The use of lay-flat polyethylene pipes for microirrigation of horticultural crops has been receiving a widespread attention in the last few decades. The industry has made significant improvements in the hydraulic performance of lay-flat pipes, so that their use is still expected to increase, mainly because of the enhanced competition for water worldwide, that imposes the use of irrigation systems with potentially high application efficiencies and characterized by a limited installation costs. However, even if hydraulic design procedures for conventional microirrigation systems are fairly well established, there is still the need to know how different pipe wall thicknesses of lay-flat pipes can affect the pipe geometry under different operating pressures and the related consequences on friction losses.

This paper, after comparing two different procedures, i.e. caliper and photographic method, to assess the geometry of lay-flat polyethylene pipes under different operating pressures, usual in practical applications, analyzes the friction losses per unit pipe length, in order to identify and to assess a procedure for their evaluation. Hydrostatic tests, initially carried out on pipes with wall thicknesses of 0.15, 0.20 and 0.25 mm (6, 8 and 10 mil), evidenced that the pipe vertical and horizontal dimensions measured with both the methods are quite similar, even if the maximum standard deviations associated to the caliper, equal for the three pipes to 0.11 mm, 0.19 mm and 0.10 mm, resulted higher than those obtained with the photographic method, whose values resulted generally lower than 0.06 mm. At the same time, the tests allowed to identify that most of the changes of the pipe dimensions occur in the range of pressure from 0 kPa to about 30 kPa, being the dimensions quite similar at higher values, when the pipes tend to assume a round cross section. When water pressures increase over a certain limit, plim, both vertical width and horizontal height still tend to rise, because of the pipe deformation due to the elasticity of the material, with a trend that resulted more marked for the pipe with the lowest thicknesses. According to the experimental data, the relationships between the pipe effective diameter, to be used to evaluate pipe friction loss, and the water pressure, were then determined on the three considered pipes.

On the other side, based on measured friction losses and on pipe effective diameters, it was verified that the relationship between the Darcy-Weisbach friction factor, f, and the Reynolds number, R, can be still described with a power equation in which, by assuming a value of -0.25 for the exponent, the coefficient resulted lower than the theoretical and equal to c=0.285.

For the three investigated pipes the errors associated to estimated friction loss per unit pipe length were finally evaluated by considering: i) the experimental relationships between friction factor and Reynolds number and between pipe diameter and operating pressure (case A); ii) the same value of c, but pipe effective diameters of 16.20 mm, 16.10 mm and 15.85 mm corresponding p=plim (case B); iii) the standard procedure, with a value of c=0.302 and the pipe diameter equal to 16.10 mm, as suggested by the manufacturer. According to the RMSE values associated to friction factor per unit pipe length, lower for the case A, it was observed that a suitable estimation of friction loss per unit pipe length needs to consider the variations of the pipe effective diameter with water pressure, once disposing of a suitable criterion to estimate the friction factor. On the other hand, incorrect values of pipe diameter combined with inexact values of the friction factor, generate inaccurate estimations of friction loss, with unavoidable consequences in the pipe design.
Analysis of geometrical relationships and friction losses in small diameter lay-flat polyethylene pipes

Giuseppe Provenzano¹, PhD, Vincenzo Alagna², Dario Autovino³, Juan Manzano⁴, PhD, and Giovanni Rallo⁵, PhD

¹Associate Professor, Dipartimento Scienze Agrarie e Forestali, Università di Palermo, Viale delle Scienze 12, Ed. 4, 90128 Palermo, Italy (corresponding author). E-mail: giuseppe.provenzano@unipa.it
²PhD Student, Dipartimento Scienze Agrarie e Forestali, Università di Palermo, Viale delle Scienze 12, Ed. 4, 90128 Palermo, Italy. E-mail: vincenzo.alagna@unipa.it
³PhD Student, Dipartimento Scienze Agrarie e Forestali, Università di Palermo, Viale delle Scienze 12, Ed. 4, 90128 Palermo, Italy. E-mail: dario.autovino@unipa.it
⁴Professor, Departamento de Ingeniería Rural y Agroalimentaria, Universitat Politècnica de Valencia, Camino de vera s/n, 46022 Valencia, Spain. E-mail: juamanju@agf.upv.es
⁵Felloship Researcher, Dipartimento Scienze Agrarie e Forestali, Università di Palermo, Viale delle Scienze 12, Ed. 4, 90128 Palermo, Italy. E-mail: giovanni.rallo@unipa.it

Abstract

The use of lay-flat polyethylene pipes for microirrigation of horticultural crops has been receiving a widespread attention in the last few decades. The industry has made significant improvements in the hydraulic performance of lay-flat pipes, so that their use is still expected to increase, mainly because of the enhanced competition for water worldwide, that imposes the use of irrigation systems with potentially high application efficiencies and characterized by a limited installation costs.

However, even if hydraulic design procedures for conventional microirrigation systems are fairly
well established, there is still the need to know how different pipe wall thicknesses of lay-flat pipes can affect the pipe geometry under different operating pressures and the related consequences on friction losses.

