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Abstract- This paper focuses on the application of recent 

results on lower bounds under misspecified models to the 

estimation of the scatter matrix of Complex Elliptically 

Symmetric (CES) distributed random vectors. Buildings upon 

the original works of Q. H. Vuong and Richmond-Horowitz, a 

lower bound, named Misspecified Cramér-Rao bound 

(MCRB), for the error covariance matrix of any unbiased (in 

a proper sense) estimator of a deterministic parameter vector 

under misspecified models is introduced. Then, we show how 

to apply these results to the problem of estimating the scatter 

matrix of CES distributed data under data mismodeling. In 

particular, the performance of the maximum likelihood (ML) 

estimator are compared, under mismatched conditions, with 

the MCRB and with the classical CRB in some relevant study 

cases.  
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I. Introduction 

The problem of estimating a deterministic parameter vector 

from a set of acquired data is ubiquitous in signal processing 

applications. A fundamental assumption underlying most 

estimation problems is that the true data model and the model 

assumed to derive an estimation algorithm are the same, that 

is, the model is correctly specified. However, a certain 

amount of mismatch is often inevitable in practice. Among 

others, the model mismatch can be due to an imperfect 

knowledge of the true data model or to the need to fulfill 

some operative constraints on the estimation algorithm 

(processing time, simple hardware implementation, and so 

on). In the statistical and econometric literature, much 

attention has been devoted to the behavior of the Maximum 

Likelihood (ML) estimator under mismatched conditions ([3, 

4, 5, 6], and recently [7]). In particular, Huber [3] and White 

[4] have shown that the asymptotic distribution of the ML 

estimator under misspecified models is a Gaussian one whose 

mean value is the minimizer (also called pseudo-true 

parameter vector in [1]) of the Kullback-Leibler (KL) 

divergence between the true and the assumed data 

distributions and the covariance matrix is given by the so-

called Huber “sandwich” matrix. A milestone on the 

misspecification analysis is the very comprehensive book [6]. 

It provides an excellent and insightful discussion about 

statistical inference in the presence of distributional 

misspecification, with a focus on estimation and hypotheses 

testing problems. A different mismodeling related to the 

dynamic of the acquired data has been investigated in [8]. In 

particular, in [8] the asymptotic performance of the ML 

estimator and of the generalized likelihood ratio test (GLRT) 

is derived under the assumption of independent identically 

distribution (i.i.d.) samples, when in the actual model the data 

vector are dependent.  

In conjunction with the asymptotic analysis, a question that 

naturally arises is if it is possible to establish a lower bound 

on the error covariance matrix of a certain class of 

mismatched estimators. When the parametric model is 

correctly specified, a few of such lower bounds exist; one of 

these is the well-known Cramér-Rao Bound (CRB). Recent 

works attempt to generalize the Cramér-Rao inequality in the 

presence of model misspecification. In [9], a Bayesian bound 

of the Ziv-Zakai type has been derived under model 

mismatch conditions restricted to misparameterized zero 

mean complex Gaussian distributions. More recently, 

Richmond and Horowitz [2] derived a covariance inequality 

for deterministic complex parameter vector in the presence of 

model misspecification. Moreover, in [2] a generalization to 

the mismatched case of the Slepian-Bangs formula for the 

evaluation of the CRB for multivariate complex Gaussian 

distributed observations is also derived. To the best of our 

knowledge, [2] represents the first attempt to introduce in the 

Signal Processing community an organic framework for 

deriving a covariance inequality of the Cramér-Rao type in 

the presence of model mismatch. However, the proof 

proposed in [2] limits the applicability of the derived 

misspecified CRB (MCRB) to a very restricted class of 

estimators. In an unrecognized (at least among the Signal 

Processing community) working paper [1], Q. H. Vuong had 
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proposed the same bound derived in [2] but with a different 

proof that allows for its applicability to a wider class of 

estimators, i.e. the class of unbiased (in a proper sense) 

estimators. Finally, to conclude the review of the literature on 

misspecified bound, we refer to the recent paper [10], where 

the authors adopted a different definition of unbiasedness and 

a different score function than in [1] and [2].      

The aim of this paper is twofold: in the first part, we provide 

a concise but comprehensive review of the main findings 

about the Misspecified Cramér-Rao Bound (MCRB) and the 

Missmatched Maximum Likelihood (MML) estimator. In the 

second part, we discuss the use of this bound first through an 

illustrative example, i.e. the estimation of the variance of a 

set of one-dimensional Gaussian data under misspecified 

mean value, and then through its application in a classical 

radar signal processing problem: the estimation of the 

disturbance covariance (scatter) matrix for adaptive detection 

algorithms. We put this classical radar problem in the more 

general context of the estimation of the scatter matrix in the 

Complex Elliptically Symmetric (CES) distribution family.  

In the following, a formal description of the estimation 

problem under mismatched conditions is provided. Let 
N

m x  be a N-dimensional random vector representing the 

outcome of a random experiment (i.e. the observation vector) 

whose probability density function (p.d.f.) is known to belong 

to a family . A structure T is a set of hypotheses, which 

implies a unique p.d.f. in  for xm. Such p.d.f. is indicated 

with pX(xm;T) ([11], [12]). The set of all the a priori possible 

structures is called a model. We assume that the p.d.f. of the 

random vector xm has a parametric representation, i.e. we 

assume that every structure T is parameterized by a d-

dimensional vector τ and that the model is described by a 

compact subspace d . 

The common assumption underlying any practical estimation 

problem is the perfect knowledge of the p.d.f.  ;Xp x θ  that 

characterizes the i.i.d. observations,  
1

M

m m
x x , except for 

the value of the parameter vector θ . However, a certain 

amount of mismatch between the true p.d.f. of the 

observations and the p.d.f. that we assume to derive an 

estimator of the parameters of interest is always present. 

Specifically, suppose that the true parametric p.d.f. of the 

observations  ;Xp x θ  and the assumed p.d.f.  ;Xf x θ  

belong to two (generally different) families of p.d.f.’s,  

and . Since in practical situations the true model is 

unknown, i.e. we have no prior information on the particular 

parameterization of the true distribution, in the following we 

refer to  ;Xp x θ  only as  Xp x  in order to highlight the 

fact the neither the model, nor the true parameter vector θ  

are accessible by a mismatched estimator [2]. 

Suppose then that the (possibly complex) M measurement 

vectors are sampled from a particular p.d.f. belonging to , 

i.e. ( )m X mpx x , for m=1,2,…,M. Suppose now that the true 

distribution  Xp x  does not belong to . In the rest of this 

paper, we indicate this mismatch between the true and 

assumed p.d.f.’s as misspecified model.  

 The rest of the paper is organized as follows. In Sect. II, the 

main theoretical results on the MCRB and the MML 

estimator are reviewed and discussed. In Sect. III, a simple 

example useful to better clarify the theoretical findings of 

Sect. II and how they should be applied is provided. Sect. IV 

focuses on the application of the MML estimator and of the 

MCRB to the estimation of the scatter matrix in the CES 

distribution family. Sect. V summarizes our conclusions. 

