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Abstract

We show how to use a Lyapunov function to accelerate MPC for linear discrete-time systems with linear constraints and
quadratic cost. Our method predicts, in the current time step, which constraints will be inactive in the next time step. These
constraints can be removed from the online optimization problem of the next time step. The criterion for the detection of
inactive constraints is based on the decrease of the Lyapunov function along the trajectory of the controlled system. The
criterion is simple, easy to implement in existing MPC algorithms, and its computational cost is small.
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1 Introduction

Model predictive control (MPC) is an established, prac-
tically relevant method for the control of constrained
multivariable systems. MPC is computationally expen-
sive, because an optimal control problem must be solved
in each time step. For a discrete-time linear system
with linear constraints and quadratic cost the optimal
control problem is a quadratic program (QP) that is
parametrized by the current state of the system. It is
known that the solution to this parametric QP is a con-
tinuous piecewise affine control law u(x) on a polytopic
partition of the state space [1,2]. Despite ongoing efforts
to improve the algorithms for the calculation [3–6] and
fast evaluation [7–9] of these piecewise affine control
laws, they can only be calculated and used for small
systems with short horizons. Thus, for medium or large
systems on-line methods remain the only viable choice.

The discovery of the structure of the solution u(x)
prompted research on how to use this structure to ac-
celerate online MPC algorithms. Ferreau and Diehl [10]
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predict the active set occurring in the next step. Pan-
nocchia et al. [11,12] enumerate the active sets which
occurred most frequently during previous operation and
store the optimal solution parameters only for those
active sets. Jost and Mönnigmann [13,14] calculate
state space regions of activity for each constraint offline
and use this information online to remove inactive con-
straints from the QP. In this paper, we also accelerate
the online MPC computation by removing constraints
from the QP that can be inferred to be inactive before
actually solving the QP. In contrast to earlier approaches
[13,14] our approach is neither based on the explicit
solution nor an approximation thereof. We show that
the cost function of the MPC problem can be used to
bound the optimal solution for the next time step, if the
cost function is a Lyapunov function for the controlled
system. The bound on the optimal solution for the next
time step only depends on information available at the
current time step. While somewhat conservative, this
bound can be used to remove some inactive constraints
in the next time step, thus simplifying the QP. We stress
the proposed method does not just remove constraints
from the QP that can never become active, but the set
of removed constraints is a function of the current state
and thus a function of time.

We introduce the problem class in Section 2. Section 3
establishes the main results described above. An exam-
ple is discussed in Section 4, and an outlook is given in
Section 5.
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2 Problem statement and assumptions

Consider a discrete-time linear time-invariant system

x(t+ 1) = Ax(t) +Bu(t), (1)

with state x(t) ∈ Rn, input u(t) ∈ Rm and matrices A ∈
Rn×n, B ∈ Rn×m, where the pair (A,B) is stabilizable.
Assume the system (1) is subject to input and state
constraints

u(t) ∈ U ⊂ Rm, x(t) ∈ X ⊂ Rn (2)

for all times t ∈ N, where X and U are compact full-
dimensional polytopes that contain the origin in their
interiors.

For any initial state x ∈ X, consider the finite horizon
optimal control problem

P(x) : min
U,X

Vf (x(N)) +
N−1∑
k=0

`(x(k), u(k)) s.t.

x(k + 1) = Ax(k) +Bu(k), k = 0, . . . , N − 1

x(0) = x,

x(k) ∈ X, k = 1, . . . , N − 1,

x(N) ∈ Xf ,

u(k) ∈ U, k = 0, . . . , N − 1,

(3)
whereU = (u′(0), . . . , u′(N − 1))

′
,X = (x′(1), . . . , x′(N))

′
,

Xf ⊆ X is a polyhedral terminal set that con-
tains the origin in its interior, and Vf (x) = 1

2x
′Px,

`(x, u) = 1
2 (x′Qx + u′Ru), where P ∈ Rn×n, P � 0,

Q ∈ Rn×n,Q � 0 andR ∈ Rm×m,R � 0 are the weight-
ing matrices on the terminal state, the states and the
inputs, respectively. By eliminating the state variables
with (1), the quadratic program (3) can equivalently be
written in the form

min
U

V (x, U) s. t. GU − w − Ex ≤ 0, (4)

where

V (x, U) =
1

2

(
x′ U ′

)(Y F

F ′ H

)(
x

U

)
(5)