This paper, after comparing two different procedures, i.e. caliper and photographic method, to assess the geometry of lay-flat polyethylene pipes under different operating pressures, usual in practical applications, analyzes the friction losses per unit pipe length, in order to identifies and to assess a procedure for their evaluation.

Hydrostatic tests, initially carried out on pipes with wall thicknesses of 0.15, 0.20 and 0.25 mm (6, 8 and 10 mil), evidenced that the pipe vertical and horizontal dimensions measured with both the methods are quite similar, even if the maximum standard deviations associated to the caliper, equal for the three pipes to 0.11 mm, 0.19 mm and 0.10 mm, resulted higher than those obtained with the photographic method, whose values resulted generally lower than 0.06 mm. At the same time, the tests allowed to identify that most of the changes of the pipe dimensions occur in the range of pressure from 0 kPa to about 30 kPa, being the dimensions quite similar at higher values, when the pipes tend to assume a round cross section. When water pressures increase over a certain limit, p_{lim}, both vertical width and horizontal height still tend to rise, because of the pipe deformation due to the elasticity of the material, with a trend that resulted more marked for the pipe with the lowest thicknesses. According to the experimental data, the relationships between the pipe effective diameter, to be used to evaluate pipe friction loss, and the water pressure, were then determined on the three considered pipes.

On the other side, based on measured friction losses and on pipe effective diameters, it was verified that the relationship between the Darcy-Weisbach friction factor, f, and the Reynolds number, R, can be still described with a power equation in which, by assuming a value of -0.25 for the exponent, the coefficient resulted lower than the theoretical and equal to $c=0.285$.

For the three investigated pipes the errors associated to estimated friction loss per unit pipe length were finally evaluated by considering: i) the experimental relationships between friction factor and
Reynolds number and between pipe diameter and operating pressure (case A); ii) the same value of c, but pipe effective diameters of 16.20 mm, 16.10 mm and 15.85 mm corresponding $p=p_{lim}$ (case B); iii) the standard procedure, with a value of c=0.302 and the pipe diameter equal to 16.10 mm, as suggested by the manufacturer. According to the RMSE values associated to friction factor per unit pipe length, lower for the case A, it was observed that a suitable estimation of friction loss per unit pipe length needs to consider the variations of the pipe effective diameter with water pressure, once disposing of a suitable criterion to estimate the friction factor. On the other hand, incorrect values of pipe diameter combined with inexact values of the friction factor, generate inaccurate estimations of friction loss, with unavoidable consequences in the pipe design.

Key-words: Lay-flat polyethylene pipes, Pipe geometry, Hydraulic radius, Friction losses, Friction factor
Introduction

Despite lay-flat tubing of different plastic materials have been introduced in the sixties for irrigation networks, small diameters thin-walled drip-laterals have been recently diffusing, mainly to irrigate seasonal horticultural crops and with the aim to reduce the installation costs. These drip-lines, with diameters ranging between 12 mm and 22 mm and co-extruded emitters at different spacing, are usually manufactured by thin-walled low density polyethylene pipes, so that they are used under working pressure, \(p \), generally lower than 150 kPa. Wall thickness varies between 6 mil and 25 mil, corresponding to 0.15 mm and 0.63 mm, respectively. Compared to the thick-walled pipes, characterized by wall thicknesses ranging between 0.90 mm and 1.20 mm, which are less flexible, thin walled pipes become flat when empty, so they can be wrapped in rolls, easier to be transported (Provenzano et al., 2014).

The shape of such pipes and their degree of roundness depend on the pressure of water inside the pipe: when the working pressure approaches to the lowest limit suggested by the manufacturer, the pipe cross section tends to become flat, whereas it is round when water pressures exceed a certain limit.

Usually, lay-flat drip irrigation systems are designed by considering conventional methods, assuming that the pipe cross sections is circular and the internal diameters as provided by the manufacturers. Only a few years ago, Thompson et al. (2011) emphasized the lack of information necessary to the accurate design of lay flat drip irrigation systems. These Authors, based on an experimental analysis carried out by using pipes with wall thickness of 0.125, 0.20, 0.25 and 0.50 mm, evidenced that estimation of friction losses can be improved if the pipe section is still considered circular, but assuming an effective diameter, lower than the actual, dependent on the pressure inside the pipe.

At increasing operating pressure in fact, the cross-sectional area becomes bigger and, starting from a quasi-rectangular, it tends to assume a round shape, as showed in fig. 1. These changes result in a variation of the cross sectional area and can affect the velocity distribution of pipe flow,
with the consequence that the velocity distribution along the vertical direction could be different
than the horizontal one. Most of the energy loss is dissipated in the thin layer close to the pipe
(boundary layer), where friction plays an important role; on the other hand, in the region outside
this layer, friction can be neglected (Provenzano et al., 2007). At decreasing water pressure, when
the area and the degree of roundness decrease, the boundary area tends to become larger in
proportion of the cross sectional area (Humpherys and Lauritzen, 1964).

