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ABSTRACT 

 

In this paper, the growth of long fatigue cracks up to failure in aircraft components is studied. A 

deterministic model is presented, able to simulate the growth of fatigue through cracks located at 

rivet holes in lap-joint panels.  It also includes criteria to assess the link-up of collinear adjacent 

cracks in a MSD scenario. To validate the model, a fatigue test campaign  was carried out on riveted 

lap-joint specimens in order to produce experimental crack growth and link-up data. Accurate 

measurements of naturally occurred surface cracks were performed automatically by the Image 

Analysis technique, thus allowing the tests to run 24 hours a day. The comparison between 

experimental tests and numerical simulations is good, thus confirming the model as a useful tool for 

the assessment of fatigue life of aircraft riveted joints.  

 

Keywords: Fatigue crack growth, Numerical modelling, Crack interaction, Riveted joints, Image 

processing, 2024-T3 aluminium alloy.  

 

NOMENCLATURE 

 

a  crack length, see Tab. 1 

2aeff  effective crack length for the evaluation of secondary bending contribution to Ktot, 

see Tab. 1 

C  parameter for crack propagation in the Paris law 



 2 

CPi  corrective factor to SIF due to the boundary conditions and rivet load 

CPtot  global corrective factor to SIF due to the boundary conditions and rivet load 

CRi  corrective factor to SIF due to the boundary conditions and uniform stress 

CRtot  global corrective factor to SIF due to the boundary conditions and uniform stress 

d  diameter of the rivet 

D   diameter of the squeezed rivet head 

D/d  ratio between the diameter of the squeezed rivet head and the diameter of the rivet 

E  Young’s modulus 

f  load frequency 

K  contribution to Stress Intensity Factor due to membrane stress and pin loads 

Kbend  contribution to Stress Intensity Factor due to secondary bending 

Kc  fracture toughness 

Ktot  Stress Intensity Factor  

K  Stress Intensity Factor range in the load cycling 

m  parameter for crack propagation in the Paris law 

N  number of cycles 

p  uniform pressure on the hole due to the rivet, in a loaded joint 

P  rivet load 

R=min/max stress ratio  

t specimen or panel thickness  

w specimen or panel width  

weff  effective width for the evaluation of secondary bending contribution to Ktot, see Tab.1 

bend/ bending ratio 

  Poisson's ratio 

bend  stress due to secondary bending in lap-joints

bypass  stress transferred by the rivets in a loaded joint 
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max  maximum value of the constant amplitude membrane stress 

min  minimum value of the constant amplitude membrane stress 

02  yield stress 

  uniform membrane stress 

 

INTRODUCTION 

 

Fatigue design is a very important and critical phase during the development of aerospace 

components. At present, the Airworthiness requires the fulfilment of the damage tolerance criterion, 

but allows also the safe life criterion if the former is not applicable. Both criteria are based on the 

evaluation of crack propagation or crack nucleation, but only on deterministic bases, in spite of the 

deep stochastic nature of fatigue phenomena. So, high safety factors are required to prevent against 

uncertainties and unexpected events, generally resulting in heavy structures. Notwithstanding, high 

safety factors sometimes were not able to avoid failures because the real risk level is not known, as 

it happened in the Aloha accident
1
 when a Multiple Site Damage (MSD) scenario was spread. 

MSD is a serious question mainly connected with fatigue in ageing aircrafts
2,3

 but the presence of 

more than one crack and their interactions are problems that have to be faced also in other 

engineering fields. 

Aerospace researchers are investigating the introduction of a new approach to fatigue design, based 

on probabilistic tools, which should control the risk level of components
4
, thus helping designers in 

making decisions in fleet strategy management
5
.  

Some researchers have developed computer codes for the probabilistic life assessment of aerospace 

components with MSD, such as PROF
6
, SMART/LD

7
 and PISA (Probabilistic Investigation for 

Safe Aircrafts)
8-11

. 
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In particular, one of the present authors developed the PISA code, which implements the Monte 

Carlo method to handle the statistical variables of the problem and allows the simulations of the 

fatigue life.  

