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Abstract—This paper reports on how emotional states elicited by affective sounds can be effectively recognized by means of estimates
of Autonomic Nervous System (ANS) dynamics. Specifically, emotional states are modeled as a combination of arousal and valence
dimensions according to the well-known circumplex model of affect, whereas the ANS dynamics is estimated through standard and
nonlinear analysis of Heart rate variability (HRV) exclusively, which is derived from the electrocardiogram (ECG). In addition, Lagged
Poincaré Plots of the HRV series were also taken into account. The affective sounds were gathered from the International Affective
Digitized Sound System and grouped into four different levels of arousal (intensity) and two levels of valence (unpleasant and pleasant).
A group of 27 healthy volunteers were administered with these standardized stimuli while ECG signals were continuously recorded.
Then, those HRV features showing significant changes (p<0.05 from statistical tests) between the arousal and valence dimensions
were used as input of an automatic classification system for the recognition of the four classes of arousal and two classes of valence.
Experimental results demonstrated that a quadratic discriminant classifier, tested through Leave-One-Subject-Out procedure, was able
to achieve a recognition accuracy of 84.72% on the valence dimension, and 84.26% on the arousal dimension.

Index Terms—Emotion Recognition, Heart rate variability, Autonomic Nervous System, Nonlinear Analysis, Poincaré plot, Affective
Digitized Sound System (IADS), Quadratic Discriminant Classifier.
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1 INTRODUCTION

THE automatic quantification and recognition of hu-
man emotions is a relatively new and fast-growing

research area which combines knowledge in the fields of
psycho-physiology, computer science, biomedical engi-
neering, and artificial intelligence. Results of these stud-
ies are usually identified within the so-called "Affective
Computing" field, providing computational models and
machine learning algorithms for the automatic recogni-
tion of emotional regulation occurring through different
kinds of elicitation [1]. In general, an emotion recognition
system is designed to be effective for a specific kind of
stimulus and it is built on a specific model of emotion
which has to be characterized by processing one or more
physiological/behavioral signs.

In this study, the Russel’s Circumplex model of affect
[2], [3], which is one of mostly used model of emotions,
is used to model emotions elicited by affective sounds.
More specifically, considering such a model, each emo-
tion is seen as a linear combination of two affective
dimensions: arousal and valence. The arousal dimen-
sion expresses the intensity of the emotion, whereas
the valence dimension quantifies how much positive
or negative an emotion is felt by the subject along a
continuum of pleasantness-unpleasantness (Figure 1).

Concerning the physiological signals to be taken into
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Figure 1: A graphical representation of Russell’s cir-
cumplex model of emotions for acoustic stimuli: the
horizontal axis represents the valence dimension and the
vertical axis represents the arousal dimension.

account for emotion recognition, ECG-derived series,
which mainly refer to the analysis of Heart Rate Vari-
ability (HRV), have been extensively proposed in the
literature along with other Autonomic Nervous System
(ANS)-derived signals such as diastolic and systolic
bLOSOd pressure, pupillary dilatation, respiration, tem-
perature and skin conductance [4]–[15]. Although the
majority of the affective computing studies, based on
ANS dynamics, includes the analysis of several time
series, in this study we propose an effective emotion
recognition system based on measures derived from the
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HRV exclusively.
Also regarding the emotion elicitation, a wide range

of elicitation methods have been proposed in the lit-
erature: real experiences [16], film clips [9], [17]–[19],
problem solving [20], computer game interfaces [21],
images [6], as spoken words [22] and music [23]–[25].
The computational system proposed in this study is de-
veloped to recognize emotions through the identification
of the elicited arousal and valence levels of standardized
acoustic stimuli gathered from the International Affec-
tive Digitized Sound system (IADS) [26]. Likewise the
IAPS database [27], [28], IADS is a database of affective
sounds characterized in terms of valence and arousal
dimensions [26]. Of note, the use of standardized stimuli
allows replicating studies in a more reliable fashion,
making also easier the comparison of the results with
future works.