Being the friction coefficient dependent on the relative roughness and the velocity distribution,
any change in the shape of the cross section affects both these variables and consequently the
friction losses. At the same time, pressure along the pipe is influenced by both friction losses and
elevation changes. When a lay-flat pipe is laid horizontally, its geometry varies from one section to
another along the flow direction, according to the reduction of pressure head. The flow regime
assumes therefore a steady state condition and friction loss along a certain pipe length is quite
difficult to determine (Rettore Neto et al., 2014).

When the flow velocity distribution is known, its average value can be determined by integrating
the velocity profile, so that the flow resistance law can be deduced, as theoretically done by circular
and very wide rectangular shapes, under specific boundary conditions (von Karman, 1934; Prandtl,
1935). According to the Darcy-Weisbach equation, for a circular pipe having an internal diameter
equal to \(d \), friction loss \(h_f \) along a pipe length \(L \), can be expressed as:

\[
h_f = \frac{f V^2}{d} \frac{L}{2g} = \frac{8f Q^2}{g \pi^2 d^3} L
\]

(1)
in which \(f \) is the friction factor, \(V \) the mean flow velocity, \(Q \) the flow rate and \(g \) the acceleration of
gravity.

The friction coefficient in smooth pipes is usually evaluated as a function of Reynolds number,
\(R \), by the Blasius equation, valid for quasi-turbulent flow in smooth pipes or similar equations,
specifically obtained for small diameter polyethylene pipe (von Bernuth and Wilson, 1989; Hathoot
et al., 1993; Bagarello et al. 1995; Juana et al., 2002; Provenzano and Pumo, 2004):
\[f = \frac{c}{R^{0.25}} \]

(2)

in which \(c \) is a constant that, for small diameter polyethylene pipe, can be assumed equal to 0.302 (Bagarello et al. 1997; Provenzano et al., 2005).

For low pressure lay-flat drip lines, whose cross section can be non-circular, the internal diameter \(d \) appearing in eqs. (1) and (2), has to be replaced by a value equal to four times the hydraulic radius, \(R_h \), of the new shape (Streeter and Wylie, 1985):

\[d = 4R_h = 4 \frac{A}{P} \]

(3)

in which \(A \) is pipe cross sectional area and \(P \) is the perimeter of the pipe cross sections. Eq. (3) provides reasonably precise results for turbulent flow, but it is not very accurate when the flow regime is laminar (Finnemore and Franzini, 2002). Assuming that for low values of operating pressure the pipe cross section can be hypothesized as constituted by a circle segment having a certain radius, \(r \), mirrored respect to its chord, and subtending an angle \(\omega \) (radians) with the circle center, the total area, \(A \), and the wetted perimeter, \(P \), result:

\[A = r^2 (\omega - \sin \omega) \]

(4)

\[P = 2r \omega \]

(5)

Only recently, Rettore Neto et al. (2014) developed a procedure to determine friction loss along elastic pipe, based on eq. (1) and accounting for the variability of pipe cross section with the internal water pressure. The new equation, named as “pressure dependent head loss equation” (PDHLE), needs the knowledge of the modulus of elasticity of pipe material, as well as pipe wall thickness, working pressure and the variations of internal diameter due to pressure. Anyway, the proposed methodology takes only into account the elastic deformation of the pipe due to external forces in a range of internal pressures unusual for practical applications and does not consider the changes in the shape of pipe cross-section occurring at the lowest operating pressures.

A question that still needs to be solved is how different wall thicknesses of lay-flat polyethylene
pipes affect the tube geometry under different operating pressures and the related effects on friction losses.

A specific experimental investigation was therefore carried out in order i) to compare two different procedures, i.e. caliper and photographic method, to measure the pipe horizontal width and vertical height under different operating pressures; ii) to model the pipe effective diameter as a function of water pressure and iii) to analyze the values of friction losses per unit pipe length in deformable polyethylene pipes characterized by different wall thickness, with the aim to identify and to assess a general procedure for their evaluation.

Materials and methods

Hydrostatic tests

In order to determine the relationships between the pipe dimensions, i.e. horizontal width and vertical height, and pressure head, hydrostatic tests were carried out on thin-walled polyethylene pipes, having nominal diameter, \(ND \), equal to 16 mm and characterized by three different pipe wall thicknesses (6 mil, 8 mil, 10 mil). According to the manufacturer, all the pipes have the same internal diameter, \(d \), (\(d=16.10 \) mm) and should be used under operating pressures ranging between 30 kPa and 100-120 kPa. For each examined pipe, two 1.0 m long sections were connected to two vertical bars, as showed in fig. 2, and positioned to measure, for different hydrostatic pressures, horizontal width (\(D_h \)) and vertical height (\(D_v \)). Fittings and valves were coupled in such a manner that water could entry in the tubes and drain from it. At the same time, the corresponding water pressures were measured by using a mercury gauge equipped with an air vent and connected to the pipes. To reduce the water pressure in the network, a diaphragm pressure regulating valve was inserted along the inflow pipe. With the aim to eliminate the effect of round end fittings, the horizontal and vertical dimensions were measured three times in the middle section of the pipes (fig. 2), by means of a digital caliper.
having a precision of 0.01 mm (caliper method). At the same time two pictures were taken and
used to measure the corresponding pipe dimensions with a CAD software (photographic method).
About thirty measurements for each pipe wall thickness were carried out at least half an hour after
establishing each value of hydrostatic pressure, in order to avoid further pipe deformations. To
increase the accuracy of the measurements, the order of pressure was established randomly and
each determination was repeated twice. Pressure values ranged between about 10 kPa and 150 kPa,
wider than the interval of working pressures suggested by the manufacturer.

