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Abstract. In this paper we consider the numerical solution of Fractional Differential Equa-
tions by means of m-step recursions. The construction of such formulas can be obtained in many
ways. Here we study a technique based on the rational approximation of the generating functions
of Fractional Backward Differentiation Formulas (FBDFs). Accurate approximations allow to define
methods which simulate the theoretical properties of the underlying FBDF with important compu-
tational advantages. Numerical experiments are presented.
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1. Introduction. This paper deals with the solution of Fractional Differential
Equations (FDEs) of the type

(1.1) t0D
α
t y(t) = g(t, y(t)), t0 < t ≤ T, 0 < α < 1,

where t0D
α
t denotes the Caputo’s fractional derivative operator (see e.g. [21] for an

overview) defined as

(1.2) t0D
α
t y(t) =

1

Γ(1− α)

∫ t

t0

y′(u)

(t− u)α
du,

in which Γ denotes the Gamma function. As well known, the use of the Caputo’s
definition for the fractional derivative allows to treat the initial conditions at t0 for
FDEs in the same manner as for integer order differential equations. Setting y(t0) = y0
the solution of (1.1) exists and is unique under the hypothesis that g is continuous
and fulfils a Lipschitz condition with respect to the second variable (see e.g. [4] for a
proof).

As for the integer order case α = 1, a classical approach for solving (1.1) is
based on the discretization of the fractional derivative (1.2), which generalizes the
well known Grunwald-Letnikov discretization (see [21, §2.2]), leading to the so-called
Fractional Backward Differentiation Formulas (FBDFs) introduced in [16]. Taking a
uniform mesh t0, t1, . . . , tN = T of the time domain with stepsize h = (T − t0)/N,
FBDFs are based on the full-term recursion

(1.3)
∑n

j=0
ω
(p)
n−jyj = hαg(tn, yn), p ≤ n ≤ N,

where yj ≈ y(tj) and ω
(p)
n−j are the Taylor coefficients of the generating function

ω(α)
p (ζ) = (a0 + a1ζ + ...+ apζ

p)
α

(1.4)

=
∑∞

i=0
ω
(p)
i ζi, for 1 ≤ p ≤ 6,(1.5)
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being {a0, a1, . . . , ap} the coefficients of the underlying BDF. In [16] it is also shown
that the order p of the BDF is preserved.

We remember that for this kind of equations, there is generally an intrinsic lack of
regularity of the solution in a neighborhood of the starting point, that is, depending
on the function g, one may have y(t) ∼ (t− t0)

α as t → t0. For this reason, in order
to preserve the theoretical order p of the numerical method, formula (1.3) is generally
corrected as

(1.6)
∑M

j=0
wn,jyj +

∑n

j=0
ω
(p)
n−jyj = hαg(tn, yn),

where the sum
∑M

j=0 wn,jyj is the so-called starting term, in which M and the weights
wn,j depend on α and p (see [2, Chapter 6] for a discussion).

Denoting by Πm the set of polynomials of degree not exceeding m, our basic idea
is to design methods based on rational approximations of (1.4), i.e.,

(1.7) Rm(ζ) ≈ ω(α)
p (ζ), Rm(ζ) =

pm(ζ)

qm(ζ)
, pm, qm ∈ Πm.

Writing pm(ζ) =
∑m

j=0 αjζ
j and qm(ζ) =

∑m
j=0 βjζ

j , the above approximation natu-
rally leads to implicit m-step recursions of the type

(1.8)
∑n

j=n−m
αn−jyj = hα

∑n

j=n−m
βn−jg(tj , yj), n ≥ m.

While the order of the FBDF is lost, we shall see that if the approximation (1.7) is
rather accurate, then (1.8) is able to produce reliable approximations to the solution.
Starting from the initial data y(t0) = y0, the first m− 1 approximations y1, . . . , ym−1

can be generated by the underlying FBDFs or even considering lower degree rational
approximations.

A formula of type (1.8) generalizes in some sense the methods based on the Short
Memory Principle in which the truncated Taylor expansion of (1.4) is considered
(see [21, §8.3] for some examples). Computationally, the advantages are noticeable,
especially in terms of memory saving whenever (1.1) arises from the semi-discretization
of fractional partial differential equations. We remark moreover that since the initial
approximations are used only at the beginning of the process, there is no need to use a
starting term to preserve the theoretical order as for standard full-recursion multistep
formulas. Moreover, as remarked in [5], in particular when α 6= 1/2, the use of a
starting formula as in (1.6), that theoretically should ensure the order of the FBDF,
in practice may introduce substantial errors, causing unreliable numerical solutions.
For high-order formulas, this is due to the severe ill-conditioning of the Vandermonde
type systems one has to solve at each integration step to generate the weights wn,j of
the starting term. We also remark that in a typical application α, y0 and possibly also
the function g may be only known up to a certain accuracy (see [4] for a discussion),
so that one may only be interested in having a rather good approximation of the true
solution.

For the construction of formulas of type (1.8), in this paper we present a technique
based on the rational approximation of the fractional derivative operator (cf. [19]).
After considering a BDF discretization of order p of the first derivative operator, which
can be represented by a N×N triangular banded Toeplitz matrix Ap, we approximate
Caputo’s fractional differential operator t0D

α
t by calculating Aα

p . This computation is
performed by means of the contour integral approximation, which leads to a rational
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approximation of Aα
p whose coefficients can be used to define (1.8). This technique is

based on the fact that the first column of Aα
p contains the first N coefficients of the

Taylor expansion of ω
(α)
p (ζ), so exploiting the equivalence between the approximation

of Aα
p and ω

(α)
p (ζ).

