
On Service Guarantees of Fair-queueing Schedulers in Real

Systems

Luigi Rizzoa, Paolo Valenteb

aUniversità di Pisa, Italy
bUniversità di Modena e Reggio Emilia, Italy

Abstract

In most systems, fair-queueing packet schedulers are the algorithms of choice for providing bandwidth
and delay guarantees. These guarantees are computed assuming that the scheduler is directly attached to
the transmit unit with no interposed buffering, and, for timestamp-based schedulers, that the exact number
of bits transmitted is known when timestamps need to be updated.
Unfortunately, both assumptions are unrealistic. In particular, real communication devices normally

include FIFO queues (possibly very deep ones) between the scheduler and the transmit unit. And the
presence of these queues does invalidate the proofs of the service guarantees of existing timestamp-based
fair-queueing schedulers.
In this paper we address these issues with the following two contributions. First, we show how to mod-

ify timestamp-based, worst-case optimal and quasi-optimal fair-queueing schedulers so as to comply with
the presence of FIFO queues, and with uncertainty on the number of bits transmitted. Second, we pro-
vide analytical bounds of the actual guarantees provided, in these real-world conditions, both by modified
timestamp-based fair-queueing schedulers and by basic round-robin schedulers. These results should help
designers to make informed decisions and sound tradeoffs when building systems.

Keywords: Packet scheduling, performance analysis, service guarantees

1. Introduction

Packet schedulers play a critical role in pro-
viding bandwidth and delay guarantees on non-
overprovisioned transmission links. They are, e.g.,
one of the key components for guaranteeing the re-
quired per-client frame rate and maximum jitter in
IPTV managed networks, as well as the required
maximum latency in local networks for automotive
and avionics applications.
An important family of packet schedulers,

namely fair-queueing schedulers, originated for the
most part as a support for the IntServ QoS ar-
chitecture [10]. In these schedulers, each packet
flow, identified in whatever meaningful way, is as-
sociated with a weight, and receives, in the long
term, a fraction of the link bandwidth proportional
to its weight. Proposed solutions range from plain

Email addresses: rizzo@iet.unipi.it (Luigi Rizzo),
paolo.valente@unimore.it (Paolo Valente)

round-robin [11] to accurate timestamp-based algo-
rithms [9, 2, 1].
IntServ has basically failed as a QoS architecture

in the public Internet. Nevertheless, fair-queueing
schedulers, or variants of them1, are now the al-
gorithms of choice in most bandwidth- and delay-
sensitive applications, including the previous exam-
ples. One of the reasons is that the fair-queueing
service scheme easily allows both the desired min-
imum bandwidth to be guaranteed to each flow or
aggregate, and the excess bandwidth to be evenly
redistributed.
Besides, a series of very efficient yet accurate

fair-queueing schedulers has been devised [13, 8,
3, 16]. All these schedulers guarantee a worst-
case deviation—with respect to a perfectly fair,
ideal service—comparable to that of the optimal
WF2Q [2] scheduler. The main practical benefits of
such tight service guarantees are a very low jitter

1Such as bandwidth servers in real-time contexts.

Preprint submitted to Elsevier March 9, 2015

and a smooth (non-bursty) service, as thoroughly
discussed in [16].
The lowest-cost scheduler in the above series

is QFQ+[16], which provides tight guarantees at
the amortized cost of just Deficit Round Robin
(DRR) [11]. QFQ+ has replaced its predecessor,
QFQ [3], in Linux2, and proved to be even faster
than DRR, exactly in the scenarios where using an
accurate scheduler matters [16].
Interestingly, the proofs in [16] are based on a

slightly more complex system model than that used
the in the classical analysis of packet schedulers.
The reason why a different model has been used
coincides with the motivation for this paper: on a
real system, packet delays and jitters, as well as
per-flow burstiness, may be much higher than pre-
dicted by classical analysis. A deeper and general
investigation of this problem was out of the scope
of [16], whereas it is exactly the focus of this paper3.

Problems of classical analysis

Classical analysis is done assuming that the
transmit unit is directly attached to the scheduler
with no interposed buffering, and, for timestamp-
based schedulers, that the exact number of bits
transmitted is known on every timestamp update.
Neither of these assumptions holds in practice.
First, communication links, especially high-speed

ones, are equipped with FIFO queues (sometimes
even large ones) to drive the device and absorb
the latency and jitter in the hardware and soft-
ware components that produce packets: memories,
buses, interrupt service routines, etc. (in this pa-
per we focus only on FIFO queues in output links).
These FIFOs introduce an additional packet delay
with any scheduler. Above all, they invalidate, by
their very presence, the correctness of fair-queueing
timestamp-based schedulers (Section 6.1).
Second, network interfaces do not export a real-

time indication of the number of bits transmitted.
Deriving this number from the time may be hard
too, because, depending on the MAC protocol, the
rate may vary with time.

Contributions of this paper

After illustrating the problem with a concrete ex-
ample, in this paper we make the following contri-
butions:

2QFQ is instead still available in FreeBSD.
3In more detail, in this paper we use the same correct

model as in [16], and we report an improved version of the
core proofs in [16].

• We provide a simple and consistent way to
modify timestamp-based, worst-case optimal
and quasi-optimal fair-queueing schedulers, so
as to comply with the presence of FIFOs and
with uncertainty on the number of bits trans-
mitted.

• We provide general worst-case bounds on
bandwidth, packet (queueing) delay and jitter,
for both the resulting family of modified sched-
ulers and basic round-robin schedulers. These
bounds take into account exactly the effects of
FIFOs and uncertainty on the number of bits
transmitted.

• We instantiate and compare these bounds for
most schedulers in the above family as well as
other popular schedulers.

As for the second contribution, we prove a good
and not so obvious result: the worst-case additional
packet delay caused by a FIFO, with our FIFO-
compliant versions of timestamp-based schedulers,
is equal at most to only the time needed to empty
the FIFO, although the FIFO not only introduces
the latter additional queueing delay, but also per-
turbs both the packet service order, as we show with
a simple example in Section 2, and the timestamp
computation (Section 6.1). We also prove an equiv-
alent result in terms of service lag. In other words,
we prove that FIFOs cause the minimum possible
service degradation.
While partially reassuring, this result means

that, in any case, sizing the output queues is critical
to avoid that guarantees of sophisticated schedulers
degrade to those of, e.g., DRR, or, vice versa, it
means that resources should not be wasted on com-
plex scheduling algorithms when short queues are
not available. In this respect, our formulas should
hopefully help designers find the right compromises
between efficiency and guarantees.

Organization of this paper

The rest of this paper is structured as follows.
Section 2 shows the problem through a simple ex-
ample, while Section 3 briefly describes related
work. Section 4 and 5 define the terms used in the
paper and provide some background on timestamp-
based packet schedulers. The core of the paper
starts in Section 6, where we define a modification
scheme that allows timestamp-based fair-queueing
schedulers to comply with the presence of output

2

Scheduler

FIFO

B

Figure 1: A: the system model used in the literature, where
the scheduler drives directly an ideal link. B: a real system,
made of the scheduler followed by a FIFO and the output
link.

P1

Pn

Q

t

...

... ...

P1

Pn

Q

t

...

...

...

...

...

A

B

Figure 2: Timing of packets for the example in Sec-
tion 2. Squares represent packet arrivals, circles are de-
queues, crosses are beginnings of actual transmissions. Top:
the system in Fig. 1 A shares bandwidth according to the
weights of the flow. Bottom: in presence of the FIFO
(Fig. 1 B), flow Q is delayed by the large backlog in the
queue.

FIFOs. Section 7 then introduces the service met-
rics of interest. Resulting service guarantees are
computed in Section 9, using the proof machinery
provided in Section 8. Finally, Section 10 compares
service guarantees with and without queues, and
discusses practical implications of our results.

2. A simple example

We start by showing how a queue between the
scheduler and the link not only introduces an ob-
vious delay, but can also alter the service order of
packets. In the system shown in Figure 1 on the left,
the scheduler is directly connected to the transmit
unit, which pushes bits to the communication link
as soon as the scheduler makes its decision; this is
the idealized model of a system normally consid-
ered in the literature. In the system on the right,
the scheduler drives instead a FIFO queue which is
eventually drained by the transmit unit.