Hydrodynamic tests

Hydrodynamic tests were carried out by using the same three thin-walled polyethylene pipes used
for the hydrostatic ones (ND 16), in order to measure friction losses under different pressure heads
and flow rates. The experimental setup, shown in Fig. 3, was fed by a recirculation pump (Ep). A
water tank (T), installed about 20 m below the pipe and a diaphragm pressure regulating valve,
allowed to establish a constant value of pressure head in the hydraulic circuit, in which there were
inserted three trams of pipe, having the same length (L=11.8 m). Two air vents were placed in
correspondence to the differential manometer to facilitate the removal of air bubbles at the begin of
each experiment.

Twelve measurements were acquired on each pipe, by considering a wide range of flow rates and
pressure heads, so to obtain an extensive range of Reynolds numbers, usual in practical
applications. The pipe length was also measured to take into account possible longitudinal
dilatations.

A differential manometer was used to measure head losses in the three trams in which each pipe
was divided (P₁-P₂, P₃-P₄, P₅-P₆), while a pressure gauge provided the pressure head, hₚ₁, at the pipe
upstream end (P₁). Operating in this way it was possible to dispose, for each pipe thickness, of 36
runs characterized by different geometric and hydraulic conditions. For each operating pressure,
head losses, including local losses at fitting connections installed at the upstream and downstream end of each tram, were measured three times, after reaching a steady state condition. Accuracy of the pressure gauge readings was equal to 0.05 mmHg, so that the error on measured head loss resulted about 1.0 mm.

During each experiment, the flow discharge, constant through the three trams of pipe, was measured three time at the downstream end of the circuit, by acquiring the time necessary to fill a volume of about 10 l; water was weighted with a precision of 0.1 g, and the actual water density was determined based on the detected temperatures. In order to avoid systematic error, discharges in experimental tests were assigned randomly (von Bernuth and Wilson, 1989).

Table 1 shows minimum and maximum values of pressure head at the upstream end, of flow rate and of Reynolds number, as measured during the experiments. The latter values were obtained considering the pipe with a circular cross section, equivalent to the actual measured.

With the aim to evaluate the local losses caused by the fitting connectors at the manometric gauges, a specific experiment was carried out by using the same experimental setup, that was adapted for the purpose. A short tram of pipe with wall thickness of 8 mil and a length of 0.30 m, was connected to the manometric gauges (P_1-P_2), with the same connectors already used to determine friction losses. Total pressure losses (friction and local losses) were then measured under pressures variable from 0.6 kPa to 168.3 kPa and by considering fifteen different flow rates, ranging between 236.1 l/h and 1491.4 l/h. Each determination was repeated three times, in order to reduce experimental errors. Water temperature was also measured during each experiments, whereas horizontal and vertical dimensions in the middle cross section of the pipe, were determined once known the specific relationship between the effective pipe internal diameter, \(d \), and water pressure, \(p \). For each flow rate, local losses due to the fittings were then determined by subtracting to the measured total losses, the corresponding friction losses in the pipe, estimated by assuming the pipe circular and based on eqs. (1) and (2).
Results and discussion

Hydrostatic tests

For the considered pipes, fig. 4a-c shows the external vertical height, D_v, and horizontal width, D_h, measured with the photographic method on pipe with wall thicknesses of 6, 8 and 10 mil, as a function of the corresponding values obtained by the caliper. Horizontal and vertical bars indicate the standard deviations, σ, of the measurements carried out by means of the two methodologies, whose values are illustrated in detail in Fig. 5a-c. As can be observed, the values of external pipe dimensions measured by the photographic method resulted quite similar to the corresponding obtained with the caliper (fig. 4a-c), even if the latter are generally characterized by higher standard deviations (fig. 5a-c) than the former. In particular, with the caliper method, the maximum standard deviation resulted equal to 0.11 mm, 0.19 mm and 0.10 mm for wall thickness of 6 mil, 8 mil and 10 mil respectively, whereas they resulted, at maximum, slightly higher than 0.06 mm when considering the photographic method.

Because of the lower variability characterizing the pipe dimensions measured by the photographic method compared to the caliper, the following analysis were carried out by considering the former methodology.

Based on the measured values of external pipe dimensions, the corresponding internal width, d_h, and height, d_v, were then calculated by subtracting twice the pipe wall thickness, equal to 0.15 mm, 0.20 mm and 0.25 mm respectively, for the three considered pipes.