=
1

2
x′Y x+ U ′F ′x+

1

2
U ′HU, (6)

H ∈ RmN×mN , Y ∈ Rn×n, F ∈ Rn×mN , G ∈ Rq×mN ,
E ∈ Rq×n, w ∈ Rq, and where q denotes the num-
ber of inequality constraints in (3) and (4). It can be
shown that Y ′ = Y , H ′ = H and H � 0, if R � 0,
P � 0 and Q � 0. Consequently, (4) is a strictly con-
vex quadratic program. This implies the solution to (4),

and equivalently to (3), is unique if it exists. We note for
later use that (6) can be rewritten as V (x, U) = 1

2 (U +

H−1F ′x)′H(U +H−1F ′x) + 1
2x
′Y x− 1

2x
′FH−1F ′x by

completing the squares. For brevity we write this expres-
sion for V (x, U) as

V (x, U) =
1

2
‖U +H−1F ′x‖2H +

1

2
‖x‖2Y−FH−1F ′ , (7)

where ‖ξ‖2M = ξ′Mξ and ‖ξ‖2 = ξ′ξ for any vector
ξ ∈ Rs and symmetric matrix M ∈ Rs×s. We show that
Y − FH−1F ′ � 0 in the appendix.

Problem (3) may not have a solution for all x ∈ X. Let
X ⊆ X be the set of initial conditions x such that (3)
has a solution. For any x ∈ X , let U?(x) and u?(x)
refer to the optimal solution to (3) and its first element,
respectively. Denote the corresponding optimal value of
(4) by V ?(x) and recall this is equal to the optimal value
of (3). Using (6) we may express V ?(x) as

V ?(x) =
1

2
x′Y x+ U?′(x)F ′x+

1

2
U?′(x)HU?(x).

Under the assumptions stated so far, X is convex, the
functions U? : X → UN and u? : X → U are continuous
and piecewise affine, and V ? : X → R is continuous,
convex and piecewise quadratic [2]. Let the symbol x+

denote the predicted successor state for the controlled
system, i.e.,

x+ = Ax+Bu?(x). (8)

We make the following assumption throughout the pa-
per.

Assumption 1 The optimal value function V ?(x) of
P(x) is a Lyapunov function for the closed-loop system
(8), i.e., there exist strictly positive constants a1, a2 and
a3 such that x ∈ X implies

a1‖x‖22 ≤ V ?(x) ≤ a2‖x‖22 (9)

V ?(x+)− V ?(x) ≤ −a3‖x‖22. (10)

This assumption is guaranteed to hold if the terminal
constraint set Xf and cost functions `(·), Vf (·) satisfy
control invariance conditions [15]. Note that nominal ex-
ponential stability of the origin of the closed-loop system
follows from Assumption 1.

2.1 Notation and preliminaries

LetQ = {1, ..., q} denote the index set of the constraints
of (4). For any matrixM ∈ Rq×t, letM i andMW be the
row vector and submatrix of row vectors indicated by
i ∈ Q and the ordered subsetW ⊆ Q, respectively. The
i−th constraint in (4) is called inactive at the optimum,
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ifGiU?(x) < wi+Eix, and active ifGiU?(x) = wi+Eix,
where U?(x) is the optimal solution to (4) at state x. We
say a constraint i ∈ Q is a priori known to be inactive
for a particular x ∈ X if we know GiU?(x) < wi + Eix
before having solved (4) for U?(x).

Recall that a quadratic form with symmetric positive
definite matrix M defines an ellipsoid {ξ ∈ Rs|ξ′Mξ ≤
1} ⊂ Rs centered at the origin and, for any ξ0 ∈ Rs, an
ellipsoid

{ξ ∈ Rs|(ξ − ξ0)′M(ξ − ξ0) ≤ 1} (11)

centered at ξ0. Let λmin(M) and λmax(M) denote the
smallest and largest eigenvalue of M , respectively. We
state an important property of ellipsoids in the following
lemma.

Lemma 2 Let M ∈ Rs×s be a symmetric positive defi-
nite matrix, and consider any ξ ∈ Rs and α ≥ 0. Then

ξ′Mξ ≤ α2 implies ‖ξ‖ ≤ α√
λmin(M)

.

