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Abstract 

Bacterial indicator organisms are used globally to assess microbiological safety of waters. 

However, waterborne viral outbreaks have occurred in drinking water systems despite negative 

bacterial results. Using viral markers may therefore provide more accurate health risk assessment 

data. In this study, fecal, wastewater, stormwater, surface water (fresh and salt), groundwater and 

drinking water samples were analyzed for the presence or concentration of traditional indicators, 

innovative indicators and viral markers. Samples were obtained in the United States, Italy, and 

Australia and results compared to those reported for studies conducted in Asia and South 

America as well. Indicators included total coliforms, E. coli, Enterococci, male-specific 

coliphages, somatic coliphages and microviradae. Viral markers included adenovirus, 

polyomavirus, and a potential new surrogate, Torque Teno virus (TTV). TTV was more 

frequently found in wastewaters (38 – 100%) and waters influenced by waste discharges (25%) 

than in surface waters used as drinking water sources (5%). TTV was also specific to human 

rather than animal feces. While TTV numbers were strongly correlated to other viral markers in 

wastewaters, suggesting its utility as a fecal contamination marker, data limitations and TTV 

presence in treated drinking waters demonstrates that additional research is needed on this 

potential viral indicator.  
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Introduction 

Indicator organisms are used to establish potential risk from fecal contamination in drinking 

waters. The United States Environmental Protection Agency, the Council of European 

Communities, and the World Health Organization all specify bacterial indicators (e.g., fecal 

coliforms, E. coli) in regulations and guidelines. However, waterborne viral outbreaks have 

occurred in treated drinking water systems where the systems were in compliance with 

regulations (Craun et al. 2006). In fact, many epidemiological studies fail to show a relationship 

between viral pathogens and bacterial indicators in environmental systems and through treatment 

processes (Ashbolt et al. 2001; Hamza et al. 2011; McQuaig and Noble 2011). Viral and 

protozoan pathogens are known to be more persistent in the environment than indicator bacteria 

(Wu et al., 2011; Sidhu et al. 2012). In treatment systems, correlations between bacteria and 

viruses are often lacking as a result of differences in physical removal and inactivation kinetics 

(Payment et al. 1985; Blatchley et al. 2007; Carducci et al. 2008; Shin & Lee 2010; Lee & 

Sobsey 2011).  

 

Using a virus to predict viral pathogen risk may overcome these limitations (Kopecka et al. 

1993; Jiang et al. 2001; Abbaszadegan et al. 2008). Coliphages resemble many enteric viruses in 

their physical structure and morphology, and can be detected by plaque assay (Ashbolt et al. 

2001). Some groups are found in high concentrations in wastewaters, are relatively resistant to 

chlorination, and can be used to distinguish between fecal pollution of human and animal origin 

(Leclerc et al. 2000; Scott et al. 2002; Long et al. 2005). However, other groups are rarely found 

in individual human feces and can replicate in the environment (Muniesa & Jofre 2004; Payment 

& Locas 2011). An alternative to indicators is direct pathogen monitoring which provides 
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information on actual risk from a particular virus but may not be indicative of risks from viruses 

in general. Noroviruses are the most common cause of acute nonbacterial gastroenteritis and 

based on structural similarities, have been presumed to have similar persistence in the 

environment and through treatment as other viruses (Bae & Schwab 2008; Park & Sobsey 2011). 

However, noroviruses are found in high concentrations in cold months but typically not in warm 

months, and correlations between noroviruses and fecal indicator bacteria are often lacking 

(Haramoto et al. 2006; Westrell et al. 2006). Human adenoviruses, which cause respiratory or 

gastrointestinal illness, have been detected in surface and groundwaters, wastewaters and 

finished drinking waters, though correlations between this pathogen and indicator bacteria or 

coliphages were often not present (Jiang & Chu 2004; Carducci et al. 2008; Ogorzaly et al. 2010; 

Okoh et al. 2010). Additionally, a lack of correlation with other pathogenic viruses indicates that 

data on adenoviruses may only provide risk from this one pathogen rather than viral pathogens in 

general. A potential viral surrogate that has not been fully examined is Torque Teno Virus 

(TTV).  