Fig. 6a-c illustrates, as a function of water pressure, the variations of internal vertical height and horizontal width, obtained with the photographic method on pipe with wall thicknesses of 6, 8 and 10 mil. As can be observed, for all the examined cases, the vertical heights rapidly increase, whereas the horizontal widths decrease, when hydrostatic pressure rises from 0 kPa to about 30 kPa; on the other hands, both the dimensions tend to became similar for the highest values of hydrostatic pressure and the pipes tend to assume a round cross section ($d_v=d_h$). Moreover, for the pipes with wall thickness of 6 mil and 8 mil, both d_v and d_h tend again to rise when water pressure
results higher than a certain threshold values, as a consequence of the pipe deformation due to the
elasticity of the material; as visible, this trend is more marked for the pipe characterized by the
lowest thickness.

Fig. 7 shows the degree of pipe roundness obtained, for the examined pipes, by dividing the vertical
height by the horizontal width. As observed by Humphreys and Lauritzen (1962) for
polyvinylchloride plastic and butyl-rubber tubes with diameters ranging between 100 mm and 400
mm, even for low diameter polyethylene pipes, depending on the pressure inside the pipe, the
degree of pipe roundness increases and consequently the pipe cross-sectional area tends rapidly to
inflate, till to reach a round cross section.

Based on the measurements of widths and heights in the range of pressures for which pipe is not
circular and assuming the shape of the cross section as constituted by two circle segments, the cross
sectional area and the wetted perimeter were therefore determined by using eqs. (4) and (5). Each
circle segment is characterized by a radius, r, still variable with the water pressure, that was
evaluated from eq. (5), as a function of the subtended angle \(\omega \) and superimposing that, in the range
of examined pressures, the wetted perimeter P remains constant.

The value of \(\omega \) was obtained by solving, with an iterative procedure, the equation:

\[
\omega = 2 \arctan \left(\frac{d_h}{2r - d_v} \right)
\]

(6)

whereas the values of the wetted perimeter P was assumed the one corresponding to the minimum
pressure threshold, to which the pipe become circular.

For each water pressure therefore, once identified the shape and determined the cross sectional area
and the wetted perimeter, it was possible to evaluate the hydraulic radius and then, by eq. (3), the
corresponding value of pipe effective diameter to be used in eqs. (1) and (2).

Fig. 8 shows the values of the effective diameter, \(d \), as a function of water pressure, \(p \). As can be
observed, the values of effective diameters resulted slightly increasing in the ranges of operating
pressure from about 3 to 80 kPa (6 mil), 5 to 100 kPa (8 mil), and 8 to 120 kPa (10 mil), and
drastically decrease for water pressures tending to zero. The upper limit of each range, p_{lim}, for the pipe with different thickness, identifies the threshold to which the degree of pipe roundness approaches to 1.0. Moreover, due to the elasticity of the material and in agreement with what emphasized by Rettore Neto et al. (2014), any further rise of water pressures over p_{lim} increase the pipe diameters, even if the shape of the cross section remains circular.

According to this considerations, experimental $d(h)$ data pairs where then fitted by curves of equation:

$$d = a + \frac{b}{p^m} \quad p < p_{lim}$$ \hspace{1cm} (7)

where a, b and m are the fitting parameters. At the same time, despite the few experimental data available, linear functions were used to represent the $d(p)$ relationships for $p > p_{lim}$ (Rettore Neto et al., 2014):

$$d = s + t \cdot p \quad p > p_{lim}$$ \hspace{1cm} (8)

with s and t fitting parameters. Table 2 shows the values of fitting parameters appearing in eqs. (7) and (8), together with the corresponding coefficients of determination. Based on the fitting curves, the effective diameters of the 6 mil pipe increased from 16.15 mm to 16.20 mm in the range of pressure 3-80 kPa, to reach the value of 16.71 mm for $p=150$ kPa, whereas, for the 8 mil pipe, the effective pipe diameter rose from 16.04 to 16.10 mm for $5 < p < 100$ kPa, to reach the value $d = 16.15$ mm at 150 kPa; on the other side, for the 10 mil pipe, the effective diameter ranged between 15.72 and 15.85 mm for $10 < p < 120$ kPa, and remained constant and equal to 15.85 mm, at higher p. The result evidences that, due to the rapid expansion of the cross sections occurring at low pressures, even in a range of water pressure lower than the minimum suggested by the manufacturer ($p < 30$ kPa), the pipe effective diameters show a more limited variability than the corresponding associated to the vertical and horizontal pipe dimensions. This result is consistent with what experimentally
observed by Thomson et al. (2011) on pipes with wall thicknesses ranging between 0.125 mm and 0.500 mm. These Authors evidenced that low thickness polyethylene pipes quite quickly inflate at very low water pressure reaching an almost constant cross sections, so that proposed to evaluate the pipe effective diameter according to pre-determined pressure thresholds.

Moreover, the elastic behavior of the pipe recently investigated by Rettore Neto et al. (2014), occurs only at operating pressure higher than the highest limit suggested by the manufacturer and only in pipes characterized by a very small wall thickness.