 

II. A lower bound in the presence of misspecified models: 

the MCRB 

The aim of this section is to provide an organic view of the 

findings in [1] and [2]. Starting from [1], we first provide a 

list of regularity conditions that are not only a fundamental 

prerequisite for the derivation of the MCRB, but allow to 

better understand the nature and the usefulness of the bound. 

Then, we provide the expression of the MCRB and the class 

of estimators to which it applies (Theorem 4.1 [1]). A 

discussion on the main differences between the general proof 

in [1] and the one given in [2] is also provided. Finally, we 

conclude this section by introducing the MML estimator, its 

asymptotic properties and their link with the MCRB [3], [4]. 

 

II.A Regular models 

Let  
1

M N

m m
 x x  be a set of i.i.d. N-dimensional random 

vector and let ( )Xp x  the true p.d.f. of x. Let 

 ( ; ) is a pdf p

Xf f  
θ

x θ θ  be a family of 

parametric p.d.f.s that possibly does not contain ( )Xp x . 

Assumption A1: For every θ , the functions ln ( ; )Xf x θ

, ln ( ; )X if  x θ  and 2 ln ( ; )X i jf    x θ , 

, 1, ,i j p  are dominated by a function ( )m x  independent 

of θ  and square-integrable with respect to ( )Xp x . 

Assumption A2: (a) The function 

    ln ; ln ; ( )p X m X m X m mE f f p d x θ x θ x x  has a unique 

maximum on   at an interior point 0θ . (b) The matrix 
0θ

A  

whose entries are 

    
0 0 0

0

2

0ln ; ln ;T

p X m p X m
ij ij

i j

E f E f
 



 
               

θ θ θ

θ θ

A x θ x θ

 (1) 

is non-singular.  Note that 
0 0( )u
θ

θ  indicates the gradient 

(column) vector of the scalar function u evaluated in 0θ . This 

can be recognized also as the identifiability condition (see  

[11, 12, 13]) for 0θ . The interior point 0θ  can be 

equivalently seen as the point that minimizes the Kullback-
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Leibler divergence between the true distribution ( )X mp x  and 

the assumed distribution  ;X mf x θ  [3], [4]: 

      0 arg min arg min ln ;p X mD p f E f
 

  
θ

θ θ

θ x θ ,

      (2) 

where 

 
( ) ( )

ln ln ( )
( ; ) ( ; )

X X

p X

X X

p p
D p f E p d

f f

     
    

     
θ

x x
x x

x θ x θ
.

      (3) 

Assumption A3: There exists a neighborhood   of 
0θ  such 

that for every θ  the functions 
1

0( ( ; )) ln ( ; ) , 1, ,X X if f i p   x θ x θ  are dominated by 

a function ( )m x  independent of θ  and square-integrable 

with respect to ( )Xp x . 

Assumptions A1 and A3 essentially allow differentiation 

under the integral sign of the expectation of any random 

variable or vector with finite variance that we will encounter 

in the rest of the paper. Assumption A2 ensures the existence 

and the uniqueness of the so-called pseudo-true parameters 

vector 
0θ . As we will see soon, 

0θ  plays a key role both in 

the definition of the MCRB and of the MML.  

Definition 1 (regular models) [1]: A parametric model  is 

regular with respect to (w.r.t.) a p.d.f. ( )Xp x  if Assumptions 

A1-A3 hold. It is regular w.r.t. a family  if it is regular 

w.r.t. every p.d.f. in . It is regular if it is regular w.r.t. 

every p.d.f. in . 

 

II.B MS-unbiased estimators and the Misspecified 

Cramér-Rao Bound 

After setting the necessary regularity conditions, a covariance 

inequality in the presence of misspecified regular models can 

be defined. First, the concept of misspecified unbiasedness, in 

short MS-unbiasedness, has to be introduced. 

 Definition 2 (MS-unbiasedness) [1]: Let  be a family of 

p.d.f.s w.r.t. which the (misspecified) parametric model  

is regular. Let ˆ( )θ x  be an estimator derived under the 

misspecified model  from the i.i.d. observations 

 
1

M

m m
x x . Then, ˆ( )θ x  is an MS-unbiased estimator of 

0θ  

if and only if: 

   0
ˆ ˆ( ) ( ) ( ) , ( )p X XE p d p   θ x θ x x x θ x .

 (4) 

It is easy to show that this definition is consistent with the 

classical definition of unbiasedness. In fact, when the model 

 is correctly specified, there exists a θ  such that 

( ) ( ; )X Xp fx x θ  for every x. Then, from Assumption A2, 

0θ θ  and finally eq. (4) reduces to 

 ˆ ˆ( ) ( ) ( ; )f XE f d θ
θ x θ x x θ x θ  that is exactly the standard 

definition of unbiasedness.  

At this point, a lower bound in the presence of (regular) 

misspecified models can be introduced. 

Theorem 1 (The Misspecified Cramér-Rao Bound, MCRB) 

[1], [2]: Let  be a parametric model. Let ( )  be the 

family of all p.d.f.s w.r.t. which  is regular. Suppose that 

( )  is not empty. Let ˆ( )θ x  be an MS-unbiased estimator 

derived under the misspecified model  from the i.i.d. 

observations  
1

M

m m
x x . Then, for every ( )Xp x  in ( ) : 

    
0 0 0

1 1

0 0

1ˆ( ), MCRB
M

 
θ θ θ

C θ x θ A B A θ  (5) 

where  

      0 0 0
ˆ ˆ ˆ( ), ( ) ( )

T

p pE  C θ x θ θ x θ θ x θ

      (6) 

is the error covariance matrix of ˆ( )θ x , the matrix 
0θ

A  has 

been defined in eq. (1) and 
0θ

B  is a matrix whose entries are 

defined as: 

 

    

   

0 0 0

0 0

0 0ln ; ln ;

ln ; ln ;
.

T

p X m X m
ij ij

X m X m

p

i j

E f f

f f
E

 
 

       

   
  

   

θ θ θ

θ θ θ θ

B x θ x θ

x θ x θ

 (7) 

Following [2], we refer to the right side of eq. (7) as the 

Misspecified Cramér-Rao Bound (MCRB). 

The proof of this Theorem can be found in [1]. It can be 

noted that the hypothesis that ( )  is not empty is not so 

strong. In fact, it requires that there exists at least one p.d.f. 

( )X mp x  for which, from Assumption A2, the point 
0θ  exists 

[1]. In the next sections, we provide three examples in which 

it is possible to evaluate 
0θ , and then the MCRB applies. 

Other relevant signal processing problems in which the 

pseudo-true vector 
0θ  can be evaluated are discussed in [2].  

In this case, it is easy to verify that the MCRB is consistent 

with the classical CRB. As for the unbiasedness, when the 

model  is correctly specified, ( ) ( ; )X Xp fx x θ  for some 

θ . Then, the matrices 
θ

A  and 
θ

B  are equal and 

correspond to the classical Fisher Information Matrix (FIM), 

and finally: 
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     

     

1
1 1 1

1

1 1 1 1ˆ( ), ln ;

1
ln ; ln ; ,

T

f f X m

T

f X m X m

E f
M M M M

E f f
M


  



       

  

θ θ

θ

θ θ θ θ θ θ θ

θ θ

C θ x θ A B A A B x θ

x θ x θ

      (8) 

which represents the classical Cramér-Rao inequality for an 

unbiased estimator.  