Suppose that in both systems the scheduler is,
e.g., WF2Q+ [1], which approximates on a packet-
by-packet basis an ideal, infinitely precise subdi-
vision of the link’s capacity according to flows’
weights (Section 5). Suppose then that at some
time t0 a set of packets arrives simultaneously4 for
flows P1 . . . PN , all with the same weight φP = 1

2N .
Shortly after t0, the link becomes ready for trans-
mission, and after another short interval a set of
packets arrives for flow Q, which has weight φQ =
1
2 >> φP . For simplicity assume all packets have
length L.

Figure 2 shows what happens in the system in
the two configurations. In the figure, a square rep-
resents a packet arriving into the scheduler, a circle
indicates a dequeue operation, and a cross the be-
ginning of an actual transmission on the link.

The timing for the idealized case of Figure 1-A
is shown in Figure 2-A. Here dequeues and begin-
nings of transmissions coincide. With our choice of
weights, the scheduler correctly services one packet
from flows Pi and one from Q, although all the flows
Pi were ready before Q.

Figure 2-B shows instead the effect of a FIFO.
The FIFO is instantly ready to absorb a large num-
ber of packets, so it fills up with most/all packets
from flows Pi’s before packets from flow Q arrive.
Packets from Q therefore find a huge backlog and
appear on the link only after this initial burst is
complete. As a result, the transmission order and
timing looks similar to the one of a DRR [11] sched-
uler, with or without a FIFO before the link. If
the FIFO is large, then the tight service guaran-
tees of WF2Q+ have vanished, and the additional
complexity in implementing a scheduler with better
guarantees is completely wasted.

In addition, as shown in detail in Section 6.3, a
phenomenon like that in Figure 2-B greatly per-
turbs timestamps in a timestamp-based scheduler.
Hence it could cause further service anomalies. For-
tunately, this does not happen with the schedulers
considered in this paper.

4Such an arrival pattern is extremely realistic: on many
traffic sources or routers, incoming traffic often comes in
bursts (corresponding to the processing of a receive inter-
rupt, or the generation of a large TCP segment split into
packets). We assume arrivals to be exactly simultaneous
for simplicity, but the problem shown in this section can be
highlighted also with slightly staggered arrivals, as well as
with more complex arrival patterns.

3

3. Related work

The analysis of timestamp-based fair-queueing
packet schedulers starts with the seminal work by
Parekh and Gallager [9], who show how a fluid sys-
tem (GPS) can be emulated on a packet-by-packet
basis using a “virtual time” concept. Subsequently,
Bennet and Zhang [2] show that a simplistic emula-
tion of a fluid system may lead to large burstiness in
the output. They introduce the concept of eligibility
and designWF2Q, the first of a family of algorithms
with minimal burstiness. Follow-up work include
WF2Q+ [1], which, using a simplified virtual time
function reduces the complexity to O(logN) (the
original WF2Q had O(N) complexity; much later,
Valente [15] proved that also WF2Q can be imple-
mented in O(logN) time). Xu and Lipton [17] then
prove an Ω(logN) bound on the time complexity
for any exact GPS emulation. The tradeoffs be-
tween complexity and service guarantees have been
explored in a number of works [8, 13, 3, 16], present-
ing O(1) schedulers with quasi-optimal worst-case
service guarantees. Constant-time fair-queueing
schedulers have also been built starting from round-
robin schedulers, some of which [18] integrate con-
cepts used in virtual-time-based schedulers.
All the papers cited so far run their analysis

assuming that the number of bits transmitted is
known at any time instant, and that any queueing
occurs only in the scheduler, i.e., that once a packet
leaves the scheduler, it immediately starts being
transmitted on the output link. This assumption is
not reflected in the reality of packet processing sys-
tems. As discussed in Section 10.3, output queues
of a few hundred slots are often in use, and even if
recent efforts (BQL [5], Bufferbloat [4]) try to limit
software queue sizes, high-speed network interfaces
may use up to 256-512 KB of internal buffering.
To our knowledge, apart from the paper introduc-

ing QFQ+ [16], which does not however investigate
buffering issues in depth, there is only one work [7]
that accounts for buffering after the scheduler, but
it still assumes that the number of bits transmitted
is known at any time, and only evaluates the time
that a packet spends in the buffer, without address-
ing the effect of the buffer on the service properties
of a scheduler.

4. Definitions and system model

In this section we report concepts and sym-
bols used in the packet-scheduling literature, where

sometimes different notations are used for the same
concept. For convenience, all symbols used in this
paper are listed in Table 1 (we follow the notation
used in our QFQ paper [3]).

Symbol Meaning

N Total number of flows

∗
k A superscript k indicates a quantity re-

lated to flow k

∗m A subscriptm indicates a quantity related
to a packet pm

h, k Flow indexes

L,Lk Max length of any packet in the sys-
tem/flow

φk Weight of flow k

∆W Capacity of the FIFO in bits, plus L

lk Length of the head packet in flow k; lk = 0
when the flow is idle

∗(t1, t2) Given a generic function ∗(t), the nota-
tion ∗(t1, t2) ≡ ∗(t2)− ∗(t1) indicates the
difference between the values in t2 and t1

W (t),
W k(t)

The “work function”, i.e. number of bits
transmitted (globally, or for flow k) in
[0, t]

V (t),
V k(t)

System/flow virtual time, see Eq. (3)

Sk, F k,
Sm, Fm

Exact virtual start and finish times of flow
k or packet m, see Eq. (2)

Ŝk, F̂ k,
Ŝm, F̂m

Approximated flow/packet timestamps,
see Section 5.3

W (t),

W
k

(t)

The “work function” describing the input
to the FIFO

V (t),

V
k

(t)

Inflated system/flow virtual time corre-
sponding to W (t)

S
k

, F
k

Inflated virtual start and finish times,
computed through (8)

S̃k, F̃ k Counterparts of Ŝk and F̂ k, obtained

from S
k

, F
k

instead of from Sk, F k

B(t) The set of backlogged flows at time t

Qk(t) Backlog of flow k at time t

Table 1: Definitions of the symbols used in the paper.

For ease of exposition, we often use the notation

f(t1, t2) ≡ f(t2)− f(t1)

where f(t) is a function of the time.
We assume that any discontinuous function of the
time is left-continuous, i.e., if t0 is a discontinuity
point for a function f(t), then f(t0) = limǫ→0 f(t0+
|ǫ|), and f(t−0) = limǫ→0 f(t0 − |ǫ|).

4

AFQ

FIFO

W(t)W(t)

B

Figure 3: A: the system model used in the literature, ignor-
ing the presence of the FIFO and assuming W (t) is known
exactly within the scheduler. The scheduler box is labelled
as AFQ, which is the reference scheduler in this paper (de-
fined in Section 5.3). B: a real system, made of a scheduler
(AFQ) feeding a dequeue unit with work function W (t), fol-
lowed by a FIFO and the output link. C: the corresponding
fluid system for the first part of B), serving multiple packets
at a time, with the same work function W (t).

4.1. System model

As a starting point, we consider a system as in
Figure 3 A, in which N packet flows (defined in
whatever meaningful way) share a common, non-
preemptive transmission link, serving one packet at
a time. The link has a time-varying rate, with W (t)
being its work function, i.e., the total number of bits
transmitted in [0, t]. A packet scheduler, the AFQ
block in the figure (we define the AFQ scheduler
in Section 5.3), sits between the flows and the link:
arriving packets are immediately enqueued, and the
next packet to serve is chosen and dequeued by the
scheduler when the link is ready.
Each flow k is assigned a fixed weight φk >

0. Without losing generality, we assume that
∑N

k=1 φ
k ≤ 1. A flow is defined backlogged/idle

if it owns/does not own packets not yet completely
transmitted. Each flow uses a FIFO queue to hold
its backlog. We call B(t) the set of flows backlogged
at time t.
We call head packet of a flow the packet at the

head of the queue, and lk its length; lk = 0 when a
flow is idle. We say that a flow is receiving service
if one of its packets is being transmitted. Both the
amount of service W k(t1, t2) received by a flow and
the total amount of service W (t1, t2) delivered by
the system in the time interval [t1, t2] are measured
in number of bits transmitted during the interval.
We say that a system is work conserving if it uses

the link at full capacity whenever there are packets

queued. Finally, two systems are corresponding [2,
Definition 1] if they: have the same work function
W (t), serve the same set of flows, are subject to the
same arrival pattern.