In this work, we first provide a comprehensive char-
acterization of the heartbeat dynamics upon the ad-
ministration of IADS affective stimuli having different
levels of arousal and valence, including the neutral one.
Such a characterization is performed deriving standard
measures, which are defined in the time and frequency
domain, from the HRV as recommended by the current
guidelines [29], and nonlinear measures, which are de-
fined in the phase space domain. This choice is strongly
motivated by the intrinsic nonlinear nature of the cardio-
vascular dynamics which is the result of signaling and
nonlinear interactions of the neurotransmitters in the
sino-atrial node [30]. Moreover, several previous achieve-
ments have highlighted the crucial role of ANS nonlinear
dynamics in the arousal and valence recognition [13],
[31], [32]. In this study, features extracted from Poincaré
plots were also taken into account. Specifically, we en-
gaged geometric indices of Lagged Poincaré plots (LPP)
which have already been successfully proposed in the
literature in studies involving acoustic stimulation [33]–
[35]. Therefore, we included these features in our set of
HRV nonlinear measures. Finally, only those HRV mea-
sures showing statistical significant differences between
the elicited arousal or valence levels are considered as
input of an automatic emotion recognition system based
on the Quadratic Discriminant classifier (QDC) [36], [37],
which is based on the Bayesan decision theory [13].

1.1 Previous Studies on Music and Affective Sounds
IADS sounds have been already jointly used to IAPS
images to elicit emotions in healthy subjects [38], [39]. In
these cases, the subject’s physiological response was in-
vestigated through HRV series analysis, calculating heart
rate (HR) changes and seeking for HR decelerations dur-
ing the stimuli. It was found that unpleasant audio stim-
uli induces a higher HR deceleration as compared with
visual stimuli [39]. There are few other studies in the
literature using IADS sounds [40]–[42] showing changes
of facial electromyographic and electroencephalografic
(EEG) activity [40], [41].

In the literature there are other several studies deal-
ing with pleasant and unpleasant music and music-
induced emotions [23]–[25], [33], [34], [43], [44]. These
studies take into account EEG and ANS dynamics, also
to automatically recognize four types of music-induced
emotions [43]. Of note, during music-induced emotion,
a significant parasympathetic modulation occurs [44].
Moreover, the use of functional Magnetic Resonance
Imaging (fMRI) allowed to highlight the role of the
amygdala during emotional audiovisual stimuli [45].

2 MATERIALS AND METHODS
2.1 Subjects Recruitment, Experimental protocol
and Acquisition set-up
Twenty-seven healthy subjects, aged from 25 to 35, par-
ticipated as volunteers in the experiment. According to
the self-report questionnaires, none of them had a history
of injury of the auditory canal or partial or full incapabil-
ity of hearing. Moreover, none of them suffered from any
cardiovascular, mental or chronic disease. Participants
were informed about the protocol and about the purpose
of the study, but they were not informed about the
arousal and valence levels they would have been listened
to. During the experiment, participants were seated in
a comfortable chair in a controlled environment while
listening to the IADS sounds. Each subject was left alone
in the room where the experiment took place for the
whole duration (29 minutes). The acoustic stimulation
was performed by using headphones while the subject’s
eyes were closed, to avoid any kind of visual interfer-
ence.

The affective elicitation was comprised of 10 sessions:
after an initial resting session of 5 minutes, four arousal
sessions alternated with neutral sessions (see Figure 2).
The four arousal levels had different increasing scores.
Within each arousing session, the acoustic stimuli were
selected to have Low-Medium (L-M) for negative va-
lence and Medium-High (M-H) for positive valence.
Such levels were set according to the IADS valence and
arousal scores reported in table 1. The neutral session
had a duration of 1 minute and 28 seconds, while the
four arousal sessions had a duration of 3 minutes and
30 seconds, 3 minutes and 40 seconds, 4 minutes, 5 min-
utes and 20 seconds, respectively. The different duration
of each arousal session is due to the different length
of acoustic stimuli having the same range of positive
and negative valence. This experimental protocol was
approved by the local ethical committee.