PROOF. For any symmetric M ∈ Rs×s

λmin(M)ξ′ξ ≤ ξ′Mξ

for all ξ ∈ Rs [16, Lemma 8.4.3]. Therefore ξ′Mξ ≤ α2

implies λmin(M)ξ′ξ ≤ α2. Since M is positive definite
by assumption, λmin(M) > 0 and the claim follows. �

3 Reduced equivalent MPC problem

Assume the optimal control problem (4) has been solved
for the current initial condition x, and hence the optimal
sequence of controls U?(x) has been determined. The
predicted successor state x+ of the controlled system is
given by (8). In the next time step we need to solve (4) for
x+ to find U?(x+). The present section explains how to
simplify (4) by removing constraints that can be shown
to be inactive for x+ before actually solving (4) for x+.

3.1 Constraint removal

We first show how a bound ‖U?(x)‖ < c can be used to
test whether one or some of the constraints in (4) are
inactive.

Lemma 3 Let x ∈ X be arbitrary and assume there
exists c ≥ 0 such that ‖U?(x)‖ ≤ c. If, for any i ∈ Q,

‖Gi‖c < Eix+ wi, (12)

then constraint i is inactive at the optimal solution to (3)
for x, i.e., GiU?(x) < Eix+ wi.

PROOF. Consider the relations

GiU?(x) ≤ |GiU?(x)| ≤ ‖Gi‖‖U?(x)‖ ≤ ‖Gi‖c,

which hold, because ξ ≤ |ξ| for all ξ ∈ R, accord-
ing to Cauchy and Schwarz’s inequality, and because
‖U?(x)‖ ≤ c by assumption, respectively. Together with
(12) this implies GiU?(x) < Eix+wi, which proves the
claim. �

Constraints that are a priori known to be inactive at
U?(x) for the current x ∈ X may be removed from the
parametric quadratic program. Note that we do not need
to know all inactive constraints at U?(x) in Lemma 4
below but only a subset J (x) thereof. In other words,
if I(x) ⊆ Q is the set of inactive constraints at U?(x),
then Lemma 4 applies to any J (x) ⊆ I(x).

Lemma 4 Let x ∈ X be arbitrary. Assume there exist
c > 0 and a set J (x) ⊆ Q such that (12) holds for every
i ∈ J (x). Then the reduced quadratic program

min
U

V (x, U) s.t.

GiU − wi − Eix ≤ 0, i ∈ Q\J (x) (13)

has the same unique solution U?(x) as (4).

Lemma 4 can be proven by showing that the KKT con-
ditions of (4) and (13) have the same unique solution,
taking into account that Lagrange multipliers of inactive
constraints are zero.

3.2 Bound on ‖U?(x+)‖ from U?(x)

For any x ∈ X , the optimal solution U?(x) can be ex-
ploited to obtain a bound on the norm of the optimal
solution U?(x+) in the next time step. This is stated
concisely in Proposition 5 and Corollary 6.

Proposition 5 Let x ∈ X be arbitrary, assume U?(x)
has been found, and let x+ = Ax + Bu?(x). The opti-
mal control sequence U?(x+) for the predicted closed-loop
successor state x+ lies in the ellipsoid

U+(x) =
{
U ∈ RmN

∣∣∣‖U +H−1F ′x+‖21
2H
≤ ρ(x)

}
(14)

where

ρ(x) = V ?(x)− 1

2
‖x+‖2Y−FH−1F ′ (15)

is strictly positive for all x ∈ X \ {0} and ρ(0) = 0.

PROOF. We first show that ρ(x) > 0 for all x ∈ X\{0}
by contradiction. Assume there exists an x ∈ X \ {0}
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such that ρ(x) ≤ 0. By definition of ρ(x) this im-
plies V ?(x) ≤ 1

2‖x+‖2Y−FH−1F ′ . Relation (10) yields

V ?(x+) < V ?(x) for any x ∈ X \ {0}, therefore
V ?(x+) < 1

2‖x+‖2Y−FH−1F ′ , or equivalently

V ?(x+)− 1

2
‖x+‖2Y−FH−1F ′ < 0.

