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ABSTRACT 

The last (decompression) stages of the metamorphic evolution can modify monazite 

microstructure and composition, making it difficult to link monazite dates with pressure and 

temperature conditions. Monazite and its breakdown products under fluid-present conditions 

were studied in micaschist recovered from the cuttings of the Pontremoli 1 well, Tuscany. 

Coronitic microstructures around monazite consist of concentric zones of apatite + Th-silicate, 

allanite, and epidote. Chemistry and microstructure of the monazite grains, which preserve a 

wide range of chemical dates ranging from Upper Carboniferous to Tertiary times, suggest that 

this mineral underwent a fluid-mediated coupled dissolution-reprecipitation and crystallization 

processes. Consideration of the chemical zoning (major and selected trace elements) in garnet, its 

inclusion mineralogy (including xenotime), monazite breakdown products and phase diagram 

modelling allow the reaction history among accessory minerals to be linked with the 

reconstructed P-T evolution. The partial dissolution and the replacement by REE-accessory 

minerals (apatite-allanite-epidote) occurred during a fluid-present decompression at 510 ± 35 °C. 

These conditions represent the last stage of a metamorphic history consisting of a thermal 

metamorphic peak at 575 °C and 7 kbar, followed by the peak pressure stage occurring at 520 °C 

and 8 kbar. An anticlockwise P-T path or two clockwise P-T loops can fit the above P-T 

constraints. The former path may be related to a context of late-Variscan strike-slip dominated 

exhumation with minor Tertiary (Alpine-related) reworking and fluid infiltration, while the latter 

requires an Oligocene-Miocene fluid-present tectono-metamorphic overprint on the Variscan 

paragenesis. 
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INTRODUCTION 

Monazite is one of the main rare-earth element (REE)-bearing accessory minerals useful for 

obtaining geochronological information from a wide range of Ca-poor crustal rocks (Williams et 

al., 2007). In low-grade metamorphic rocks monazite usually occurs as inherited grains or 

composite crystals made of low-grade neoblasts. During prograde metamorphism of metapelites 

with typical Ca and Al contents, monazite reacts to form other REE-bearing accessory minerals 

such as allanite. At Al-silicate-in P- conditions (Al2SiO5 polymorphs, cordierite, staurolite) 

allanite is commonly replaced by new monazite (Wing et al., 2003; Gieré & Sorensen, 2004; 

Janots et al., 2007, 2008; Goswami-Banerjee & Robyr, 2015). Post-peak metamorphic evolution 

may result in monazite destabilization, with reaction microstructures (e.g. monazite with coronas 

in metagranitoids and metapelites) showing its replacement by REE-accessory phases (Finger et 

al., 1998; Broska et al., 2005) and metapelites (Majka & Budzyń, 2006; Gasser et al., 2012; 

Massonne, 2014; Balen et al., 2015). 

In order to infer the P-T conditions of reactions involving monazite, one approach is to 

link REE-bearing accessory minerals with the evolution of P-T sensitive phases such as garnet 

(Vance et al., 2003) through accurate observation of microstructures. Thermodynamically based 

phase diagrams may then provide thermobaric constraints for the parageneses formed during the 

metamorphic evolution. 

Here we present a study of partially decomposed monazite in garnet-micaschist from the 

Variscan basement of Northern Apennines beneath Pontremoli (Fig. 1). Monazite breakdown 

formed coronas of apatite, allanite and epidote by fluid-induced dissolution-reprecipitation and 

crystallization processes occurring during decompression. 

Furthermore, monazite age dating and phase diagram P-T constraints constitute the first 

attempt to quantify the metamorphic evolution of the Variscan basement beneath the Apennine 

orogenic belt. The obtained P-T data suggest either a monometamorphic anticlockwise P-T path 

or a polymetamorphic history due to two clockwise P-T trajectories. Tectonic implications of 

both suggestions are discussed. 

 

GEOLOGICAL FRAMEWORK  

The Northern Apennines are an orogenic belt formed during the collision between the Corsica-

Sardinia block and the Adria microplate in the Oligocene-Miocene. In the Northern Apennines, 

stacked slices of the former Adria continental margin (Tuscan and external foreland units) may 

be observed below the ocean-derived Ligurian units (Fig. 1). In the inner Northern Apennines, 

the Tuscan units locally preserve Variscan (i.e. late Palaeozoic) metamorphic rocks below the 

Mesozoic to Tertiary cover sequences.  

The uppermost Tuscan units (Tuscan nappe) show very low grade metamorphic imprint 

whereas the lowermost ones (Tuscan metamorphic units) were affected by Alpine greenschist 

facies metamorphism. The Variscan basement is therefore exposed in small fault slices at the 

base of the Tuscan Nappe, and in the large tectonic windows in the Tuscan Metamorphic units. 

Basement rocks occur in several scattered outcrops (i.e Cerreto) but mainly associated 

with the so-called Mid Tuscan Range, which includes at its northern termination Punta Bianca, 

Alpi Apuane and Monti Pisani. The Variscan basement was also drilled in the Larderello and 
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Pontremoli subsurface (Fig. 1). In particular, the Variscan basement in the Pontremoli subsurface 

has been correlated with the Micaschist Complex of the Larderello geothermal field (Pandeli et 

al., 2005). This complex underwent low-medium grade metamorphism related to the collisional 

stage of Variscan orogeny, followed by a post-Variscan peak thermal stage at 285 Ma, an 

Oligocene-Miocene Alpine greenschist-facies polyphase metamorphism, and, finally, a contact 

metamorphism associated with the emplacement of Pliocene-Quaternary granites (Franceschini, 

1998; Pandeli et al., 2005; Musumeci et al., 2011). Unlike the Micaschist Complex of 

Larderello, the Variscan basement below Pontremoli was not involved in the contact 

metamorphism induced by the Neogene igneous activity (Pandeli et al., 2005). 

 

THE SAMPLES 

The Pontremoli 1 well intercepted the Variscan basement within a 3059-3520 m depth range 

(Anelli et al., 1994). Samples AG7 and Pontremoli7 belong to the same core (diameter ≈ 10 cm) 

taken from 3422 m depth (core 7), whereas samples AG8 and Pontremoli8 (core 8) are 

representative of the basement at 3519-3520 m depth. Analytical procedures are reported in 

Appendix S1. 

 

Petrography and mineral chemistry  

The investigated samples (AG7, Pontremoli7, AG8, Pontremoli8) are of a medium grain size and 

have a schistose fabric (S2) with white mica and chlorite wrapping around garnet porphyroblasts 

(Fig. 2a), which contain inclusions of ilmenite, xenotime, allanite, epidote and pyrite. 