Remark 1: The statement and the proof of Theorem 1 given 

in [1] consider only the case of real parameter space, i.e. 
p . However, as shown in [2], the derivation can be 

easily extended to the complex case, i.e. when p . This 

is because all the p.d.f.s are real functions of complex 

variables (x and θ), so we do not need sophisticated 

holomorphic calculus to generalize the derivatives w.r.t. a 

complex parameter vector θ. Insightful procedures, useful to 

generalize the Cramér-Rao inequality in the complex case, 

are discussed in [14], [15] and [16].  

Remark 2: In order to evaluate the MCRB of (5), the 

knowledge of the true p.d.f. ( )Xp x  is required. However, 

this has not to be seen as a limitation of its applicability. 

Think for example to the common situation in which one 

knows that the true data distribution is given by an involved 

function that does not admit an easy analytical tractability 

(e.g. it is impossible to derive an ML estimator). In these 

cases, one usually decides to assume a simpler model, e.g. a 

Gaussian distribution, introducing a mismatch but, on the 

other hand, gaining the possibility to derive a simple 

(mismatched) estimator. Then, the MCRB can be evaluated 

since the true model is known  and it can be used to evaluate 

the potential performance loss due to the mismatch between 

the assumed and the true model. Another useful application 

of the MCRB is the prediction of possible weaknesses (i.e. 

breakdown of the estimation performance) of the system 

under peculiar conditions. In particular, given an assumed 

model for the data, one can be interested in evaluating the 

performance loss in the presence of a certain number of 

“true” possible data distributions that the system can undergo. 

We note, in passing, that in all the situations in which the true 

p.d.f. is known but is not possible to evaluate in closed form 

the expectation operator involved in the definition of the 

matrices 
0θ

A  in eq. (1) and 
0θ

B  in eq. (7), the MCRB can be 

approximated by means of Monte Carlo simulations. 

Before passing to introduce the MML estimator, in the 

following we provide a brief discussion about the difference 

between the results obtained in [2] and the general derivation 

of the MCRB provided in [1]. Even if the final mismatched 

covariance inequality assumes exactly the same expression, 

the proof in [1] is actually more general, while the one 

provided in [2] relies on the first order Taylor expansion of 

the estimation error term (see eq. 41 in [2]). This derivation 

leads to define a restricted class of estimators for which the 

MCRB of (5) applies. In particular, this class of estimators 

can be defined by the following two properties: 

1. The expected value w.r.t. the true distribution is the 

same for all the estimators in the class and is equal to 

 ˆ( )pE θ x μ , 

2. The correlation matrix 
θ

Ξ  between the estimation 

error and the score function ( )
θ
η x , i.e. 

   ˆ( ) ( )T

p pE 
θ θ

Ξ θ x μ η x  (9) 

must be equal to some matrix function ( )M θ , such that 

( ) 
θ

Ξ M θ  for all the estimators in the class. Since, in order 

to define explicitly the MCRB, the score function used in [2] 

is    ( ) ln ;Xf D p f 
θ θ θ θ
η x x θ  it turns out that the 

correlation matrix 
θ

Ξ  must be equal to 
0 0

1
θ θ

A B . 

As shown in [2], there is at least an estimator that 

asymptotically satisfies constrains 1) and 2). This estimator is 

exactly the MML estimator that we introduce in the next 

session. However, in general, it would be very difficult to 

characterize explicitly a class of estimators that satisfy these 

two constraints. The advantage on the proof in [1] w.r.t. the 

one in [2] is the fact that it shows  that the inequality in (5) 

holds for all the MS-unbiased estimators and not only for 

those that satisfy 1) and 2). 

II.C The Mismatched Maximum Likelihood Estimator 

In this section, we consider the MML estimator derived in [3] 

and [4] as: 

     
1

ˆ arg max ln ; arg max ln ;
M

MML X X mm
f f


 

  
θ θ

θ x x θ x θ ,

      (10) 

where ( )m X mpx x . It can be shown (see [3] and [4]) that 

the MML estimator converges almost surely (a.s.) to the 
0θ  

introduced in eq. (2), i.e. the vector that minimizes the 

Kullback-Leibler (KL) divergence between ( )X mp x and 

 ;X mf x θ : 

   
. .

0
ˆ

a s

MML
M
θ x θ ,         (11) 

Under similar regularity conditions to the ones given in 

Section II.A, in [3] and [4], the asymptotic normality of the 

MML estimator is proved. This result can be summarized in 

the following Theorem (see [3] and [4] for the proof): 

Theorem 2 ([3], [4]): Under suitable regularity conditions, it 

can be proved that 

    
0 0 0

.
1 1

0
ˆ , ,

d

MML
M

M  




θ θ θ
θ x θ 0 A B A        (12) 

where 
.d

M 
 indicates the convergence in distribution and the 

matrices 
0θ

A  and 
0θ

B have been defined in eqs. (1) and (7) 
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respectively . The asymptotic covariance matrix 
0 0 0

1 1 

θ θ θA B A  

is generally called Huber’s “sandwich” covariance. 

Theorem 1 and Theorem 2 highlight an interesting fact: the 

MML estimator is asymptotically MS-unbiased and its error 

covariance matrix asymptotically achieves the MCRB. The 

similarity with the classical (matched) estimation framework 

is now clear: the MML estimator is the counterpart of the ML 

estimator in the presence of misspecified models, as the 

MCRB is the counterpart of the classical (matched) CRB. In 

must be noted however that, while in the classical matched 

case, the convergence and the unbiasedness of the ML 

estimator is defined w.r.t. the true parameter vector θ , in the 

mismatched case the convergence and the MS-unbiasedness 

of the MML is always defined w.r.t. the pseudo-true 

parameter vector 
0θ  in eq. (2). The next section will provide 

some insights about this important point.  

II.D A particular case: the MCRB as a bound on the 

Mean Square Error (MSE) 

In this section, we focus on a particular mismatched case: the 

unknown parameter space   of the true model is the same of 

the parameter space   of the assumed model, i.e. 
p  . More formally, suppose that the true parametric 

p.d.f. of the observations    ;X Xp px x θ  and the assumed 

p.d.f.  ;Xf x θ  belong to two (generally different) families of 

p.d.f.’s,  and , that can be parameterized by using the 

same parameter space Θ: 

   ( ; ) is a pdf , ( ; ) is a pdf .X Xp p f f     
θ θ

x θ θ x θ θ

 (11) 

Even if this is only a particular case of the theory developed 

in the previous sections, this type of mismatch allows us to 

more deeply understand the nature of the MCRB and of the 

MML estimator. In particular, if condition (11) is satisfied, 

we can directly compare the MCRB and the MML estimator 

with their classical (matched) counterparts, i.e. the CRB and 

the ML estimator. This can be done since the pseudo-true 

parameter vector 0θ  belongs to the same parameter space of 

the true model θ , then the difference vector 0r θ θ  is 

well-defined. It is good to underline that, even in this 

particular case, θ  and 
0θ  may be different, i.e. the vector r is 

in general different from a zero-vector. To best of our 

knowledge, general conditions under which 0θ θ  are not 

available in the literature. The vector r indicates the distance 

between the convergence point θ  of the classical ML 

estimator if the true p.d.f.  ;Xp x θ  were perfectly known 

and the convergence point 
0θ  of the MML estimator when 

the mismatched p.d.f.  ;Xf x θ  satisfies the condition in (11)