In the more general framework of the evaluation of fractional integrals of the type

(1.9) Iα[f ](t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ,

efficient algorithms that allow important memory saving have been recently proposed.
We remark that the computation of (1.9) includes the solution of FDEs of type (1.1)
since

y(t) = y0 + Iα[f ](t)

for f(t) = g(t, y(t)) and t0 = 0. These algorithms are all essentially based on the
approximations of the convolution kernel (t− τ)α−1 and therefore are quite different
with respect to the one of the present work. Among the others we recall here the
one presented in [14] where the convolution kernel is expressed in terms of a Laplace
transform which is then approximated by suitable quadrature rules. Similarly to (1.8),
the arising algorithms are able to work with a storage requirement of type O(m) where
m is the number of quadrature points. A similar approach was previously considered in
[23], where a contour integral representation of the convolution kernel were considered.
The arising “oblivious” algorithm uses O(log n) active memory to evaluate (1.9) at
t = tn. This approach was then extended to work with variable stepsize in [15].
Exploiting the decaying of the convolution kernel, in [6, 3] the authors proposed the
use of nested meshes, that again allows the use of only O(log n) active memory. With
the same memory requirements, a degenerate kernel approximation has been recenty
proposed in [18].

The outline of the paper is the following. As in [7], the contour integral is evalu-
ated by means of the Gauss-Jacobi rule in Section 2. An error analysis of this approach
is outlined in Section 3, together with some numerical experiments that confirm its ef-
fectiveness. In Section 4 we investigate the reliability of this approach for the solution
of fractional differential equations. In particular, we present some results concerning
the consistency and the linear stability. Finally, in Section 5 we consider the results of
the method when applied to the discretization of two well-known models of fractional
diffusion.

2. The approximation of the fractional derivative operator. Denoting by
a0, a1, . . . , ap the p + 1 coefficients of a Backward Differentiation Formula (BDF) of
order p, with 1 ≤ p ≤ 6, which discretizes the derivative operator (see [10, Chapter
III.1] for a background), we consider lower triangular banded Toeplitz matrices of the
type

(2.1) Ap =




a0 0 0
... a0 0

ap
...

. . . 0

0
. . .

. . . 0
0 ap · · · a0




∈ R
(N+1)×(N+1).
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In this setting, Aα
p e1, e1 = (1, 0, . . . , 0)T , contains the whole set of coefficients of the

corresponding FBDF for approximating the solution of (1.1) in t0, t1, . . . , tN , that is

(2.2) eTj+1A
α
p e1 = ω

(p)
j , 0 ≤ j ≤ N,

(cf. (1.5)). The constraint p ≤ 6 is due to the fact that BDFs are not zero-stable for
p > 6.

From the theory of matrix functions (see [12] for a survey), we know that the
fractional power of matrix can be written as a contour integral

Aα =
A

2πi

∫

Γ

zα−1(zI −A)−1dz,

where Γ is a suitable closed contour enclosing the spectrum of A, σ(A), in its interior.
The following known result (see, e.g., [1]) expresses Aα in terms of a real integral.

Proposition 2.1. Let A ∈ RN×N be such that σ(A) ⊂ C\ (−∞, 0]. For 0 < α <
1 the following representation holds

(2.3) Aα =
A sin(απ)

απ

∫ ∞

0

(ρ1/αI +A)−1dρ.

Of course the above result holds also in our case since σ(Ap) = {a0} and a0 > 0
for each 1 ≤ p ≤ 6. At this point, for each suitable change of variable for ρ, a k-
point quadrature rule for the computation of the integral in (2.3) yields a rational
approximation of the type

(2.4) Aα
p ≈ ApR̃k(Ap) := Ap

∑k

j=1
γj(ηjI +Ap)

−1,

where the coefficients γj and ηj depend on the substitution and the quadrature for-
mula. This technique has been used in [19], where the author applies the Gauss-
Legendre rule to (2.3) after the substitution

ρ = aα0 (cos θ)
−α/(1−α)

sin θ,

which generalizes the one presented in [11] for the case α = 1/2.
In order to remove the dependence of α inside the integral we consider the change

of variable

(2.5) ρ1/α = τ
1− t

1 + t
, τ > 0,

yielding

1

α

∫ ∞

0

(ρ1/αI +Ap)
−1dρ

= 2

∫ 1

−1

(
τ
1− t

1 + t

)α−1 (
τ
1− t

1 + t
I +Ap

)−1
τ

(1 + t)
2 dt

= 2τα
∫ 1

−1

(1− t)
α−1

(1 + t)
−α

(τ (1− t) I + (1 + t)Ap)
−1

dt,

and hence

(2.6) Aα
p =

2 sin(απ)τα

π
Ap

∫ 1

−1

(1− t)
α−1

(1 + t)
−α

(τ (1− t) I + (1 + t)Ap)
−1

dt.
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The above formula naturally leads to the use of a k-point Gauss-Jacobi rule for the
approximation of Aα

p e1 and hence to a rational approximation (2.4).
The following result can be proved by direct computation.
Proposition 2.2. Let Ap ∈ RN×N be a matrix of type (2.1), and let Ap = 1

a0
Ap.

Then the components of (ξI +Ap)
−1e1, ξ 6= −1, are given by

υ
(p)
1 (ξ) =

1

ξ + 1
,

υ
(p)
j (ξ) =

c
(p)
2,j

(ξ + 1)2
+ . . .+

c
(p)
j,j

(ξ + 1)j
, 2 ≤ j ≤ N,

where the coefficients c
(p)
i,j depend on the order p. For p = 1 we simply have {a0, a1} =

{1,−1}, and hence

υ
(1)
j (ξ) =

1

(ξ + 1)
j , 1 ≤ j ≤ N.