Hydrodynamic tests

Following, the results of the friction losses tests for the three considered pipes, are described. Analysis of friction losses required the preliminary evaluation of head loss in the fittings used to connect the pipes with the manometric gauges. The results of the related experiments evidenced that for all the investigated flow rates, local losses caused by the fitting connectors ranged between 92.1% and 94.8% of the measured total losses, being the remaining rate related to the friction losses in the short tram of pipe used for the tests. Fig. 9 shows, as a function of flow rate \(Q \) [l/h], the values of local head loss due to the fitting connectors, \(h_I \) [m], that include the local loss due to the enlargement (upstream connector to pipe) and subsequent contraction (pipe to downstream connector) of flow streamlines. The following quadratic fitting curve, passing from the origin of axes, was used to interpolate the experimental \(h_I(Q) \) data pairs:

\[
\begin{align*}
 h_I &= 6 \times 10^{-7} Q^2 + 7 \times 10^{-4} Q \\
 R^2 &= 1.00
\end{align*}
\]

with \(h_I \) in m and \(Q \) in l/h.

Once established the way to calculate the local losses due the fitting connectors, for each tram of the considered pipes, friction losses were evaluated and then referred to the unit pipe lengths. Fig. 10 shows the values of the measured friction loss per unit pipe length, \(J_{meas} \), as a function of flow rates, for pipes with wall thickness of 6, 8 and 10 mil. As known, for each considered pipe, the values of \(J_{meas} \) increase at increasing \(Q \). Moreover, for a fixed \(Q \), the corresponding \(J_{meas} \) tends to
increase according to the observed reductions of pipe diameter (fig. 8), with differences that resulted more marked at higher \(Q \); at the same time, a certain variability of \(J_{meas} \) is still evident if considering separately the data collected on the three different pipes. Even this variability has to be associated to the recognized variations of pipe diameters with the operating pressure.

Based on the measured values of \(J_{meas} \) and \(Q \) and disposing of a procedure to determine the pipe effective diameter as a function of water pressure, the values of the Darcy-Weisbach friction factor \((f) \) associated to each tram of pipe were evaluated by solving eqs. (1), in which the effective diameters were determined with eq. (7) by considering the average pressure head and neglecting their variability along the considered tram of pipe. For all the examined pipes, fig. 11 shows the experimental values of friction factor as a function of Reynolds number. Theoretical values for laminar \((f=64/R \text{ for } R<2000) \) and turbulent \((f=0.302R^{-0.25} \text{ for } R>2000) \) flow regimes are also represented. The slightly higher variability of experimental points associated to the lower \(R \), is likely due to the incidence or the experimental errors. For the three considered pipes and in the range of investigated Reynolds numbers, the experimental \(f,R \) data pairs can be fitted by a relationship, linear in the logarithm graph, that is assumed parallel to the theoretical (eq. 2), but described by a lower coefficient \(c \), equal to 0.285.

This result seems to conflict with that presented by Thompson et al. (2011) who, working in the range of Reynolds number between about 1,500 and 10,000 and with lay flat pipes with different wall thicknesses, obtained values of the friction factor \(f \) systematically higher and characterized by a greater variability than those obtained in the current investigation, even if differences in \(f \) values tend to decline at increasing \(R \). In this regard, as discussed, it is noteworthy that the incidence of measurements errors increases at decreasing \(R \). Moreover, these Authors evaluated the values of \(f \) based on pipe effective diameters measured with a caliper that are affected by relatively high experimental errors. Finally, any difference in the smoothness of pipe used in the two distinct investigations, could be partially responsible of the discrepancy observed in friction factors.
In order to determine the errors on friction loss per unit pipe length associated to the not correct estimation of the friction factor or to an inexact evaluation of pipe diameter, for all the investigated pipes, the values of J_{est} were estimated by three different methodologies and then compared to the corresponding measured. The first methodology considers a coefficient c used to evaluate the friction factors equal to $c=0.285$ and the empirical relationship between pipe diameter and operating pressure (eq. 7) (case A); the second takes into account the same value of c, but assumes as pipe effective diameters the value of 16.20 mm, 16.10 mm and 15.85 mm determined at $p=p_{lim}$ (case B), whereas the third considers the standard procedure, with a value of $c=0.302$ and the pipe diameter equal to 16.10 mm, as suggested by the manufacturer.

For the three investigated pipes, fig. 12a-c shows the values of friction losses per unit pipe length estimated in case A, case B and case C, J_{est}, as a function of the corresponding measured. As can be observed, the differences between J_{meas} and J_{est} in the three considered cases resulted more evident for the highest values of the variable. The agreement between measured and simulated values was quantified by means of the Root Mean Square Error, RMSE, that for the three considered pipes, resulted respectively equal to 0.017, 0.033 and 0.021 for case A, to 0.020, 0.049 and 0.061 for case B and finally, to 0.050, 0.058 and 0.067 for case C. This statistical parameter has been largely used (Arbat et al., 2008) and has the advantage of expressing the error in the same units as the variable, providing more information about the efficiency of the model (Alazba et al., 2012; Legates and McCabe, 1999).

The following fig. 13a-c illustrates, as a function of pressure, the errors on friction loss per unit pipe length, E, estimated in the three examined cases. Errors were evaluated as difference between estimated and measured J, expressed as percentage of the corresponding measured.