5. WF2Q+ and its approximated variants

In this section we outline the schedulers we focus
on in this paper, namely WF2Q+ and its approxi-
mated variants. In particular, we consider the more
general case of a variable-rate link (see [1, 14] for a
complete description). WF2Q+ is an online work-
conserving packet scheduler that approximates, on
a non-preemptive, packet-by-packet basis, the ser-
vice provided by a corresponding work-conserving
ideal fluid system. The latter may serve multiple
packets in parallel, and delivers the following, al-
most perfect bandwidth distribution over any time
interval during which a flow is continuously back-
logged:

W k(t1, t2) ≥ φkW (t1, t2)− (1− φk)L (1)

To define the WF2Q+ algorithm, we need to intro-
duce the concept of eligibility: a packet is defined
as eligible at a given time instant if it has already
started in the fluid system by that time. Accord-
ingly, we define a flow as eligible if its head packet
is eligible.

WF2Q+works as follows: when requested to pro-
vide the next packet to serve, it chooses and de-
queues, among the eligible packets, the next one
that would be completed in the fluid system if no
other packet arrived or became eligible; ties are ar-
bitrarily broken. WF2Q+ therefore succeeds in fin-
ishing packets in the same order as the ideal fluid
system, except when the next packet to serve ar-
rives or becomes eligible after one or more out-of-
order packets have already started.

5.1. Virtual Times

The WF2Q+ policy is efficiently implemented by
considering, for each flow, a special flow virtual
time function V k(t) that grows as the normalized
amount of service received by the flow, i.e., by the
actual service received, divided by the flow’s weight.
Besides, when the flow turns from idle to back-
logged, V k(t) is set to the maximum between its
current value and the value of a further function,
the system virtual time V (t), defined below.

5

In addition to V k(t), each flow is conceptually5

associated with a virtual time V k
fluid(t) also in the

fluid system. V k(t) and V k
fluid(t) are computed

with the same rules, but their values differ as the
instantaneous distribution of work is different in the
packet and in the corresponding fluid system.
For every packet of flow k, we define the virtual

start and finish time of the packet as the value
of V k(t) when the packet starts and finishes to be
served. We then define the virtual start and finish
times of flow k, Sk(t) and F k(t), as the virtual start
and finish times of its head packet at time t. These
timestamps need to be updated only when the flow
becomes backlogged, or when its head packet is de-
queued:

Sk(tp)←







max(V (tp), F
k(t−p)) on newly

backlogged flow;
F k(t−p) on packet dequeue;

F k(tp)← Sk(tp) + lk/φk

(2)
where tp is the time when a packet en-
queue/dequeue occurs, and lk is the packet size.
Finally, the system virtual time function V (t) is

defined as follows (assuming
∑N

k=1 φ
k ≤ 1):

V (t2) ≡ max

{

V (t1) +W (t1, t2), min
k∈B(t2)

Sk(t2)

}

(3)
Note that the instantaneous link rate needs not
be known to update V (t): just W (t1, t2) (the to-
tal number of bits transmitted in [t1, t2]) suffices.
At system start up, V (0) = 0, Sk(0) ← 0 and
F k(0)← 0.

5.2. Implementation of WF2Q+

The fluid system guarantees that V k
fluid(t) ≥ V (t)

always holds for every backlogged flow k [1, 14].
Hence, in terms of virtual times, flow k is eligible
at time t if V (t) ≥ Sk(t). In addition, the fluid
system serves flows so as to complete packets in
virtual-finish-time order. WF2Q+ can then be im-
plemented as follows, using only V (t) and the vir-
tual start and finish times of the flows: each time
the next packet to transmit is requested, the sched-
uler dequeues and returns the head packet of the
eligible flow with the smallest virtual finish time.
The second argument of the max operator in Eq. (3)
guarantees that the system is work-conserving.

5This parameter is not needed in the implementation, but
we use it to prove Lemma 1.

5.3. Approximated variants of WF2Q+ (AFQ)

The exact WF2Q+ algorithm, as described
above, has Ω(logN) complexity in the number of
flows [17]. In order to implement the same policy in
O(1) time, several schedulers [8, 13, 3] label flows
with approximated virtual start and finish times
Ŝk(t) and F̂ k(t), in addition to the exact times-
tamps defined in Eq. (2). Lowest-cost examples
are QFQ [3], S-KPS [8] and the scheduler proposed
in [13], which we call GFQ hereafter.
In these schedulers, approximated timestamps

are used to choose the next packet to transmit (Sec-
tion 5.2), and to compute the system virtual time,
i.e., Ŝk(t2) is used instead of Sk(t2) in Eq. (3). Us-
ing approximated values helps reduce the complex-
ity of sorting stages, making them constant-time
operations. Exact timestamps are instead still used
to charge flows for the service received (Eq. (2)).
The way approximations are computed varies

with the scheduler, but in all cases we can write

Sk(t)−∆Sk ≤ Ŝk(t) ≤ Sk(t) ≤

F k(t) ≤ F̂ k(t) ≤ F k(t) + ∆F k
(4)

where ∆Sk and ∆F k are non-negative quantities
(∆Sk = ∆F k = 0 in WF2Q+). For brevity, here-
after we use the generic name AFQ (Approximated
Fair Queueing), to refer to any of these variants and
to WF2Q+ itself.

6. Moving to a real system

The algorithms described in Section 5 work cor-
rectly in the classical system model in Figure 3 A.
Unfortunately, as we show as a first step in this
section, that model is inadequate for most real sys-
tems. We address this issue, in the rest of this sec-
tion, by showing both a way to properly extend the
model, and a way to modify existing AFQ sched-
ulers so as to preserve the correctness of their op-
erations in the new model.

6.1. Mismatch between a real system and the clas-
sical model

Packet schedulers typically operate at Layer 3,
i.e., right above network-interface drivers. In this
respect, with typical network interface controllers
(NICs), the there are at least two queues between
the scheduler and the transmit unit (see, e.g., [6]):

• a software FIFO, typically called transmit ring,
used as a mailbox between the OS and the NIC;

6

• a hardware FIFO, internal to the NIC and of-
ten called packet buffer.

These queues are essential to make sure that the
link does not remain idle after the transmission of
a packet has finished. They are manipulated as
follows. In parallel with packet transmissions, the
OS dequeues packets from the scheduler and in-
serts them into the transmit ring, whereas the NIC
fetches packets from the transmit ring and inserts
them into its hardware queue. Only after being in-
serted into the hardware queue, a packet is finally
ready to be transmitted over the physical medium.

The transmit ring allows the NIC to always have
packets ready to fetch when needed, independently
of possible slowness in the OS, whereas the in-
sertion of packets into the hardware FIFO before
transmission makes sure that after the transmis-
sion of a packet has started, it is not aborted be-
cause the NIC cannot read data from memory due
to bus contention. In this respect, the size of the
hardware FIFO is at least L, to have room for
at least one packet. The size of the hardware
FIFO is actually likely to be larger, to have also
the next packet(s) enqueued, and therefore imme-
diately ready for transmission, before the current
one is finished.

The above queues are often filled and drained in
bursts, as traffic arrives or low/high water marks
are reached. In the end, packet dequeues from the
scheduler can occur at any time. In addition: (a)
NICs operate on a packet-by-packet basis, and do
not export a real-time indication of the number of
bits transmitted, (b) the data rate is not constant
due to framing, link contention and link-level flow
control. Even the notification of transmission com-
pletions, available through memory-mapped reg-
isters or interrupts, can be delayed by several
microseconds, corresponding to tens/hundreds of
packets on high speed links. In the end, W (t) is
not known at all times, whereas packet enqueues
and, as already said, dequeues, may occur at any
time. Hence both V (t) and flow timestamps may
need to be updated at any time.

Because of the above two facts, the following
two assumptions are almost never true in a
real system: (i) the link may request a new packet
to transmit only once the previous one has been
fully transmitted, (ii) the exact value of W (t) is
always known when it is needed to update V (t) in
Eq. (3).