The above proposition shows that the components of

(τ (1− t) I + (1 + t)Ap)
−1 e1

are analytic functions in a suitable open set containing [−1, 1] in its interior, since
they are sum of functions of the type

(2.7)
(1 + t)

l−1

(τ (1− t) + a0 (1 + t))
l
, l ≥ 1,

whose pole lies outside [−1, 1] for τ > 0 (recall that a0 > 0 for 1 ≤ p ≤ 6). In
this sense, the lack of regularity of the integrand in (2.6) due to the presence of α,
is completely absorbed by the Jacobi weight function so that the Gauss-Jacobi rule
yields a very efficient tool for the computation of Aα

p .
Increasing k the approximation (2.4) can be used to approximate the whole set

of coefficients of the FBDFs. We remark that the computation of the vectors (ηjI +
Ap)

−1e1 does not constitute a problem because of the structure of Ap (see (2.1)).
We also point out that since our aim is to construct reliable formulas of type (1.8)
we actually do not need to evaluate (2.4). Indeed we just need to know the scalars
γj and ηj , and then, using an algorithm to transform partial fractions to polynomial
quotient, we obtain the approximation

(2.8) zα ≈ zR̃k(z) = z
p̃k−1(z)

q̃k(z)
, z = a0 + a1ζ + . . .+ apζ

p,

where p̃k−1 ∈ Πk−1 and q̃k ∈ Πk. This finally leads to the approximation (1.7) with

pm(ζ) = (a0 + a1ζ + . . .+ apζ
p) p̃k−1(a0 + a1ζ + . . .+ apζ

p),(2.9)

qm(ζ) = q̃k(a0 + a1ζ + . . .+ apζ
p),(2.10)

in which m = kp. We remark that whenever the procedure for the definition of the
coefficients γj and ηj has been set for a given α, one can compute the corresponding
coefficients in the m-step formula (1.8) once and for all.
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3. Theoretical error analysis. Denoting by Jk(Ap) the result of the Gauss-
Jacobi rule for the approximation of

J(Ap) =

∫ 1

−1

(1− t)
α−1

(1 + t)
−α

(τ (1− t) I + (1 + t)Ap)
−1

dt,

by (2.6) the corresponding approximation to Aα
p is given by

(3.1) Aα
p ≈ ApR̃k(Ap), R̃k(Ap) =

2 sin(απ)τα

π
Jk(Ap).

In this section we analyze the error term componentwise, that is, (see (2.2),

Ej := ω
(p)
j − eTj+1ApR̃k(Ap)e1 = eTj+1Ap

(
Aα−1

p − R̃k(Ap)
)
e1(3.2)

=
2 sin(απ)τα

π
eTj+1Ap (J(Ap)− Jk(Ap)) e1, 0 ≤ j ≤ N,

which is the error in the computation of the j-th coefficient of the Taylor expansion

of ω
(α)
p (ζ). Numerically one observes that the quality of the approximation tends

to deteriorate when the dimension of the problem N grows. In this sense we are
particularly interested in observing the dependence of the error term on j and k for
j ≫ k and to find a strategy to define the parameter τ of the substitution (2.5) in
this situation. As we shall see in the remainder of the paper, this parameter plays a
crucial role for the quality of the approximation.

We restrict our analysis to the case of p = 1 for which a0 = −a1 = 1. In this
situation, defining the vector

(3.3) r := (J(A1)− Jk(A1)) e1,

we have that

Ej =
2 sin(απ)τα

π
eTj+1A1r,

and therefore

(3.4) |Ej | ≤
2 sin(απ)τα

π
(|rj |+ |rj−1|) .

The analysis thus reduces to the study of the components of the vector (3.3). By
Proposition 2.2, see also (2.7), the j-th component of the vector

(τ (1− t) I + (1 + t)A1)
−1

e1

is given by

(3.5) fj(t) =
(1 + t)

j−1

(τ(1 − t) + 1 + t)
j ,

so that rj is the error term of the k-point Gauss-Jacobi formula applied to the com-
putation of

(3.6)

∫ 1

−1

(1− t)
α−1

(1 + t)
−α

fj(t)dt.
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We start with the following known result, [13].
Theorem 3.1. The error term of the k-point Gauss-Jacobi formula applied to

the computation of

∫ 1

−1

(1− t)α1(1 + t)α2g(t)dt, α1, α2 > −1, g ∈ C2k([−1, 1]),

is given by

Ck,α1,α2
g(2k)(ξ), −1 < ξ < 1,

where

(3.7) Ck,α1,α2
:=

Γ(k + α1 + 1)Γ(k + α2 + 1)Γ(k + α1 + α2 + 1)k!

(2k + α1 + α2 + 1) [Γ(2k + α1 + α2 + 1)]
2
(2k)!

22k+α1+α2+1.

Lemma 3.2. Let 0 < α < 1 and Ck,α := Ck,α−1,−α. Then

Ck,α ∼ π21−2k

(2k)!
.

Proof. By (3.7) we easily obtain

Ck,α =
Γ(k + α)Γ(k − α+ 1) [Γ(k)]

2

[Γ(2k)]
2
(2k)!

22k−1.

Using the Legendre formula

Γ

(
k +

1

2

)
Γ(k) =

√
πΓ(2k)21−2k,

we have that

Ck,1/2 =
π21−2k

(2k)!
.

Moreover, since for a, b ∈ (0, 1)

kb−aΓ(k + a)

Γ(k + b)
= 1 +O

(
1

k

)
,

we have that Γ(k + α)Γ(k − α + 1) =
[
Γ(k + 1

2 )
]2

(1 + O(k−1)) and, consequently,
Ck,α → Ck,1/2 as k → ∞.

Remark 3.3. If we set τ = 1 in (2.5) we obtain rj = 0 for each j = 1, 2, . . . , 2k
since fj ∈ Πj−1, see (3.5). From (2.8), with p = 1, and (3.1) one therefore gets

(1 − ζ)α−1 − R̃k(1− ζ) = (1− ζ)α−1 − p̃k−1(1− ζ)

q̃k(1 − ζ)
= O(ζ2k),

so that R̃k(1 − ζ) is the (k − 1, k) Padé approximant of (1 − ζ)α−1 with expansion
point ζ = 0. More generally, if τ ∈ (0, 1] then the resulting rational approximation
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coincides with the same Padé approximant with expansion point ζ = 1 − τ (cf. [7,
Lemma 4.4]).

Numerically, it is quite clear that the best results are obtained for τ strictly less
than 1, so that in what follows we always assume to work with τ ∈ (0, 1). Indeed, in
this situation we are able to approximate the Taylor coefficients with a more uniform

distribution of the error with respect to j. By Theorem 3.1, we need to bound
∣∣∣f (2k)

j (t)
∣∣∣

in the interval [−1, 1] in order to bound the error term Ej . We start with the following
result.

Proposition 3.4. Let 0 < τ < 1 and

(3.8) a :=
1 + τ

1− τ
.