. Moreover, using r, a bound on the Mean Square Error 

(MSE) on the estimation of θ  in the presence of mismatched 

models can be established. To do this, for any MS-unbiased 

mismatched estimator, the Error Covariance Matrix in eq. (6) 

can be rewritten as: 

     
       

 

0 0 0 0

0 0 0 0 0

0

ˆ ˆ ˆMSE ( ), ( ) ( )

ˆ ˆ( ), 2 ( )

ˆ( ), ,

T

p p

T T

p p

T

p

E

E

     

      

 

θ x θ θ x θ θ θ θ x θ θ θ

C θ x θ θ x θ θ θ θ θ θ θ

C θ x θ rr

      (12) 

where  0
ˆ( ) 0pE  θ x θ  from the MS-unbiasedness 

assumption. A similar expansion of the MSE can be found in 

[2] (see eq. 70). Finally, by substituting the covariance 

inequality in (5) in eq. (12), we can obtain a misspecified 

bound on the MSE of θ  as: 

  
0 0 0

1 11ˆMSE ( ), T

p
M

  
θ θ θ

θ x θ A B A rr . (13) 

Moreover, if the condition in (11) is satisfied, the concept of 

consistency can be extended also to MS-unbiased 

mismatched estimators. In particular, we define as consistent 

an MS-unbiased mismatched estimator if, as the number of 

data vectors M goes to infinity, it converges to the true 

parameter vector θ , i.e.,  
. .

0
ˆ

a s

M
 θ x θ θ . 

The mismatched MSE inequality in (13) and the concept of 

consistency for MS-unbiased mismatched estimators can be 

very useful to compare in a very intuitive and self-explicative 

manner the nature of the MCRB and of the MML estimator 

as we will see in the next two sections. 

 

III. A simple example: estimation of variance under 

misspecification of the mean 

In order to clarify the use of the MCRB and the MML 

estimator, a simple example is described in the following (see 

also [17] for other examples). The problem is to estimate the 

variance of Gaussian data in the presence of misspecified 

mean value (e.g. we erroneously assume that the data are zero 

mean). Let us assume to have a set of M i.i.d. scalar 

observations 1{ }M

m mx x , distributed according to a Gaussian 

p.d.f. with mean value X  and variance 
2

X , i.e. 

2( ) ( ; ) ( , )X m X m X Xp x p x    . It is well-known that, 

given the observation vector x, the ML estimator of the 

variance is given by 
2

1

1ˆ ( ) ( )
M

ML m Xm
x

M
 


 x , where 

2( , )m X Xx   . Suppose now that the assumed Gaussian 

p.d.f. is ( ; ) ( , )X mf x    , so we misspecify the mean 

value. It can be noted that in this simple example, the true 

unknown model ( )X mp x  and the assumed model ( ; )X mf x   
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admit the same parameterization, so this example falls in the 

particular case addressed in Section II.D. Following eq. (10), 

the MML estimator for the variance of the data is given by 

   
1

ˆ arg max ln ;
M

MML X mm
f x



 




 x , where: 

   
21 1 1

ln ; ln 2 ln
2 2 2

X m mf x x   


     . (14) 

It is immediate to show that the MML estimator is given by: 

   2

1

1ˆ ( )
M

MML mm
x

M
 


 x . (15) 

In this case, the KL divergence between ( )X mp x  and 

( ; )X mf x   can be expressed as [18]: 

 
2 2 2( ) 1

( ) 1 ln
2 2

X X XD p f
   

  

 
    

 
θ .(16) 

By taking the derivative with respect to θ and by setting equal 

to zero the resulting expression, we get: 

 
0

0

2 2

2

( ) ( ) 1
0

22

X X
D p f

 

 

  

 




   
  


(17) 

Hence, we get 
2 2

0 ( )X X        . Eq. (17) shows that 

the MML does not converge to the true variance, unless 

X  , i.e. when there is no model mismatch. This means 

that the MML estimator is not consistent. From the scalar 

version of eq. (4), the mean value of the MML estimator with 

respect to the true distribution ( ; )Xp x  is: 

    2 2

0
ˆ ( )p MML X XE         x . (18) 

Hence, the MML estimator is MS-unbiased and the MCRB 

can be evaluated as shown in (5). By evaluating the first and 

the second derivative of the ln ( ; )X mf x   and after some 

simple calculation, the matrices (that in this case are scalars) 

0
A  of eq. (1) and 

0
B  eq. (7) are obtained: 

 
0 2

0

1

2
A


  ,  

0

4 2 2 4 2

0

4

0

3 6 ( ) ( )

4

X X X XB

      



    
 . (19) 

Finally, from (13), we have that: 

   
4 2 2

2 42 4 ( )
MCRB MCRB ( )X X X

X X
M M

   
   


    

. (20) 

It is well-known that the CRLB for this estimation problem is 

given by 
2 4CRB( ) 2X X M  . Hence, 

2 2MCRB( ) CRB( )X X  , i.e. the MCRB is always greater or 

equal than the CRLB in the present study case. When 

X  , i.e. we correctly specify the mean value, then 

2

0 X     and 
2 2MCRB( ) CRB( )X X  . 

IV. MCRB for the estimation of the scatter matrix in the 

family of CES distributions 

In this section, we use the MCRB to investigate the problem 

of estimating the N N scatter matrix of Complex 

Elliptically Symmetric (CES) distributed data, given M i.i.d. 

realizations of the N-dimensional data vector x, in the 

presence of data mismodelling. CES distributions constitute a 

wide family of distributions such as the complex Gaussian, 

Cauchy, generalized Gaussian, and compound Gaussian, 

which in turn includes the Gaussian distribution, the K-

distribution, and the complex t-distribution [22]. The CES 

distributions are widely applied in many areas, such as radar, 

sonar, and communications [19, 20, 21, 22].  

A complex N-dimensional random vector xm is CES 

distributed, in shorthand notation ( , , )i NCE hx γ Σ , if its 

p.d.f. is of the form: 