During the elicitation, the ECG was continuously
acquired, following the Einthoven triangle configura-
tion, by means of a dedicate hardware module, i.e. the
ECG100C Electrocardiogram Amplifier from BIOPAC
inc. with a sampling rate of 500 Hz. The ECG signal was
exclusively acquired to extract the HRV series, which
refers to the variation of the time intervals between
consecutive heartbeats identified with R-waves (RR in-
tervals). Therefore, to obtain the HRV series from the
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ECG, a QRS complex detection algorithm was used, i.e.
the automatic algorithm developed by Pan-Tompkins
[46]. This algorithm allowed us to extract each QRS
complex and to detect the corresponding R-peak. Hence,
the RR interval is defined as the interval between two
successive QRS complexes. Nevertheless, not all of the
RR intervals obtained by the automatic QRS detection
algorithm were correct. Any technical artifact (i.e. er-
rors due to the R-peak detection algorithm) in the RR
interval time series may interfere with the analysis of
these signals. Therefore, an artifact removal algorithm
was used. In this work we adopted a proper piecewise
cubic spline interpolation method [47]. Besides the men-
tioned technical ones, physiological artifacts could be
also present in the analyzed RR series. They include ec-
topic beats and arrhythmic events. We manually checked
for physiological artifacts and only artifact-free sections
have been included in the analysis. Another common
feature that can significantly alter the analysis is the
slow trend within the analyzed RR series. In fact, slow
non-stationarities can be present in HRV signals and
should be considered before the analysis [48]. In this
work, the detrending procedure was implemented by
means of an advanced method originally presented in
[49]. This approach was based on smoothness priors
regularization.

Table 1: Rating of IADS sounds used in this work

Session
N. of

Sounds

Valence

Rating

Valence

Range

Arousal

Rating

Arousal

Range

Neutral 8 5.915±0.68 4.34÷6.44 3.47±0.175 2.88÷3.93

Arousal 1 19 / 3.54÷7.51 4.60±0.21 4.03÷4.97

Arousal 2 19 / 2.46÷7.78 5.42±0.22 5.00÷5.89

Arousal 3 26 / 2.04÷7.90 6.48±0.25 6.00÷6.99

Arousal 4 20 / 1.57÷7.67 7.32±0.22 7.03 ÷8.16

Ratings are expressed as median and its absolute deviation.

2.2 Methodology of Signal Processing
A general block scheme of the whole processing chain
is shown in Figure 3. The methodology of signal pro-
cessing applied to HRV features can be divided into
two sections: the extraction of standard and nonlinear
features from the HRV series and the Leave One Subject
Out Procedure. This procedure applies to the training
set through feature selection (statistical analysis) and
normalization, whereas to the test set using a trained
QDC algorithm. Implementation was performed by us-
ing Matlab v8.3.

2.2.1 Standard HRV Measures

Standard HRV analysis refers to the extraction of param-
eters defined in the time and frequency domain [13], [29],
[50]. Concerning the time domain analysis, we calculated
the following features from the HRV series:

• the mean value (RR mean)
• the standard deviation (RR std)
• the standard deviation of NN intervals (the so-called

Normal-to-Normal intervals), (SDNN)

Figure 2: Timeline of the experimental protocol in terms
of arousal and valence levels. The vertical axis relates
to the IADS score, whereas the horizontal axis relates
to the time. The neutral sessions, which are marked
with blue lines, alternate with the arousal ones, which
are marked with red staircases. Along the time, the red
line follows the four arousal sessions having increasing
intensity of activation. The dotted green line indicates
the valence levels distinguishing the low-medium (L-M)
and the medium-high (M-H) level within an arousing
session. The neutral sessions are characterized by lowest
arousal and medium valence scores. Yellow line relates
to the resting state.