For each j and k

max
[−1,1]

∣∣∣f (2k)
j (t)

∣∣∣ ≤ (2k)!

√
a

(
√
a− 1)

2k+2

(
a+ 1

2
√
a

)j

.

Proof. The function fj can be written as

fj(t) =
(1 + t)

j−1

(a+ t)
j

(
a+ 1

2

)j

, a > 1.

Using the Cauchy integral formula we have

(3.9) f
(2k)
j (t) =

(2k)!

2πi

∫

Γ

fj(w)

(w − t)
2k+1

dw,

where Γ is a contour surrounding t but not the pole −a < −1. We take Γ as the
circle centered at the origin and radius ρ such that 1 < ρ < a, that is, we use the
substitution w = ρeiθ. We obtain

(3.10) max
[−1,1]

∣∣∣f (2k)
j (t)

∣∣∣ ≤ (2k)!
ρ

(ρ− 1)
2k+1

max
[0,2π]

∣∣fj(ρeiθ)
∣∣ .

Taking ρ =
√
a we have

∣∣fj(ρeiθ)
∣∣ =

∣∣∣∣
1

1 + ρeiθ

∣∣∣∣
∣∣∣∣
1 + ρeiθ

a+ ρeiθ

∣∣∣∣
j (

a+ 1

2

)j

=

∣∣∣∣
1

1 +
√
aeiθ

∣∣∣∣
∣∣∣∣
1 +

√
aeiθ

a+
√
aeiθ

∣∣∣∣
j (

a+ 1

2

)j

=

∣∣∣∣
1

1 +
√
aeiθ

∣∣∣∣
(
a+ 1

2
√
a

)j

≤ 1

(
√
a− 1)

(
a+ 1

2
√
a

)j

.

By (3.10) we immediately achieve the result.
The above result is rather accurate only for small values of j. Since fj(t) is growing

in the interval [−1, 1], below we consider contours Γ in (3.9) which are dependent on
t, in order to balance this effect.

Proposition 3.5. Let 0 < τ < 1 and a as in (3.8). For j ≥ 2k + 2

(3.11)
∣∣∣f (2k)

j (t)
∣∣∣ ≤ (2k)!

√
a+ 1 +

√
2

a− 1

(1 + t)
j−1

2
−k

(a+ t)
j

2
+k

(
a+ 1

2

)j

, t ∈ [−1, 1].
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Moreover
(3.12)

max
[−1,1]

∣∣∣f (2k)
j (t)

∣∣∣ ≤ (2k)!
(√

a+ 1 +
√
2
)
(

j−2k−1
4k+1

) j−1

2
−k

(
j+2k
4k+1

) j

2
+k

(
a+ 1

2

)j

(a− 1)
−2k− 3

2

for j such that

(3.13) a ≤ j + 6k + 1

j − 2k − 1
,

and

(3.14) max
[−1,1]

∣∣∣f (2k)
j (t)

∣∣∣ ≤ (2k)!

√
a+ 1 +

√
2

a− 1

(a+ 1)
j

2
−k

2
j+1

2
+k

otherwise.
Proof. In (3.9) we take Γ as the circle centered at t and of radius ρ such that

1 + t < ρ < t+ a, that is, we use the substitution w = t+ ρeiθ. We obtain

(3.15)
∣∣∣f (2k)

j (t)
∣∣∣ ≤ (2k)!

1

ρ2k
max
[0,2π]

∣∣fj(t+ ρeiθ)
∣∣ .

For t > −1 we define ρ =
√
(t+ a)(1 + t), so that

∣∣fj(t+ ρeiθ)
∣∣ =

∣∣∣∣
1

1 + t+ ρeiθ

∣∣∣∣

∣∣∣∣
1 + t+ ρeiθ

a+ t+ ρeiθ

∣∣∣∣
j (

a+ 1

2

)j

=

∣∣∣∣∣
1

1 + t+
√
(t+ a)(1 + t)eiθ

∣∣∣∣∣×
∣∣∣∣∣
1 + t+

√
(t+ a)(1 + t)eiθ

a+ t+
√
(t+ a)(1 + t)eiθ

∣∣∣∣∣

j (
a+ 1

2

)j

=

∣∣∣∣∣
1

1 + t+
√
(t+ a)(1 + t)eiθ

∣∣∣∣∣

(
1 + t

a+ t

) j

2
(
a+ 1

2

)j

,

and hence

max
[0,2π]

∣∣fj(t+ ρeiθ)
∣∣ = 1√

(t+ a)(1 + t)− (1 + t)

(
1 + t

a+ t

) j

2
(
a+ 1

2

)j

=

√
(t+ a) +

√
(1 + t)√

(1 + t)(a− 1)

(
1 + t

a+ t

) j

2
(
a+ 1

2

)j

.

By (3.15) we obtain the bound (3.11) for each j and k, for t > −1. By continuity,
(3.11) holds for t ∈ [−1, 1] if j ≥ 2k + 2.

Now, we observe that the maximum with respect to t of the function

(1 + t)
j−1

2
−k

(a+ t)
j

2
+k
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is attained at

t∗ =
a(j − 2k − 1)− (j + 2k)

4k + 1
≥ −1.

Moreover t∗ ≤ 1 for a verifying (3.13). Substituting t∗ in (3.11) leads to (3.12). If
t∗ > 1 then the maximum of (3.11) is reached at t = 1 and hence we obtain (3.14).

In order to derive (3.12) and (3.14) we have assumed τ to be a priori fixed. Now,

using these bounds, we look for the value of τ which minimize
∥∥∥f (2k)

j

∥∥∥ for a given j.

For j ≥ 2k + 3, the minimization of the term

(a+ 1)j (a− 1)−2k− 3
2

in (3.12) leads to

a(1) =
2j + 4k + 3

2j − 4k − 3
,

which satisfies (3.13). Consequently, by (3.8) we obtain

(3.16) τ (1) =
4k + 3

2j
.