Substituting

V ?(x+) =
1

2
‖U?(x+) +H−1F ′x+‖2H

+
1

2
‖x+‖2Y−FH−1F ′ , (16)

which results from combining (7) and V ?(x+) =
V (x+, U?(x+)), yields

1

2
‖U?(x+) +H−1F ′x+‖2H < 0,

which contradicts H � 0 and thus proves that ρ(x) is
strictly positive on X \ {0}. To prove that ρ(0) = 0, we
recall that U?(0) = 0, and hence x+ = 0.

It remains to show that U?(x+) ∈ U+(x). Consider the
relation V ?(x+) ≤ V ?(x) again, which follows from (10).
Substituting (16) yields

‖U?(x+) +H−1F ′x+‖21
2H

+
1

2
‖x+‖2Y−FH−1F ′ ≤ V ?(x),

which is equivalent to the inequality in (14) and therefore
proves U?(x+) ∈ U+(x). �

A bound on ‖U?(x+)‖ can now be stated based on
Proposition 5.

Corollary 6 Let x ∈ X be arbitrary, assume U?(x) has
been found, let x+ = Ax+Bu?(x), and let ρ(x) be as in
(15). Then the norm of U?(x+), the input sequence that
is optimal in the next time step, is bounded above by

Ū(x) =

√
2ρ(x)

λmin(H)
+ ‖H−1F ′ (Ax+Bu?(x)) ‖, (17)

i.e., ‖U?(x+)‖ ≤ Ū(x).

PROOF. Let U ∈ U+(x) be arbitrary. According to
Lemma 2 this implies

‖U +H−1F ′x+‖ ≤
√

2ρ(x)

λmin(H)
, (18)

x

x+

x++

u2

u1

U+(x)−H−1F ′x+

U⋆(x+)

(a)

x

x+

x++

u2

u1

U+(x)

U++(x+)

U⋆(x+)

U⋆(x++)

(b)

Fig. 1. Interpretation of Corollary 6 for a hypothetical sys-
tem with two inputs and one state: (a) Acc. to Proposition 5
the optimal input sequence for the next time step, U?(x+),
lies in the ellipsoid U+(x) that is determined by the current
state and the current optimal input sequence. Corollary 6
essentially states that an upper bound Ū(x) on ‖U?(x+)‖ is
given by the sum of the distance ‖H−1F ′x+‖ of the ellipsoids
center to the origin and the length of the longest semi-major
axis of the ellipsoid (second and first term in (17), respec-
tively). (b) Since the controlled system is asymptotically sta-
ble, we have x→ 0 for k →∞. The ellipsoid U+(x) shrinks
along any trajectory of the controlled system (ρ(x) → 0),
and its center tends to the origin (H−1F ′x+ → 0). Con-
sequently, the upper bound Ū(x) on ‖U(x+)‖ converges to
zero. The symbol x++ denotes the successor state to x+, i.e.,
x++ = Ax+ +Bu?(x+).

where we used λmin(kM) = kλmin(M), which holds for
any k > 0 and M � 0. As a further preparation note
that

‖a‖ = ‖a+b−b‖ ≤ ‖a+b‖+‖−b‖ = ‖a+b‖+‖b‖, (19)

for any two elements a, b of a normed vector space,
where the second relation in (19) is the triangle inequal-
ity. Relation (19) implies ‖a‖ − ‖b‖ ≤ ‖a + b‖. By ap-
plying this relation to U and H−1F ′x+ we find ‖U‖ −
‖H−1F ′x+‖ ≤ ‖U+H−1F ′x+‖. Together with (18) this

implies ‖U‖ − ‖H−1F ′x+‖ ≤
√

2ρ(x)/λmin(H), which
proves the claim. �

Figure 1 gives a graphical interpretation of the ellipsoid
U+(x) and the bound ‖U?(x)‖ ≤ Ū(x) defined in (14)
and (17), respectively. Note that the shape of U+(x) is
defined by the matrix H, while its center and size are a
function of the current state x and its optimal control
sequence U?(x). Recall that the closed-loop successor
state x+ is uniquely defined by x and U?(x) according
to (8).