 

TTV is a small, non-enveloped, single stranded DNA virus that was first isolated in Japan from 

the serum of a patient with post-transfusion hepatitis (Nishizawa et al. 1997). It was later 

detected in blood samples from patients in several other countries, including the United States, 

France, Italy, and Brazil (Leary et al. 1999; Biagini et al. 2000; Bendinelli et al. 2001; Maggi et 

al. 2001; Bassit et al. 2002; Diniz-Mendes et al. 2004; Devalle & Niel 2005). TTV appears to be 

present ubiquitously in humans and elicits seemingly innocuous infections. TTV in humans can 

be found throughout the body including in blood and feces, and replicates actively in most 

tissues and organs (Maggi & Bendinelli 2009; Okamoto 2009a). TTV infections have been 
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identified throughout the world, with highest infection rates in countries with poor sanitation 

(Maggi et al. 2011). Research suggests that TTV may possibly cause chronic lifelong viremias in 

most people regardless of age, health status, and other variants. 

 

TTV is excreted in the feces and has been detected in wastewater streams in multiple countries. 

In Japan, TTV DNA was detected in 12 of 12 wastewater influent samples, with a geometric 

mean concentration of 1.7x104 genomic copies/liter (Haramoto et al. 2008). The concentration of 

TTV DNA in the influent samples showed no clear seasonal pattern, suggesting that TTV 

infections occur year-round. Vaidya et al. (2002) found raw sewage prevalence of TTV DNA 

was statistically similar to the prevalence of hepatitis E virus RNA and hepatitis A virus RNA. 

Diniz-Mendes et al. (2008) found a TTV positivity rate of 92.3% in polluted streams of Brazil. 

In contrast, Hamza et al. (2011) found that TTV was not a suitable indicator of fecal 

contamination in river water in Germany resulting from low detection rates. In Brazil, Vecchia 

(2009) found that TTV was sporadic in surface water samples. For a new water quality indicator 

to be widely applied as coliforms or enterococci are currently, their relevance to geographical 

region and water type must be understood. Therefore, the purpose of this study was to evaluate 

TTV as an indicator of fecal contamination in water systems from three continents. TTV 

presence and/or concentration were compared to bacterial fecal indicators, coliphages and enteric 

viruses. Data were collected in the United States, Italy and Australia and compared to those 

published for Asia and South America to conduct a preliminary assessment of the suitability of 

this potential viral surrogate.  
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Methods 

Sample Collection 

TTV occurrence was evaluated by collecting and analyzing animal feces, wastewaters, 

stormwaters, surface waters (fresh and salt), groundwaters and finished drinking waters. Samples 

were collected and analyzed by Worcester Polytechnic Institute (Worcester, MA, USA), the 

University of Wisconsin-Madison (Madison, WI, USA), the University of Pisa (Pisa, Italy), and 

the Commonwealth Scientific and Industrial Research Organization (CSIRO) (Brisbane, 

Australia). Appropriate positive and negative controls were included for all tests. Samples were 

diluted or concentrated as appropriate to achieve acceptable detection limits. The samples 

analyzed are summarized in Table 1. 

 

In the United States, fecal, wastewater and drinking water samples were collected from four 

different regions (Northeast, South, Midwest, and West) in multiple seasons. Fresh fecal samples 

(n = 75) included five animal groups: chicken, dog, equine (horse and donkey), rabbit, and 

ruminant (cow, sheep, goat and llama). Animals were monitored by the sampler and feces were 

collected in sterile containers immediately after defecation. Wastewater, surface water, ground 

water and finished drinking water samples were collected from municipalities. Wastewater 

samples (1 L) included influent and effluent samples (n = 25). Water samples (20 L) (n = 39) 

included raw surface waters, raw groundwaters and treated drinking waters collected from public 

water supply distribution systems (Plummer et al. 2014).  

In Italy, wastewater and surface water samples were collected from the greater Pisa area, 

localized in the Tuscany region. Samples (n = 24, first sampling period; n = 58, second sampling 

period) were collected from the city of Pisa activated sludge wastewater treatment plant (1 L 
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influent and 10 L effluent). Surface water samples (10 L) were collected from the river Fiume 

Morto (n = 12) downstream from the city of Pisa wastewater treatment plant discharge and from 

a seawater outfall (n = 12) (Carducci et al. 2006; Verani et al. 2006).  

 

In Australia, wastewater and stormwater samples were collected from the greater Brisbane area. 

Influent (1 L) and effluent (20 L) wastewaters were collected from the Luggage Point, Oxley 

Creek and Bundamba wastewater treatment facilities (n = 44). Stormwater samples (n = 40) were 

collected from two sites (Fitzgibbon and Markerston catchment areas) in Brisbane, Australia 

during three storm events. Samples were collected using automated sampling infrastructure 

(ISCO 6700 or equivalent) triggered by automated flow measurement (Doppler flowmeter or 

weir) (Toze et al. 2012; Sidhu et al. 2013).  