Pontremoli7 contains a higher volume of garnet (14.2 vol. %) than AG7 (3.7 vol. %). Chlorite 

and white mica aggregates with a decussate fabric and delineating folds (Fig. 2b) were also 

observed. Quartz and plagioclase are the other main matrix minerals. Plagioclase hosts white 

mica and K-feldspar inclusions and shows darker rims than its core in back-scattered electron 

(BSE) images (Fig. S1). Fractures in garnet are filled with chlorite and white mica. The 

accessory minerals in Pontremoli7 are ilmenite, rutile, zircon, pyrite, tourmaline, monazite, 

apatite, thorite, allanite, epidote and xenotime. Ilmenite included in garnet defines an internal 

foliation (S1; Fig. 2c) whereas euhedral matrix ilmenite is oriented parallel to the main 

schistosity (S2). Matrix ilmenite may contain rutile in their cores. Allanite is also present in the 

matrix and forms aggregates of anhedral grains.  

The following mineral data refer to Pontremoli7. Garnet porphyroblasts show a growth 

zoning with an increase of 13 mol. % and 7 mol. %, respectively, in almandine (Alm) and pyrope 

(Prp) and a decrease of 12 mol. % in spessartine (Sps) from the inner core to the outermost rim 

(Figs 3a & 4a,b). The grossular (Grs) + minor andradite (Adr) increase of 8 mol. % from the 

inner to the outer core, and then decrease to the rim. Typical compositions are 

Alm72Sps12Grs(+Adr)11Prp4 in the inner core and Alm85Prp11Grs(+Adr)3Sps0 at the outermost rim 

(Table 1). Phosphorus is below detection in the inner core, but from the outer core and rimwards 

increases to a maximum of 180 ppm (Fig. 3b). Garnet also shows a clear zoning profile of Y, Dy, 

Er and Yb, which are concentrated only in the inner core, but then decrease below detection limit 

(see above) in both the outer core and the rim (Figs 3b & 4c). In the inner core average values for 

Y, Dy, Er and Yb are 5500, 1050, 900 and 1000 ppm, respectively. 

White mica, occurring as flakes parallel to the main schistosity and as decussate 

aggregates, is muscovite. There are two types: type I shows Na-rich cores (average Na=0.57 

atoms per formula unit (apfu) based on 22 oxygen; average Mg = 0.15 apfu), type II is 

sometimes relatively Mg-rich at rims (average: Na = 0.29 and Mg = 0.23 apfu; Fig. 3c, d). Type I 
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muscovite occurs especially along the schistosity, while type II mainly forms the decussate 

structures and appears at the maximal bending areas of the late microfolds. Type I muscovite has 

Si ranging from 6.04 to 6.20 apfu and Fe
2+

 + Mg = 0.19-0.40 apfu. Type II muscovite along the 

schistosity and in aggregates with decussate structure is characterized by Si = 6.04-6.38 apfu and 

Fe
2+

 + Mg = 0.19-0.60 apfu; while that replacing the garnet rims shows Si = 6.06-6.39 apfu and 

Fe
2+

 + Mg = 0.27-0.64 apfu (Table 2). X-ray maps of muscovite forming the main schistosity 

and showing Na-rich cores and Mg-rich rims are displayed in Fig. 4d,e.  

Chlorite in different microstructural sites shows limited chemical variations. The 

XFe=Fe
2+

/(Fe
2+

+Mg) is 0.60-0.63 for chlorite occurring along the main schistosity, 0.56-0.62 

within decussate aggregates, and 0.57-0.63 when surrounding garnet (Table 3).  

Plagioclase varies from Ab89-92An8-10Or0 in the core to Ab98-99An1-2Or0-2 at the rim (Table 

4). Plagioclase aggregates near garnet consist of almost pure albite (Ab99An1Or0).  

The microstructural analysis points to a metamorphic evolution in which white mica, 

chlorite, and ilmenite oriented along the main schistosity (S2), quartz and plagioclase are 

interpreted to have re-crystallized during garnet growth. Spessartine rich-garnet inner cores 

represent the remnant of the prograde stage, while spessartine-poor garnet rims formed during 

peak temperature. The transition from rutile to ilmenite should predate the garnet growth, 

because no rutile relicts have been observed in the garnet inner core.  

The growth of chlorite and white mica with decussate structure and along fractures in the 

garnet postdates the formation of the main schistosity. White mica and chlorite replacing garnet 

rims and the growth of plagioclase rims may be related to a last retrograde metamorphic stage. 

Pontremoli7 was studied in more detail because it contains reaction microstructures 

around relicts of monazite grains (Fig. 2d). The following petrography, mineral data, chemical 

dating of monazite and thermodynamic modelling refer to Pontremoli7. In this sample irregular 

xenotime grains with corroded rims occur only in the garnet inner core (Fig. 2e) and epidote 

surrounding allanite appears in retrogressed garnet rims (Fig. 2f). This sample was, thus, 

considered to be suitable for an investigation of the reaction history among the REE-bearing 

minerals. 

 

Coronitic microstructure around monazite 

Monazite in Pontremoli7 is surrounded by a complex, polymineralic corona consisting (from the 

core outwards) of apatite + Th-silicate, allanite and epidote (Fig. 5). This microstructure, which 

was previously described from amphibolite-facies orthogneisses by Finger et al. (1998) and 

interpreted as the result of monazite-consuming reactions, is associated with every monazite 

grain in the Pontremoli7 micaschist. The microstructure has a maximum width of 200 µm and 

may occur at two microstructural sites: (1) in the rock matrix where the microstructure is 

surrounded by muscovite lamellae (Fig. 5a-c), and (2) in white mica + chlorite aggregates 

partially replacing garnet (Fig. 5d,e). When the microstructure is elongated, the elongation is 

parallel to the schistosity (Fig. 5c).  

Monazite with a maximum size of 60 µm shows lobate rims in the matrix. The 

surrounding apatite zone is 10 µm wide, and contains micrometric inclusions of Th-silicate, 

characterised by its brightness in back-scattered electron (BSE) images and confirmed by 

qualitative EDS analyses. The apatite zone has clearly-defined protrusions into the surrounding 

allanite zone. In places apatite grains are within the allanite zone and apatite and Th-silicate can 

be found also in the allanite zone. Thorite is less abundant in the corona in the retrogressed 

garnet rim rather than in the matrix corona. The allanite zone has a greater width (up to 100 µm) 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

when in the garnet rims where only relicts of monazite and apatite are present (Fig. 5d,e). The 

thickness of the epidote zone ranges from few µm adjacent to matrix ilmenite to 30 µm in white 

mica matrix. Single epidote grains close to the corona were also observed.  