3.3 A simple state independent bound

SinceU is compact by assumption there exists a bounded
hyperrectangle that contains it, i.e., there exist ui < ui,
i = 1, . . . ,m such that

U ⊆ [u1, u1]× · · · × [um, um] . (20)
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This yields the simple bound on ‖U?(x)‖ stated in the
following lemma. While obvious, the resulting bound is
important, because it is, in contrast to Ū(x) introduced
in (17), independent of the state x.

Lemma 7 Consider the optimal control problem (3) and
assume ui, ui, i = 1, . . . ,m are as in (20). Let û =
(max(|u1|, |u1|), . . . , max(|um|, |um|))′ . Then ‖U?(x)‖
is bounded above by

Û =
√
N‖û‖, (21)

i.e., ‖U?(x)‖ ≤ Û holds for all x ∈ X .

PROOF. From U = (u(0)′, . . . , u(N − 1)′)′ we infer

‖U‖2 =
∑N−1

k=0 ‖u(k)‖2. Since u(k) ∈ U⊆[u1, u1]× · · · ×
[um, um] implies ‖u(k)‖2 ≤∑m

l=1(max(|ul|, |ul|))2 for all
k, we have ‖U‖2 ≤ N ∑m

l=1(max(|ul|, |ul|))2. �

Since the bound defined in (21) does not depend on x,
it can be calculated offline.

3.4 Reduced MPC problem

It is easy to prove the following proposition based on the
previous results.

Proposition 8 Let x, x+, U?(x), Ū(x), ρ(x) and Û be
as in Corollary 6 and Lemma 7, respectively. Let

J =
{
i ∈ Q

∣∣∣‖Gi‖min(Û , Ū(x)) < Eix+ + wi
}
.

Then the optimal sequence U?(x+) for the predicted
closed-loop successor state x+ can be calculated from the
reduced QP

min
U

V (x+, U) s.t. GiU − wi − Eix+ ≤ 0, i ∈ Q\J ,

because the constraints GiU?(x+) ≤ Eix+ + wi are in-
active for all i ∈ J .

PROOF. Corollary 6 and Lemma 7 imply that
‖U?(x+)‖ ≤ Ū(x) and ‖U?(x+)‖ ≤ Û , respectively.

Therefore, ‖U?(x+)‖ ≤ min(Ū(x), Û). Now let i ∈ J
be arbitrary. From applying Lemma 3 to x+ for
c = min(Ū(x), Û) we infer constraint i is inactive at
U?(x+), which proves the last statement in the propo-
sition. By applying Lemma 4 the first claim results. �

Proposition 8 obviously results in the original full QP
(4) if J = ∅, i.e., if no constraints can be inferred to be
inactive with Corollary 6 and Lemma 7.

tMPC in s

h
c
d
f(
t M

P
C
)

qpas, full-MPC
qpip, full-MPC
qpas, CR-MPC
qpip, CR-MPC

0 1 2 3 4 5 6 7 8
×10−3

0

0.2

0.4

0.6

0.8

1

(a)

x
(t
)

u
(t
)

q(
t)

t
0 40 80 120 160
0

750
-1

0

1
-10

0

10

(b)

Fig. 2. (a) Cumulative distribution functions of the times
required to solve (4) with an interior-point solver (qpip,
dashed) and an active-set solver (qpas, solid), both with and
without constraint removal (black and gray, respectively).
(b) States x(t), inputs u(t) and number of constraints q(t) of
the system for 0 ≤ t ≤ 186. The gray dashed line represents
the number of constraints of the full QP.

4 Example

We apply MPC with and without constraint removal to
a system of the form (1) with n = 10 states and m = 3
inputs. The system is a minimal representation of the
transfer function matrix

G(s) =


−5s+1

36s2+6s+1
0.5s
8s+1 0

0 0.1(−10s+1)
s(8s+1)

−0.1
(64s2+6s+1)s

−2s+1
12s2+3s+1 0 2(−5s+1)

16s2+2s+1

 , (22)

discretized with zero-order hold and sampling time Ts =
1 s (see [17] for the state space model). The example is
nontrivial in that there exist zeroes in the right half plane
and two uncontrollable states must be removed to obtain
the n = 10 minimal representation. Reparametrizing the
inputs as proposed in [18] results in a well-conditioned
matrix H with λmax(H) = 1.70 and λmin(H) = 0.68.
We impose the constraints −10 ≤ xi ≤ 10, i = 1, . . . , 10
and −1 ≤ uj ≤ 1, j = 1, . . . , 3 and set Q = In×n,
R = 0.25Im×m and N = 30. The terminal weighting
matrix P is the solution of the discrete-time algebraic
Riccati equation. After removing redundant constraints
a quadratic program of the form (4) results with 90 vari-
ables and 556 constraints (see e.g. [19, Sec. 4.1.1, p. 128]
on redundant constraints).