 

Bacteria Enumerations 

Data were collected for three bacterial indicators: total coliforms, E. coli, and enterococci. All 

enumerations were conducted in accordance with accepted methodologies and with appropriate 

quality control/quality assurance. In the United States, total coliforms and E. coli were 

enumerated using Standard Methods 9223 (APHA et al. 2012) with Colilert® (IDEXX, 

Westbrook, ME) in the multiple well format (Quanti-Tray®, IDEXX, Westbrook, ME) and 

yielded a Most Probable Number (MPN) of the target organisms per 100 mL. Dilutions and 

concentrations were performed as needed (Plummer and Long, 2013). In Italy, E. coli and 

enterococci concentrations were determined by Bio-Rad miniaturized methods (Bio-Rad 

Laboratories, Milan, Italy) using MUG/EC microplates and MUD/SF microplates, respectively. 

These methods provide a Most Probable Number of the indicators in accordance with ISO 9308-
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3 for E. coli (ISO 1998a) and ISO 7899-1 for enterococci (ISO 1998b) (Bofill-Mas et al. 2010). 

In Australia, fecal bacteria (E. coli and Enterococci) were quantified using the membrane 

filtration technique. Samples (1 and 10 mL) were filtered through 0.45 µm nitrocellulose 

(Millipore, Billerica, MA) membranes which were placed on Chromocult™ coliform agar 

(Merck, Munchen, Germany) for E. coli and Chromocult™ Enterococci agar (Merck, Munchen, 

Germany) for enterococci. The plates were incubated overnight at 37°C and then typical colonies 

were counted providing colony forming unit counts (Sidhu et al. 2012).  

 

Coliphage Enumeration 

Coliphages were enumerated in accordance with accepted methodologies and with appropriate 

QA/QC procedures. The United States samples were analyzed for somatic and male-specific 

coliphages by EPA Method 1602, the single layer agar method (U.S. EPA 2001). E. coli CN-13 

(ATCC 700609, Manassas, VA; resistant to nalidixic acid) and E. coli F-amp (ATCC 700891, 

Manassas, VA; resistant to streptomycin and ampicillin) were used as hosts for somatic and 

male-specific coliphages, respectively. Samples were supplemented with magnesium chloride, 

log phase host bacteria, and agar. Plates were incubated overnight at 36°C and examined for 

plaque forming units (PFU)/100 mL.  In Italy, somatic coliphages were enumerated by the ISO 

double agar layer plaque assay method using E. coli C (ATTC 13706, Manassas, VA) as the host 

strain (ISO 1999). The sample, host and top layer agar were mixed and added to a plate with a 

hard layer of agar. The plates were incubated overnight at 36oC and counted for PFU/100 mL. In 

Australia, somatic coliphages (Microviridae family) were enumerated using quantitative PCR 

(qPCR) with Bio-Rad iQTM5 (Bio-Rad Laboratories, California, USA) using iQTM Supermix 

real-time PCR kit. Details are provided in Sidhu et al. (2012).   
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Viral Enumeration 

In the U.S. drinking water samples were HFUF concentrated through Asahi REXEED-21S filters 

with a 30 kDa molecular weight cutoff. HFUF concentrates and wastewaters were concentrated 

using PEG precipitation, and 0.25 g of fecal samples were extracted directly. Multiple PCR 

methods were used to enumerate viruses. Extraction of nucleic acid was accomplished by bead 

beating (PEG concentrates and solid samples) and the use of a clean-up kit (PowerSoil® DNA 

Isolation Kit, MO BIO Laboratories, Carlsbad, CA) to reduce inhibitor concentrations. For TTV, 

amplification of target ssDNA was conducted using a traditional PCR assay modified from that 

reported by Carducci et al. (2008). All positive TTV samples and a selected number of negative 

TTV samples were analyzed for the presence of human adenovirus. A qPCR assay was 

developed with primer/probe sets, master mix conditions, and thermocycler program modified 

from those described by Jothikumar et al. (2005). Full details of the U.S. methods are provided 

in Plummer and Long (2013).  

 

In Italy, water samples were concentrated using two-stage tangential flow ultrafiltration. After 

prefiltration on polypropylene membranes, the samples were filtered through a polysulphone 

membrane with a 10,000 MW exclusion size. The samples were reconcentrated with a mini-

ultrasette apparatus and washed using 15 to 20 mL of 3% beef extract at pH 9, obtaining a 

concentrated sample of 40 mL at pH 7. The concentrated samples were decontaminated with 

chloroform and the nucleic acids were extracted with QIAamp DNA kit (QIAGEN, Germany). 