      1 1

,

H

X m N h m mp c h
   x Σ x γ Σ x γ , (21) 

where h is the density generator, cN,h is a normalizing 

constant, { }p mEγ x  and Σ is the normalized (or shape) 

covariance matrix, also called scatter matrix, such that 

tr( ) NΣ . In particular, if {( )( ) }H

p m mE  M x γ x γ  is 

the covariance matrix of the vector xm, then tr( )N Σ Μ M

. It is important to observe that, for some CES distributions, 

the unnormalized covariance matrix M does not exist, but the 

scatter matrix Σ  is still well defined. Based upon the 

Stochastic Representation Theorem [19] any 

( , , )m NCE hx γ Σ  with ( )rank k N Σ  admits the 

stochastic representation
m d R x γ Pu , where the non-

negative random variable (r.v.) R Q , the so-called 

modular variate, is a real, non-negative random variable, u is 

a k-dimensional vector uniformly distributed on the unit 

hyper-sphere with k-1 topological dimensions such that 

1H u u , R and u are independent and HΣ PP  is a 

factorization of Σ , where P is a Nxk matrix and ( )rank kP

. In the following derivations, we assume that Σ  is full-rank, 

then ( ) ( )rank rank N P Σ , and that it is real. For the CES 

distributions, the term  2

X E Q N  can be interpreted as 

the statistical power of the random vector xm, i.e. the 

covariance matrix M and the scatter matrix Σ are linked by 
2

XM Σ . In general, the density generator itself depends of 

some additional parameters. For example, the complex t-

distribution is completely characterized if its mean vector γ , 
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its scatter matrix Σ and its shape and scale parameters,   and 

  respectively, are perfectly known [19]. Suppose now to 

have the following type of misspecification: the true 

distribution is a CES distribution with mean value γ  and 

scatter matrix Σ  i.e.   ( , , )X Np CE hx γ Σ , while the 

assumed distribution is a complex t-distribution  ;Xf x θ  

parameterized by vecs( )
T

T T     θ γ Σ , where the 

vecs-operator is the “symmetric” counterpart of the standard 

vec-operator that maps a symmetric N N  matrix Σ in a 

( 1) 2N N  -dimensional vector whose entries are the 

elements of the lower (or upper) triangular sub-matrix of Σ. 

Then, we could apply the MML estimator in eq. (10) and the 

MCRB in (5), provided that the pseudo-true parameters 
0θ  

exists. Of course, if the assumed model were a CES 

distribution different from the complex t-distribution, the 

parameter vector θ  need to be recast in order to take into 

account the additional parameters that characterize the given 

CES distribution. We left this general problem to future work 

and focus on the particular mismatched case discussed in 

Section II.D. In particular, since in many scenarios (e.g. radar 

and sonar) the mean value of the data can be considered null, 

we assume  γ γ 0 . Moreover, we assume that all the 

characteristic parameters of the assumed CES distribution are 

known, except the elements of the scatter matrix Σ. Then, the 

parameter vector that parameterizes an assumed zero-mean 

CES distribution can be defined as vecs( )θ Σ .  

In the following, we assume that both the true distribution 

 X mp x  and the assumed distribution  ;X mf x θ  belong to 

the zero-mean CES distribution class: 

     
1 1

,; H

X m X m N h m mp p c h
 x x Σ Σ x Σ x ,   (22)  

     
1 1

,; ; H

X m X m N g m mf f c g
 x θ x Σ Σ x Σ x , (23) 

where vecs( )θ Σ , vecs( )θ Σ , h is the density generator 

of the true p.d.f., and g is the density generator of the 

assumed p.d.f.. In the following, we analyze two different 

scenarios.  

Case Study 1 Assumed p.d.f.: complex Normal; true p.d.f.: t-

student. 

We assume a complex Gaussian model for the data, i.e. we 

assume that each i.i.d. complex vector of the available dataset 

 
1

M

m m
x x  is distributed according to a complex Normal 

multivariate p.d.f., which also belongs to the CES family: 

   
 

1

2
2

1
; ; exp

H

m m

X m X m N
f f



 
  

 

x Σ x
x θ x Σ

Σ
.(24) 

The covariance matrix   2H

m mE  M x x Σ  in this case 

exists. However, the true data are distributed according to 

another CES distribution, the complex t-distribution: 

 
 

 

 
11

; ( ; )

N

H

X m X m m mN

N
p p

 
  

  

 


     

    
    

x θ x Σ x Σ x
Σ

,      (25) 

where   is the shape parameter and   is the scale parameter 

characterizing the model [19], [22]. 

The assumption of a complex Normal model is motivated by 

the fact that the MML estimator of the scatter matrix can be 

easily derived to be the well-known Sample Covariance 

Matrix (SCM),
1

1ˆ
M

H

MML m m

mM 

 M x x , so we get: 

 
2 2

1

ˆ 1ˆ
M

HMML

MML m m

mM  

  
M

Σ x x , (26) 

where the power 
2  is assumed to be a priori known. As first 

step, we evaluate the matrix that minimizes the KL 

divergence between ( ; )X mp x Σ , considered here as a generic 

element of the CES family, and  ;X mf x Σ  (the complex 

Normal p.d.f.). This matrix is the convergence point of the 

MML estimator in eq. (26). The differential of the KL 

divergence with respect to Σ is given by [23]: 

 

       

 
 

1 1

1 1 1

ln ; ln ln

ln
tr tr ,

H

p X m p m m

H

p m m

D p f E f E g

d g Q
E

dQ

 

  

        

   
         

Σ

Σ

Σ

x Σ Σ x Σ x

Σ Σ Σ x x Σ Σ

      (27) 

where: 

 
1H

m mQ 

Σ
x Σ x     (28) 

The last equality in eq. (27) follows directly from the same 

calculus given in [21] and [24]. Since the assumed 

distribution  ;X mf x Σ  is a complex Normal distribution, 

2( ) exp( )g Q Q  
Σ Σ  and 

2

ln ( ) 1d g Q

dQ 
 Σ

Σ

. By 

substituting this result in eq. (27), we get: 

      
2

1 1 1 1 1 1

2 2

1
tr tr =tr ,H X

p m mD p f E


 

     
  

         
  

Σ
Σ Σ Σ x x Σ Σ Σ Σ ΣΣ Σ

      (29) 

where we used the property   2H

p m m XE x x Σ . Then, 

following the standard rules of matrix calculus [23], the 

derivative of the KL divergence w.r.t. Σ is: 
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  
2

1 1 1

2

XD p f




  
 


Σ

Σ Σ ΣΣ
Σ

. (30) 

Finally, by posing the derivative in eq. (30) equal to zero, we 

obtain that the matrix 
0Σ  that minimizes the KL divergence 

is: 

 
2

0 2

X


Σ Σ .    (31) 

Eq. (31) shows that the MML estimator converges a.s. to a 

scaled version of the true scatter matrix, 

   
. .

2 2

0
ˆ

a s

MML X
M

 

 Σ x Σ Σ , so it is not consistent. It is 

consistent only when the two powers of the assumed and true 

p.d.f.’s are equal. The mean value of the MML estimator with 

respect to the true distribution is: 

   
2

02
ˆ X

p MMLE



  μ Σ x Σ Σ . (32) 

Hence, the MML estimator is MS-unbiased. Given the MS-

unbiasedness of the proposed MML estimator, we can now 

evaluate the MCRB. In [24] the MCRB on the estimation of 

the scatter matrix was evaluated for two CES distributions, 

the complex-t and the Generalized Gaussian, when the 

assumed misspecified distribution is a complex Normal p.d.f.. 

Here, we assume that the true distribution is a complex-t 

distribution with p.d.f. given in eq. (25).  

Before providing the expression of the MCRB, some 

considerations on a reasonable choice of the true distribution 

parameters,   and  , have to be made. In fact, the power 

 2

X pE Q N
Σ

 is function of these two parameters. In 

fact, by applying the Stochastic Representation Theorem, we 

have that Q
Σ

 has an F-distribution [19] such that  

 
 

 
11

( )
,

N

N

Qp q q q
B N

 
 

  

 

    
    

   
Σ

, (33) 

where  
   

 

   

 

1 !
,

N N
B N

N N

 


 

   
 

   
. In this case, 

we have: 

 
 

 
2

1

p

X

E Q

N




 
 



Σ
, (34) 

  
  

 
2 4

1 1
, 2

2
p X

N N
E Q


 



 
 


Σ

. (35) 

In order to focus on the impact of the mismatch due to the 

differences between the density generator, we assume that 

2 2

X  , so that 0 Σ Σ , this guarantees that the MML 

estimator is consistent and we choose   and   accordingly. 