Figure 3: Overall block scheme of the proposed emotion
recognition system. The ECG is pre-processed in order to
extract the RR interval series. According to the protocol
timeline, standard and nonlinear features are extracted
and, then, selected through statistical analysis. After
a normalization step, QDC algorithms are engaged to
perform pattern recognition by adopting a Leave-One-
Subject-Out procedure.
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• the square root of the mean of the sum of the squares
of differences between subsequent NN intervals,
(RMSSD=

q
1

N�1

PN�1
j=1 (RRj+1 �RRj)2)

• the number of successive differences of intervals
which differ by more than 50 ms, expressed as a
percentage of the total number of heartbeats ana-
lyzed (pNN50=NN50

N�1 100%)
• the integral of the probability density distribution

(that is, the number of all NN intervals) divided by
the maximum of the probability density distribu-
tion, (HRV tiangular index, HRV tr. ind.)

• the triangular interpolation of NN interval his-
togram, that is the baseline width of the distribution
measured as a base of a triangle approximating
the NN interval distribution (TINN) Between these
parameters RMSSD indicates the short term vari-
ability, instead SDNN and HRV triangular index are
features of the entire HRV [51].

Concerning the frequency domain analysis, several fea-
tures were calculated from the Power Spectral Density
(PSD) analysis. Such a PSD was calculated by using the
Welch’s periodogram and window’s width and overlap
were chosen as a best compromise between the fre-
quency resolution and variance of the estimated spec-
trum. Three spectral bands of the PSD are identified: VLF
(very low frequency) with spectral components below
0.04 Hz; LF (low frequency), ranging between 0.04 and
0.15 Hz; HF (high frequency), comprising frequencies
between 0.15 to 0.4 Hz. For each of the three frequency
bands these features were computed:

• the power calculated within the VLF, LF, and HF
bands.

• the frequencies having maximum magnitude (VLF
peak, LF peak, and HF peak).

• the power expressed as percentage of the total
power (VLF power %, LF power %, and HF power
%).

• the power normalized to the sum of the LF and HF
power (LF power nu and HF power nu).

• the LF/HF power ratio.

2.2.2 Nonlinear HRV Measures

From each HRV series, several nonlinear indices were
calculated. These measures refer to the estimation and
characterization of the phase space (or state space) of
the cardiovascular system generating the series. The
phase space estimation procedure involves the Takens’s
method [52], [53] through two parameters: m, the em-
bedding dimension, which is a positive integer, and r,
the time delay, which is a positive real number. The
parameter m is related to the estimated dimension of the
phase space, whereas r is related to the margin of tol-
erance of the trajectories within the space. Starting from
the HRV time series X = [u(T ), u(2T ), ...u(NT )], with
T representing the sampling time, attractors of discrete
dynamical systems are redefined in a m-dimensional
space, operating a delay on the signal. This allows to

achieve m signals from only one starting with a lag-time
⌧ :
8
>>><

>>>:

X1 = [u(T ), u(2T ), ...u(mT )]

X2 = [u(2T ), u(2T + 2⌧), ...u(2T + (m� 1)⌧)]

...

XN�(m�1) = [u(N � (m� 1))T ), ...u(N � (m� 1))T + (m� 1)⌧)]

The vectors xj are the "delayed coordinates" and the
derived m-dimensional space is called "reconstructed
space". From the state space theory, several ANS non-
linear parameters can be derived using the following
analyses:
From each HRV series, we calculated some nonlinear
indices based in particular on three methods: the Ap-
proximate Entropy, the Detrended Fluctuation Analysis
(DFA) and the Lagged Poincaré Plot (LPP).

• Approximate Entropy
Approximate Entopy is a measure of the unpre-
dictability in the time series. A lower value of ApEn
corresponds to a repetitive trend, whereas as higher
is the ApEn value as complex is the signal [54], [55].