The extracted nucleic acids were assayed with qualitative and quantitative biomolecular tests 
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(nested PCR and Real Time PCR) according to published protocols to reveal the presence and 

the titer of adenoviruses and TTV viral genomes (Carducci et al. 2009). 

 

In Australia, samples were analyzed by qPCR for TTV, adenovirus, polyomavirus, and 

microviridae. The samples were concentrated using Hemoflow HF80S dialysis filters (Fresenius 

Medical Care, Lexington, MA, USA). Samples were pumped with a peristaltic pump in a closed 

loop with high-performance, platinum-cured L/S 36 silicone tubing. Samples were concentrated 

to approximately 100 mL and further concentration of sample was carried out by JumboSep with 

100 K MWCO filters (Pall, Australia) to a final volume of approximately 10 mL (Sidhu et al. 

2013). Nucleic acid was extracted from 200 μL of each concentrated sample using the QIAGEN 

DNeasy Blood and Tissue kit (QIAGEN Inc., Valencia, CA) per manufacturer instructions, and 

stored at 80°C until processed. Amplifications were performed in 25 μL reaction mixtures using 

iQ Supermix (Bio-Rad Laboratories, Berkeley, CA). The PCR mixture contained 12.5 μL of 

Supermix, 400–500 nM each primer, 400–600 nM corresponding probe and 3 μL of template 

DNA (Sidhu et al. 2013). 

 

Statistical Analyses 

Statistical analyses were conducted using IBM’s Statistical Package for the Social Sciences 

(SPSS) product, Version 17.0. Analysis of variance (ANOVA) was conducted on the quantitative 

data sets to evaluate differences based on season and country. Correlations analyses were 

conducted to determine correlations among the bacterial indicators, coliphages and viruses. The 

Spearman Rank correlation analysis was used for quantitative data sets, and the point biserial 
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correlation for binary data sets. Statistical analyses were conducted for data sets with over 20 

results. All analyses were conducted at the 95% confidence level (α = 0.05).  

 

Results 

Bacterial Indicator Results 

Total coliforms, E. coli and/or enterococci were enumerated in all samples (data not shown). 

Results showed expected patterns. Fecal samples had a wide range of indicator concentrations, 

from below detection limits to 108 MPN per gram. Among water samples,  raw wastewaters had 

the highest indicator concentrations (up to 108 MPN per 100 mL total coliforms and 106 MPN 

per 100 mL E. coli). Levels decreased by 2 to 3 orders of magnitude through treatment, with 

bacteria levels in the hundreds  of MPN per 100 mL in final wastewater samples prior to 

disinfection. Next, stormwater samples from Australia had lower fecal bacterial levels than 

wastewater, with concentrations in the tens to 104 CFU/100 mL. Seawater and surface water 

samples were variable depending on overall water quality. Samples downstream of a wastewater 

treatment plant outfall had E. coli in the thousands per 100 mL, compared to drinking water 

sources in the tens per 100 mL. Finished drinking waters were all negative for E. coli, as 

expected. 

 

Coliphage Results 

Coliphage concentrations in fecal samples, wastewaters and waters are summarized in Table 2. 

Male-specific and somatic coliphages were detected in approximately half of the fecal samples 

with 41 of 75 samples (54.7%) below detection limits for male-specific coliphages and 32 of 75 

(42.7%) below detection limits for somatic coliphages. For fecal samples with detectable levels 
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of coliphages, the maximum male-specific and somatic coliphage concentration were observed in 

chickens (2.0x106 PFU/g and 2.5x107 PFU/g, respectively). 

 

The U.S. raw wastewater samples had maximum concentrations of 3.0x105 and 1.6x105 PFU/100 

mL for male-specific and somatic coliphages, with median concentrations on the order of 104 

PFU/100 mL. Coliphage reductions through treatment varied significant, with approximately 4 

log reduction for male-specific coliphages and no significant reduction for somatic coliphages. 

The raw wastewater samples from Italy had a maximum somatic coliphage concentration of 

1.0x107 PFU/100 mL, with a median of 2.4x106 PFU/100 mL and a median reduction of 2 orders 

of magnitude through treatment. Stormwater samples had a median of 90 PFU/100 mL and a 

maximum of 870 PFU/100 mL for somatic coliphages. 