A compact expression for the MCRB for two distributions in 

the CES family is given in Appendix A. Then, following the 

results in [24] and by applying eq. (A.10), the MCRB can be 

expressed as:  

 
 

   
 

 
 † †

11 1
MCRB vec vec

2 2

TT

N N
M



 

 
   

   
θ D Σ Σ Σ Σ D

.      (36) 

where DN is the so-called Duplication matrix of order N ([25], 

[26], [27]). The duplication matrix is implicitly defined as the 

unique 
2 ( 1) 2N N N   matrix that satisfies the following 

equality: vecs( ) vec( )N D A A  for any symmetric matrix A. 

The symbol †  denotes the Moore-Penrose pseudo-inverse. 

Moreover, using the expression of the Fisher Information 

Matrix (FIM) for t-distributed data evaluated in [21] and the 

properties of the vec and vecs operators, the duplication 

matrix DN and of the Kronecker product   ([25], [26], 

[27],[28]), the CRLB can be expressed as: 

       † †1 1 1
CRLB vec vec

( )

TT

N N

N N

M N N

 

  

    
   

  
θ D Σ Σ Σ Σ D

,      (37) 

It can be proved that the matrix inequality 

   MCRB CRLBθ θ  holds true for any value of the 

parameters in the present study case (we do not report here 

the details for lack of space). In the following, we describe 

some simulation results that confirm this finding.  

For the sake of comparison, in the following figures we 

report, along with the MSE of the MML, the MCRB and the 

CRLB, also the MSE of the robust (unconstrained) Tyler’s 

estimator ([29], [30], [31], [32]). Tyler’s estimator has been 

derived in the context of the CES distribution as the most 

robust estimator in min-max sense [32]. In particular, Tyler’s 

estimator can be obtained as the recursive solution of the 

following (unconstrained) fixed-point (FP) matrix equation: 

 
1

1

HM
m m

H
m m m

N

M 


 
x x

Σ
x Σ x

. (38) 

To solve eq. (38), we use the following iterative approach: 

 

 

(0)

( 1)

1
( )1

ˆ ˆ                                              

ˆ , 0, ,
ˆ

T MML

HM
k m m

T
H km
m T m

N
k K

M






 

  





Σ Σ

x x
Σ

x Σ x

 (39) 

It can be noted that, unlike the recursive procedure proposed 

in [29], in (39) there is not a normalization constraint on the 
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trace of ( )ˆ k

TΣ . It must be noted that the MCRB in (5) does not 

apply to the Tyler’s estimator since ( )ˆ k

TΣ  has not been derived 

under any assumed CES distribution.  

In order to have a global performance index (i.e. an index that 

is able to take into account the errors made in the estimation 

of all the covariance entries) we define ε as: 

 

   ˆ ˆ( ) ( )
T

p

F

F

E



 θ x θ θ x θ

Σ
, (40) 

where ˆ ˆvecs( )θ Σ , Σ̂  is an estimate of the true covariance 

matrix Σ , vecs( )θ Σ  and  tr T

F
A A A  is the 

Frobenius norm. Fig. 1 shows the behavior of this global 

performance index for the MML and Tyler’s estimators as a 

function of the shape parameter λ. As performance bounds, 

the following quantities are plotted: 

 
 

HB

MCRB
F

F


θ

Σ
,

 
CRLB

CRLB
F

F


θ

Σ
 (41) 

The true covariance matrix is assumed to be  
,

i j

i j



Σ . 

The value of the one-lag coefficient is 0.9  , the number 

of observations vectors is M=3N. To calculate the global 

performance indices 
MML  and Tyler  of the estimators, we run 

10
5 

Monte Carlo trials. As expected, for high values of   the 

MCRB and the CRLB tend to be equal, since for    the 

t-student p.d.f. tends to a complex Gaussian p.d.f., and the 

matched and mismatched models coincide. Moreover, as 

  , the MML estimator converges to the ML estimator, 

and then it attains the CRLB. This is not the case for Tyler’s 

estimator that suffers from “robustness losses”, i.e. it is 

robust but not optimal when the data tends to be Gaussian 

distributed (   ). In Fig. 2, 
MCRB , 

CLRB , 
MML  and 

Tyler are compared as a function of the number of available 

data M, for 3  . In this case, Tyler’s estimator has better 

estimation performance than the MML estimator, thanks to 

its robustness [19]. For completeness, in Fig. 3 we investigate 

the performance of the MML and of Tyler’s estimator as 

function of the one-lag coefficient ρ for 3   , N=8 and 

M=3N. As expected, Tyler’s estimator achieves better 

estimation performance for all the values of ρ. Finally, it can 

be noted that the MCRB is not applicable to Tyler’s estimator 

since it is not based on any misspecified data distribution, 

therefore its RMSE sometimes falls below the MCRB. On the 

other hand, since Tyler’s estimator is an unbiased estimator 

of Σ  (at least in its unconstrained version) the CRB applies. 

Case Study 2 Assumed p.d.f.: Generalized Gaussian; true 

p.d.f.: t-student.  

As in the previous example, we assume that the true 

distribution is a complex-t distribution but unlike the 

previous case, we assume a complex Generalized Gaussian 

(GG) distribution for the data. The MML estimator, then, is 

the ML estimator for the GG data. Unlike the SCM (i.e. the 

ML estimator for Gaussian data), the ML estimator for GG 

data cannot be expressed with an explicit equation but has to 

be defined through a fixed-point equation. In this section, we 

first discuss some properties of the MML estimator (in 

particular, bias and consistency in the mismatched sense), 

and then we evaluate the relevant MCRB. In this case study, 

the true distribution has the same p.d.f. given in eq. (25), 

while the assumed p.d.f. is the Generalized Gaussian 

distribution: 

   
 

 

 1

1
; ; exp

HN
m m

X m X m N

N b
f f

bN




 

  
   

 
 

x Σ x
x θ x Σ

Σ

,     (42)  

where   is the shape parameter and b  is the scale parameter 

[19] that are assumed to be known. In this case, the MML 

estimator (i.e. the ML estimator for GG data) is the solution 

of the following fixed-point matrix equation [19], [21], [33]: 

   1

1

1ˆ ˆ ˆ
M

H H

MML m MML m m m M MML

m

H
M

 



 Σ x Σ x x x Σ  (43) 

where the function   is given by   1t t
b


  . Following 

Theorem 6 in [19], it can be shown that, for every (symmetric 

and positive-definite) starting matrix (0)
Σ , the recursive 

version of eq. (43) converges to ˆ
MMLΣ , i.e. 

