704 3.259 1.444 2.148 1.048 1.156 0.90 1.000 1.027 −2.6%

9, stud 41.1 4.889 3.156 1.689 2.148 0.956 1.156 0.93 0.460 0.458 0.5%

10, stud 27.8 4.300 3.040 1.670 2.544 1.000 1.200 0.90 0.629 0.597 5.5%

11, stud 34.0 4.300 2.850 1.580 2.234 0.940 1.060 0.92 0.508 0.490 3.7%

12, stud 50.0 4.167 2.833 1.667 1.691 0.717 0.867 0.94 0.263 0.260 1.0%

13, stud 35.2 4.417 3.000 1.575 2.230 0.967 1.133 0.93 0.528 0.524 0.7%

14, bolt 16.0 4.032 3.336 1.636 2.400 0.960 1.224 0.85 0.268 0.265 1.1%

Table 1: Dimensionless vessel geometry parameters and leakage pressure results.
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