 

Coliphage concentrations in surface waters from the U.S. were much lower than samples from 

Italy. The median and maximum concentration of somatic coliphages in the sea water samples (n 

= 12) were 250 and 700 PFU/100 mL. In surface water samples in Italy, median and maximum 

concentrations were on the order of 105 PFU/100 mL. For the U.S. surface water samples, 80.0% 

and 46.7% were below detection limits for male-specific and somatic coliphages, and for ground 

water samples, 75.0% were below detection limits for both male-specific and somatic 

coliphages. For samples with detectable levels, concentrations were in the tenths to ones of 

PFU/100 mL. U.S. surface and groundwater samples were all drinking water sources. Similarly, 

the distribution system samples had a high percentage of non-detects (80.0%) for coliphages.  
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Virus Results 

Quantitative results for viruses are summarized in Table 3. TTV was above detection limits in 36 

of 58 (62.0%) wastewater samples in Italy with a maximum concentration of 3.6x105 genomic 

copies per mL in raw wastewater and a median reduction of an order of magnitude through 

treatment. Stormwater and wastewater samples from Australia were quantified for TTV (n=22), 

adenovirus (n=44), polyomavirus (n=44) and microviridae (n=22). All samples had quantifiable 

virus numbers, with maximum TTV in raw wastewater of 2.4x103 genomic copies per mL which 

was reduced by approximately two orders of magnitude through treatment. Maximum 

adenovirus, polyomavirus and microviridae concentrations were all on the order of 103 genomic 

copies per mL in treated effluent with similar removals through treatment. Stormwater samples 

tested for viral markers were primarily in the one and tens of genomic copies per mL with 

maximum concentrations of 13, 9.1, and 33 genomic copies per mL for TTV, adenovirus, and 

polyomavirus, respectively.  

 

In addition to the quantitative virus data, presence/absence testing was conducted using different 

methodologies for selected samples. TTV was present in 3 of 76 fecal samples (4.0%). In 

wastewaters, TTV was present in 38 to 49% of samples, depending on sample type (raw versus 

final) and location (country). Surface water detection was rare, with 3 of 12 river waters in Italy 

positive for TTV; however, no sea water samples in Italy and no surface water samples in the 

U.S. had TTV. There was 1 (of 4) groundwater samples and 4 (of 20) drinking water samples 

positive for TTV in the U.S. Adenovirus was not found in any fecal samples, surface waters, 

groundwaters or drinking waters in the U.S., but was detected in the majority of wastewater 

samples (100% of raw samples and 67% of treated samples).  
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Discussion 

TTV is ubiquitous and has been reported in a wide range of fecal samples from warm-blooded 

animals and humans. It has also been detected in certain animal species, including non-human 

primates (Verschoor et al. 1999; Cong et al. 2000; Okamoto & Mayumi 2000), farm animals 

(pigs, chickens, cows and sheep) (Devalle & Niel 2005; Leary et al. 1999; Brassard et al. 2010; 

Martinez Guino et al. 2010; Lang et al. 2011; Liu et al. 2011;; Sibila et al. 2009), companion 

animals (dogs and cats) (Biagini et al. 2007; Okamoto 2009b; Zhu et al. 2011), and wild animals 

(wild boar and sea lions) (Martinez et al. 2006; Ng 2009). For example, a study of 158 fecal 

samples collected from dogs younger than 1 year old with diarrhea in a pet clinic in China 

showed that 20 specimens (20/158, 13%) were positive for Torque Teno canis virus DNA using 

detection with PCR (Lan et al. 2011). While TTV has been identified in a variety of animal fecal 

samples, this study only had a 4.0% detection rate for TTV in fecal samples. In this study, a 

human based TTV sequence was utilized and therefore presence of this sequence would not be 

expected in animal fecal samples. Positive detection of human TTV in 4.0% of non-human 

animal feces may have been a result of human-animal cross infection. The one TTV positive 

chicken sample was from a private farm (and was weakly positive) and the two TTV positive 

dog samples were from companion animals.  

 

TTV has been detected in feces and thus in sewage in prior research (e.g., Haramoto et al. 2008). 

The percentage of raw wastewater samples that are positive for TTV varies greatly in different 

studies: 97% in Japan (Haramoto et al. 2005), 50% in Germany (Hamza et al. 2011), and 13% in 

India (40 mL sample volume, Vaidya et al. 2002). In this study, quantitative data showed 
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detectable levels of TTV in 100% (n=11) and 69% (n=29) of raw wastewaters from Australia 

and Italy, respectively. Using presence/absence data, 49% (n=41) and 38% (n=13) of raw 

wastewaters in Italy and the U.S. were positive for TTV, respectively. Although there were 

differences in samples volumes and analytical methods, these values are comparable to 

previously published statistics. In this study, maximum concentrations of TTV were on the order 

of 105 genomic copies per mL in raw wastewaters in Italy and 103 genomic copies per mL in 