 

Monazite chemical composition and dating 

Only four monazite grains (Mnz01-Mnz04) were found in Pontremoli7. As monazite displays 

irregular zoning (Fig. 6), several point analyses were acquired in different parts of a single grain 

in order to fully investigate the intragrain chemical and age variations. Of 75 point analyses only 

12 yielded SiO2 < 1 wt. % and total oxides ranging from 98 to 102 wt. %. Therefore, only these 

analyses (shown in Fig. 7) were considered to provide meaningful information. The other 

analyses were rejected because they likely represent mixed analyses because grains are very 

small (maximum size is 60 µm but the average size is < 10 µm) causing the beam to overlap 

surrounding (mainly silicate) minerals. Matrix monazite (Mnz01, Mnz02, Mnz04) has ThO2 = 

5.9-9.6 wt. %, UO2 = 0.3-0.5 wt. %, PbO = 0.09-0.13 wt. %, and Y2O3 = 0.01-0.09 wt. % (Fig. 

8a,b). Monazite in the retrogressed garnet rim (Mnz03) has a different chemistry, with lower 

ThO2 (1.33-2.22 wt. %), UO2 bdl, and PbO (up to 0.02 wt. %) and higher Y2O3 contents (0.31-

0.32 wt. %). 

Chemical dating of monazite followed the approach of Montel et al. (1996), using the 

microprobe analytical setting presented by Massonne (2014). EMP chemical dating of monazite 

with the above mentioned analytical conditions has successfully provided ages in other studies 

for both Palaeozoic and Tertiary monazite (Massonne et al., 2007; Langone et al., 2011; Liu et 

al., 2011; Massonne, 2014). The two analyses of the monazite occurring in the garnet rim, with 

UO2 below the detection limit and high Y2O3 values (Fig. 8b), were not considered for the age 

calculation. The dates  (in the sense of Williams et al., 2006) derived from the remaining 10 

analyses consist of nine older dates ranging from 311.5 ± 6.5 Ma to 250.4 ± 6.5 Ma and a single 

young date of 19.2 ± 0.3 (statistical 1σ error) Ma, having a low ThO2 content  (Fig. 8c; Table 5). 

The relative probability plot and histogram of the monazite dates (Fig. 8d) reveals that the two 

oldest dates yielded a weighted mean of 309.9 ± 5.1 Ma (weighted mean on the two analyses 

with a 2σ error of the mean; MSWD = 0.66), five dates are the most frequent ones with an 

average of 292.9 ± 3.0 Ma (MSWD = 0.36) and the dates 281.3 ± 5.7 Ma, 250.4 ± 6.5 Ma and 

19.2 ± 0.3 Ma provide single peaks. 

 

GEOTHERMOBAROMETRY 

Phase diagram calculation 

Thermodynamic modelling was used to derive a P-T path for samples Pontremoli7 + AG7 and, 

in particular, the thermobaric conditions during the growth of chemically different garnet 

domains in this rock. Because of limited drill core material it was not possible to undertake a 

conventional XRF analysis to be used in the calculation of the isochemical phase diagrams. 

Moreover, the presence of zoned garnet required the calculation of different bulk compositions 

(as in Fiannacca et al., 2012) to take into account possible modifications of the effective bulk 

compositions (Stüwe, 1997), for instance, due to the concentration of elements such as Mn in the 

garnet core. For these reasons, three different bulk compositions were calculated to model 

different stages of the metamorphic evolution. An initial, unfractionated bulk-rock chemistry was 

calculated by combining mineral modes and average mineral compositions (bulk1), a bulk 

composition after the removal of the garnet core (bulk2) and the whole garnet (bulk3). 

Calculation procedures of the bulk rock chemistry and input parameters for phase diagrams 
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calculations are respectively reported in Appendices S2 and S3. Calculated bulk-rock 

compositions are in Table 6. 

 

Prograde path towards peak conditions (bulk1) 

In the P-T pseudosection for bulk1, muscovite is stable throughout the entire P-T range (Fig. 9). 

Chlorite and Na-Ca white mica (Pg in Fig. 9) disappear above 550°C at 3 kbar and 600°C at 6-7 

kbar, being replaced by staurolite and plagioclase. The garnet-in curve is located at 400°C - 5 

kbar and 450°C - 3 kbar. Biotite occurs above 510 °C (at 7 kbar). The plagioclase-in curve is 

located below 7 kbar. Zoisite disappears above 450°C-480 °C and below 400 °C. Ilmenite is 

replaced by rutile only at 350-500 °C. Titanite-bearing P-T fields occur below 450 °C. Isopleths 

for molar fractions of the garnet inner core Alm72Sps12Grs(+Adr)11Prp4 intersect in a small area 

at 530 °C and 5.5 kbar in the paragenetic field chlorite + muscovite + plagioclase + ilmenite + 

garnet + paragonite + quartz. However, paragonite was not observed probably because it broke 

down during the decompression. The temperature derived from these isopleths is 130°C higher 

than the temperature of the garnet-in curve. This may be due to reaction overstepping, to an 

imperfect correspondence of the maximum-Mn analysis of garnet and the true Mn-content of the 

garnet innermost core, or a deviation of calculated and true Mn content for bulk1. The presence 

of calculated ilmenite is in agreement with the observed ilmenite inclusions in garnet. The 

calculated Si in potassic white mica is 6.12-6.14 apfu around 530 °C and 5.5 kbar, which is 

within the observed Si range of type I muscovite (Si=6.04-6.20 apfu). The calculated XFe of 

chlorite is 0.56-0.69 at such P-T conditions, which closely matches observed 0.56-0.62 XFe of 

chlorite along the schistosity. Garnet isopleths corresponding to the outer core composition do 

not intersect. This may be due to a fractionation effect of some elements into the garnet inner 

core. The fractionation effect was then considered for the following pseudosections. 

 

Peak P-T conditions (bulk2) 

In the bulk2 P-T pseudosection the topology is different compared to that of bulk1 (Fig. 10). 