Briefly, the PISA code can manage deterministic inputs, such as joint geometries, and statistical 

inputs (e.g. statistical distributions of Equivalent Initial Flaw Size, EIFS, fracture toughness and 

coefficients of the fatigue crack growth rate law, fatigue loads). The EIFS is a fictitious initial crack 

dimension to be chosen in order to make the fatigue propagation life prediction from the EIFS to the 

final crack size at failure as similar to the actual experimental data as possible. 

The code operates as follows: a random combination of initial flaws is applied at rivets holes of the 

joint, by drawing values from the EIFS distribution. Each flaw is then propagated according to the 

crack growth and link-up models, in order to calculate the number of cycles to joint failure. This 

procedure is repeated by randomly changing the combination of initial flaws, as well as the other 

statistical variables. Moreover, scheduled non destructive inspections and related probability of 

crack detection can also be treated by the code, introducing maintenance strategies and inspection 

intervals. In this way, after a huge number of numerical simulations, it is possible to calculate the 

probability of failure of the joint as a function of the inspection interval and the total operative life 

of the joint itself. 

At present, USAF
12

 requires for the aircraft structure of long-term military operations a probability 

of catastrophic failure at or below 10
-7

 per flight. In same cases
13

, even a lower probability of failure 

per flight is assumed, such as 10
-8

. So, it is easily understandable that a high number of computer 

runs are necessary to evaluate the risk of failure by using the Monte Carlo method.   

Of course, the probabilistic approach needs, as a background, an optimum knowledge and a deep 

understanding of fatigue phenomena, as well as reliable numerical models for fatigue damage 

prediction.  
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Fatigue phenomena can be divided into three main phases: crack nucleation, crack propagation and 

component failure. In some models, crack nucleation and crack propagation are often considered as 

an only propagation phase, starting from an ‘adequate’ EIFS
14

 at time zero.  

Therefore, one among the most important points for the introduction of the probabilistic approach is 

the availability of reliable methods for the EIFS evaluation and for the crack growth simulation.  

A previous experimental activity was carried out by the present authors to study the nucleation and 

the early propagation of short fatigue cracks emanating from rivet holes in lap-joint and butt-joint 

specimens.
15,16

 In that case, the crack growth mainly occurred in the hidden zone of the rivet holes, 

i.e. below the head of the countersunk rivets. As non-destructive inspection methods are not yet 

available with the requested accuracy, the crack size measurements were performed by opening the 

joint after a life percentage elapsed. Using this approach, each rivet hole of a specimen can give an 

experimental data point concerning the crack size at a particular number of cycles.  

The aim of the present work is to complete the above theoretical and experimental activity by 

studying the subsequent long crack growth up to failure. Although this portion of the total life is 

smaller than that spent for crack nucleation and first propagation, it is not negligible. So it is 

important to evaluate it, in order to complete the whole life assessment of components.  

In addition, MSD reduces the residual strength
17

 and causes a rapid increase in stress intensity 

factor. For these reasons, MSD and interactions among cracks should be taken into account in 

fatigue life evaluation. 

In this paper, a model is presented to evaluate the growth of long fatigue cracks from rivet holes in 

lap-joint panels in a MSD scenario. The model also considers the interactions between collinear 

adjacent cracks and includes criteria to assess their link-up, thus enabling the prediction of the 

number of cycles to failure.  

Such a model was implemented in the PISA code for a future simulation activity, not presented in 

this paper, to evaluate the probability of failure in riveted lap-joints. 
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To validate the crack growth model, an experimental activity was carried out on lap-joint specimens 

made of 2024-T3 aluminium alloy. The fatigue tests were performed using the Image Analysis (IA) 

technique to detect and measure the surface cracks out of the rivet heads. A computer code named 

FATIMA (FATigue crack measurement by the IMage Analysis technique)
18

 controls the testing 

machine and performs the measurements of the cracks. The measurements were performed 

automatically, thus allowing the tests to run 24 hours a day storing a high number of growth data 

points. 

Finally, the crack growth predictions were compared with the experimental data giving very good 

results.  