Australia. Results are comparable to Hamza et al. (2011), who found TTV at concentrations on 

the order of 103 genomic copies per mL in raw wastewater in Germany. Haramoto et al. (2008) 

detected TTV in 12 of 12 wastewater samples in Japan with a mean and maximum concentration 

of 1.7x104 and 4.8x104 genomic copies per liter (for comparison, on the order of 107 per mL), 

respectively. Removal rates of TTV through wastewater treatment in this study were similar to 

Hamza et al. (2011), who found 1.7 – 2.3 and 2.6 – 3.5 log10 removals for adenovirus and TTV, 

respectively. In India, TTV was isolated in 2% of wastewater effluent samples using 40 mL 

volumes. In this study, the percentage of treated wastewater samples with TTV (via quantitative 

or presence/absence testing) ranged from 39 to 100%, with differences based on sample volume, 

methodology, and  treatment stage (before or after final disinfection). 

 

The concentration or presence of viruses in environmental and drinking waters depends on the 

water source and influence of sewage discharges or other pollution sources on those waters. 

River water samples (10 L) collected from the Ruhr and Rhine Rivers in Germany in 2008-2009 

were positive for adenoviruses in 108 of 111 (97.3%) of samples, and for TTV in 56 of 108 

(51.9%) of samples (Hamza et al. 2011). These samples were collected in populated regions 

where wastewater treatment plant discharges were 1.5 to 9 km upstream of each sampling 
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location. Diniz-Mendes et al. (2008) found high prevalence rates (92%) for TTV in samples from 

polluted streams in Brazil. In contrast, Vecchia et al. (2012) quantified TTV and fecal pollution 

in an urban area in Brazil that was influenced by non-treated sewage. TTV and adenovirus were 

found in 28.6% and 21.4% of river samples, respectively. A study of the Tamagawa River in 

Japan found TTV in only 5.6% of samples and adenovirus in 61.1% of samples (Haramoto et al., 

2010). The sampling locations included a recreational area, and two sites with significant 

wastewater influences. In this study, samples were collected in water sources expected to be less 

influenced by wastewater discharges. While TTV and adenoviruses were found in all stormwater 

samples in Australia, median values were in the tenths to ones of genomic copies per mL. TTV 

was not found in seawater samples in Italy, nor in surface waters in the U.S. One groundwater 

sample was positive for TTV. Vecchia et al. (2012) found TTV below detection limits in surface 

waters in an area in Brazil with 92% sewerage, comparable to sewerage rates in areas of study in 

the U.S.  

 

Analysis of Variance 

Analysis of variance was conducted on quantitative data sets to evaluate seasonal differences. 

There were no seasonal differences for indicators (bacteria or coliphages) in fecal samples, 

wastewaters, or fresh surface waters. For drinking water samples, seasonal differences were 

found for E. coli (n=20; p=0.042) and somatic coliphages (n=20; p = 0.016). However, E. coli 

was below detection limits in all samples, and thus this variance was based on the detection limit 

rather than actual differences in samples. For somatic coliphages, only 4 of 20 samples were 

above detection limits. Blatchley et al. (2007) found that coliphages exhibited seasonal effects 

with concentration higher in the summer than those observed in the winter in wastewaters. In this 
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study, differences in phage concentrations were not seen in wastewaters (for which many more 

samples had concentrations above detection limits than in drinking waters). In the literature, 

adenoviruses have been proposed as indicators of fecal pollution from human sources because of 

their culturability, resistance characteristics and lack of seasonal variability (Jiang et al. 2001; 

Choi & Jiang 2005; Jiang et al. 2007; Simmons & Xagoraraki 2011). There were insufficient 

data in this study to test the seasonality of adenoviruses. An ANOVA was performed between 

countries for the wastewater samples, and somatic coliphages varied by country (U.S. and Italy; 

n=107; p <0.001). For TTV in wastewaters (n=80), there was no seasonal or geographical 

variation.   

 

Correlation Analysis 

Spearman Rank correlations were calculated for quantitative data sets and point biserial for 

binary data sets. Table 4 shows correlation analysis results for TTV in various matrices, though 

correlations were performed for all data sets with n ≥20 (full results not shown). In the fecal 

samples, there were correlations between the bacterial indicators and somatic coliphages, but no 

correlations to male-specific coliphages. TTV presence (of which only 3 samples were positive) 

was not correlated to any other parameter tested. 

 

In wastewater samples, expected correlations between bacterial indicators were found, and 

similarly, the quantitative virus data sets correlated to one another (TTV, adenovirus, 

polyomavirus, microviridae). In a similar study of sewage treatment, Vaidya et al. (2002) found 

TTV DNA correlated to enteric viruses in raw sewage where the prevalence of TTV DNA was 

statistically similar to the prevalence of hepatitis E virus RNA and hepatitis A virus RNA. This 
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study also included TTV correlations to E. coli, enterococci, somatic coliphages, and viruses. 