Muscovite appears again in the entire P-T range, but chlorite is stable up to 525 °C at 2 kbar and 

600 °C at 8 kbar. Na-Ca-white mica disappears above 525°C at 2 kbar and 600°C at 5 kbar. The 

staurolite-in curve runs from 530°C at 3 kbar to 600°C at 7 kbar. Ilmenite replaces rutile above 

450°C. The P-T field of garnet is reduced compared to that of bulk1. The geothermobarometry 

with garnet isopleths defines P-T conditions around 575°C and 6.5 kbar for the rim compositions 

Alm83-85Prp7-11Grs(+Adr)3-8. These conditions meet with the paragenetic fields containing 

muscovite, paragonite, chlorite, garnet, ilmenite, biotite and quartz. However, paragonite and 

biotite were not observed likely because of their breakdown in the decompression retrograde 

stage. The P-T isopleth for the maximum Si content in type I muscovite (6.20 apfu) intersects the 

garnet compositional isopleths at 570 °C and 6.5 kbar. 

 

Retrograde path (bulk3) 

Since the garnet rim was in equilibrium with the Na-rich core (type I) of the muscovite along the 

main schistosity, the rims of muscovite (type II) and chlorite in decussate aggregates should 

postdate the garnet growth. Muscovite is stable in the entire P-T range (Fig. 11) whereas Na-

white mica breaks down above 525°C at 2 kbar and 600 °C at 5 kbar. Chlorite occurs up to 600 

°C at 8 kbar. Biotite forms at ≥ 500 °C. Staurolite occurs around 550-600 °C and above 3 kbar. 

Albite appears in the range 300-500 °C below 8 kbar (500°C). At higher temperatures (520-600 

°C), this pressure limit is about 5 kbar. The isopleths of the maximum Si in type II muscovite 
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(6.38 apfu) and of the minimum XFe ratio in chlorite (0.56), both forming the decussate 

aggregates, intersect at 520 °C and 8 kbar. These conditions are in the paragenetic field 

muscovite + chlorite + ilmenite + paragonite + quartz. The observed paragenesis muscovite + 

chlorite + albite + ilmenite + quartz ± paragonite allows the retrograde path to be constrained 

passing through 475-520 °C and 2-7 kbar. The calculated Si of muscovite in the fields 

corresponding to the observed last retrograde paragenesis (6.10-6.35 apfu) is close to the Si in 

the observed type II muscovite (total range= 6.04.6.38 apfu).  

 

DISCUSSION 

Fluid-induced breakdown of monazite and implications for age interpretation 

Textural evidence indicates that the U-Th-bearing monazite broke down and a corona consisting 

of successive zones of apatite, allanite and epidote formed. The inclusions of Th-silicate into the 

apatite zone indicate monazite replacement by apatite, rather than just apatite growth around 

monazite. The apatite protrusions into the allanite zone suggest that allanite replaced also the 

original monazite. The epidote filling the fractures in the allanite zone within the retrogressed 

garnet rim (Fig. 5e) suggests that it grew around the zone and did not replace monazite. In 

addition, the monazite shows irregular zoning for Ce, Th, and Y (Fig. 6). Both microstructural 

and compositional features of monazite suggest a mechanism of fluid-mediated coupled 

dissolution-reprecipitation (Williams et al., 2011; Upadhyay & Pruseth, 2012). Fluid-aided 

alteration can partially reset the oldest monazite age even at temperatures below the “closure 

temperature” for Th in monazite, as experimentally shown by Williams et al. (2011). These 

authors performed an experimental investigation in which a 350 Ma monazite underwent 

compositional change under amphibolite-facies conditions in the presence of fluids. Altered 

domains exhibiting irregular and patchy compositional zonation were developed, with lower Th, 

U and Pb contents than in the unaltered domains. The altered domains are located also in the 

monazite cores. Dating of the altered monazite provided scattered and less precise younger 

“ages” (Williams et al., 2011). 

The wide compositional difference between the U-Th-bearing and U-Th-poor monazite in 

this study suggests a similar mechanism of a fluid-aided alteration process. The formation of the 

allanite corona implies the reaction of monazite with fluids delivering Ca, Fe, Mg, Si and Y. 

Dissolution of monazite by Ca-bearing fluid plays a key role in promoting allanite formation 

(Budzyń et al., 2011). 

Fluid-induced alteration of monazite results in a partial resetting of the monazite age 

(Williams et al., 2011), and a wide spread of dates is also seen in this study. This partial resetting 

resulted in intermediate dates (range 281-250 Ma) between 293 Ma and 19 Ma obtained in this 

work. Despite the uncertainty regarding chemical dating of young monazite, the youngest 

recorded age of 19 Ma may thus be considered as a clear indicator of a Tertiary event. This value 

represents a maximum age for the fluid-rock interaction, which thus occurred during the Alpine 

orogenesis.  

Another feature suggesting a fluid-aided dissolution-reprecipitation process is the 

pseudomorphic shape of the apatite-allanite zones around monazite in the matrix (e.g. Mnz1 and 

Mnz2 of Fig. 7), confirming that altered monazite, apatite and allanite formed after replacing the 

original grain of monazite (Upadhyay & Pruseth, 2012). The mixed dates provided by the 

residual monazite in those coronas corroborate the alteration mechanism interpretation. 

It is worthy of note that the monazite with very low Th, U and Pb is located in the garnet 

retrogressed rim. The maximum extent of the alteration process occurred in this microstructural 
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site causing the loss of U and/or Pb in monazite with a total reset of the older ages. The 

retrogression of garnet could have provided important elements (Ca, Fe, Mg) that enhanced a 

nearly complete monazite and apatite substitution in favour of allanite. The wider allanite zone 

(and the smaller monazite and apatite relicts) in the retrogressed garnet rim compared to the 

coronitic microstructures in the matrix confirms that garnet breakdown played a role in the extent 

of the allanite crystallization. An alternative interpretation for the monazite crystallization in the 

retrogressed garnet rim lies in a different mechanism rather than dissolution-reprecipitation: the 

U-Th-poor monazite could have formed by low-temperature fluid-related crystallization. In this 

case the matrix U-Th-bearing monazite (MnzI) and the U-Th-poor monazite (MnzII) grew at 

different times by different mechanisms and not because one was reset more than the other. 

Some chemical and microstructural data support this interpretation: (i) the high-Y content in 

monazite from the retrogressed garnet rim suggest that garnet breakdown was involved in the 

monazite formation; (ii) the minor modal abundance of thorite in the corona in the retrogressed 

garnet rim rather than in the matrix corona may indicate that the original monazite (pre-corona 

growth) had a low-Th content which is typical of low-grade monazite (Rasmussen & Muhling, 

2009). The Mnz02 rim providing the single 19 Ma age could be another occurrence of the 

younger monazite generation (MnzII). In the BSE image of Fig. 7, the point dated 19 Ma is 

located in a bright edge on irregular resorbed monazite, suggesting that it must have formed 

during or after monazite resorption.  