 

MATERIAL AND SPECIMENS 

 

As mentioned above, in the present activity the attention was focused on the long crack growth, 

when cracks are longer than the rivet head and can be observed on the panel surface. The 

interactions between growing through cracks, before and after their link-up, were also of interest for 

this research. A specimen geometry similar to that adopted by Cavallini, Galatolo and Cattaneo
16

 

was used: it consists of a 3-rows lap-joint panel with 15 countersunk rivets per row, where two 

columns of rivets near each boundary are more heavily squeezed to delay crack nucleation, as 

shown in Fig.1. In such a way, each panel has 22 possible crack nucleation sites, corresponding to 

the 11 rivets in the critical row shown in Fig. 1. As a matter of fact, the holes of this row are more 

heavily loaded, due to the countersunk holes and the secondary bending.
19

 Five lap-joint panels 

were tested, named BJ6, BJ7, BJ8, BJ9 and BJ10.  

The sheet material is Al 2024-T3, thickness 2 mm (E=72398 MPa, =0.33, 02=331 MPa, Kc=45 

MPa m
1/2

). Countersunk head solid rivets NAS 1097 AD6-7 in 2117-T4 aluminium alloy were used 

to joint the panels. No sealant was introduced in the joints. 
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The joints were realized with a rigorous quality control, as described in the work of Cavallini, 

Galatolo and Lazzeri
15

, so that they can be considered as belonging to the same family, thus 

avoiding a bias in the results. Particular care was put to rivet the specimens. A press was used to 

squeeze the heads by imposing a fixed displacement, thus ensuring the repeatability in order to 

obtain the prescribed D/d=1.6 ratio, i.e. the ratio between the diameter of the squeezed rivet head 

and the diameter of the rivet.   

 

 

EXPERIMENTAL TECHNIQUE 

 

All tests were carried out under constant amplitude loading with max =120 MPa, stress ratio 

R=min/max=0.1, and frequency f=3 Hz. They were performed on a 250 kN servo-hydraulic fatigue 

testing machine.  

 

The IA technique was used to perform real-time measurements of the fatigue crack growth during 

the tests. Such technique consists of a periodic grabbing of images of the zone of a panel containing 

a growing crack. The images are digitised and converted into a matrix of pixels, containing the 

brightness information in a greyscale. The FATIMA code
18

 controls the testing machine and 

performs the measurements. Several additional algorithms were introduced in the code to solve the 

problems related to the recognition of the crack tip, when multiple cracks are present on the same 

rivet row interacting each other.  

 

The FATIMA code controls the equipment shown in Fig.2: a Personal Computer (PC), an Analog-

to-Digital (A/D) converter and a frame grabber plug-in cards, an optic-fibre illuminator, a 

black&white television camera fitted with high magnification lenses and a three-axes stage 
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equipped with step motors. At the beginning of the test, the television camera is manually moved, 

using the PC keyboard, to the critical sites from where a crack is expected to grow, i.e. both sides of 

each rivet head in the critical row. During the test running, FATIMA generates the control signal by 

the A/D converter and controls the testing machine in closed loop. When a measurement has to be 

performed, after a prescribed number of fatigue cycles, the load is kept constant at its maximum 

value; then a complete scan of the above sites is carried out and the real-time measurements are 

stored in the PC hard disk, together with the images for further checks after the end of the test.  

 

The specimen preparation was limited to a rough polishing of the critical row by emery paper, just 

to remove the paint from the panel sheet in order to allow the recognition of the crack path. Due to 

the complete automation, it was possible to run the tests 24 hours a day. Each test was then 

terminated after reaching a prescribed total crack length, including possible link-ups. 