We randomly choose feasible initial points x ∈ X and
calculate closed-loop trajectories until ‖x(t)‖2 ≤ 10−3.
A total of 771,678 QPs was solved in each of the four
cases summarized in Fig. 2. Four cases arise because
MPC with constraint removal (CR-MPC for short) and
MPC without constraint removal (full-MPC for short)
are both combined with an active-set and an interior-
point solver. 1 The results of our numerical experiments

1 We used the primal-dual interior-point solver qpip and the
dual active-set solver qpas from the QPC solver library [20].
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Algorithm 1 MPC with constraint removal.

1: Input x
2: Set J = ∅.
3: Calc. upper bound Ū(x) on ‖U?(x+)‖ from (17).

4: Use tightest bound: Umin = min(Û , Ū(x)).
5: for all i = 1 to q do
6: if ‖Gi‖Umin − wi − Eix+ < 0 then
7: Constraint i is inactive at x+: J ← J ∪ {i}.
8: end if
9: end for

10: if J = Q then
11: QP is unconstrained: U?(x+) = −H−1F ′x+
12: else
13: Solve reduced QP (13) for U?(x+).
14: end if
15: Output: u?(x+) = [Im×m 0 · · · 0]U?(x+)

are summarized in Fig. 2(a) in terms of hcdf(tMPC), the
cumulative distribution function (cdf) of the time tMPC

required to solve (4). The cdf hcdf(tMPC) is defined as the
fraction of QPs (4) that are solved in time tMPC or less.

About 65% of the QPs are found to be unconstrained by
CR-MPC. No optimization problem needs to be solved
at all in these cases, but the optimal input results from
the state feedback law of the unconstrained case (cf. line
11 in Alg. 1). CR-MPC provides the control law very
quickly in these cases, which results in the leftmost shoul-
ders of the black curves in Fig. 2(a). Note that the com-
putation times do not depend on the solver in these cases.
Consequently, the leftmost shoulders of the black curves
coincide.

For both the active-set solver and the interior-point
solver CR-MPC outperforms full-MPC in the sense that
the cdf for CR-MPC lies to the left and above the cor-
responding one for full-MPC. For about 88% (92%) of
all QPs CR-MPC calculates the control law faster than
the shortest time among all QPs required by full-MPC
with the interior-point solver (active-set solver). 2 The
average computation time is reduced by about 71%
(57%) for the interior-point solver (active-set solver).
More details are given in [17].

Figure 2(b) shows the states x(t), inputs u(t) and the
number of constraints q(t) for one of the random initial
values. It is easy to see that the number of constraints
q(t) quickly decreases along the trajectory, until only
the unconstrained quadratic program remains. For this
particular trajectory, the bound Û is used for t ≤ 22,
while Ū(x) is used for t > 22. Note that ρ(x) and thus
Ū(x) cannot be calculated in the first time step, since
the value of the objective function at the previous time

2 These figures can be found in Fig. 2(a) by drawing a line
parallel to the ordinate that cuts the abscissa at the smallest
computation time achieved by full-MPC (gray curve).

step is not known. Consequently, during the first time
step only the bound Û can be used.

We carried out similar numerical experiments for 36
example-solver combinations (six dynamical systems
and MPC problems with q = 258 to q = 1950 combined
with six QP solvers). We summarize some important
aspects: (i) In all but the smallest example MPC with
constraint removal outperformed the same implementa-
tion without constraint removal in the same sense as in
the example shown here. When the smallest example in
[17] is combined with a dual active-set solver, MPC with
constraint removal is sometimes faster but sometimes
slower than without constraint removal. This results,
because the overhead for detecting inactive constraints
and setting up the reduced problem (13) is not com-
pensated by the savings from solving the reduced QP
if the number of constraints is small. (ii) While larger
reductions result for interior-point solvers than for
active-set solvers in general, the computational times
for the active-set solvers are reduced in all but the case
summarized in (i). 3 (iii) The numerical experiments
clearly indicate that redundant constraints need not be
removed a priori, but constraint removal detects and
removes them efficiently. We present results in Fig. 2 for
a case in which we did remove redundant constraints a
priori to show that constraint removal detects inactive
constraints beyond the redundant ones.