On the other side, for the same j ≥ 2k + 3, the minimization of the term

√
a+ 1 +

√
2

a− 1
(a+ 1)

j
2
−k

in (3.14) leads to a value

a∗ ≤ j − 2k + 2

j − 2k − 2
,

which also satisfies (3.13) and hence does not fulfill the requirement of (3.14). For
a > a∗ the bound (3.14) is growing with a and consequently its minimum is attained
just for

a(2) =
j + 6k + 1

j − 2k − 1
.

Using this value in (3.14) leads to a bound that is coarser than the one obtained by
replacing a(1) in (3.12). For this reason, with respect to our estimates, τ given by
(3.16) represents the optimal value for the computation of (3.6) and consequently of

ω
(p)
j .

The following theorem summarizes the results obtained. The proof follows straight-
fully from (3.4), Theorem 3.1, Lemma 3.2, and Propositions 3.4, 3.5.

Theorem 3.6. Let 0 < τ < 1 and

a :=
1 + τ

1− τ
.

Then

|Ej | ≤ 23−2k sin(απ)ταΨ(a, j, k).
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where

Ψ(a, j, k) :=






√
a

(
√
a−1)

2k+2

(
a+1
2
√
a

)j

, j ≤ 2k + 1,

(√
a+ 1 +

√
2
) ( j−2k−1

4k+1 )
j−1

2
−k

( j+2k

4k+1 )
j
2
+k

(
a+1
2

)j
(a− 1)

−2k− 3
2 ,

2k + 2 ≤ j ≤ 6k+1+a(2k+1)
a−1 ,

√
a+1+

√
2

a−1
(a+1)

j
2
−k

2
j+1
2

+k
, j ≥ max

(
2k + 2, 6k+1+a(2k+1)

a−1

)
.

For τ = τ (1) the corresponding expression of Ψ(a, j, k) is minimized for j ≥ 2k + 3.

3.1. Numerical experiments. As already mentioned, the aim of the whole
analysis was to have indications about the choice of the parameter τ with respect to
the degree k of the formula and the dimension of the problem N . Unfortunately, the
definition of τ as in (3.16) depends on j, while we need a value which is as good as
possible for each 1 ≤ j ≤ N . In this sense, the idea, confirmed by the forthcoming
experiments, is to use τ (1) with j = N/2, that is, focusing the attention on the middle
of the interval [0, N ]. This leads to a choice of τ around the value 4k/N . We remark
that the previous analysis was restricted to the case of p = 1, because of the difficulties
in dealing with the functions fj for p > 1 (cf. Proposition 2.2).

Numerically, we can proceed as follows. If we define

τ∗ = argmin
τ

E(τ), E(τ) :=
∥∥∥Aα−1

p − R̃k(Ap)
∥∥∥
∞

,

then, in principle, τ∗ = τ∗(α, k,N, p). However, the numerical experiments done by
using the Matlab optimization routine fminsearch indicate that the dependence on
α is negligible with respect to the others. In particular, there is numerical evidence
that E(τ∗) ≈ E(τ̂ ) where

(3.17) τ̂ =
(7 + p)

2N
k.

In Figures 1-2 we report the values of E(τ∗) and E(τ̂ ) for p = 1, 3, respectively. We
recall that the corresponding sets of coefficients {a0, a1, . . . , ap} in (2.1) are given by

p = 1 : {1,−1} ,
p = 3 : {11/6,−3, 3/2,−1/3} .

As one can see, all the curves are approximatively overlapped. A “quasi” optimal
approximation of Aα−1

p can be therefore obtained by using the very simple formula in
(3.17) for choosing τ. Moreover, it is important to remark that such approximations
are surely satisfactory even with k ≪ N.

The previous results are all related to the overall error in the approximation of
Aα

p . Considering that our final goal is the use of such approximation for the solution
of FDEs, it is important to inspect also the componentwise error. As an example,
in Figure 3, we report such errors, i.e., the values of Ej defined in (3.2), in the case
of N = 400, p = 1, τ = τ̂ for α = 0.3, 0.5, 0.7, and different values of k. We also
consider the componentwise errors of the polynomial approximation of the generating
function obtained by truncating its Taylor series, with memory length equal to 16.

Obviously this is equivalent to approximate with 0 the coefficients ω
(p)
i of (1.5), for

i > 16, so that the error is just
∣∣∣ω(p)

i

∣∣∣. The competitiveness of the rational approach

is undeniable.
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Fig. 1. Error behavior of the Gauss-Jacobi rule for the approximation of Aα−1

1
for τ = τ∗

(dashed line) and τ = τ̂ = 4k/N (solid line).
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Fig. 2. Error behavior of the Gauss-Jacobi rule for the approximation of Aα−1

3
for τ = τ∗

(dashed line) and τ = τ̂ = 5k/N (solid line).

4. The solution of FDEs. In this section we discuss the use of the described
approximation of Aα

1 for getting a k-step method that simulates the FBDF of order
1. The discrete problem provided by the latter method applied for solving (1.1) can
be written in matrix form as follows

(4.1) (Aα
1 ⊗ Is) (Y − 1⊗ y0) = hαG(Y ),

where s is the dimension of the FDE, Is is the identity matrix of order s, y0 ∈ Rs

represents the initial value, h = (T − t0)/N is the stepsize, 1 = (1, 1, . . . , 1)
T ∈ RN ,

Y =




y1
y2
...
yN


 ≈




y(t1)
y(t2)
...

y(tN )


 , G(Y ) =




g(t1, y1)
g(t2, y2)

...
g(tN , yN )


 ≡




g1
g2
...
gN


 .
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Fig. 3. Componentwise error of the Gauss-Jacobi rational approximation with memory length
k = 6, 9, 12, and the polynomial approximation with k = 16.

As described in Section 2, the use of a k-point Gauss-Jacobi rule for approximating
(2.6) leads to

Aα
1 ≈




β0 0 0
... β0 0

βk

...
. . . 0

0
. . .

. . . 0
0 βk · · · β0




−1 


α0 0 0
... α0 0

αk

...
. . . 0

0
. . .

. . . 0
0 αk · · · α0




≡ B−1C.