The products of the monazite breakdown (apatite, allanite, epidote) have lower density 

than the reactant (monazite; Deer et al., 1992), indicating that monazite was consumed during 

decompression and concomitant infiltration of fluids. Thus, we propose that the monazite 

breakdown occurred along with that of garnet to chlorite + muscovite that was associated with 

the retrograde decompression trajectory from 520°C, 8 kbar to 475-520 °C, 2-7 kbar (Fig. 11). 

Since uncertainties in the peak pressure estimates must be considered, we follow the suggestion 

by Massonne (2013) who proposed 2σ-errors in the respective range of 10 and 5% of the 

corresponding pressure and temperature estimates. For this reason we infer that the partial 

breakdown of monazite and the development of the apatite, allanite and epidote zones occurred 

in the range 475-545 °C and 8-2 kbar during exhumation. Interestingly, the P-T estimates of 

several amphibolite-facies metagranitoids with apatite-allanite-epidote coronas around monazite 

reported by Finger et al. (1998) lie in the range of 500–600 °C and 4-7 kbar. In addition, other 

works report that the breakdown of monazite and the formation of corresponding coronas is 

associated with fluid infiltration during a retrograde stage (Broska & Siman, 1998; Ondrejka et 

al., 2012; Upadhyay & Pruseth, 2012). 

Follow-up work on the Pontremoli rocks might include dating xenotime, which should 

give a reliable age for the prograde evolution, and the matrix zircon, which is most likely of 

detrital origin thus providing a maximum constraint on the metamorphic age.  

 

P-T estimates of the metamorphic evolution  

The calculated P-T constraints by pseudosections match the observed phase compositions and 

mineral assemblages; a few discrepancies between observed and calculated parageneses can be 

explained by the complete retrogression of some phases. For example, paragonite is always 

present in the calculated P-T pseudosections, but it has not been observed. A possible 

explanation is that paragonite is present in the studied rocks as intergrowths with muscovite or 

paragonite was replaced by muscovite and albite during the final decompression stage (Fig. 11).  
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The garnet inner core compositional isopleths indicate 530 ± 25 °C and 5.5 ± 0.6 kbar, 

which is compatible with the 562°C ± 30°C obtained from the Y-Al-garnet (YAG)-xenotime 

thermometer calibrated by Pyle & Spear (2000).  

The peak temperature is 575 ± 30 °C at 6.5 ± 0.7 kbar, constrained by the garnet rim and 

Na-rich muscovite core (type I) compositions. The lack of xenotime in the garnet rim reflects its 

complete consumption that occurred during garnet growth above 5-6 kbar, as theoretically 

predicted by Spear & Pyle (2010). The xenotime breakdown also explains the Y zoning in garnet 

(Fig. 4b) where maximum Y content (5500 ppm in the garnet inner core) decreases to below the 

detection limit in the garnet outer core and in the rim because all Y was already sequestered by 

garnet cores during xenotime breakdown. The low Y in monazite (< 1300 ppm) excludes this 

mineral from being the source of Y for the garnet inner core. In contrast, the Y and the HREE 

concentrations in garnet are controlled by consumption of xenotime that shows resorption 

features and occurs exclusively in the garnet inner core. Since monazite appearance is at about 

600 °C (Wing et al., 2003; Gieré & Sorensen, 2004; Janots et al., 2007, 2008; Goswami-

Banerjee & Robyr, 2015), we argue that Th-bearing monazite grew coeval with the garnet rim 

(575 ± 30 °C). Thus the monazite ages of 310 and 293 Ma (excluding mixed dates) indicate that 

the Pontremoli micaschist likely attained peak conditions in the Variscan or late-Variscan.  
The pressure peak (8.0 ± 0.8 kbar at 520 °C) is retrieved by Mg-rich type II muscovite 

and chlorite within decussate aggregates. Type I muscovite was re-oriented and relatively Mg-

rich rims formed during the peak pressure stage. The lack of biotite at the P-T peak may be due 

to its complete retrogression to chlorite and muscovite during the retrograde evolution. The 

retrograde evolution ended at 475-520 °C and 2-7 kbar during a static stage, constrained by the 

development of the late retrograde assemblage muscovite + chlorite + albite + ilmenite + quartz 

± paragonite (Fig. 12).   

 

P-T paths 

A monometamorphic anticlockwise path (Fig. 13a) or two different clockwise loops (Fig. 13b,c), 

separated by a mostly unpreserved retrograde stage, can fit the above P-T constraints. The 

anticlockwise trajectory would start at 530°C and 5.5 kbar, reaching peak conditions at 575 °C at 

~7 kbar, followed by a pressure increase after garnet growth at decreasing temperatures. A 

tectonic exhumation responsible for the nearly isothermal decompression at 475-520 °C 

characterizes the late retrograde stage (Fig. 13a). An alternative hypothesis implies an 

intermediate retrograde stage between two metamorphic cycles, i.e. after the temperature peak 

(Fig. 13b) and before the maximum pressure (Fig. 13c). The occurrence of K-feldspar inclusions 

within plagioclase (Fig. S1) indicates that a former ternary feldspar, formed near the temperature 

peak, exsolved a K-rich component from the plagioclase during a possible intermediate 

retrograde cooling stage. 

The polycyclic P-T path hypothesis is supported by the Tertiary monazite age that would 

imply an Oligocene-Miocene metamorphic overprint on the Variscan Pontremoli basement. 

Polymetamorphic rocks are known to occur in the Variscan orogenic belt. Massonne (2014) 

reconstructed a two-cycle orogenic history in the Migmatite Gneiss Zone of the Jubrique Unit of 

the Betic Cordillera (southern Spain). Eclogite-facies gneiss from the Southern Armorican 

Massif (France) with an apparent anticlockwise P-T path have been shown to be polycyclic rocks 

characterized by two difficult-to-resolve P-T trajectories (Godard, 2009). Thus these basement 

rocks underwent two separate cycles separated by a retrogression stage that led to the 

development of replacement microstructures during the cooling.  
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Tectonic implications 

The pre-Oligocene metamorphic record in the Variscan basement of the Northern Apennines is 

known from the Larderello subsurface basement (Bertini et al., 1994; Pandeli et al., 2005) and 

the Cerreto micaschist-amphibolite outcrops (Molli et al., 2002). In the Larderello and Cerreto 

basements, only retrograde segments of Variscan P-T paths (Bertini et al., 1994; Molli et al., 

2002) were recognized, but no information on the prograde metamorphic stages. The 

reconstruction of a complete P-T loop for the Pontremoli basement, which has been traditionally 

inferred to be Variscan (Pandeli et al., 2005), provides important insights into its late- to post-

Variscan evolution. 