 

The measurement accuracy depends on the magnification; the best results were obtained using 

magnification ranging from 5 to 10 m/pixel. As the crack growth from each site could be higher 

than the field framed by the camera, the tracking of the crack tip was allowed. This aim was 

achieved by moving the camera and the illumination system by means of the same three-axes stage, 

thanks to suitable IA algorithms.
18

  

 

It must be pointed out that the real-time measurement of fatigue cracks on a riveted lap-joint 

specimen represents a severe test for the FATIMA code, due to the secondary bending and to the 

round notches at the rivet holes; the former changes the light reflectivity of the specimen surface 

especially at large overall crack length after a link-up, while the latter makes difficult the 

recognition of the nucleation site because a hole is not a sharp notch. For these reasons, all the 

images grabbed during a test were also stored to be manually analysed after the end of the test. For 

example, Fig. 3 shows some images grabbed during the test on the BJ6 panel, relevant to the 
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adjacent cracks n. 18 and n. 19, after they emerged from the rivet heads until their link-up. In Fig. 4 

a comparison between manual and automatic measurement of the same cracks is presented. It can 

be seen that most of the data are within the ± 0.5 mm lines, but sometimes the difference increases, 

when the cracks are near to link-up. As a matter of fact, plastic deformations are large in this 

situation, showing a bright path ahead of the crack tip (Fig. 3, N=87000). The IA algorithms thus 

easily mistook it for the crack tip. This is the case of crack n. 18 for which the last automatic 

measurement, occurred at cycle 87423, exceeds more than 1 mm the manual measurement shown in 

Fig. 4. However, the accuracy was enough to track the crack tip, during the test running, in order to 

automatically decrease the number of cycles between two measurements when the growth rate 

increases and to stop the test after reaching a prescribed total crack length. This feature is very 

important to reduce the testing time, because a complete scan of the rivet sites takes about two 

minutes, thus it is not convenient to carry out many measurements at the beginning of the test, 

especially for naturally occurring fatigue cracks.  More accurate measurements were carried out 

after the end of the test by manually analysing the stored images. 

 

THE CRACK GROWTH MODEL 

 

The PISA code
8,11 

is a tool that simulates the fatigue behaviour of typical aerospace components, 

such as riveted lap joints, under a stochastic point of view. At present, the randomness is considered 

in nucleation (through the EIFS distribution), propagation (by means of the distribution of the 

parameters of the growth law), inspection actions and also final failure (through the fracture 

toughness Kc distribution). The Monte Carlo method is used in the code to handle different 

distributions for the stochastic variables in order to simulate a lot of different deterministic 

situations.  

Of course, better deterministic models for the crack growth guarantee more reliable simulations and 

more accurate values for the probability of failure. At the same time, the chosen models have to be 
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as simple and versatile as possible to let an easy implementation inside the code with a minimum 

number of coefficients to handle as statistical inputs. For this reason, the present activity was 

focused on the validation of the deterministic models implemented in the code to compute the crack 

propagation, link-up and component failure. 

The PISA code evaluates the crack growth by using the Paris law 

 

 
m

totKC
dN

da
  (1) 

 

where the Stress Intensity Factor (SIF), Ktot, is calculated by using the composition and 

superposition of known simple solutions as a function of the boundary conditions
20

. On this subject, 

Kuo, Yasgur and Levy
 21

 collected lots of analytical expressions available in the literature, mainly 

obtained from the curve fitting of numerical results. The interactions among two or more cracks 

have been implemented in PISA through analytical expressions obtained by the authors from the 

best fitting of the curves for unequal length collinear cracks shown in the work of Rooke and 

Cartwright
22

. 

Many researchers have investigated on the topic of crack interactions. Among them, Chang and 

Kotousov
23,24

 recently used the classical strip yield model and plasticity induced crack closure 

concept to develop and experimentally validate a new computational technique for the evaluation of 

interactions between through cracks. Wang, Modarres and Hoffman
25

 used the Finite Element 

method to evaluate K at the tips of two collinear through cracks at adjacent holes and proposed a 

criterion to determine when crack growth is influenced by mutual interactions. 

 

When all the corrective coefficient are evaluated, the contributions to the SIF due to the uniform 

membrane stress  and that due to the pin loads P, can be split as reported by Sampath and Broek
26

 

(Fig. 5): 
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where bypass is the stress transferred by the rivets, 2a is the crack length and p is an uniform 

pressure on the hole, due to the rivet. 