 1ˆ ˆ ˆk k

M MML
k

H


 Σ Σ Σ  if and only if (0,1)  . For 1  , 

i.e. when the tails of the GG distribution are lighter than the 

one of the Normal distribution, the recursive estimator of the 

scatter matrix is no longer reliable. In fact, for 1  , the 

conditions on ( )t  that guarantee the existence and the 

uniqueness of the estimator are not satisfied. Theorem 5 in 

[30] can be used to prove that, for (0,1)   we have 

. .

0
ˆ

a s

MML
M
Σ Σ , i.e. the MML estimator ˆ

MMLΣ  converges with 

probability 1 to 0Σ . From the theory previously discussed, 

the limiting value 0Σ  must be the matrix that minimizes the 

KL divergence between  X mp x  and  ;mf x Σ . In order to 

evaluate 
0Σ , we can apply eq. (27), where, in this case, the 

density generator is the one of the GG distribution, i.e. 

   expl t t b  . After some calculation, we get: 
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       1
1 1 1 1tr tr .H H

p m m m mD p f E
b

 
       

Σ
Σ Σ x Σ x Σ x x Σ Σ

 (44) 

By applying the Stochastic Representation Theorem, we have 

that i d Q
Σ

x Tu , where 1HQ 

Σ
z Σ z , HΣ TT  is a 

factorization of the shape Σ , u is a N-dimensional vector 

uniformly distributed on the unit hyper-sphere with N-1 

topological dimensions such that 1H u u  and 

  1HE N uu I . Then, eq. (44) can be rewritten as: 

   
 

   1
1 1 1 1tr tr ,H H H H

p

E Q
D p f E

b


 

       
Σ

Σ
Σ Σ u T Σ Tu Σ Tuu T Σ Σ

      (45) 

where  E Q

Σ
 can be evaluated explicitly by using the 

integral in ([34, p. 315, n. 194.3]) as: 

  
( ) ( )

( ) ( )

N
E Q

N



    

 

     
  

  
Σ

. (46) 

From eq. (45), setting to zero the derivative of the KL 

divergence w.r.t. Σ  leads to: 

     0

1
1 1 1 1 1 .H H H Hb E Q E




    

 
Σ ΣΣ

Σ u T Σ Tu Σ Tuu T Σ 0

      (47) 

Through some standard matrix manipulation, we get: 

    
1

1 1 1

0 0

H H H Hb E Q E



   
Σ

T Σ T u T Σ Tu uu . (48) 

Now, we assume that the solution of eq. (48) is a scaled 

version of the true shape matrix, i.e. 0 Σ Σ . Then, we 

have   1E Q
bN

 
   

Σ
I I , so that 

 

1

( ) ( )

( ) ( )

N

bN N



    


 

    
  

  
. (49) 

Then, the matrix that minimizes the KL divergence is given 

by: 

1

0

( ) ( )

( ) ( )

N

bN N



    


 

    
  

  
Σ Σ Σ . (50) 

Since 
0Σ  is a scaled version of the true scatter matrix, the 

MML estimator is not consistent in general. As shown in [19] 

and [30], for the estimator in eq. (43), the following 

asymptotic relation holds:  

   1

,

H H

p m f MML m m mE   x Σ x x x Σ . (51) 

Eq. (51) can be used to evaluate the bias of the MML 

estimator in the mismatched sense. The mean value of the 

MML estimator with respect to the true distribution g is: 

  ˆ ( )
M

p MMLE 


 μ Σ x Σ , (52) 

where the scalar term   can be evaluated by solving the 

following integral equation [19]: 

 
Q Q

E N
 

  
  

  

Σ Σ . (53) 

Given   1t t b    and by using the integral in eq. (46), 

  can be evaluated as: 

 

1

( ) ( )

( ) ( )

N

bN N



    
 

 

    
   

  
. (54) 

Hence, the MML estimator is (asymptotically) MS-unbiased, 

i.e. the mean value μ tends to the matrix that minimizes the 

KL divergence 0 μ Σ Σ . However, the MML is not 

consistent since it converges to a scaled version of the true 

scatter matrix. As before, we select the parameter values in 

such a way that the estimator is consistent. In other words, we 

choose a set of shape and scale parameters of the assumed 

and the true distributions such that 1  , and then 

0 μ Σ Σ . To have 1  , a possible choice of the scale 

parameter η of the t-distribution and the scale parameter b of 

the GG distribution is: 

1








   and  

( ) ( )

( ) ( )

N
b

N N


    

 

    
  

   
. 

With this choice of the parameters, we can compare the 

estimation performance of the MML estimator with the 

MCRB. As before, the MCRB can be evaluated using the 

compact expression for 
1 1 

θ θ θ
A B A  derived in Appendix A, 

eq. (A.10). The density generator for the GG distribution is 

   expg t t b  , hence we have: 

  1
ln g Q

Q
Q b

 


 


Σ

Σ

Σ

 and  
 2

2

2

ln ( 1)g Q
Q

bQ

  
 

 


Σ

Σ

Σ

. 

In order to evaluate the term B1, B2, A1 and A2 in eqs. (A.2), 

(A.3), (A.6) and (A.7) respectively, the integral in eq. (46) is 

needed. In particular, we have: 

 ln ( ) ( )

( ) ( )

g Q N
E Q

Q b N


    

 

        
    

      
, (55) 
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 
2 22

2

2

ln (2 ) ( 2 )

( ) ( )

g Q N
E Q

Q Nb


    

 

         
    

      

,

      (56) 

 2

2

2

ln ( 1) ( ) ( )

( ) ( )

g Q N
E Q

b NQ


     

 

        
    

     
,

      (57) 

with 2  . Finally, the MCRB is evaluated using eq. 

(A.10), while the CRLB is given in eq. (37). In the following, 

we compare the RMSE of the MML estimator and of Tyler’s 

estimator given in eq. (38) with the square root of the MCRB 

and with the square root of the CRLB. Both the iterations to 

derive the MML and Tyler’s estimators are initialized using 

the SCM estimate. As before, the value of the one-lag 

coefficient is 0.9  , the number of secondary vectors is 

M=3N. To calculate the MSE of the estimators, we run 10
5 

Monte Carlo trials. MSE, MCRB and CRLB are compared in 

terms of the global performance indices: 
MML , Tyler , 

MCRB , 

and 
CRLB  previously defined. The simulation results concern 

two different scenarios: the quasi-Gaussian scenario, where 

λ=50 and the super-Gaussian scenario, where λ=3 (λ is the 

shape parameter of the t-distribution). 

Super-Gaussian Case (λ=3). In the following, we describe 

the results for the super-Gaussian case, i.e. the true t-

distribution has heavier tails than a Normal distribution. As 

shown in Fig. 4, unlike the quasi-Gaussian case, the MML 

estimator achieves better performance (here in terms of 
MML

) when β tends to 0, i.e. when the assumed GG distribution 

has heavier tails than a Normal distribution. Figs. 5 and 6, 

show the behavior of MML  , Tyler , 
MCRB , and 

CRLB  as 

function of the number M of available data vectors, for β=0.8 

and β=0.1, respectively. As we can see, slightly better 

performance can be observed when the shape parameter of 

the assumed GG distribution is set to be equal to β=0.1. 

Similar considerations can be carried out by looking at the 

plots of MML  , Tyler , MCRB  and CRLB  as a function of the 

one-lag correlation coefficient ρ (not reported here for lack of 

space). In all the analyzed scenarios, the MSE, the MCRB, 

and the CRB get worse when the clutter one-lag correlation 

coefficient increases. 