In spite of the limited age data set and the wide age spread obtained, we can propose 

some geochronological interpretations. The oldest age indicates monazite growth at 312 Ma in 

agreement with the Variscan metamorphic event recorded in mafic amphibolites from the 

Cerreto Pass (312 and 328 Ma; Molli et al., 2002). The early Permian monazite age of 293 Ma, 

which dates the peak metamorphism, is close to the 285-275 Ma Rb/Sr bulk rock age obtained 

for the Variscan basement outcropping in the Monti Pisani (Borsi et al., 1967; Ferrara & 

Tonarini, 1985), and with the 285 ± 11 Ma Rb/Sr age for a muscovite associated with andalusite 

in a Larderello micaschist (Del Moro et al., 1982), interpreted as a late Variscan thermal 

perturbations. The early Permian igneous activity accompanying the collapse of the Variscan 

orogen would be responsible for this thermal anomaly. This activity is demonstrated by large 

intrusions at different crustal levels of mantle-derived magmas in the Western-Central Alps, 

Corsica and Apennine basement, ranging from low- (Hermann et al., 2001; Montanini & 

Tribuzio, 2001; Peressini et al., 2007) to mid-crustal (Braga et al., 2001; Monjoie et al., 2005), 

and shallow depths (Tribuzio et al., 2009; Renna et al., 2013).  

The two contrasting P-T paths proposed above can be explained by the following 

scenarios (Fig. 13). The first (monometamorphic anticlockwise P-T-t path; Fig. 13a) has an 

anticlockwise segment followed by a nearly isothermal decompression, which is linked to the 

activity of a regional scale shear zone accommodating transpressive (anticlockwise: Tmax before 

Pmax) to transtensive (near isothermal decompression) deformation (McCann et al., 2006). This 

tectonic setting predates the Late Triassic to Jurassic extension associated with the opening of the 

Western Tethys (Marroni et al., 1998; Mohn et al., 2012; Piccardo et al., 2014). The final 

decompression evolution at 475-520 °C and 2-7 kbar may be consistent with a Mesozoic rifting 

setting. Transpressive tectonics has been documented in the Mid-Permian in the Southern Alps 

(Cadel, 1986; Cadel et al., 1996; Deroin & Bonin, 2003), while several Variscan basement 

complexes record extensional deformation from uppermost Carboniferous to Mid Triassic times 

(e.g. 280-210 Ma in the Ivrea lower crust; Brodie et al., 1989). This model is consistent with 

regional evolution, suggesting the importance of intracontinental strike-slip tectonics (Arthaud & 

Matte, 1977; Doglioni 1984; Massari, 1986; Ziegler, 1986; Handy & Zingg, 1991; Schmid, 1993; 

Matte, 2001), and with the depositional history of Upper Carboniferous-Mid Triassic sediments 

of the Tuscan Domain (Rau, 1990; Molli, 2002).  

The second (polymetamorphic clockwise P-T-t paths; Fig. 13b,c) proposes a polycyclic 

evolution. The first metamorphic cycle involved a prograde formation of the garnet over the 

period given by the oldest monazite ages of 310 – 293 Ma, followed by retrogression. The 

second cycle was the Alpine metamorphic overprint, which resulted in a prograde evolution 

during which peak pressure conditions were reached, followed by fluid infiltration during 

exhumation yielding monazite partial dissolution and resetting or crystallization. This reworking 

probably occurred within the 27-11 Ma age range defined by Ar-Ar dating of white mica from 
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the Alpi Apuane phyllites (Kligfield et al., 1986). These ages record the underplating of the 

Adria microplate below the Corsica-Sardinia block and subsequent early exhumation of the 

Adria continental margin (Fellin et al., 2007; Molli, 2008). In this model the tectonic loading 

during the thickening stages may explain the pressure peak of the P-T path for the Pontremoli 

micaschist. According to various authors (Theye et al., 1997; Giorgetti et al., 1998; Jolivet et al., 

1998; Molli et al., 2000) nearby Verrucano siliciclastic metasedimentary rocks attained similar 

peak pressures (8-12 kbar) in the Miocene supporting this loading, which was possibly followed 

by rapid exhumation due to crustal extension leading to the opening of the Tyrrhenian Sea 

(Carmignani & Kligfield, 1990). Alpine metamorphism has previously been documented in the 

Variscan basement of the Northern Apennines (Monti Pisani and Punta Bianca; Lo Pò & Braga, 

2014; Lo Pò et al., 2015 and references therein) where chloritoid-bearing phyllites record a 

metamorphic peak at 475°C and 9-10 kbar. However, the correlation between the Alpine 

evolution recorded in the Pontremoli sample and in other Alpine metamorphic units of Northern 

Apennine is still difficult to constrain. 

 

CONCLUSIONS  

1. The breakdown sequence monazite(I)  monazite(II)   apatite + Th-silicate  allanite  

epidote occurred during decompression at 2-7 kbar at a temperature of 510 ± 35°C, as a 

result of fluid-mediated coupled dissolution-reprecipitation and crystallization during 

exhumation. Fluids released during the reactions involving garnet breakdown reacted with 

the late-Variscan monazite causing U depletion, a partial resetting of the monazite age and 

growth of low-Th monazite.  

2. The Pontremoli micaschist experienced the following P-T conditions: 530°C and 5.5 kbar 

during the prograde path, a metamorphic peak temperature at 575°C and 7 kbar. The peak 

pressure is 8 kbar at 520°C followed by a retrogression at 475-520 °C and 2-7 kbar.  

3. Two alternative tectonic interpretations can be proposed for the above P-T constraints: 

The first interpretation is for a single anticlockwise P-T path related to Permian–Mid Triassic 

strike-slip development. In this model, an early transpression stage was followed by a later 

transtension before the opening of the Western Tethys and a fluid-infiltration and static 

overprint during Alpine orogenesis. 

The second interpretation is for two separate clockwise P-T loops. The Pontremoli micaschist 

experienced a late-Variscan metamorphism (293 Ma), followed by a retrograde stage that is 

recorded by the K-feldspar exsolutions in plagioclase. The subsequent attainment of the peak 

pressure followed by a second retrograde stage occurred during the Alpine orogenesis, when 

a fluid-rock interaction event induced the breakdown of monazite.  
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web site:  

Appendix S1. Analytical procedures. 
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Appendix S2. Calculation of the bulk rock chemistry. 

Appendix S3. Input parameters for phase diagram calculations. 

Figure S1. BSE images of K-feldspar exsolutions within a plagioclase grain. 