As can be observed, in case A, errors resulted generally independent of water pressure and, except that for sporadic cases mainly associated to the pipe with a wall thickness of 8 mils, they resulted lower than 5% whereas, for the other two cases, it can be noticed a certain trend with the water pressure, according to the deformation of the pipes and the consequent variation of their internal
diameters. Moreover, the absolute errors associated to both cases B and C, resulted generally higher
that the corresponding associated to case A. This result evidences that to improve estimation of
friction losses per unit pipe length in all the range of operating pressure it is necessary to take into
account the actual variations of pipe diameter and water pressure inside the pipe, as well as to
consider a suitable estimation of the friction factors. On the other hand, assuming the pipe
diameters suggested by the manufacturer and/or unsuitable values of the friction factor, determine
inaccurate estimations of friction loss, with unavoidable consequences in the pipe design.

According to this results, for the accurate design of lay-flat polyethylene pipes, it is therefore
desirable that the manufacturers provide more accurate values of pipe internal diameters, as well as
their variations with the operating water pressure.

Conclusions

A comparison between two methodologies to evaluate the dimensions of lay-flat polyethylene pipes
under different operating pressures was initially proposed; then, after analyzing the effects of pipe
geometry on the Darcy-Weisbach friction factor, a procedure to evaluate the pipe friction loss was
suggested.

Based on hydrostatic tests carried out on different pipes, characterized by wall thickness of 6 mil, 8
mil and 10 mil, it resulted that both the caliper and the photographic methods are able to detect, the
variability of pipe dimensions with the operating pressure. Anyway, despite the quite similar results
in terms of average pipe dimensions, the measurements carried out with the caliper were
characterized by standard deviations ranging between 0.10 and 0.19 mm, higher than those
associated to the more accurate photographic method that, at maximum, resulted slightly higher
than 0.06 mm. The experimental measurements and the following elaborations evidenced that the
pipe vertical height rapidly increases and the horizontal width decreases with hydrostatic pressures
variable in the range 0-30 kPa, also confirming that the pipe cross sectional area tends to inflate
quite quickly, till reaching its complete roundness. A model was then proposed to represent the
effective pipe diameter as a function of water pressure, to be used to evaluate the friction loss. The model assumed the pipe cross section as constituted by two specular circle segments, with a constant wetted perimeter, in the range of water pressures lower than 80 kPa, 100 kPa and 120 kPa to which it was observed the complete roundness of the pipe cross sections. At pressure values higher than those limits instead, pipe diameter tended to increase linearly with the pressure, with a trend depending on the elasticity of the material and therefore on pipe thickness.

The results of hydrodynamic tests indicated that the friction factor can be more accurately described by using a power relationship like Blasius equation, but characterized by a coefficient c=0.285 and therefore lower than those generally used and available in the literature.

Finally, analysis of root mean square errors associated to the friction losses per unit pipe length estimated with three different procedures evidenced that, for the examined pipes, the most accurate estimation of friction loss per unit pipe length, to which corresponded the lowest RMSE values, can be obtained by considering the dependence of the effective pipe diameter by the pressure, combined with the accurate estimation of the friction factor. On the other side, by assuming a constant pipe diameter leads to a worse estimation of J, even if associated to the accurate evaluation of the friction factor. For this reason, it is therefore desirable that manufacturers provide the users with the pipe geometric data, so that in system design can be taken into account the variability of pipe diameter with the operating pressure.

Acknowledgments

The research was cofinanced by Università di Palermo (FFR 2011) and Ministero dell’Istruzione, dell’Università e della Ricerca (PRIN 2010). All the Authors setup the research and discussed the results, while V. Alagna carried out the experimental measurements and G. Provenzano wrote the paper. A special thank to the Committee for International Relations Office (CORI) of University of Palermo to support the research cooperation with the University of Valencia.
References

Table 1 – Minimum and maximum pressure at the pipe upstream end, h_{P1}, and flow rate, Q, measured during the experiments carried out on pipes with wall thickness of 6 mil, 8 mil and 10 mil. The range of Reynolds number, R, and the lengths of the three trams of pipe are also indicated.

<table>
<thead>
<tr>
<th>Wall thickness</th>
<th>h_{P1} [kPa]</th>
<th>Q [l/h]</th>
<th>R [-]</th>
<th>L [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 mil</td>
<td>8.4</td>
<td>173.0</td>
<td>142.0</td>
<td>944.5</td>
</tr>
<tr>
<td>8 mil</td>
<td>2.4</td>
<td>175.5</td>
<td>144.4</td>
<td>1114.6</td>
</tr>
<tr>
<td>10 mil</td>
<td>11.9</td>
<td>174.1</td>
<td>158.7</td>
<td>922.3</td>
</tr>
</tbody>
</table>
Table 2 – Parameters of eqs. (7) and (8) and coefficients of determination, obtained for the considered pipes. The ranges of pressure variability define the limits of models application.