4.1 Robustness of the proposed approach

We briefly investigated the robustness of the proposed
approach. Specifically, we added a uniformly distributed
disturbance −0.5 ≤ ∆xi ≤ 0.5, i = 1, . . . , 10 to the
state, determined the reduced QP with the nominal state
Ū(x) but solved it for the corresponding disturbed state,
and compared the resulting control law to the case with-
out constraint removal. Despite the disturbance, the op-
timal input resulted in 99.7% of the cases. Essentially,
this is due to the fact that the bound Ū(x) is conserva-
tive and therefore inherently robust.

5 Conclusion and outlook

We presented a simple but effective way to accelerate
model predictive control for linear systems with linear
constraints and quadratic cost. Existing MPC imple-
mentations can easily be enhanced with the proposed
method, since it does not depend on details of the op-
timization algorithm, and since only very simple ad-
ditional calculations are necessary. Simulation studies
show that the presented method is able to reduce the
average calculation times significantly.

3 One may conjecture that no savings could be obtained
for dual active-set solvers. Results shown here and in [17]
show that this is not true, however. See [17, Sect. 5.3] for an
explanation.
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Future research must investigate the robustness of the
proposed approach and address the extension to non-
linear MPC. Moreover, it has been shown for small ex-
amples [13] that MPC can considerably be accelerated
by anticipating active constraints in addition to inactive
constraints. Finally, we so far exploit the decrease of the
Lyapunov function for only one time step. Further ac-
celerations may be possible for longer time spans.

Appendix

Proof of Y − FH−1F ′ � 0

According to Assumption 1, there exists an a1 > 0
such that V ?(x) ≥ a1‖x‖22 for all x ∈ X . Together
with V ?(x) = V (x, U?(x)) this implies V (x, U?(x)) > 0
for all x ∈ X\{0}. Because V (x, U?(x)) ≤ V (x, U) by
definition of U?(x), we also have V (x, U) > 0 for all
x ∈ X\{0} and all feasible U , or equivalently for all ele-
ments of P = {(U, x) ∈ RNm×Rn |GU − Ex ≤ w} with
x 6= 0. We therefore showed that the quadratic form (5)
is positive definite on a full-dimensional set. This im-
plies the matrix that defines this quadratic form, which
we denote by Γ, is positive definite. Applying the Schur
complement (see e.g. [21, Thm. 7.7.6, p. 472]) to Γ yields
Y � FH−1F ′, or equivalently Y − FH−1F ′ � 0.
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[7] M. Mönnigmann and M. Kastsian, “Fast explicit model
predictive control with multiway trees,” in Proceedings of
IFAC World Congress 2011, Milano, Italy, 2011, pp. 1356–
1361.

[8] F. Bayat, T. A. Johansen, and A. A. Jalali, “Using hash tables
to manage the time-storage complexity in a point location
problem: Application to explicit model predictive control,”
Automatica, vol. 47, no. 3, pp. 571 – 577, 2011.

[9] P. Tøndel, T. A. Johansen, and A. Bemporad, “Evaluation of
piecewise affine control via binary search tree,” Automatica,
vol. 39, pp. 945 – 950, 2003.

[10] H. Ferreau, H. Bock, and M. Diehl, “An online active
set strategy to overcome the limitations of explicit MPC,”
International Journal of Robust and Nonlinear Control,
vol. 18, pp. 816–830, 2008.

[11] G. Pannocchia, J. B. Rawlings, and S. J. Wright, “Fast,
large-scale model predictive control by partial enumeration,”
Automatica, vol. 43, pp. 852–860, 2007.

[12] G. Pannocchia, S. J. Wright, and J. B. Rawlings, “Partial
enumeration MPC: Robust stability results and application
to an unstable CSTR,” Journal of Process Control, vol. 21,
no. 10, pp. 1459–1466, 2011.
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