Figure S2. Whole-rock Ca and Al compositions referred to the average pelite of Shaw (1956) of 

metapelites from the biotite- and garnet-zone studied by Wing et al. (1993). The 

Pontremoli7 sample lies on the line in which monazite and allanite coexist, in agreement 

with the observed mineralogy. 
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FIGURE AND TABLE CAPTIONS 

 

Figure 1 
Geological framework of the Northern Apennine. The Variscan basement is in black. 

 

Figure 2 

Petrography of the Pontremoli garnet micaschist. (a) Muscovite and chlorite surrounding a garnet 

porphyroblast (sample AG7, BSE image); (b) decussate aggregate of muscovite (sample 

Pontremoli7, crossed polars photomicrograph); (c) relationships between S1 and S2 (sample 

Pontremoli 8, BSE image); (d) corona around monazite in the matrix (sample Pontremoli7, BSE 

image); (e) xenotime inclusions within the garnet inner core (sample Pontremoli7, BSE image); 

(f) epidote around allanite in the retrogressed garnet rim (sample Pontremoli7, BSE image). 

 

Figure 3  

Chemical diagrams of garnet and muscovite in Pontremoli7. (a) Compositional profile showing 

contents of almandine, spessartine, pyrope, and grossular components along a garnet transect; (b) 

Y and P profile along the same transect; (c) Si vs. Mg plot for muscovite in different 

microstructural positions; (d) Si vs. Na for the same muscovite crystals. 

 

Figure 4 

X-ray maps of garnet and muscovite in Pontremoli7. (a) Mn in garnet; (b) Ca in garnet; (c) Y in 

garnet; (d) Mg in muscovite along the main schistosity; (e) Na in muscovite along the main 

schistosity. The location of muscovite analyses along the main schistosity reported in Table 2 is 

shown. 

 

Figure 5 

BSE images and schematic representations of the coronitic microstructure involving monazite 

(sample Pontremoli7). 

 

Figure 6 

BSE images and Ce-Th-Y X-ray maps of three monazite grains in Pontremoli7: (a) Mnz01; (b) 

Mnz02; (c) Mnz04. 
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Figure 7 

BSE images reporting the microstructural occurrences and the locations of analyses in monazite 

in Pontremoli7: (a) Mnz01; (b) Mnz02; (c) Mnz04; (d) Mnz03. The labels in brackets refer to the 

name of the point analyses, while the numbers below refer to the corresponding date. Note that 

Mnz01, Mnz02, Mnz04 are located in the matrix, whereas Mnz03 is within the retrogressed 

garnet rim and there is no age because of the low U and Pb. 

 

Figure 8 

Monazite composition and EMP dates. (a) UO2 vs. ThO2 diagram of the monazite in Pontremoli7 

sample compared to other monazite occurrences (Rasmussen & Muhling, 2007; Janots et al., 

2008; Langone et al., 2011); (b) Y2O3 vs. ThO2 diagram of monazite (labels refer to the obtained 

dates); (c) dates vs. ThO2 diagram of monazite in the retrogressed garnet rim; (d) relative 

probability plot and histogram of the monazite EMP dates obtained using the Isoplot/Ex 

program, v. 3.75 (Ludwig, 2012). 

 

Figure 9 

P-T pseudosection calculated with the unfractionated bulk-composition (bulk1). The intersection 

is related to the P-T range obtained by using the inner core garnet isopleths. A P-T uncertainty 

ellipse is also displayed. Mineral abbreviations are Ms (K-white mica), Chl (chlorite), Pg (Na-

white mica), Grt (garnet), Bt (biotite), Pl (plagioclase), Kf (K-feldspar), Ilm (ilmenite), Rt 

(rutile), Ttn (titanite), Lws (lawsonite), Zo (zoisite), And (andalusite), Sil (sillimanite), St 

(staurolite), Cld (chloritoid), Crd (cordierite). 

 

Figure 10  

P-T pseudosection calculated for the effective composition bulk2. The ellipse corresponds to the 

P-T uncertainty related to the garnet rim isopleth intersection. An isopleth for the maximum Si 

content in the muscovite core (Na-rich) is also displayed. Mineral abbreviations are as in Fig. 9. 

 

Figure 11  

P-T pseudosection calculated for the effective composition bulk3. Maximum Si content in the 

muscovite rim (Mg-rich) and the minimum XFe in chlorite allow the estimation of the pressure 

peak. The ellipse represents the P-T uncertainty. Retrograde paragenesis is delimited by the 

green line. Mineral abbreviations are as in Fig. 9. 

 

Figure 12 

Scheme showing the main petrographic and chemical constraints and the derived P-T conditions. 

 

Figure 13 

Two possible P-T-t paths for the obtained P-T constraints: (a) monometamorphic anticlockwise 

P-T evolution; (b, c) two polymetamorphic clockwise P-T-t trajectories separated by an 

intermediate retrograde stage. Late paragenesis is the observed retrograde assemblage 

(muscovite + chlorite + albite + ilmenite + quartz). MnzI and Mnz II are respectively the U-Th-

bearing monazite and U-Th-poor monazite. The dashed lines refer to inferred trajectories. 
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Table 1 

Mineral compositions of garnet in Pontremoli7 normalized to 8 cations. Fe
3+

 is equal to 4 – Al. 

b.d.l. = below the detection limit; n.c. = not calculated. 

Table 2 

Structural formulae of potassic white mica in Pontremoli7 calculated on the basis of 22 oxygens. 

Fe
3+

 is stoichiometric-estimated considering Fe
3+

 = 42 – sum of the valences (Si, Ti, Cr, Al, Mn, 

Mg, Fe)-Ba-Ca.  

 

Table 3  

Structural formulae of chlorite in Pontremoli7 calculated on the basis of 28 oxygens and the 

negligence of Na and Ca. Chlorite is assumed to be completely hydrated (16 H). 

 

Table 4 

Structural formulae of plagioclase in Pontremoli7 based on 8 oxygens. 

 

Table 5 

EMP mineral chemistry and dates of monazite in Pontremoli7 on the basis of 4 oxygen. 

 

Table 6 

Calculated bulk-rock compositions with garnet (bulk 1) and without garnet core (bulk2) and the 

whole garnet (bulk3). 