The panels under investigation were fastened to form a lap-joint, so that when they were loaded, not 

only uniform membrane stress was introduced in the panels, but also a certain amount of bending 

stress due to secondary bending. To take into account this effect, a bending ratio parameter 

=bend/
27,28

 was introduced in the PISA code, where bend is the maximum stress in the sheet due 

to the secondary bending. The effect of secondary bending can be taken into account as an 

additional addendum in Ktot evaluation:  

 

                                    ben dto t
KKK 

                                        (3) 

 

where Kbend can be evaluated, according to the work of Sampath and Broek
26

, as: 

 

aK bendbendbend                                           (4) 
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The meaning of aeff and weff is shown in Tab. 1. 

This approach is simple and effective, although slightly conservative, as it has been demonstrated 

by M. Skorupa M., A. Korbel, A. Skorupa A. and T. Machniewicz
29

. 

The total corrective factors CRtot and CPtot are relevant to the uniform membrane stress and to the 

pin loads respectively. They are function of the geometric boundary conditions, such as holes, other 
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cracks, link-ups, finite width of the panel and countersink. The main corrective factors taken into 

account in the present work are summarized in Tab. 1. The total corrective factor for K 

contributions due to membrane stress and pin loads is then obtained by compounding the single 

contributions of the various factors to obtain: 

 

                  ntot CRCRCRCR  ,...,21  (6) 

 

                  ntot CPCPCPCP  ,...,21  (7) 

 

 

The last case in Tab. 1 is relevant to the evaluation of the contribution due to secondary bending, 

Kbend.  

Two collinear cracks are considered as linked according to the Swift criterion
30

, i.e. when their 

plastic radii are tangential. The plastic zone size is evaluated through the Irwin’s model.
20

 Failure 

can be caused by reaching the yielding stress in the net section or the fracture toughness Kc.  

Silva, Gonçalves, Oliveira and de Castro
31

, in the context of the EU funded SMAAC (Structural 

Maintenance for Ageing Aircraft) program, used a Finite Element approach to simulate the fatigue 

crack propagation in lap-joints made of 2024-T3 aluminium alloy. For failure prediction they 

proposed various methodologies, rather than the use of finite elements. Among them, the use of the 

net section plastic collapse procedure caused little differences between predicted and experimental 

results. 

The present authors participated to SMAAC too
11,16

. That research was the background for the 

follow-up activity herein shown. In the present work, net section is evaluated as the sum of the 

resistant ligaments between cracks, minus the plastic zones in front of the crack tips.  
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COMPARISON BETWEEN NUMERICAL PREDICTIONS AND EXPERIMENTAL 

RESULTS 

 

The exact value of the bending ratio could be estimated by a Finite Element analysis of the joint, 

taking into account the geometry of the specimen, the stiffness of the rivets, the material of sheets 

and rivets, and the grabbing system of the testing machine. However, a reliable evaluation of the 

bending ratio =0.85 was alternatively computed by using an analytical model proposed by 

Schijve
27,28

. So the growth predictions were performed using the minimum value for the bending 

ratio =0, the value =0.85 and the further value =1. In addition, a by-pass ratio of 0.66 was 

supposed, which is typical for 3-rows lap-joints with highly flexible fasteners.
32

 The constants C 

and m for the Paris law were assumed equal to C=1.10885E-7 mm/cycles and m=2.9436, following 

the experimental characterization of the same sheet material, as shown in the work of Lazzeri.
33

 

In that paper, the experimental results of 36 Center Cracked Tension specimens are shown. 

Specimen dimensions were w=150 mm and t=2 mm A circular hole, diameter 4 mm, in the center 

of each specimen was artificially pre-cracked with two symmetric cracks  of 1.5 mm in length. 

Fatigue crack growth tests were carried out at R=0.1 and max=80 MPa. The Paris law was assumed 

for crack growth simulation, while hole effect and finite width effect were taken into account for 

K evaluation. So, each specimen gave one value for C and m coefficients. A lognormal 

distribution was then supposed for the 36 values of C, while a normal distribution was assumed for 

m.  