The operating problems caused by the failure of
the second assumption are evident. Unfortunately,
the failure of the first assumption causes critical
problems as well. For an AFQ scheduler to produce
a correct schedule, the system virtual time com-
puted through Eq. (3) must be a lower bound to the
normalized service provided to any backlogged flow
by the fluid system [1]. And the first assumption
is an implicit, necessary condition for this property
to hold. In fact, intuitively, dequeueing packets too
early with respect to the total work done by the
system may cause the virtual start time of some
backlogged flow, computed by Eq. (2), to become
too high with respect to the normalized service ac-
tually received by the flow, and hence V (t) may
jump to incorrectly high values by Eq. (3).

6.2. Model extension

A realistic model of a communication device is
the one in Figure 3 B, where the scheduler is drained
by a dequeue unit that takes care of inserting pack-
ets in a FIFO queue. In particular, for simplicity,
we use a single FIFO to represent all the buffering
between the scheduler and the link. Finally, we as-
sume that the time needed to insert a packet in the
FIFO is negligible with respect to the transmission
time of the same packet on the link.

We denote as W (t) and W
k
(t) the sum of the

sizes of, respectively, all the packets and only the
packets of flow k dequeued from AFQ during [0, t].
In other words, W (t) is the amount of work deliv-
ered to the FIFO up to time t. The function W (t)
has a stepwise shape (Figure 4), and lies in a band
of height ∆W on top of W (t), i.e.,

W (t) ≤W (t) ≤W (t) + ∆W, (5)

where ∆W equals the maximum capacity of the
FIFO. The latter is at least L (as this is the mini-
mum size of the hardware FIFO, as highlighted in
Section 6.1), i.e.,

∆W = max
t

W (t)−W (t) ≥ L. (6)

6.3. Modification of the original AFQ scheduler

A way to modify AFQ so as to work correctly
also in the new model is to use the approximate
value W (t) as the work function, instead of the ex-
act value of W (t). Since, by Eq. (5), W (t) ≥ W (t)
holds, we have that Eq. (3) now yields an inflated

7

time

W(t)

W(t)

dW

Work

Figure 4: W (t), the number of bits extracted from the sched-
uler, is within a band of height ∆W above W (t), the number
of bits transmitted by the link.

system virtual time, which we denote as V (t). In
particular, for AFQ, Eq. (3) now becomes

V (t2) ≡ max

{

V (t1) +W (t1, t2), min
k∈B(t2)

S̃k(t2)

}

(7)
for which we explain in a moment what S̃k(t2) rep-
resents. We also get inflated flow virtual times

V
k
(t) (Section 5.1), and, using V (t) instead of V (t)

in Eq. (2), we get the following inflated virtual start
and finish timestamps:

S
k
(tp)←











max(V (tp), F
k
(t−p)) on newly

backlogged flow;

F
k
(t−p) on packet dequeue;

F
k
(tp)← S

k
(tp) + lk/φk

(8)
As we explained in Section 5.3, AFQ is charac-

terized by the use of the approximated timestamps
Ŝk(t) and F̂ k(t). We denote as S̃k(t) and F̃ k(t)
the counterparts of these timestamps for the modi-
fied AFQ. More precisely, S̃k(t) and F̃ k(t) are com-
puted, for each instance of AFQ (such as QFQ, S-
KPS or GFQ), in the same way as Ŝk(t) and F̂ k(t).
But, differently from Ŝk(t) and F̂ k(t), S̃k(t) and

F̃ k(t) are computed as a function of S
k
(t) and F

k
(t)

instead of Sk(t) and F k(t). Therefore, from Eq. (4),
we get

S
k
(t)−∆Sk ≤ S̃k(t) ≤ S

k
(t) ≤

F
k
(t) ≤ F̃ k(t) ≤ F

k
(t) + ∆F k

(9)

Finally, according to how the system virtual time
is computed in AFQ (Section 5.3), S̃k(t2) is used

instead of S
k
(t2) in (7).

On each packet dequeue, the work function W (t)
used in Eq. (7) immediately grows by the size of the
packet, i.e., by the same quantity by which W (t)

grows while the same packet is transmitted. There-
fore, for the resulting new timestamp-computation
logic, it is like if every packet is completely and
instantaneously transmitted on each dequeue.

We can model this fact with the presence of an
infinite-speed link before the FIFO in Figure 3 B.
This allows us to define a fictitious subsystem of
that in Figure 3 B, made of the cascade of the sched-
uler and of a fictitious, infinite-speed link. Such a
link happens to have fully transmitted the previous
packet before a new one is requested. Since, in ad-
dition, the value of W (t) is of course known at all
times, both the assumptions in Section 6.1 do hold
for this fictitious (sub)system.

As a consequence, by the classical theory, the
modified scheduler happens to correctly approxi-
mate the service provided by the fluid system corre-
sponding to this fictitious system, namely the fluid
system in Figure 3 C. The modified scheduler thus
provides, for the fictitious system, the same classi-
cal service guarantees as the original scheduler for
the simplified system in Figure 3 A. We turn this
important fact into some useful relations in Sec-
tion 8, and then, in Section 9, we use these rela-
tions to compute the actual service guarantees of
the modified scheduler in a real system with an in-
terposed FIFO. For brevity, hereafter we call just
AFQ its modified version.

We conclude this section by observing that W (t)
is the closest approximation of W (t) for which
there exists at least a fictitious system (the above-
described one) for which an AFQ scheduler using
an approximate work function operates correctly.
In fact, if the first assumption in Section 6.1 does
not hold in a real system, i.e., if new packets can be
dequeued before the previous ones have been fully
transmitted, then it is easy to see that the same
assumption does not hold even in any fictitious sys-
tem characterized by the same packet-dequeue pat-
tern (from the scheduler) as the real system, and
by a work function that may have lower values than
W (t) at some times t.

7. Service metrics

We introduce now the two service metrics by
which we show and compare the ideal (according
to classical analysis) and the real service guaran-
tees provided by packet schedulers. The first metric
concerns packet delay and jitter, whereas the sec-
ond one concerns short- and long-term bandwidth

8

distribution. For both metrics, we first report their
formal definition, and then discuss their meaning.
There is a third useful metric (RFI [12]), which

measures how evenly excess bandwidth is redis-
tributed. To keep the description of the results
more concise, in the body of the paper we focus
only on the first two metrics. We compute however
bounds also for the last metric in the Appendix.

7.1. T-WFI

For a link with a constant rate R, i.e., such that
W (t1, t2) = R(t2 − t1) if there is backlogged traffic
during [t1, t2], the Time Worst-case Fair Index [2]
T-WFIk for flow k is defined as

T-WFIk ≡ max

(

tc − ta −
Qk(ta)

φkR

)

(10)

where ta and tc are, respectively, the arrival and
completion time of a packet, and Qk(ta) is the back-
log of flow k just after the arrival of the packet. For
a variable-rate link, R may be interpreted as the av-
erage rate during [ta, tc].
T-WFIk is then equal to the maximum possible

delay with respect to the ideal, worst-case comple-
tion times of the packets of flow k, according to
the weight of the flow. As such, it is not only a
fairness index, but also a direct measure of worst-
case packet delay and delay variation (jitter). In
this respect, as shown experimentally in [16], ob-
served maximum and average packet delays/jitters,
with respect to a perfectly fair and smooth service,
are in the order of exactly the T-WFI. As a conse-
quence, only schedulers with a tight T-WFI (e.g., in
the order of the packet transmission time at the rate
reserved to the flow [16]) can guarantee a smooth
service. On the opposite end, depending on the
scenario, schedulers with a loose T-WFI may suffer
from such a high packet delay and jitter to make
time-sensitive applications unfeasible [16].

7.2. B-WFI

The Bit Worst-case Fair Index (B-WFI), intro-
duced in [1], is in a sense the counterpart of the
T-WFI in terms of amount of service. Unlike the
T-WFI, it can be computed even if the link rate
is unknown (and hence also if it is variable). The
B-WFIk for a flow k is defined as:6

B-WFIk ≡ max
[t1,t2]

{

φkW (t1, t2)−W k(t1, t2)
}

(11)

6This definition is slightly more general than the original
one in [1], where t2 was constrained to the completion time
of a packet.

where [t1, t2] is any time interval during which the
flow is continuously backlogged, φkW (t1, t2) is the
minimum amount of service the flow should have re-
ceived according to its share of the link bandwidth,
and W k(t1, t2) is the actual amount of service pro-
vided by the scheduler to the flow.
Since B-WFIk takes into account any possible

time interval during which flow k is backlogged, it
reveals first whether the flow receives its share of
the bandwidth in the long term (in which case B-
WFIk is constant). Secondly, if the latter condition
is satisfied, then B-WFIk measures the extent at
which the flow still suffers from service fluctuations,
and hence burstiness, in the short term. In prac-
tice, similarly to the T-WFI, only schedulers with a
tight B-WFI (e.g., in the order of a few packets) are
likely to guarantee a low-enough burstiness to com-
ply with the requirements of most time-sensitive ap-
plications [16].