• Detrended Fluctuation Analysis
The detrended fluctuation analysis features (↵1 and
↵2) [56], [57] was evaluated to study correlations on
HRV series. Typically, in DFA the correlations are
divided into short-term and long-term fluctuations,
where the short-term fluctuations of the signal are
characterized by the parameter ↵1 and the long-term
fluctuations are expressed by ↵2.

• Lagged Poincaré Plots
This technique quantifies the fluctuations of the dy-
namics of the time series through a graphic (scatter
plot of RR intervals) where each RRn interval is
mapped as a function of previous. In this work
we also used Lagged Poincaré plot (LPP), a scatter
plot of RRn and RRn+M , with 1  M  10 The
quantitative analysis from the graph can be made
by calculating the dispersion of the points in the
LPP:

– SD1: the standard deviation related to the points
that are perpendicular to the line-of-identity
RRn+M = RRn [35]. It describes the HRV short-
term variability.

– SD2: the standard deviation that describes the
long-term dynamics and measures the disper-
sion of the points along the identity line.

Other parameters extracted and analyzed through
LPP are as follows:

– SD12 (SD12 = SD1/SD2): the ratio between
SD1 and SD2. This feature measures the balance
between the HRV long and short-term variabil-
ity [51].

– S (S = ⇡SD1SD2): the area of an imaginary
ellipse with axes SD1 and SD2 [51], [58].

– SDRR (SDRR = 1p
2

p
SD12 + SD22): an ap-

proximate relation indicating the variance of the
whole HRV series [58].
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2.2.3 Statistical Analysis and Pattern Recognition

Statistical analysis and pattern recognition methodolo-
gies were used in this study to automatically recognize
the autonomic response on the cardiovascular control of
the subjects to the emotional sounds, and to associate
the values of the HRV parameters with the kind of
elicitation as expressed in terms of arousal and valence.
This part of the study has been implemented following
the Leave-One-Subject-Out procedure (LOSO): we ap-
plied the feature selection and the normalization of the
features on a training set made by N-1 subjects (where
N is the total number of participants) to recognize the
emotional responses of the subject N th. This procedure
was iterated N times. The statistical analysis is intended
as a preliminary feature selection procedure aimed to
select the parameters that significantly vary between the
arousal and valence levels, using data gathered from the
training set exclusively. Before performing the statistical
analysis, Kolmogorov-Smirnov tests were performed in
order to check whether the data were normally dis-
tributed. In case of non-normal distribution, the results
are expressed in terms of median and Median Absolute
Deviation (MAD(X) = Median(|X � Median(X)|)).
Consequently, the Friedman test [59], i.e. nonparametric
one-way analysis of variance for paired data, was used to
test the null hypothesis that no difference exists among
different sessions as well as the Wilcoxon signed-rank
test, i.e a non-parametric statistical hypothesis test used
when comparing samples from two sessions, to assess
whether their population medians differ. We applied
these statistical tests in order to discern the four arousal
sessions, and the negative and positive valence levels of
each arousing session.

Every HRV feature identified as statistically different
between the considered sessions is considered part of
the input space of the pattern recognition algorithm.
It is worthwhile noting that every feature value ex-
tracted within the neutral session was subtracted from
the feature value estimated in the next arousal session
as a part of the normalization procedure. Every feature
extracted identified as statistically different between the
considered sessions, was object of the normalization
procedure which consisted of two different steps:

• for each subject, every feature value extracted
within the neutral session was subtracted from the
feature value estimated in the next arousal session;

• the obtained value for each feature was divided for
the MAD of its values in all the subject for the
considered arousal session.

Therefore the normalized feature was considered part of
the input space of the pattern recognition algorithm.