Here, the coefficients {αj}kj=0 and {βj}kj=0 are related to the rational approximation

through the formulas (2.8)–(2.10), with m = k since p = 1,

(4.2) pk(ζ) = (1− ζ)p̃k−1(1− ζ) =

k∑

j=0

αjζ
j , qk(ζ) = q̃k(1− ζ) =

k∑

j=0

βjζ
j .

If we replace Aα
1 by B−1C in (4.1) and we multiply both side of the resulting equation

from the left by B ⊗ Is, we obtain

(4.3) (C ⊗ Is)Y − C1⊗ y0 = hα(B ⊗ Is)G(Y ),

where now Y represents the numerical solution provided by the k-step method. In
fact, considering that (C1)n = 0 for each n = k + 1, . . . , N, since

(4.4) pk(1) =

k∑

j=0

αj = 0,

the discrete problem (4.3) simplifies to

n−1∑

j=0

αj (yn−j − y0) = hα
n−1∑

j=0

βjgn−j , n = 1, . . . , k,(4.5)

k∑

j=0

αjyn−j = hα
k∑

j=0

βjgn−j , n = k + 1, . . . , N.(4.6)
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Indeed, the equations in (4.5) allow to get an approximation of the solution over the
first k meshpoints which are then used as starting values for the k-step recursion in
(4.6).

Remark 4.1. From (4.4)-(4.6) follows that the method reproduces exactly con-
stant solutions, i.e. it is exact if g(t, y(t)) ≡ 0.

As it happens in the case of ODEs, a localization of the zeros of the characteristic
polynomials of the k-step method in (4.2) is required in order to study its stability
properties. Clearly, such polynomials depend on the parameter τ, i.e. pk(ζ) ≡ pk(ζ; τ)
and qk(ζ) ≡ qk(ζ; τ) since this dependence occurs in p̃k−1, q̃k. The method is therefore
based on the following rational approximation

(4.7) (1− ζ)α−1 ≈ p̃k−1(1 − ζ; τ)

q̃k(1− ζ; τ)
≡ R̃k(1− ζ; τ).

Theorem 4.2. For each τ ∈ (0, 1], the adjoint of the characteristic polynomials
of the k-step method, i.e. ζkpk(ζ

−1; τ) and ζkqk(ζ
−1; τ), are a Von Neumann and a

Schur polynomial, respectively.
Proof. From Remark 3.3, one obtains

(4.8) R̃k(1− ζ; τ) = τα−1R̃k

(
1− ζ

τ
; 1

)
,

since

dl

dζl
(1− ζ)α−1

∣∣∣∣
ζ=1−τ

= τα−1 dl

dζl
R̃k

(
1− ζ

τ
; 1

)∣∣∣∣
ζ=1−τ

, l = 0, 1, . . . , 2k − 1.

In addition, using the Gauss hypergeometric functions, in [9, Theorem 4.1] it has been
proved that

R̃k

(
1− ζ

τ
; 1

)
=

2F1 (1− k, 1− α− k; 1− 2k; (τ − 1 + ζ)/τ)

2F1 (−k, α− k; 1− 2k; (τ − 1 + ζ)/τ)
,

or equivalently, by denoting with P(γ,β)
r the Jacobi polynomial of degree r and by

using [20, eq. 142, p. 464] and the symmetry of such polynomials,

(4.9) R̃k

(
1− ζ

τ
; 1

)
= τ

(τ − 1 + ζ)k−1P(1−α,α)
k−1 (2τ/(τ − 1 + ζ)− 1)

(τ − 1 + ζ)kP(α−1,−α)
k (2τ/(τ − 1 + ζ) − 1)

.

From (4.2) and (4.7)–(4.9), one therefore gets

pk(ζ; τ) = (1− ζ)τα(τ − 1 + ζ)k−1P(1−α,α)
k−1 (2τ/(τ − 1 + ζ)− 1) ,

qk(ζ; τ) = (τ − 1 + ζ)kP(α−1,−α)
k (2τ/(τ − 1 + ζ)− 1) .

It follows that, if we denote with θi the ith root of P(1−α,α)
k−1 then the roots of pk(ζ; τ)

are given by

(4.10) ζi = 1 + τ
1− θi
1 + θi

> 1, i = 1, . . . , k − 1, ζk = 1,

where the inequality follows from the fact that the roots of the Jacobi polynomials

belong to (−1, 1). Similarly, by denoting with ϑi the ith root of P(α−1,−α)
k , one deduces

that the roots of qk(ζ; τ) read

(4.11) ζi = 1+ τ
1− ϑi

1 + ϑi
> 1, i = 1, . . . , k.
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From (4.10)-(4.11) the statement follows immediately.
An important consequence of the previous result is that the finite recurrence

scheme is always 0-stable independently of the stepnumber k and τ ∈ (0, 1]. More
precisely, in the case of g ≡ 0 the zero solution of (4.6) is stable with respect to
perturbations of the initial values.

4.1. Consistency. In this section we examine the consistency of the method.
While, theoretically, it is only exact for constant solutions (see Remark 4.1), numer-
ically one observes that the consistency is rather well simulated if k is large enough.
The analysis will also provide some hints about the choice of the memory length m.
We restrict our consideration to the case p = 1 (m = k) but the generalization is
immediate.

For a given y(t), the FBDF of order 1 yields the approximation

0D
α
t y(t) =

1

hα

N∑

j=0

(−1)j
(
α

j

)
(y(t− jh)− y(0)) +O(h), t = Nh.

Let

∆α
hy(t) :=

N∑

j=0

(−1)j
(
α

j

)
(y(t− jh)− y(0)) .

Writing a rational approximation of degree k to ω
(α)
1 (ζ) = (1− ζ)α as

Rk(ζ) =

∞∑

j=0

γjζ
j ,

the corresponding method produces an approximation of the type

0D
α
t y(t) ≈

1

hα

N∑

j=0

γj (y(t− jh)− y(0)) .

Denoting by

Rα
k,hy(t) :=

N∑

j=0

γj (y(t− jh)− y(0)) ,

we obtain

0D
α
t y(t)−

1

hα
Rα

k,hy(t) =

= 0D
α
t y(t)−

1

hα
∆α

hy(t) +
1

hα
∆α

hy(t)−
1

hα
Rα

k,hy(t)

= O(h) +
1

hα

∑N

j=0

[
(−1)j

(
α

j

)
− γj

]
(y(t− jh)− y(0)) .