TTV and microviridae (a family of bacteriophage which includes somatic phage ΦX-174) may 

provide useful information based on their correlations to other viruses in wastewaters.  

 

For the stormwater samples, relationships were identified between E. coli, enterococci and 

somatic coliphages, but very few correlations were found with other viral pathogens. In surface 

waters, TTV presence was correlated to E. coli and somatic coliphages; however, with very few 

samples positive for TTV, these relationships should be considered preliminary. Other data in the 

literature has shown no statistical correlation between somatic coliphages and enteroviruses, 

human adenovirus, or Norwalk (I and II) virus in rivers in France (Hot et al., 2003). In drinking 

waters, the number of TTV positive samples was again low; however in these samples, TTV was 

not correlated to other indicators.  

 

Conclusions 

Currently, bacterial indicators such as coliforms, E. coli, and enterococci are applied to waters 

worldwide to indicate the potential risk for fecal contamination. The strengths and weaknesses of 

these indicators regarding this universal application are supported by over 100 years of use. 

Improvements in microbial diagnostics and disease surveillance have demonstrated that bacterial 

indicators are not always protective when the pathogens in question are viruses. Based on its 

characteristics and recent discovery, Torque Teno virus has been investigated in multiple 

geographical locations for its potential as a universal indicator. This study analyzed three 

environmental monitoring datasets that included TTV from three different continents (North 

America, Europe and Pacifica). These results were compared to those in the literature from Asia 
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and South America. The results demonstrate the presence and occurrence of TTV on all five 

continents; however, there was significant variability in environmental prevalence and 

concentrations. Comparisons of TTV to bacterial indicators and other viral indicators 

demonstrated that its occurrence and concentrations do not strongly correlate to either group. 

Thus, TTV monitoring could potentially provide supplemental information about a water’s 

microbial content than bacterial indicators or other candidate viral indicators. However, the 

datasets were small and did not utilize the same methodologies. Overall, these results support the 

need for careful, coordinated investigation of TTV as a water quality viral indicator before it can 

be adopted or abandoned. 
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Table 1 – Summary of Sampling Events 

 

Source Location Dates (MM/YY) Total 

Samples 

Individual 

Samples 

Sample Type 

Fecal United States 06/10 to 04/11 75 10 Chicken 

15 Dog 

22 Equine 

3 Rabbit 

25 Ruminant 

Wastewater United States 06/10 to 04/11 25 13 Influent 

12 Effluent  

Italy 04/04 to 03/05 24 12 Influent 

12 Effluent 

03/07 to 04/08 58 29 Influent 

29 Effluent 

Australia 01/10 to 06/10 44 22 Influent 

22 Effluent 

Stormwater Australia 01/12 to 03/12 40 16 Markerston Catchment 

24 Fitzgibbon Catchment 

Surface 

Water 

United States 05/11 to 03/12 15 15 Fresh Surface Water 

Italy 05/04 to 04/05 12 12 River Water 

Italy 05/04 to 04/05 12 12 Sea Water 

Ground-
water 

United States 05/11 to 03/12 4 4 Raw Groundwater 

Drinking 

Water 

United States 05/11 to 03/12 20 20 Distribution System 
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Table 2 – Coliphage Indicator Data 

 

Country 

 

 

Source 

 

Sample 

Type 
n 

Male Specific Coliphage 

(PFU/g or 100 mL) 

Somatic Coliphage 

(PFU/g or 100 mL) 

Min Median Max Min Median Max 

U.S. 

Fecal 

Chicken 10 BDL BDL 2.0x106 BDL 2.0x104 2.5x107 

U.S. Dog 15 BDL BDL 170 BDL 6.1 1.8x104 

U.S. Equine 22 BDL 9.2 2.9x104 BDL BDL 1.0x105 

U.S. Rabbit 3 BDL 370 4.9x104 BDL BDL 3.0x105 

U.S. 
Rumina

nt 
25 BDL BDL 5.2x104 BDL 180 8.4x104 

U.S. 