Two separate classification algorithms were imple-
mented for the arousal and valence recognition. For each
of the two classification algorithms, the dimension of
the feature space X , which was chosen as training set,
corresponded to the number of selected HRV measures.
For the arousal recognition, the number of samples in

such a space was related to the number of subjects
times the double of the number of arousal sessions (two
feature values were extracted for each arousal session),
i.e., 26 times 8 equal to 208. The same number of samples
was associated to the valence recognition. Finally, both
feature sets were used as input of a Quadratic Discrim-
inant Classifier (QDC) [36], [37] which was validated
through the Leave-One-Subject-Out (LOSO) procedure
[60]. The classification results were expressed as recog-
nition accuracy in form of confusion matrices [61]. A
generic element cij of a confusion matrix indicated the
percentage of how many times the feature set belonging
to the class i, was recognized as belonging to the class
j. This means that a higher average of the values on
the matrix diagonal corresponds to a better degree of
classification.

Of note, for each of the LOSO steps, the training set
was normalized by means of the z-score approach. The
mean and standard deviation values of the training set
were used to normalize the test sample according to the
z-score definition.

3 EXPERIMENTAL RESULTS

All the features described in the previous section were
extracted from each HRV series within not overlapped
consecutive time windows of one minute and twenty-
eight seconds. This length corresponds to the length of
each neutral session. Regarding the HRV standard mea-
sures, throughout the 27 iterations, significant differences
were found on the RRmean, RRstd, RMSSD and TINN.
Concerning the HRV features defined in the frequency
domain, significant results were found on: LF power %,
LF power nu, HF power, HF power %, HF power nu,
and LF/HF power ratio. Concerning the HRV nonlinear
measures, features as DFA↵1, DFA ↵2, ApEn, and SD1,
SD2, SDRR, and S (extracted by the Poincaré Plots)
showed statistically significant differences. This outcome
confirmed the importance of the nonlinear analysis in the
construction of the emotion recognition classifier, with a
special regard to SD12 (see supplementary information
for detailed results on the statistical analysis).

An interesting dynamics, shown as a function of the
arousal level, is related to the SD12 measure whose
plots are reported in Figure 4. Exemplary LPP from a
representative subject are shown in Figure 5. It is clear
that the degree of separation between the arousal and
corresponding neutral sessions increases according to the
degree of the arousing acoustic stimuli.

Every HRV standard and nonlinear measure that
showed at least a significant p-value among all the com-
parisons, both in the arousal and valence dimensions,
was included in the feature set constituting the input
for the automatic emotion classification through QDC
algorithms. Table 2 and 3 report the confusion matrices
obtained while discerning the valence and arousal levels,
respectively. In particular, table 2 shows the classification
accuracy along the valence dimension through which
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Figure 4: SD12 values as a function of the M lags among
the four arousal sessions and corresponding previous
neutral sessions.

Figure 5: Lagged Poincare Plots from a representative
subject during the elicitation of neutral (top panels) and
highest arousing (bottom panels) acoustic stimuli as a
function of the M lags.

every stimulus is classified regardless of its arousal level.
Likewise, table 3 shows the classification accuracy along
the arousal dimension through which every stimulus is
classified regardless of its valence level. Of note, neutral
stimuli are not taken into account into the automatic
classification system because such stimuli are needed for
the normalization before the classification (see paragraph
2.2.3). In order to remark the importance of normaliza-
tion in the studied algorithm, Table 6 shows the confu-
sion matrix related to the application of the classification
algorithm to the features values of neutral and arousal
sessions without neutral-based normalization procedure,
the accuracy presents values non-significantly different
from random guess.

In order to study the combined effect of the arousal

Table 2: Confusion Matrix of QDC Classifier for Valence
Level Recognition

QDC Neg.Valence Pos.Valence
Neg.Valence 84.2593 14.8148
Pos.Valence 15.7407 85.1852

Table 3: Confusion Matrix of QDC Classifier for Arousal
Level Recognition

QDC Arousal 1 Arousal 2 Arousal 3 Arousal 4
Arousal 1 83,3333 14,8148 12,9630 0
Arousal 2 3.7037 77,7778 5,5556 3,7037
Arousal 3 11,1111 0 79.6296 0
Arousal 4 1,8519 7.4074 1,8519 96,2963

and valence in the automatic classification system, we
developed two further specific arousal classification sys-
tems which selectively take unpleasant or pleasant stim-
uli as an input. Tables 4 and 5 show the classification ac-
curacies, expressed in terms of confusion matrices, while
discerning the four arousing levels considering only
unpleasant or pleasant acoustic stimuli, respectively.