The consistency of the method is ensured if

(4.12)
1

hα

∑N

j=0

[
(−1)j

(
α

j

)
− γj

]
(y(t− jh)− y(0)) → 0
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Fig. 4. Plot of the function qk(h) in (4.13) for α = 1/2, τ = 1/10 and different values of k.

as h → 0 (cf. [8]). While this cannot be true for a fixed k < ∞, in what follows we
show that numerically, i.e., for h ≥ h0 > 0, the consistency is well simulated if k is
large enough and if the rational approximation to Aα

p is reliable.

As pointed out in [16], a certain method for FDEs with generating function ω(α)(ζ)
is consistent of order p if

h−αω(α)(e−h) = 1 +O(hp).

In this setting, in order to understand the numerical consistence of our method, we

consider the above relation by replacing ω(α)(e−h) with ω
(α)
1 (e−h) and Rk(e

−h). In
particular, if we set

(4.13) qk(h) = logh

(
h−α

∣∣∣Rk(e
−h)− ω

(α)
1 (e−h)

∣∣∣
)
,

then we obtain

h−α
∣∣Rk(e

−h)
∣∣ ≤ h−α

∣∣∣ω(α)
1 (e−h)

∣∣∣+ h−α
∣∣∣Rk(e

−h)− ω
(α)
1 (e−h)

∣∣∣ .

= 1 +O(h) + hqk(h)

This implies that the consistency of the FBDF of the first order is well simulated as
long as qk(h) is larger than 1. In Figure 4, we plot such function for α = 1/2, τ = 1/10,
and different values of k.

The previous experiment does not take care of the perturbation introduced in
the approximation of the fractional derivative of fractional powers of the independent
variable which may be present in the solution of the FDE. In order to control such
perturbations, we therefore consider the following second experiment. Going back
to formula (4.12), we let N = 1/h and y(t) = Eα(−tα) where Eα(x) denotes the
one-parameter Mittag-Leffler function (see e.g. [21, Chapter 1])

(4.14) Eα(x) =

∞∑

k=0

xk

Γ(kα+ 1)
.

In Figure 5, we then consider the behavior of the function

(4.15) q̃k(h) = logh

(
h−α

∣∣∣∣
∑N

j=0

(
(−1)j

(
α
j

)
− γj,k

)
(y(tN−j)− y(0))

∣∣∣∣
)
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Fig. 5. Plot of the function q̃k(h) in (4.15) for α = 1/2, τ = 1/10 and different values of k.
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Fig. 6. Plot of the function q̄k(h) in (4.16), for α = 1/2, τ = 1/10 and different values of k.

which, similarly to qk(h), has to be compared with 1. The values of y(t) have been
computed using the Matlab function mlf from [22] that implements the Mittag-Leffler
function together with the Schur-Parlett algorithm.
We conclude this section by considering what happens with the general assumption
|y(t)| ≤ M . Using this bound, by (4.12) we consider the function

(4.16) qk(h) = logh

(
h−α

∑N

j=0

∣∣∣∣(−1)j
(
α

j

)
− γj,k

∣∣∣∣
)
,

whose behavior is reported in Figure 6.

As already mentioned, the numerical analysis reported in this section can also be
used to select a proper value for k for a fixed time stepping h or viceversa. Figures 4
and 6 are in fact independent of the problem and can be used easily to this aim.

4.2. Linear stability. For what concerns the linear stability, taking g(t, y(t)) =
λy(t) in (1.1), we have that y(t) = Eα(λt

α) → 0 for

|arg(λ)− π| <
(
1− α

2

)
π,
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(see (4.14) and [17]). The absolute stability region of a FBDF is given by the comple-

ment of
{
ω
(α)
p (ζ) : |ζ| ≤ 1

}
so that a good approximation of the generating function

should lead to similar stability domains and hence good stability properties. We con-
sider the behavior of methods based on the Gauss-Jacobi rule whose corresponding
stability regions are given by, see (2.9)-(2.10),

C\
{
pm(ζ)

qm(ζ)
: |ζ| ≤ 1

}
.

From a theoretical point of view, from Theorem 4.2 one deduces that for p = 1 such
regions are always unbounded for each m = k and τ ∈ (0, 1]. Indeed, as shown in
Figure 7, the methods simulate the behavior of the FBDFs rapidly, i.e. already for
k and therefore m small. In particular, the stability domain of the method of degree
k = m = 12 in the left frame of Figure 7 is very close to the one of the FBDF of order
1.
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Fig. 7. Left: boundary of the stability domains of the methods based on the Gauss-Jacobi rule
with k = 6 (dashed line) and k = 12 (solid line) for p = 1, τ = 1/10, and α = 1/2. Right: boundary
of the stability domains of the same methods of degree k = 8 for p = 1 (inner) to 4 (outer), τ = 1/10
and α = 3/4.

5. Numerical examples. As first example, we consider the one-dimensional
Nigmatullin’s type equation

0D
α
t u(x, t) =

∂2u(x, t)

∂x2
, t > 0, x ∈ (0, π) ,

u(0, t) = u(π, t) = 0,

u(x, 0) = sinx.

If we discretize the spatial derivative by applying the classical central differences on
a uniform mesh of meshsize δ = π/(s+ 1), we obtain the s-dimensional FDE

(5.1) 0D
α
t y(t) = Ly(t), y(0) = y0,

where L = δ−2 · tridiag(1,−2, 1), and y0 is the sine function evaluated at the interior
grid points. It is known that y0 is the eigenvector of L corresponding to its largest
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eigenvalue λ = −4 sin2(δ/2)/δ2. This implies that the exact solution of (5.1) is given
by, see (4.14),

y(t) = Eα(t
αλ)y0.