8. Proof machinery

In Section 9 and in Appendix B, we compute the
T-WFI, B-WFI and RFI for AFQ, in systems mod-
eled as in Figure 3 B. We compute these service
metrics as a function of lower bounds to the num-
ber of bits W

k
(t1, t2) that AFQ guarantees to be

dequeued for any flow while backlogged. This ap-

proach, being W
k
(t1, t2) equal to the service guar-

anteed to the flow by the fictitious system defined in
Section 6.3, allows us to split the problem of com-
puting the above metrics, which take into account
also the effects of the FIFO, into two simpler sub-
problems: computing the needed bounds to the ser-

vice W
k
(t1, t2) guaranteed by the fictitious system,

which has no FIFO, and computing the needed re-

lations between the metrics and W
k
(t1, t2). In par-

ticular, for the fictitious system, classical analysis
can still be used (Section 6.3).
In this section we provide the machinery for solv-

ing both sub-problems. In more detail, in Sec-
tion 8.1 we tackle the second sub-problem for the B-
WFI, by providing a special relation concerning the
quantity W k(t1, t2). Simpler relations are needed
for the other metrics, and are reported directly in
the proofs of the metrics. In sections 8.2 and 8.3,
we tackle instead the first sub-problem, by report-
ing a sequence of lemmas that culminates in the

bounds to W
k
(t1, t2). Finally, in Section 8.4 we

report a general bound for DRR, which we use in
Section 10 to compute the T-WFI and the B-WFI

9

also for DRR.
Notation: For the reader’s convenience, on top of
various equality or inequality signs we write the rea-
son why the relation holds (typically a reference to
another relation).

8.1. Relation needed for the B-WFI

The relation we use to compute the B-WFI
can be stated informally as follows: the service
W k(t1, t2) received by flow k during [t1, t2] is
equal to the number of bits dequeued for flow k,

W
k
(t1, t2), minus the bits of flow k still in the FIFO

or in service at time t2. To express this relation as a
formula, we start by denoting as t̂ the largest time
instant such that t̂ ≤ t2 and all packets of flow k
that have been dequeued during [t̂, t2] are still in
the FIFO or in service at time t2. By definition,

the sum of the sizes of all these packets is W
k
(t̂, t2),

and we have

0 ≤W
k
(t2)−W k(t2) ≤W

k
(t̂, t2) (12)

Using these two inequalities, we can then write:

W k(t1, t2) = W k(t2)−W k(t1) ≥

max{0,W k(t2)−W
k
(t1)} ≥

max{0,W
k
(t2)−W

k
(t̂, t2)−W

k
(t1)} =

max{0,W
k
(t2)−W

k
(t2) +W

k
(t̂)−W

k
(t1)} =

max{0,W
k
(t̂)−W

k
(t1)} = W

k
(t1,max{t1, t̂})

(13)

8.2. Globally-Bounded Timestamps

The Globally-Bounded Timestamp property
(GBT) [13, Definition 3] states that flow times-
tamps cannot deviate too much from the system’s
virtual time. Here we compute a variant for ap-
proximate timestamps of this property that comes

in handy to lower-bound W
k
(t1, t2). The proofs

are essentially the same as in the literature [13],
and are reported in Appendix A.

Lemma 1 (Lower bound to F̃ k(t)). For all
times t at which flow k is backlogged,

V (t)− F̃ k(t−) ≤ L (14)

Lemma 2 (Upper bound to S
k
(t)). At all

times t

S
k
(t) ≤ V (t) + ∆Sk +

Lk

φk
− Lk (15)

Note: the last two bounds apply to timestamps
with a different degree of approximation (Sec-
tion 6.3). This differentiation comes in handy in
the proof of subsequent Lemma 3.

8.3. Lower bounds to W
k
(t1, t2)

This subsection contains two lower bounds to
W

k
(t1, t2), one expressed in terms of the virtual

time V (t) and the other in terms of the work func-
tion W (t)7. We use the former in the derivation
of the RFI, and the latter in the derivation of the
T-WFI and the B-WFI.

Lemma 3. We have, in general,

W
k
(t1, t2) ≥

φkV (t1, t2)

−φk

(

2
Lk

φk
+∆Sk +∆F k + L− Lk

)

(16)

whereas, if t2 coincides with the completion time of

a packet of flow k, then the term 2Lk

φk can be replaced

with Lk

φk in the above bound.

Proof. Recalling the meaning of the virtual time

V
k
(t) of flow k, we can write the following equali-

ties, where the last equality follows from summing

and subtracting V (t2)− V (t1) to V k(t2)− V
k
(t1):

W
k
(t1, t2) = φkV

k
(t1, t2) =

φk
[

V
k
(t2)− V

k
(t1)

]

=

φk
[

(V (t2)− V (t1)
]

+

φk
[

V
k
(t2)− V (t2)− (V

k
(t1)− V (t1))

]

(17)

We can therefore prove the thesis by computing

lower bounds to the two terms V
k
(t2)− V (t2) and

−(V
k
(t1)−V (t1)). Remembering that by definition

7Remembering that by definition W
k
(t1, t2) ≥ 0, we

could derive tighter bounds by writing W
k
(t1, t2) ≥

max {0, ...}. However this would make the result even less
readable, and it is hardly useful given that the equation is
later used in a context where we take the maximum over any
flow and/or time intervals.

10

V
k
(t) = S

k
(t), for the first term we have

V
k
(t2)− V (t2) = S

k
(t2)− V (t2)

(8) and lk≤Lk

≥

F
k
(t2)−

Lk

φk − V (t2)
(9)

≥

F̃ k(t2)−
Lk

φk −∆F k − V (t2)
(14)

≥

−Lk

φk −∆F k − L

(18)

But, if, in particular, t2 coincides with the com-
pletion time of a packet of flow k, then we have,

more precisely that V
k
(t) = S

k
(t) = F

k
(t−)

from (8). Repeating the same derivations as above,

but starting from V
k
(t) = F

k
(t−), we get, for this

special case,

V
k
(t2)− V (t2) ≥ −∆F k − L (19)

As for the second term, we have

−
[

V
k
(t1)− V (t1)

]

=

−
[

S
k
(t1)− V (t1)

] (15)

≥

−

[

V (t1) + ∆Sk +
Lk

φk
− Lk − V (t1)

]

=

−

[

∆Sk +
Lk

φk
− Lk

]

(20)

Replacing the bounds (18), or (19), and (20)
in (17), and rearranging terms, we get the thesis.

Lemma 4. We have, in general,

W
k
(t1, t2) ≥ φk

(

W (t2)−W (t1)
)

+

−φk

(

2
Lk

φk
+∆Sk +∆F k + L− Lk +∆W

) (21)

whereas, if t2 coincides with the completion time of

a packet of flow k, then the term 2Lk

φk can be replaced

with Lk

φk in the above bound.

Proof. We prove the thesis by upper-bounding
the term V (t1, t2) in (16) as follows:

V (t2)− V (t1)
(7)

≥ W (t2)−W (t1)
(6)

≥
W (t2)−W (t1)−∆W

(22)

8.4. Service guarantees of DRR

We define as transmission opportunity for flow k
every maximal sub-interval of [t1, t2] during which
the flow is continuously at the head of the DRR
queue. Let h be the number of transmission oppor-
tunities for flow k during [t1, t2]. If t1 is lower or
equal to the beginning of the first transmission op-
portunity, and if we denote as φmin the minimum
possible weight among flows, from [11, Lemma 2],
we can derive the following loose upper bound (in-
dependent of ∆W):

W (t1, t2) <
h

φmin

L+ (N − 1)L (23)

We use this loose bound instead of a tighter one
to avoid longer formulas. As for the service received
by flow k, we have, again from [11, Lemma 2] (and
again regardless of ∆W),

W
k
(t1, t2) ≥ (h− 1)

φk

φmin

L− L (24)

where the factor h− 1 in the first term is not equal
to h because t2 may be, in the worst case, equal
to the beginning of the h-th transmission opportu-
nity, and hence flow k may have not yet used that
opportunity at all by time t2.
We want now to upper-boundW (t1, t2) as a func-

tion of W
k
(t1, t2). To this purpose, solving (24) for

h, and replacing the result in (23), we get

W (t1, t2) ≤
W

k
(t1, t2)

φk
+

(

1

φmin

+
1

φk
+N − 1

)

L

(25)

9. Service properties of AFQ

In this section we compute the T-WFI and the
B-WFI for AFQ, using the intermediate bounds
proved in the previous section. Formulas are little
intuitive at a first glance, but it is easy to show what
each term accounts for, as we do in Section 9.1, af-
ter reporting and proving formulas themselves.