Table 4: Confusion Matrix of QDC Classifier for Arousal
Level Recognition under negative valence

QDC Arousal 1 Arousal 2 Arousal 3 Arousal 4
Arousal 1 66.6667 51.8519 11.1111 18.5185
Arousal 2 11.1111 25.9259 22.2222 3.7037
Arousal 3 11.1111 11.1111 51.8518 18.5185
Arousal 4 11.1111 11.1111 14.8148 59.2593

Table 5: Confusion Matrix of QDC Classifier for Arousal
Level Recognition under positive valence

QDC Arousal 1 Arousal 2 Arousal 3 Arousal 4
Arousal 1 59.2593 37.0370 29.6296 37.0370
Arousal 2 25.9259 55.5556 33.3333 18.5185
Arousal 3 0 3.7037 22.2222 7.4074
Arousal 4 14.8148 3.7037 14.8148 37.0370

Table 6: Confusion Matrix of QDC Classifier for Arousal
Level Recognition without normalization

QDC Arous1 Arous2 Arous3 Arous4 Neutral
Arousal1 14,8148 11,1111 18,5185 7,4074 11,1111
Arousal2 37,0370 18,5185 25,9259 29,6296 40,7407
Arousal3 33,3333 44,4444 18,5185 33,3333 29,6296
Arousal4 11,1111 14,8148 11,1111 7,4074 11,1111
Neutral 3,7037 11,1111 25,9259 22,2222 7,4074

4 CONCLUSION AND DISCUSSION
In conclusion, in this study we presented a novel ap-
proach to automatically recognize emotions, as elicited
by affective sounds, in young healthy subjects through
the analysis of the cardiovascular dynamics exclusively.
Emotions are expressed in terms of arousal and valence
levels according to the Russel’s circumplex model of
affect [2], whereas the cardiovascular dynamics is esti-
mated through standard and nonlinear HRV measures,
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which have been demonstrated to be effective quantifiers
of the ANS activity on the cardiovascular control. The
experimental results showed a recognition accuracy of
84.72% on the valence dimension, and 84.26% on the
arousal dimension. This study also suggested that ANS
measures such as the HRV mean value, std, RMSSD,
triangular index, spectral measures, and standard devi-
ations of the LPP are the most effective HRV features to
recognize emotional states induced by affective sounds.

Specifically, the automatic classification system is built
on the subject’s physiological response, which is quan-
tified through standard and nonlinear HRV measures.
These features were selected according to their dis-
cerning capabilities among the sessions of elicitation. A
relevant contribution was given by nonlinear parameters
of defined by LPP. This finding confirms the relevant
contribution of nonlinear analysis in the affective com-
puting field, especially in the analysis of cardiac signals
[13], [35], [62]. Moreover, this result is in agreement with
the current literature showing the crucial role of LPP
analysis during acoustic elicitation [62]–[66]. Among the
other LPP measures, the SD1 measures, which represents
the instantaneous beat-to-beat variability of RR inter-
vals, and SD12, which represents the ratio between the
two standard deviations, have been associated to the
parasympathetic activity [35], [67], [68]. Thus, a decrease
of these indices could be associated to a corresponding
reduction of the parasympathetic modulation. A clear
decrease of the SD1 measure is shown in Figure 5, re-
vealing differences between the highest arousing session
and corresponding neutral session in a representative
subject. The shape of the Poincaré plots on the neutral
session becomes more circular along the lag increase,
while the plots corresponding to the arousing session
are elliptically shaped. This implies significant changes
in the ANS dynamical response to standardized emo-
tional elicitation through sounds. Of note, these results
are in agreement with previous studies describing ANS
changes during meditation [69]. We found a decrease
of these features going from neutral to arousing stimuli,
and from negative to positive sounds. These changes are
also confirmed by other measures such as RMSSD and
pNN50 defined in the time domain, and measures such
as HF defined in the frequency domain [67]. Concerning
the entropy measures, ApEn significantly contributed in
discerning auditory affective elicitations, broadening its
crucial role in an emotion recognition system previously
highlighted for affective images [13], [31].