In Figure 8 some results are reported. We compare the maximum norm of the error at
each step of the FBDF of order 1 (FBDF1) and the method based on the Gauss-Jacobi
rule for some values of k and α. The initial values for the k-step schemes are defined
according to the strategy described in Section 4. The reference solutions have been
computed using the already mentioned Matlab function mlf from [22]. The dimension
of the problem is s = 50, and we consider a uniform time step h = 1/N with N = 250
so that h ≈ δ2. As one can see, if we set τ = 1, i.e. if we use the classical Padè
approximation of (1−ζ)α−1 (see Remark 3.3), the k-step methods simulate quite well
the FBDF1 initially and an improvement of the results can be obtained by slightly
increasing (considering to the total number of integration steps) the stepnumber k. A
noticeable improvement can be obtained by choosing a different value of τ. In partic-
ular, if we set τ = τ̂ = 4k/N (see (3.17)) then the 6-step method provides a numerical
solution with the same accuracy of the one provided by the FBDF1 over the entire
integration interval.

0 0.5 1
−4.0

−3.5

−3.0

−2.5

−2.0

−1.5
α = 1/2, τ = 1

0 0.5 1
−4.0

−3.5

−3.0

−2.5

−2.0

−1.5
α = 1/3, τ = 1

0 0.5 1
−4.0

−3.5

−3.0

−2.5

−2.0

−1.5
α = 2/3, τ = 1

0 0.5 1
−4.0

−3.5

−3.0

−2.5

−2.0

−1.5
α = 1/2, τ = 1/2

0 0.5 1
−4

−3.5

−3

−2.5

−2

−1.5
α = 1/3, τ = 1/2

0 0.5 1
−4.0

−3.5

−3.0

−2.5

−2.0

−1.5
α = 2/3, τ = 1/2

0 0.5 1
−4.0

−3.5

−3.0

−2.5

−2.0

−1.5
α = 1/2, τ = 4k/N

0 0.5 1
−4.0

−3.5

−3.0

−2.5

−2.0

−1.5
α = 1/3, τ = 4k/N

0 0.5 1
−4.0

−3.5

−3.0

−2.5

−2.0

−1.5
α = 2/3, τ = 4k/N

Fig. 8. Step by step error (in logarithmic scale) for the solution of (5.1) for the FBDF of order
1 (dashed line) and the method based on the Gauss-Jacobi rule with k = 6 (solid line) and k = 12
(dash-dotted line).
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As second example we consider the following nonlinear problem

0D
α
t u(x, t) =

∂(p(x)u(x, t))

∂x
+Kα

∂2u(x, t)

∂x2
+ ru(x, t)

(
1− u(x, t)

K

)
,

u(0, t) = u(5, t) = 0, t ∈ [0, 1],

u(x, 0) = x2(5− x)2, x ∈ [0, 5].

This is a particular instance of the time fractional Fokker-Planck equation with a
nonlinear source term [24]. In population biology, its solution u(x, t) represents the
population density at location x and time t and the nonlinear source term in the
equation is known as Fisher’s growth term.

The application of the classical second order semi-discretization in space with
stepsize δ = 5/(s+ 1) leads to the following initial value problem

(5.2) 0D
α
t y(t) = Jy(t) + g(y(t)), t ∈ (0, 1], y(0) = y0,

where, for each i = 1, . . . , s, (y(t))i ≡ yi(t) ≈ u(iδ, t), yi(0) = u(iδ, 0), (g(y))i =
ryi(1− yi/K), and J is a tridiagonal matrix whose significant entries are

Jii = p′(xi)−
2Kα

δ2
, i = 1, . . . , s,

Ji,i−1 = −p(xi)

2δ
+

Kα

δ2
, Ji−1,i =

p(xi−1)

2δ
+

Kα

δ2
, i = 1, . . . , s− 1.

In our experiment, we set α = 0.8, p(x) = −1, r = 0.2, Kα = K = 1 (see [24, Example
5.4]) and s = 90. We solved (5.2) over a uniform meshgrid with stepsize h = 1/256 by
using the FBDF1 and the 6-step method with τ = 24/256. The so-obtained numerical
solutions have the same qualitative behavior as shown in Figure 9 for different times
t = 1/8, 1/2, 1. This is confirmed by the step by step maximum norm of the difference
between them reported in Figure 10.
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Fig. 9. Numerical solution of (5.2) with α = 0.8 provided by the FBDF1 and the method based
on the Gauss-Jacobi rule with k = 6 at t = 1/8, 1/2, 1.
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Fig. 10. Step by step norm of the difference (in logarithmic scale) between the numerical
solutions provided by the FBDF1 and the 6-step methods.

6. Conclusion. In this paper we have presented a new approach for the con-
struction ofm-step formulas for the solution of FDEs. The method shows encouraging
results in the discrete approximation of the FDE solution especially if we consider the
computational saving with respect to the attainable accuracy. Indeed good results
are attainable with short memory length. Theoretically the method is 0-stable and
the consistency is well simulated. The linear stability is preserved.

We finally remark that even if the paper only deals with the approximation of
FBDFs, the ideas can easily be extended to other approaches such as the Fractional
Adams type methods. It is just necessary to detect the generating function or the
corresponding Toeplitz matrix and then apply the technique presented in the paper.
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[9] O. Gomilko, F. Greco, K. Ziȩtak, A Padé family of iterations for the matrix sign function and
related problems, Numerical Linear Algebra with Applications 19 (2012), 585–605.

[10] E. Hairer, S.P. Norsett, G. Wanner, Solving ordinary differential equations. I. Nonstiff problems.
Second edition. Springer Series in Computational Mathematics, 8. Springer-Verlag, Berlin,
1993.

[11] N. Hale, N.J. Higham, L.N. Trefethen, Computing Aα, log(A), and related matrix functions
by contour integrals, SIAM J. Numer. Anal. 46 (2008), 2505–2523.

[12] N.J. Higham, Functions of matrices. Theory and computation. Society for Industrial and Ap-
plied Mathematics (SIAM), Philadelphia, PA, 2008.



22 L.Aceto, C.Magherini and P.Novati

[13] F.B. Hildebrand, Introduction to Numerical Analysis. New York: McGraw-Hill, 1956.
[14] J.R. Li, A fast time stepping method for evaluating fractional integrals, SIAM J. Sci. Comput.

31 (2010), 4696–4714.
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