<table>
<thead>
<tr>
<th>Wall thickness</th>
<th>Range p [kPa]</th>
<th>a</th>
<th>b</th>
<th>m</th>
<th>R^2</th>
<th>Range p [kPa]</th>
<th>s</th>
<th>t</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 mil</td>
<td>0-80</td>
<td>16.213</td>
<td>-0.121</td>
<td>0.525</td>
<td>0.82</td>
<td>80-150</td>
<td>15.507</td>
<td>0.008</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>0-100</td>
<td>16.109</td>
<td>-0.241</td>
<td>0.753</td>
<td>0.97</td>
<td>100-150</td>
<td>15.951</td>
<td>0.001</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>0-120</td>
<td>15.864</td>
<td>-0.980</td>
<td>0.833</td>
<td>0.92</td>
<td>120-150</td>
<td>15.850</td>
<td>0.000</td>
<td>-</td>
</tr>
</tbody>
</table>
Fig. 1 – Possible qualitative shapes of lay-flat pipe cross sections at increasing water pressure (from quasi-rectangular to circular).

Click here to download Figure: 5 Figures.doc
Fig. 2 – Layout used for hydrostatic tests, to determine the relationships between pipe dimensions and pressure head. Two examples of pictures, taken at different pressure heads, are also shown.
Fig. 3 – Layout used for the hydrodynamic tests.
Fig. 4 a,b,c – Vertical and horizontal external pipe dimensions measured with the photographic method as a function of those measured by the caliper. The tested pipes, having ND of 16 mm, are characterized by wall thickness of 6, 8 and 10 mil. Horizontal and vertical bars indicate the standard deviations of the measured values.
Fig. 5a, b, c – Standard deviation, σ, of vertical and horizontal external pipe dimensions measured with the photographic method as a function of the corresponding measured by the caliper for pipe wall thickness of 6, 8 and 10 mil.
Fig. 6a,b,c – Variations of internal pipe dimensions obtained with the photographic method as a function of water pressure, for pipe wall thickness of 6, 8 and 10 mil.
Fig. 7 – Degree of pipe roundness evaluated on pipe with wall thickness of 6, 8 and 10 mil.
Fig. 8 – Values of the average internal pipe diameter, d, evaluated by eq. (3), as a function of water pressure, for pipe wall thickness of 6, 8 and 10 mil and related fitting curves.
Fig. 9 – Experimental values of local losses due to the fitting connectors as a function of flow rates. The associated fitting curve, represented by eq. (8), is also shown.
Fig. 10 – Measured friction losses per unit pipe length as a function of flow rates, for pipes with wall thickness of 6, 8 and 10 mil.
Fig. 11 – Darcy-Weisbach friction factor as a function of Reynolds number for the examined pipes and related fitting equation (eq. 9). Theoretical values for laminar (R<2000) and for turbulent (Re>2000) regimes are also shown.
Fig. 12a,b,c – Friction losses per unit pipe length estimated in case A, case B and case C, as a function of the corresponding measured on the investigated pipes.
Fig. 13a,b,c – Errors associated to the estimated friction losses in case A, B and C obtained for the three considered pipes.
FIGURE CAPTIONS

Fig. 1 – Possible qualitative shapes of lay-flat pipe cross sections at increasing water pressure (from quasi-rectangular to circular).

Fig. 2 – Layout used for hydrostatic tests, to determine the relationships between pipe dimensions and pressure head. Two examples of pictures, taken at different pressure heads, are also shown.

Fig. 3 – Layout used for the hydrodynamic tests.

Fig. 4 a,b,c – Vertical and horizontal external pipe dimensions measured with the photographic method as a function of those measured by the caliper. The tested pipes, having ND of 16 mm, are characterized by wall thickness of 6, 8 and 10 mil. Horizontal and vertical bars indicate the standard deviations of the measured values.

Fig. 5a,b,c – Standard deviation, σ, of vertical and horizontal external pipe dimensions measured with the photographic method as a function of the corresponding measured by the caliper for pipe wall thickness of 6, 8 and 10 mil.

Fig. 6a,b,c – Variations of internal pipe dimensions obtained with the photographic method as a function of water pressure, for pipe wall thickness of 6, 8 and 10 mil.

Fig. 7 – Degree of pipe roundness evaluated on pipe with wall thickness of 6, 8 and 10 mil.

Fig. 8 – Values of the average internal pipe diameter, d, evaluated by eq. (3), as a function of water pressure, for pipe wall thickness of 6, 8 and 10 mil and related fitting curves.

Fig. 9 – Experimental values of local losses due to the fitting connectors as a function of flow rates. The associated fitting curve, represented by eq. (8), is also shown.

Fig. 10 – Measured friction losses per unit pipe length as a function of flow rates, for pipes with wall thickness of 6, 8 and 10 mil.

Fig. 11 – Darcy-Weisbach friction factor as a function of Reynolds number for the examined pipes and related fitting equation (eq. 9). Theoretical values for laminar (R<2000) and for turbulent (Re>2000) regimes are also shown.

Fig. 12a,b,c – Friction losses per unit pipe length estimated in case A, case B and case C, as a function of the corresponding measured on the investigated pipes.

Fig. 13a,b,c – Errors associated to the estimated friction losses in case A, B and C obtained for the three considered pipes.