The values of C and m used in the present paper correspond to the mean values of such 

distributions.  

In this paper the crack growth simulations were started with an initial crack size equal to the first 

experimental measurement of the first crack, occurred at N1 cycles. The growth simulation 

continued until N2 cycles, N2 being the number of cycles corresponding to the first detection of the 

second crack. The geometric configuration was then manually changed by introducing the second 
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initial crack, after which both the cracks were numerically propagated until the first detection of the 

third crack at N3, and so on. The geometric configuration was also changed when the growth 

simulation predicted a link-up of two adjacent cracks. In Tab. 2 the experimental crack scenario at 

the end of the tests is summarized. The total number of cracks, including small flaws detected after 

the joint tear down, was generally more than 20 for each specimen. The number of cracks appeared 

on the specimen surface, and thus measured by the IA technique, ranged from 6 to 11, giving 3-4 

link-ups before the end of the test. 

In Figs. 6 - 8 the comparison between experimental data and predictions made for  =0.85 for three 

tests, panels named BJ6, BJ9 and BJ10, is shown. However, their behaviour are also representative 

for the other panels. In the figures, only few experimental data points are plotted, to let the graphs to 

be as clear as possible, but of course the experimental method allowed the recording of a large 

amount of experimental crack growth data.  

 

It can be noted that the prediction for a single main crack growth is generally very good, as well as 

the first link-up between two cracks. The prediction is acceptable when more than two cracks are 

linked. However, in the latter configuration only few cycles are spent, so that the error made in the 

total number of cycles is very little.  

The crack growth rate behaviour is shown in Fig. 9 for BJ6 specimen, together with the assumed 

Paris law. Looking at the first detected crack, crack 18, it can be seen that the central part of the 

propagation is very near to the Paris law. On the other hand, the growth rate is higher at the 

beginning and in the last part of the propagation. As far as the beginning is concerned, it must be 

pointed out that naturally occurring flaws start in the inner side of the lap-joint, at the hole of 

countersunk rivets (Fig. 10). So, during the hidden portion of the propagation, the crack front shape 

is strongly bent. When the crack appears on the surface, it grows faster than the far end of the crack 

front, until the front shape stabilizes, whereupon it shifts. As crack 18 approaches its opposite crack 

19, going toward the link-up, the growth rate of both cracks is higher than predicted by Paris law. A 
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factor of two can be generally found only in the worst cases, i.e. at the very beginning of the surface 

propagation and just before a link-up. 

Other cracks of specimen BJ6 behave in the same way, and similar results have been found for the 

other specimens. 

To improve the crack growth predictions at the beginning, some changes could be introduced in the 

SIF calculation. As a matter of fact, a through-crack with a straight front was assumed in the present 

work for each measured surface crack, thus underestimating the SIF value. Denman, Baldwin, 

Taylor and Frey
34

 carried out an experimental activity on similar riveted lap-joints, measuring the 

crack front shapes and describing the shape evolution with a fully populated second order equation 

with six coefficients. In the same work, the SIF was then calculated along the crack front. However, 

a FEM analysis for the specific geometry of the present lap-joint is not in the scopes of this work.  

A tentative was done by the authors by assuming a straight through crack whose length was 

calculated as the average value between the surface measurement and the predicted length at the 

faying surface, according to the shape function proposed by Denman, Baldwin, Taylor and Frey
34

. 

Initial crack growth rate data in Fig. 9 slightly moved toward the Paris law line, but the effects in 

terms of predicted life to the first link-up were quite limited.  

As already said, many models have been presented in the literature concerning the propagation of 

interacting cracks up to link-up. In the approach proposed by Kotousov and Chang
24

 the Paris law is 

modified by using the effective SIF range. In that paper, the comparison between measured and 

predicted crack growth, on sheet specimens with two collinear cracks, showed a difference of about 

10% in life. Another solution is that proposed by Newman and Ruschau
35

, by dividing the crack 

growth rate curve in multiple segments and using different Paris law coefficients for each segment. 