Quasi-Gaussian scenario (λ=50). Compared to the super-

Gaussian case, as expected the MML estimator and the 

MCRB have an opposite behavior with respect to the choice 

of the shape parameter of the assumed GG distribution β. In 

fact, with λ=50, the true t-distribution is very close to the 

Normal distribution, so the performance of the MML 

estimator increases as β tends to 1, i.e. the MML estimator 

tends to the SCM. We evaluated the MML , FP , MCRB , and 

CRLB  as a function of the number M of available data 

vectors, for β=0.8 and β=0.1 (the plots not reported here for 

lack of space). The progress of the global indices are very 

similar, but a slight increase of the performance can be 

observed when β=0.8.  

VI. Conclusions 

In practical applications, a certain amount of mismatch 

between the true and the assumed data distribution is often 

inevitable. The behavior of the ML estimator under data 

mismodeling, i.e. the MML estimator, has been deeply 

investigated in the statistical literature, but little attention has 

been devoted to the relevant performance bound. In this 

paper, we present a review of the results obtained in [1] and 

[2] on a general covariance inequality for any MS-unbiased 

estimator of a deterministic parameter vector under data 

mismodeling and we show how to apply these results to the 

problem of estimating the scatter matrix of Complex 

Elliptically Symmetric (CES) distributed random vectors 

under data mismodeling. Two relevant case studies are 

discussed. In the first one, the true distribution is a complex-t 

distribution while the assumed distribution has complex 

Normal p.d.f.. In the second one, the true distribution is still a 

complex-t but the assumed distribution is a Generalized 

Gaussian. These two numerical case studies allowed us to 

quantify the “mismatch losses” in the estimation of the scatter 

matrix. Future work will explore a possible generalization of 

the MCRB to the class of Bayesian Bounds for random 

parameter estimation. 

 

Appendix A: Compact expression for the MCRB in the 

CES family 

In this Appendix, we derive a compact expression useful to 

evaluate the Huber Bound for the scatter matrix estimation in 

the family of CES distribution. This expression follows 

directly from the results obtained in [24]. We assume that 

both the true distribution pX(x) (that implicitly depends on the 

true scatter matrix Σ , then according to the notation used 

before, vecs( )θ Σ ) and the assumed distribution f
Σ

 belong 

to the zero-mean CES distribution class, as shown in eqs. 

(22) and (23). Moreover, we define 
1HQ 

x Σ x  as in eq. 

(28). 

Compact expression for the matrix Bθ 

In [24] the matrix Bθ has been obtained element-by-element 

as: 

 
   

 

 

 
   

 

 
 

2

2 1 1

2

2 1 1

ln ; ln ;

ln ln2 1
1 tr tr

1

ln1
tr ,

1

X X

ij

i j

i j

i j

f f
E

g Q g Q
E Q E Q

N Q N N Q

g Q
E Q

N N Q

 

 

 

   
  

   

                 
          

   
   

    

θ

x θ x θ
B

Σ A Σ A

Σ A Σ A

      (A.1) 

where i i  A Σ  is a symmetric 0-1 matrix. 
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For notation simplicity, we define: 

 

 

 
2

2

1

ln ln2 1
1

1

g Q g Q
B E Q E Q

N Q N N Q

        
       

        

,      (A.2) 

 
 

 
2

2

2

ln1

1

g Q
B E Q

N N Q

   
   

    

. (A.3) 

By using the properties of the vec operator, of the 

Duplication matrix DN and of the Kronecker product [25] 

[26], we have: 

   1 1 1 1

1 2vec vec
T

T

N NB B      
  θ

B D Σ Σ Σ Σ D  (A.4) 

Compact expression for the matrix Aθ 

In [24] the matrix Aθ has been obtained element-by-element 

as: 

 
 

 

 

 
 

 

 
   

2

2

2 1 1

2

2

2 1 1

2

ln ;

ln ln2 1
1 tr

1

ln1
tr tr

1

X

ij

i j

i j

i j

f
E

g Q g Q
E Q E Q

N Q N N Q

g Q
E Q

N N Q

 

 

 

  
  

   

       
                 

  
  

   

θ

x θ
A

Σ A Σ A

Σ A Σ A

 (A.5) 

For notation simplicity, we define: 

 

 

 2

2

2 2

ln ln2 1
1

1

g Q g Q
A E Q E Q

N Q N N Q

      
     

        
,

      (A.6) 

 
 

 2

2

1 2

ln1

1

g Q
A E Q

N N Q

  
  

   
.  (A.7) 

Finally, as for the matrix B, we have: 

   1 1 1 1

1 2vec vec
T

T

N NA A      
  θ

A D Σ Σ Σ Σ D . (A.8) 

By using the Sherman-Morrison formula, we can express the 

inverse of the matrix A as follows: 

     1 † †1

2 2 2 1

1
vec vec

( )

TT

N N

A

A A A NA

  
    

 
θ

A D Σ Σ Σ Σ D

.      (A.9) 

Compact expression for the MCRB,   1 1MCRB  
θ θ θ

θ A B A  

(with r=0) 

 

     

1 1

2

† †2 1 1 2 1 1 2 1

2 2 2 2

2 2 12 2 2 2 1

1
MCRB

2 ( ) 2 ( )1
vec vec .

( ) ( )

TT

N N

M

B B A B NB NA B NB

M A A NAA A A A NA

 

   
       

    

θ θ θ
θ A B A

D Σ Σ Σ Σ D

      (A.10) 
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Figure 1 – Comparison among the normalized Frobenius 

norm of the MSE of the MML and of the Tyler’s estimator, 

the MCRB and the CRLB as function of the shape parameter 

of the t-distribution (=0.9, N=8, M=3N). 
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Figure 2 – Comparison among the normalized Frobenius 

norm of the MSE of the MML and of the Tyler’s estimator, 

the MCRB and the CRLB as function of the available data 

(=0.9, N=8, λ=3). 



14 

 

 

0,1

0,2

0,3

0,4

0,5

0,6

0,2 0,4 0,6 0,8 1

MML (SCM)

MCRB

CRLB

Tyler

N
o
rm

a
liz

e
d

 F
ro

b
e

n
iu

s
 n

o
rm

  

Figure 3 – Comparison among the normalized Frobenius 

norm of the MSE of the MML and of the Tyler’s estimator, 

the MCRB and the CRLB as function of the correlation 

parameter (λ=3, N=8, M=3N). 
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Figure 4 – Comparison among the normalized Frobenius 

norm of the MSE of the MML and the Tyler’s estimator, the 

MCRB and the CRLB as a function of the shape parameter of 

the GG distribution (=0.9, N=8, M=3N, λ=3). 
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Figure 5 – Comparison among the normalized Frobenius 

norm of the MSE of the MML and of the Tyler’s estimator, 

the MCRB and the CRLB as a function of the available data 

(=0.9, N=8, β=0.8, λ=3). 
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Figure 6 – Comparison among the normalized Frobenius 

norm of the MSE of the MML and of the Tyler’s estimator, 

the MCRB and the CRLB as function of the available data 

(=0.9, N=8, β=0.1, λ=3). 
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