Theorem 1 (T-WFI). For a flow k, AFQ guar-
antees

T-WFIk =
Lk

φkR
+

∆Sk +∆F k + L− Lk +∆W

R
(26)

11

Proof. Given a packet p arriving at time ta, we
prove the thesis in two steps: first we compute an
upper bound to the time that elapses from ta to
when p is dequeued from AFQ, say time tc, then we
add to this upper bound the maximum time that
may elapse from time tc to the time instant tc at
which p is finally transmitted.

As for the first step, by definition of W
k
(t) and

tc, we have that W
k
(ta, tc) = Qk(ta). Using this

equality and (21), and recalling that the link works
at constant speed R, we can write

tc − ta ≤
W (ta, tc)

R
=

W (ta, tc) +W (tc)−W (tc)

R
=

W (tc)−W (ta) +W (tc)−W (tc)

R

Lemma 4
≤

W (tc)−W (tc)

R
+

W
k
(ta, tc)

φkR
+

Lk

φk − Lk +∆Sk +∆F k + L+∆W

R
=

W (tc)−W (tc)

R
+

Qk(ta)

φkR
+

+

Lk

φk − Lk +∆Sk +∆F k + L+∆W

R
(27)

The thesis follows from considering that, since
the FIFO is emptied and the packet on the link
is served at a constant rate R, then tc − tc =
W (tc)−W (tc)

R
.

We never use the link rate to prove the next the-
orem, stating the B-WFI, as well as the theorem
stating the RFI (Appendix B) and the properties
these theorems depend on. Hence these theorems
hold also for time-varying link rates.

Theorem 2 (B-WFI). For a flow k, AFQ guar-
antees

B-WFIk = φk
(

∆Sk +∆F k
)

+

+ (2− φk)Lk + φkL+ φk∆W
(28)

Proof. By substituting (13) in the argument of

the max function in (11), we get

φkW (t1, t2)−W k(t1, t2)
(13)

≤

φkW (t1, t2)−W
k
(t1,max{t1, t̂})

(21)

≤

φkW (t1, t2)− φk
(

W (max{t1, t̂})−W (t1)
)

+

+φk

(

2
Lk

φk
+∆Sk +∆F k + L− Lk +∆W

)

≤

φkW (t1, t2)− φk (W (t2)−W (t1))+

+φk

(

2
Lk

φk
+∆Sk +∆F k + L− Lk +∆W

)

(29)

9.1. Discussion of the formulas

Terms related to the scheduling policy.
First, the terms proportional to Lk, stemming from
Lemma 2, account for the fact that, despite the eli-
gibility constraint, AFQ can be a little ahead of the
corresponding ideal system in serving some pack-
ets of the flow k. This implies that, during some
unlucky time interval, the flow may pay back for
the extra service previously received. Second, the
terms proportional to L are a consequence of the
fact that even the fictitious system (Section 6.3)
may serve some packets out of order with respect
to finish timestamps (Lemma 5). Finally, the terms
proportional to ∆Sk and ∆F k account for times-
tamp approximations (Eq. (9)).
Terms related to the FIFO and the uncer-

tainty on W (t). The terms proportional to ∆W
embody one of the main results of this paper: with
AFQ the FIFO casuses the minimum possible ser-
vice degradation. In fact, in the T-WFI, the FIFO
causes an additional worst-case delay equal to just
the time needed to empty the FIFO itself. In terms
of B-WFI, the component proportional to ∆W is in-
stead even multiplied by φk. This is interesting, be-
cause low-weight, i.e., low-bandwidth flows (inter-
active sessions, VoIP, etc.) multiplexed on a high-
bandwidth link will not be impacted too badly, in
terms of short-term bandwidth guarantees, by the
presence of a FIFO even of large size.

10. Comparison with classical bounds and
among schedulers

Instantiating the general bounds proved in the
previous section, we show and discuss now the ser-
vice guarantees provided by most AFQ schedulers,

12

Scheduler ∆Sk ∆F k Ideal T-WFI Ideal B-WFI

WF2Q+ 0 0 Lk

φkR
+ L−Lk

R
(1− φk)Lk + φkL

S-KPS 4Lk

φk 2Lk

φk 6 Lk

φkR
+ 2L

R
7Lk + 2φkL

GFQ Lk

φk
Lk

φk 4 Lk

φkR
+ 2L

R
5Lk + 2φkL

QFQ 2Lk

φk 3Lk

φk 6 Lk

φkR
+ 2L

R
7Lk + 2φkL

DRR n.a. n.a.
(

1
φmin

+ 1
φk +N − 1

)

L
R

(

φk

φmin
+ 1 + φk(N − 1)

)

L

Scheduler ∆Sk ∆F k Real T-WFI Real B-WFI

AFQ Lk

φkR
+ ∆k+L−Lk+∆W

R
φk∆k + (2 − φk)Lk + φkL+ φk∆W

WF2Q+ 0 0 Lk

φkR
+ L−Lk+∆W

R
(2 − φk)Lk + φkL+ φk∆W

S-KPS 4Lk

φk 2Lk

φk 7 Lk

φkR
+ L−Lk+∆W

R
(8 − φk)Lk + φkL+ φk∆W

GFQ Lk

φk
Lk

φk 3 Lk

φkR
+ L−Lk+∆W

R
(4 − φk)Lk + φkL+ φk∆W

QFQ 2Lk

φk 3Lk

φk 6 Lk

φkR
+ L−Lk+∆W

R
(7 − φk)Lk + φkL+ φk∆W

QFQ+ n.a. n.a. 11 Lk

φkR
+ ∆W+min(8L,∆W)−Lk

R
(11− φk)Lk +min(8L,∆W) + φk∆W

DRR n.a. n.a.
(

1
φmin

+ 1
φk +N − 1

)

L
R
+ ∆W

R

(

φk

φmin
+ 1 + φk(N − 1)

)

L+ φk∆W

Table 2: Service guarantees for various schedulers with “ideal” links (no FIFO, bounds derived from the literature) and “real”
links (FIFO, W (t), bounds computed from the analysis in this paper). We use the symbol ∆k ≡ ∆Sk + ∆F k. 0 ≤ φk ≤ 1 is
the weight of the flow, N is the number of flows, Lk and L are the maximum packet sizes for the flow and among all flows,
∆W is the capacity of the FIFO plus L, and R is the rate of the link.

plus QFQ+ and DRR, in the presence of a FIFO
and uncertainties on the work function.

10.1. Ideal and real bounds

Table 2 reports ideal (according to classical anal-
ysis) and real T-WFIs and B-WFIs. For WF2Q+,
ideal T/B-WFIs are taken from [1], and are equiva-
lent to our analysis with ∆W = 0, i.e., no FIFO
or uncertainty on the work function. However,
whereas the real T-WFI of WF2Q+ is correctly
equal to the ideal T-WFI plus a term proportional
to ∆W , there is a mismatch between ideal and real
B-WFIs, because in our analysis we consider a more
general time interval (Section 7.2).