As mentioned above, the results of the classification,
validated through LOSO approach, were very satisfac-
tory. We used the QDC because of its effectiveness in
dealing with multivariate input space and its wide use
in other clinical studies [13], [70]. Note that other classifi-
cation algorithms such as Linear Discriminant Classifier,
k-Nearest Neighbor, Kohonen Self Organizing map, and
Multilayer Perceptron were tested in this study. Among
these, QDC showed the highest recognition accuracy in
both arousal and valence classification.

The normalization of the feature values, performed by
subtracting the values from the previous neutral session,
was carried out in order to evaluate the deviations of the
features in arousal and valence sessions from the cor-
responding neutral ones. The normalization procedure
improved the classification accuracy. Indeed, performing
the arousal and valence classification through the im-
plementation of the same processing chain described in
paragraph 2.2 without the normalization procedure, we
obtained poor classification performances (Table 6). Of
note, we also proposed a valence-specific classification
system for the arousal levels. The recognition accuracy
associated to the arousal level 1 and arousal level 4 is
much higher than the ones associated to the arousal level
2 and arousal level 3. Note that the experimental proto-
col foresaw elicitation sessions alternating neutral and
arousing sessions, and valence sessions are embedded
within each arousing session. In order to comply with
the minimum signal-length requirement for the compu-
tation of the HRV features, we were able to properly
identify two valence levels (unpleasant/negative and
pleasant/positive) within each arousing session. Each
valence interval, in fact, lasted for 1.28 minutes. To our
knowledge, this study shows for the first time the use
of autonomic nervous system measures, as estimated
in the time/frequency/nonlinear domain, to recognize
emotional states induced by affective sounds.It is also
worthwhile noting that we were able to discern pleasant
and unpleasant, and arousing stimuli by using features
extracted from the HRV series exclusively. The achieve-
ment of this challenging task opens new avenues in the
field of affective computing, suggesting that emotion
recognition is possible using data coming from ECG
only. Emotion recognition through ECG only was al-
ready performed in the literature [32], [71], [72]. How-
ever, to our knowledge, the use of the IADS database in
emotion recognition using ECG only is a great novelty
in the current literature. Other novelties of this work
include the use of LPP for the analysis of the ANS
dynamics. This research can have a high impact in the
field of affective computing because it will be possible
to use the proposed system in naturalistic applications
involving wearable monitoring systems such as simple
holter ECG or smart textiles [73].

This study also confirms that the analysis of peripheral
physiological measures allows to differentiate emotions
because of the modulation of the ANS dynamics on
the cardiovascular control by important areas in the
central nervous system [45], [74]–[76]. In particular, the
prefrontal cortex, the lateral hypotalamus, the cingulate
anterior cortex, amygdala are known to modulate the ac-
tivity of the nucleus of the solitary tract and the nucleus
ambiguous which, together, modulate the sympathetic
and parasympathetic efferent ways to the heart whose
variability dynamics is detected by the system proposed
in this work. At the same time, the central nucleus
of amygdala is known to be directly involved in the
regulation of autonomic and neuroendocrine responses
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in situations with a high level of emotional stimulations
[77]. Indeed, changes observed during such a stimulation
in the parameters extracted from HRV reflect changes
in ANS dynamics particulary related to the parasympa-
thetic nervous system, thus confirming the importance
of the vagus nerve in the communication between the
Central Nervous System and the heart during emotion
regulation [71], [78].
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