A similar approach was proposed by Sih
36

 and Sih and Tang
37

 by managing the transition between 

adjacent regions of the crack growth rate curve by using transitional functions. However, although 

such models can improve the crack growth predictions, they generally need a higher computational 

effort or use more coefficients. Since the main purpose of the present work is to evaluate simple 
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crack growth models to be used for probabilistic assessment, it is important to keep the number of 

statistical inputs as low as possible, in order to limit the computation time for the Monte Carlo 

simulations.  

All the results are summarized in Tab. 3 and Tab. 4 for the first link-up and for the end of the test 

after the first crack detection respectively. Notwithstanding the above notes on growth rate, the 

results are good. In fact, the end of the test can be well predicted for the whole panels under the 

assumption =0.85, that is the value predicted by the Schijve’s model. Indeed, predictions made 

without considering the secondary bending effect (=0) give higher values in terms of number of 

cycles to link-up and to failure than those experimentally obtained. This confirms the well known 

influence of secondary bending in lap-joint fatigue behaviour and the need to take it into account in 

numerical simulations. 

The worst prediction for the first link-up assuming =0.85 is that concerning BJ7 (-35%). In this 

case it is not a matter of link-up between two cracks, but a crack going in the adjacent rivet hole.  

However, what is really different for this specimen with respect to the others is the crack scenario: 

the crack evolved to form a single long crack in a localized area, instead of resulting from the link-

up of different cracks. In this case the secondary bending effect is quite different along the joint, so 

a single average value of  cannot easily account for it. The errors presented in Tab. 3 for the other 

specimens (=0.85) range between -15% and +5.4%.  

As far as the errors on panel failure predictions are concerned (Tab. 4, =0.85), the values range 

between -17.9% and +5.3%. Such results can be considered good, especially bearing in mind the 

complexity of the examined structural joint. More accurate results could be obtained with more 

sophisticated models, but the disadvantage of higher computational efforts is not compatible with 

the huge number of runs necessary for future probabilistic PISA code simulations. 
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CONCLUSIONS 

 

In this paper, a model for the prediction of the fatigue crack growth in riveted lap joints with 

multiple site damage has been shown, taking the load path in the joint, the mutual interaction 

between collinear cracks and their link-up into account.  

A test campaign was carried out on 2024-T3 riveted lap-joint specimens in order to validate the 

crack growth model. The joints were realized with a rigorous quality control, so that they may be 

considered as belonging to the same family, thus avoiding a bias in the results. An experimental test 

procedure, based on the IA algorithms implemented in the FATIMA code, allowed the automatic 

detection and measuring of surface cracks on the specimens as a function of the number of cycles.  

Crack growth predictions were carried out starting from the size of the first detected crack to the 

size of the cracks at the end of the test. A reliable value of the bending ratio =0.85was estimated 

on the basis of the Schijve’s results. The results are really satisfactory, as all the growth simulations 

are in good agreement with the experimental crack growth data.  

In conclusion, the fatigue crack growth model herein presented demonstrated to give good results 

for a complex MSD scenario, even including the uncertainty on the bending ratio value. 

The model was implemented in the PISA code for a future activity to assess the probability of 

failure of the same lap-joint panels. 
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Captions for Tables 

 

Tab.1 Main corrective factors to SIF calculation as a function of boundary conditions.  

Tab. 2 Crack scenario at the end of the tests. 

Tab. 3 Comparison between experimental test results and model prediction (first link-up). 

Tab. 4 Comparison between experimental test results and model prediction (panel failure). 
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Tab.1 Main corrective factors to SIF calculation as a function of boundary conditions.  
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Test N. of cracks at 

the end of the 

test 

N. of through 

cracks at the end 

of the test  

N. of link-ups 

at the end of 

the test  

Cycles to first 

crack detection 

     

BJ6 21 6 3 80925 

BJ7 22 9 4 74000 

BJ8 22 11 4 83300 

BJ9 19 7 3 90000 

BJ10 20 8 4 142300 
 

Tab. 2 Crack scenario at the end of the tests. 
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Test 