The T/B-WFIs for the approximated variants of
WF2Q+ in the top half of the table are instead
taken from our previous work [3, Sec.6] (replacing

σi with its value 2Lk

φk), because not all original pa-

pers include all these bounds. These T/B-WFIs ac-
tually lie in the middle between ideal and real ones,
as they take into account at least the uncertainty
on the work function, i.e., assume that schedulers
are modified as in Section 6.3 and that ∆W = L.
But, with respect to this aspect, the analysis in [3]
is less accurate than that in this paper. As a conse-
quence, for the approximated variants of WF2Q+,
there are some mismatches between real T/B-WFIs

with ∆W = L, in the bottom half of the table, and
T/B-WFIs in the top half of the table.
For QFQ+, real T/B-WFIs have been directly

computed by the author [16]. We have obtained
the bounds in Table 2 by just replacing Q with
∆W in the formulas in [16], and by replacing the
resulting bounds with slightly looser, but simpler
ones. Finally, the ideal and real T-WFI and B-
WFI for DRR can be derived from Eq. (25) with
similar steps as in the proofs of theorems 1 and 2.

10.2. Comparison among schedulers

Effect of approximate timestamps in AFQ
schedulers. Defined ∆k ≡ ∆Sk + ∆F k, the bot-
tom half of Table 2 shows that the difference be-
tween WF2Q+ and its approximated variants is

equal to ∆k

R
for the T-WFI and φk∆k for the B-

WFI. Given the values of ∆k for these variants,

these differences are equal to at most 6 Lk

φkR
and 6Lk.

The following considerations can help put these dif-
ferences into context.
Tightness of the bounds in practical terms.

As thoroughly discussed in [16], most time-sensitive
network applications tolerate a maximum packet
delay/jitter in the order of the time to transmit
one packet at the rate guaranteed to the flows of

the application, i.e., in the order of Lk

φkR
. Similarly,

they tolerate a service lag in the order of the size

13

Lk of the application packets. Therefore, thanks to
their T-WFIs and B-WFIs, approximated variants
of WF2Q+, as well as QFQ+, are about as effective
as WF2Q+ in guaranteeing the feasibility of most
time-sensitive applications.

The same property definitely does not hold for
round-robin schedulers, such as DRR, whose T-
WFIs and B-WFIs contain components propor-
tional to L

φmin
and NL. Then these schedulers may

easily cause such a high delay, jitter and lag to make
a time-sensitive application unfeasible (Section 7).

Effect of the FIFO. Unfortunately, as ∆W
grows, also AFQ schedulers start to suffer from the
same problem. In particular, the difference between
DRR and an AFQ scheduler becomes negligible if
the number of slots in the FIFO is in the order of
N+ 1

φmin
. Which is then the best scheduler for such

scenarios?

The answer depends mainly on the cost of the
schedulers on the target system, in terms of running
time and software or hardware resources. In this
respect, all AFQ schedulers in Table 2 are more
complex and have usually a higher running time
than DRR. QFQ+ has instead proved to be at least
about as fast as DRR on the real systems considered
in [16], and, in particular, even faster for the most
relevant scenarios.

On systems on which QFQ+ does happen to be
at least about as efficient as DRR, QFQ+ may be
the best option with large FIFOs. Actually on such
systems, QFQ+ is likely to be the best option, in
practical terms, for all queue sizes.

On the opposite end, for systems with large FI-
FOs and on which DRR is the simplest and fastest
scheduler, the latter is most likely the best option.
In any case, the size of the FIFO may dramatically
influence both the absolute and the relative perfor-
mance of the schedulers. Hence we complete this
discussion by reporting typical FIFO sizes.

10.3. FIFO sizes in practical systems

The two queues typically used by a NIC, namely
the transmit ring and the hardware FIFO (Sec-
tion 6.1), operate on largely different timescales.
The hardware FIFO should just absorb delays in
the order of a few microseconds, which may occur
when there is heavy contention on the system bus.
Nevertheless, at 10..40 Gbit/s speeds, 10 µs corre-
spond to up to 50 Kbytes of data, which is a reason
why the hardware FIFO can be much larger, some-
times up to 512 Kbytes [6].

As for the transmit ring, with packet rates in the
range of millions of packets per second, it is hard
for the operating system to handle one interrupt
per packet. To bound interrupt frequency, most
modern NICs and operating systems implement a
feature called interrupt coalescing/mitigation, with
latencies typically in the 20..100 µs range. On top
of this, interrupt handlers might be further delayed
because of the CPU being busy with other pro-
cesses. This motivates the use of extremely large
transmit rings. Common values are 64..256 pack-
ets for low-speed hardware, and up to 1024..4096
buffers for 10 Gbit/s links. Even if systems are
moving to enforce queue limits in terms of bytes [5]
and not maximum-size packets, the need to deal
with those large latencies means that, especially on
high speed links, ∆W is often in the order of 100L
and more.

11. Conclusions

We have proved analytically the actual service
properties of a large family of fair-queueing sched-
ulers, ranging from WF2Q+ to its fast, approx-
imated variants, and of basic round-robin sched-
ulers, in the presence of output FIFOs between the
scheduler and the actual link, and without exact
knowledge of the number of bits transmitted.
Our main general result is that, with all the

schedulers considered in this paper, the degradation
of the service guarantees caused by FIFOs consists
only in an additional worst-case delay equal to the
time needed to empty the FIFOs themselves. The
scheduling perturbations induced by these queues
may however render completely irrelevant the dif-
ference in service properties among different fair-
queueing or round-robin schedulers.
These results are of practical relevance because

output FIFOs exist in all hardware and software
components, and it is important to know their
impact when designing systems with tight service
guarantees.

Appendices

A. Proofs of lemmas 1 and 2

To prove Lemma 1, we need to prove first the fol-
lowing preliminary relation between the completion
time of packet transmissions in the fictitious packet
system (Section 6.3) and in its corresponding fluid
system (Figure 3 C.). The proof of the relation is

14

an extension, for the fictitious system and its spe-
cial link, of the classical proof of the worst-case de-
lay guaranteed by a timestamp-based fair-queueing
scheduler [9, 2, 1].

Lemma 5. Let pm be the m−th packet served in
the fictitious packet system, and tpm and tfm the com-
pletion times of pm in the fictitious packet system
and in its corresponding fluid system (Figure 3 C).

If F
k

m = F̃ k
m then tpm ≤ tfm + ∆TL, where ∆TL is

such that W (tfm, tfm + ∆TL) = L (if the exact and
the approximate virtual finish time of packet pm are
equal, then pm will complete in the packet system no
later than in the fluid one, plus a worst-case delay
equal to ∆TL).

Proof. To prove the thesis we prove first that,
if all packets are served in finish-time order, then
tpm ≤ tfm trivially holds. Otherwise, if some packet
is served out-of-order before pm, then the in-order
packets (including pm) served after the last out-of-
order one must have necessarily arrived so late that
tpm − tfm cannot be higher than ∆TL.
Let o be the smallest index for which all packets

have an approximated finish time no greater than
pm, F̃i ≤ Fm∀i ∈ [o..m]. Since F i ≤ F̃i, and the
fluid system (using exact timestamps) completes
packets in finish time order, all packets po..pm must
also be completed not earlier than tfm in the fluid
system.
If o = 1 then from the origin of time the packet

system has served only packets p1..pm, while the
fluid system might have already started service for
some subsequent packet. Remembering that both
systems have the same work function, the fluid sys-
tem cannot be ahead of the packet system, hence
tpm ≤ tfm.
If o > 1, then packet po−1 has a higher finish

time than po . . . pm, none of which has started in the
packet system before tpo−1. This means that at tpo−1

either they had not yet arrived, or they were not eli-
gible (S̃k(tPo−1) > V (tPo−1)), so even the fluid system
cannot have started serving any of those packets
before tpo−1 (the fluid system starts to serve a flow

at time t only if S
k
(t) ≤ V (t), and S

k
(t) ≥ S̃k(t)

holds). However, some of the packets po . . . pm may
become eligible while the fluid system works at time
tpo−1, and hence also these packets may receive some
service in the fluid system at time tPo−1. Besides,
the work function of the fluid system increases by
at most L at time tpo−1. As a consequence, between
tpo and tpm the fluid system must have done at least

the same amount of work as the packet system, mi-
nus at most L. Hence tfm cannot precede tpm by
more than ∆TL.