Wastewater 

Raw 13 2.2x103 9.0x104 3.0x105 733 4.0x104 1.6x105 

U.S. Final 12 BDL 120 760 170 1.4x103 5.1x105 

Italy Raw 41 NT NT NT 4.0x105 2.4x106 1.0x107 

Italy Final 41 NT NT NT 1.0x103 1.9x104 2.0x106 

Australia 
Storm-

water 

Storm-

water 
40 NT NT NT 1.0 91 870 

Italy 
Surface 

Water 

Sea 12 NT NT NT 0.10 250 700 

Italy River 12 NT NT NT 4.6x104 1.7x105 4.6x105 

U.S. Fresh 15 BDL BDL 1.8 BDL BDL 5.8 

U.S. 
Groundwat

er 
Raw 4 BDL BDL 1.0 BDL BDL 0.34 

U.S. 
Drinking 

water 

Distribu

tion 
20 BDL BDL 190 BDL BDL 0.52 

 

NT – Not Tested, BDL – Below Detection Limit 
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Table 3 – Virus Data 

 

(a) Quantitative Data 

Country Source 
Sample 

Type 
n 

TTV 

(genomic copy per mL) 

Adenovirus 

(genomic copy per mL) 

Polyomavirus 

(genomic copy per mL) 

Microviridae 

(genomic copy per mL) 

Min Median Max Min Median Max Min Median Max Min Median Max 

Italy 

Waste-

water 

Raw 29 BDL 697 3.6x105 NT NT NT NT NT NT NT NT NT 

Italy Final 29 BDL 17 2.4x104 NT NT NT NT NT NT NT NT NT 

Australia Raw 11-22 130 250 2.4x103 110 510 9.1x103 410 1.0x103 2.2x103 1.2x103 2.2x103 5.5x103 

Australia Final 11-22 0.19 0.90 3.9 0.18 0.83 6.0 0.077 0.26 1.2 0.090 0.43 3.8 

Australia 
Storm-

water 
Stormwater 24-40 0.010 2.2 13 0.0040 0.22 9.1 0.010 0.010 33 NT NT NT 

 

(b) Presence/Absence Data 

Country Source Sample Type n 
TTV Positive Adenovirus Positive 

Number Percentage Number Percentage 

U.S. 

Feces 

Chicken 10 1 10% 0 0% 

U.S. Dog 15 2 13% 0 0% 

U.S. Equine 22 0 0% 0 0% 

U.S. Rabbit 3 0 0% 0 0% 

U.S. Ruminant 25 0 0% 0 0% 

U.S. 

Wastewater 

Raw 13 5 38% 12 (of 12) 100% 

U.S. Final 12 5 42% 8 67% 

Italy Raw 41 20 49% NT NT 

Italy Final 41 16 39% NT NT 

Italy 

Surface water 

Sea 12 0 0% NT NT 

Italy River 12 3 25% NT NT 

U.S. Fresh 15 0 0% 0 0% 

U.S. Groundwater Raw 4 1 25% 0 0% 

U.S. Drinking water Distribution 20 4 20% 0 (of 11) 0% 

 

NT - Not Tested 
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Table 4. Correlation analysis results (two tailed, 95%) for TTV versus other indicators and viruses. Statistically significant correlations in bold; p-value and n 

value in parentheses (ID = insufficient data if n < 20; NA = data not collected) 

 

 

(a) TTV Presence (point biserial correlations) 

Matrix  Parameter 

Coliforms 

( 

E. coli Enterococci Male-specific 

coliphage 

Somatic coliphage Adenovirus 

Presence 

Feces 0.156 
(0.181, 75) 

0.070 
(0.553, 75) 

NA -0.025 
(0.83, 75) 

0.057 
(0.624, 75) 

* 

Wastewater 0.050 

(0.814, 25) 

0.150 

(0.123, 107) 
0.423 

(0.001, 58) 

0.421 

(0.036, 25) 

0.138 

(0.156, 107) 

-0.302 

(0.151, 24) 

Surface water ID 0.396 

(0.013, 39) 

NA ID 0.421 

(0.008, 39) 

ID 

Drinking Water -0.116 

(0.627, 20) 

-0.130 

(0.584, 20) 

NA -0.115 

(0.628, 20) 

-0.177 

(0.455, 20) 

ID 

* cannot be computed because one variable constant 

 

 

(b) TTV (gc/mL) (Spearman correlations) 

Matrix Parameter 

E. coli Enterococci Somatic coliphage Adenovirus 

(gc/mL) 

Polyomavirus Microviridae 

 

Wastewater 0.553 

(0.000, 58) 

0.524 

(0.000, 58) 

0.319 

(0.015, 58) 

0.710 

(0.000, 22) 

0.823 

(0.000, 22) 

0.740 

(0.000, 22) 

Stormwater 0.102 

(0.635, 24) 

0.088 

(0.683, 24) 

-0.354 

(0.089, 24) 

-0.275 

(0.193, 24) 

0.144 

(0.501, 24) 

NA 

 

 