Cycles to first 

link-up (test 

data) 

Cycles to first link-

up after the first 

crack detection 

(test data) 



Cycles to first 

link-up 

(predictions) 

Cycles to first link-

up after the first  

crack detection 

(predictions) 

First link-up 

after the first 

crack detection 

(error %) 

 Cycles  Cycles  Cycles  Cycles % 

BJ6 87453 6528 

0 92513 11588 77.5 

0.85 87813 6888 5.4 

1 87423 6498 -0.5 

BJ7 88150 14150 

0 92100 18100 27.9 

0.85 83200 9200 -35.0 

1 82200 8200 -42.0 

BJ8 91400 8100 

0 95600 12300 51.9 

0.85 91200 7900 -2.5 

1 91000 7700 -4.9 

BJ9 100700 10700 

0 105200 15200 42.1 

0.85 99100 9100 -15.0 

1 98100 8100 -24.3 

BJ10 151700 9400 

0 154800 12500 33.0 

0.85 151500 9200 -2.1 

1 151400 9100 -3.2 
 

Tab. 3 Comparison between experimental test results and model prediction (first link-up). 
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Test 

Cycles to 

the end of 

the test  

(test data) 

Cycles to the end 

of the test  

after the first 

crack detection 

(test data)  



Cycles to 

the end of 

the test  

(predictions) 

Cycles to the end 

of the test  

after the first  

crack detection 

(predictions)  

Failure 

after the first 

crack detection 

(error %) 

 Cycles  Cycles  Cycles  Cycles % 

BJ6 88323 7398 

0 93913 12988 75.6 

0.85 88713 7788 5.3 

1 88113 7188 -2.8 

BJ7 90910 16910 

0 92900 18900 11.8 

0.85 90400 16400 -3.0 

1 83100 9100 -46.2 

BJ8 93900 10600 

0 97400 14100 33.0 

0.85 93000 9700 -8.5 

1 91400 8100 -23.6 

BJ9 102298 12298 

0 107200 17200 39.9 

0.85 100100 10100 -17.9 

1 98900 8900 -27.6 

BJ10 152400 10100 

0 155000 12700 25.7 

0.85 152100 9800 -3.0 

1 151500 9200 -8.9 
 

Tab. 4 Comparison between experimental test results and model prediction (panel failure). 
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Captions for Figures 

 

Fig. 1 Geometry of the lap-joint panel 

Fig. 2 Sketch of the test equipment 

Fig. 3 BJ6 panel – Images grabbed during the test  

Fig. 4 Comparison between manual and automatic crack measurement 

Fig. 5 Model for SIF calculation in lap joints due to  and to pin loads 

Fig. 6 Test results and model prediction (BJ6, =0.85) 

Fig. 7 Test results and model prediction (BJ9, =0.85) 

Fig. 8 Test results and model prediction (BJ10, =0.85) 

Fig. 9 Experimental crack growth rate and Paris law prediction (BJ6, =0.85) 

Fig. 10 Corner crack front evolution during crack propagation  
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Fig. 1 Geometry of the lap-joint panel 
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Fig. 2 Sketch of the test equipment 
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Fig. 3 BJ6 panel – Images grabbed during the test 
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BJ6 - Comparison between manual and 

automatic crack measurements
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Fig. 4 Comparison between manual and automatic crack measurement 
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Fig. 5 Model for SIF calculation in lap joints due to  and to pin loads 
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BJ6 - Comparison between experimental results and PISA 

simulation (bend/membr=0,85)
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Fig. 6 Test results and model prediction (BJ6, =0.85) 
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BJ9 - Comparison between experimental results and PISA 

simulation (bend/membr=0.85)
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Fig. 7 Test results and model prediction (BJ9, =0.85) 
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BJ10 - Comparison between experimental results and PISA 

simulation (bend/membr=0.85)
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Fig. 8 Test results and model prediction (BJ10, =0.85) 
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Fig. 9 Experimental crack growth rate and Paris law prediction (BJ6, =0.85) 
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Fig. 10 Corner crack front evolution during crack propagation  
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