Proof (Lemma 1). Let t be a generic time instant
at which flow k is backlogged, with the packet pm at
its head, or just transmitted by the fictitious system
if t is equal to the transmission time tpm of pm itself

in the fictitious system. We know that F
k
(t) ≤

F̃ k(t). If F
k
(t) = F̃ k(t), Lemma 5 tells us that the

transmission completion times in the packet and
fluid systems are tpm ≤ tfm+∆TL. Besides, denoted

as V
k

fluid(t) the virtual time of flow k in the fluid

system, the latter guarantees that V (t) ≤ V
k

fluid(t)
holds at all times. Thus

V (t) ≤ V
k

fluid(t)
t≤tpm
≤ V

k

fluid(t
p
m)

tpm≤tfm+∆TL

≤

V
k
(tpm) + L

(8)+(9)

≤ F̃ k(tp−m) + L
tp−m ≤t

−

≤ F̃ k(t
−
) + L

(A.1)

The case F
k
(t) < F̃ k(t) can be handled by con-

sidering what happens if packet pm is artificially ex-

tended so F
k
(t) = F̃ k(t). The larger packet would

still satisfy (A.1). Besides, whether or not the orig-
inal packet pm is replaced with a larger one, the
values of V (t) and F k(t) are the same, because 1)
the value of tpm does not depend on the size of pm,
2) t ≤ tpm, and 3) the size of pm does not influence
either any timestamp or the packet service order up
to time tpm. Hence the thesis holds also in this case.

Proof (Lemma 2). Given any time instant t, we
consider the smallest time instant tp such that

S
k
(tp) = S

k
(t), and we denote as pm the packet

served at time tp, and lm its size. According to (8),

either S
k
(tp) = V (tp) ≤ V (t) or S

k
(tp) = F

k
(t−p).

In the first case the thesis holds trivially. For the
thesis to hold in the other case, at least one packet
of flow k must have been already served before time
tp. Let t

′
p be the largest time instant, with t′p < tp,

at which a packet of flow k is served. Flow k has
to be eligible at time t′p, i.e., S̃

k(t−p) = S̃k(t′p) ≤

V (t′p) ≤ V (t−p) has to hold. Besides, we can note
that the virtual time advances by at least the size of
pm at time tp, thus V (t−p) ≤ V (tp)− lm ≤ V (t)− lm

holds. In the end, S̃k(t−p) ≤ V (t) − lm. Using this

15

inequality, we can write

S
k
(tp) = F

k
(t−p)

(8)
= S

k
(t−p) +

lm
φk

(4)

≤

S̃k(t−p) + ∆Sk +
lm
φk
≤

V (t)− lm +∆Sk +
lm
φk

0<φk≤1

≤

V (t)− Lk +∆Sk +
Lk

φk

(A.2)

B. Relative Fairness Index of AFQ

The Relative Fairness Index (RFI), introduced
in [12], is defined as the maximum difference, over
any time interval [t1, t2] and pair of flows k and h
continuously backlogged during [t1, t2], between the
normalized service received by to the two flows:

RFI ≡ max
∀h,k,[t1,t2]

∣

∣

∣

∣

Wh(t1, t2)

φh
−

W k(t1, t2)

φk

∣

∣

∣

∣

(B.1)

This metric is useful to determine how evenly a
scheduler distributes excess bandwidth in case not
all flows are backlogged. In this respect, the B-WFI
only identifies if a flow goes below its assigned fair
share (something that the RFI does not capture).

Theorem 3 (RFI). AFQ guarantees

RFI =

max
h,k

{

∆Sh− +∆Sh+ +∆Sk +∆F k + 2L+

+
Lh +∆W

φh
− Lh +

Lk +∆W

φk
− Lk

}

(B.2)

Proof. Consider two flows, h and k continuously
backlogged during a time interval [t1, t2]. We can
upper-bound the normalized service received by

flow h as follows:

Wh(t1, t2)

φh

(6)

≤
W

h
(t1, t2) + ∆W

φh
=

V
h
(t2)− V

h
(t1) +

∆W

φh
≤

S
h
(t2)− F

h
(t1) +

∆W

φh

(15)

≤

V (t2) + ∆Sh− +
Lh

φh
− Lh − F

h
(t1) +

∆W

φh

(4)

≤

V (t2) + ∆Sh− +
Lh

φh
− Lh − F̃h(t1)+

+∆Sh+ +
∆W

φh

(14)

≤

V (t2) + ∆Sh− +
Lh

φh
− Lh − V (t1) + L+

+∆Sh+ +
∆W

φh
=

V (t1, t2) + ∆Sh− +
Lh

φh
− Lh + L+

+∆Sh+ +
∆W

φh

(B.3)

As for the lower bound, we have8

W k(t1, t2)

φk
=

W k(t2)−W k(t1)

φk

(12)

≥

W k(t2)−W
k
(t1)

φk

(6)

≥

W
k
(t2)−∆W −W

k
(t1)

φk

(16)

≥

V (t1, t2)−
Lk

φk
− L+

+Lk −∆Sk −∆F k −
∆W

φk

(B.4)

Substituting (B.3) and (B.4) in (B.1), and taking
the maximum over all possible flow pairs, we get the
thesis.

8Same as in Section 8.3, we could derive tighter bounds
by considering that W k(t1, t2) ≥ 0, but the gain of at most
∆W/Φk would not change the 1/Φk behavior of the RFI at
the price of an unreadable expression.

16

References

[1] J. C. R. Bennet and H. Zhang. Hierarchical packet fair
queueing algorithms. IEEE/ACM Trans. on Network-
ing, 5(5):675–689, 1997.

[2] J. C. R. Bennett and H. Zhang. WF2Q: Worst-case fair
weighted fair queueing. Proc. of IEEE INFOCOM ’96,
pages 120–128, March 1996.

[3] F. Checconi, P. Valente, and L. Rizzo. QFQ: Efficient
Packet Scheduling with Tight Bandwidth Distribution
Guarantees. IEEE/ACM Trans. on Networking, 2013
(to appear).

[4] J. Gettys and K. Nichols. Bufferbloat: dark buffers in
the internet. Commun. ACM, 55(1):57–65, Jan. 2012.

[5] T. Herbert. bql: Byte queue limits.
http://lwn.net/Articles/469652/, November 2011.

[6] Intel. Intel 82599 10 gbe controller: Datasheet.
http://www.intel.com/content/www/us/en/ethernet-
controllers/82599-10-gbe-controller-datasheet.html,
September 2012.

[7] M. Karsten. SI-WF2Q: WF2Q approximation with
small constant execution overhead. Proc. of IEEE IN-
FOCOM 2006, pages 1–12, April 2006.

[8] M. Karsten. Approximation of generalized proces-
sor sharing with stratified interleaved timer wheels.
IEEE/ACM Trans. on Networking, 18(3):708–721,
2010.

[9] A. K. Parekh and R. G. Gallager. A generalized pro-
cessor sharing approach to flow control in integrated
services networks: the single-node case. IEEE/ACM
Trans. on Networking, 1(3):344–357, June 1993.

[10] L. L. Peterson and B. S. Davie. Computer Networks
- A systems Approach. Morgan Kaufmann Publishers,
2010.

[11] M. Shreedhar and G. Varghese. Efficient fair queuing
using deficit round robin. IEEE/ACM Trans. on Net-
working, 4(3):375–385, 1996.

[12] S.J.Golestani. A self-clocked fair queueing scheme for
broadband applications. Proc. of IEEE INFOCOM ’94,
pages 636–646, June 1994.

[13] D. C. Stephens, J. C. Bennett, and H. Zhang. Imple-
menting scheduling algorithms in high-speed networks.
IEEE Journal on Selected Areas in Communications,
17(6):1145–1158, June 1999.

[14] D. Stiliadis and A. Varma. A general methodology for
designing efficient traffic scheduling and shaping algo-
rithms. Proc. of IEEE INFOCOM ’97, pages 326–335,
1997.

[15] P. Valente. Exact gps simulation and optimal fair
scheduling with logarithmic complexity. IEEE/ACM
Trans. on Networking, 15(6):1454–1466, 2007.

[16] P. Valente. Reducing the execution time of fair-
queueing packet schedulers. Computer Communica-
tions, 47(0):16 – 33, 2014.

[17] J. Xu and R. J. Lipton. On fundamental tradeoffs be-
tween delay bounds and computational complexity in
packet scheduling algorithms. IEEE/ACM Trans. on
Networking, 13(1):15–28, 2005.

[18] X. Yuan and Z. Duan. Fair round-robin: A low com-
plexity packet scheduler with proportional and worst-
case fairness. IEEE Trans. on Computers, 58(3):365–
379, 2009.

17