Footnote: To convert vol. % in wt. % the densities of minerals reported in Anthony et al. (2011) 

were used. The densities of the minerals that show significant solid solution were calculated 

through a linear interpolation between the densities of the corresponding end-members. 
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Table 1 

Garnet rim 
 

outer core 
 

inner core 

Point analyses gt1_01a gt1_01b gt1_01c 
 

gt1_04 gt1_05 gt1_05b 
 

gt1_09b gt1_10a gt1_11b 

wt. % 
           

SiO2 35.69 35.82 35.35 
 

35.46 35.44 35.30 
 

35.13 34.77 34.95 

Al2O3 21.02 21.35 20.96 
 

21.16 21.03 21.02 
 

20.65 20.78 20.77 

Fe2O3 3.04 3.00 3.86 
 

3.81 3.61 3.88 
 

2.73 2.98 2.71 

TiO2 0.06 0.05 0.06 
 

0.08 0.08 0.07 
 

0.07 0.06 0.07 

FeO 36.00 36.02 35.24 
 

33.37 33.18 31.69 
 

29.90 29.41 29.55 

MnO 0.10 0.15 0.39 
 

1.31 1.59 2.44 
 

4.86 4.96 5.16 

MgO 2.51 2.13 1.88 
 

1.44 1.36 1.24 
 

1.08 1.06 1.04 

CaO 1.73 2.30 2.63 
 

4.10 4.10 4.64 
 

4.15 4.15 4.08 

P2O5 0.03 0.02 0.02 
 

0.02 b.d.l. 0.02 
 

b.d.l. b.d.l. b.d.l. 

Y2O3 b.d.l. b.d.l. b.d.l. 
 

b.d.l. b.d.l. b.d.l. 
 

0.77 0.80 0.85 

Dy2O3 b.d.l. b.d.l. b.d.l. 
 

b.d.l. b.d.l. b.d.l. 
 

b.d.l. b.d.l. 0.11 

Er2O3 b.d.l. b.d.l. 0.00 
 

b.d.l. b.d.l. b.d.l. 
 

0.13 0.14 0.12 

Yb2O3 b.d.l. 0.01 0.01 
 

b.d.l. b.d.l. b.d.l. 
 

0.13 0.11 0.15 

Total 100.20 100.89 100.41 
 

100.78 100.44 100.29 
 

99.67 99.29 99.58 

            
ppm 

           
P 150 90 70 

 
90 n.c. 70 

 
n.c. n.c. n.c. 

Ti 350 320 350 
 

470 490 400 
 

390 370 430 

Y n.c. n.c. n.c. 
 

n.c. n.c. n.c. 
 

6040 6320 6720 

Dy n.c. n.c. n.c. 
 

n.c. n.c. n.c. 
 

n.c. n.c. 980 

Er n.c. n.c. n.c. 
 

n.c. n.c. n.c. 
 

1130 1190 1090 

Yb n.c. n.c. n.c. 
 

n.c. n.c. n.c. 
 

1112 962 1293 

            
apfu 

           
Si 2.90 2.89 2.87 

 
2.87 2.88 2.87 

 
2.89 2.87 2.88 

P 0.00 0.00 0.00 
 

0.00 0.00 0.00 
 

0.00 0.00 0.00 

Al
IV

 0.11 0.11 1.88 
 

0.13 0.12 0.13 
 

0.11 0.13 0.12 

Al
VI

 1.91 1.92 0.24 
 

1.89 1.89 1.88 
 

1.89 1.89 1.90 

Fe
3+

 0.19 0.18 0.00 
 

0.23 0.22 0.24 
 

0.17 0.19 0.17 

Fe
2+

 2.44 2.43 2.40 
 

2.26 2.25 2.15 
 

2.06 2.03 2.04 

Mn 0.01 0.01 0.03 
 

0.09 0.11 0.17 
 

0.34 0.35 0.36 

Mg 0.30 0.26 0.23 
 

0.17 0.16 0.15 
 

0.13 0.13 0.13 

Ca 0.15 0.20 0.23   0.36 0.36 0.40   0.37 0.37 0.36 

            

Alm 0.84 0.84 0.84 
 

0.78 0.78 0.75 
 

0.70 0.70 0.69 

Adr 0.09 0.09 0.10 
 

0.11 0.10 0.11 
 

0.08 0.09 0.08 

Grs 0.00 0.00 0.00 
 

0.01 0.02 0.03 
 

0.04 0.04 0.04 

Sps 0.00 0.00 0.01 
 

0.03 0.04 0.06 
 

0.12 0.12 0.12 

Pyr 0.10 0.09 0.09 
 

0.06 0.06 0.05 
 

0.05 0.04 0.04 
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Table 2 

K-white mica                     

  Schistosity   Decussate structure 

 

Type I   Type II 

 

Type I   Type II 

Point 

analyses 
Ms37_01 Ms37_22   Ms38_01 Ms38_02 

 

Ms45_05 Ms45_06 
 

Ms44_01 Ms44_02 

SiO2 45.95 46.06 
 

46.79 47.07 

 

45.76 45.58 
 

46.76 46.59 

TiO2 0.48 0.48 
 

0.35 0.33 

 

0.38 0.40 
 

0.36 0.31 

Al2O3 35.50 35.28 
 

32.25 32.42 

 

36.23 36.28 
 

32.93 32.83 

FeO 1.24 1.03 
 

2.20 2.13 

 

0.86 0.82 
 

1.71 1.58 

Fe2O3 0.00 0.00 
 

0.00 0.00 

 

0.00 0.00 
 

0.00 0.00 

MnO 0.00 0.00 
 

0.00 0.00 

 

0.00 0.01 
 

0.02 0.00 

MgO 0.90 0.89 
 

1.61 1.54 

 

0.61 0.63 
 

1.29 1.36 

CaO 0.00 0.02 
 

0.01 0.00 

 

0.02 0.03 
 

0.00 0.01 

Na2O 2.23 2.14 
 

0.86 0.91 

 

2.22 2.24 
 

0.87 0.72 

K2O 8.33 8.63 
 

10.13 9.88 

 

8.38 8.19 
 

10.08 10.45 

BaO 0.19 0.18 
 

0.20 0.16 

 

0.22 0.25 
 

0.17 0.18 

Total 94.81 94.81 
 

94.81 94.81 
 

94.68 94.42 
 

94.19 94.04 

      
 

     
Si 6.12 6.15 

 
6.32 6.34 

 

6.09 6.08 
 

6.31 6.31 

Al
IV

 1.88 1.86 
 

1.68 1.66 

 

1.91 1.92 
 

1.69 1.69 

Al
VI

 3.69 3.69 
 

3.46 3.48 

 

3.77 3.78 
 

3.55 3.55 

Ti 0.05 0.05 
 

0.04 0.03 

 

0.04 0.04 
 

0.04 0.03 

Fe
2+

 0.14 0.12 
 

0.25 0.24 

 

0.10 0.09 
 

0.19 0.18 

Fe
3+

 0.00 0.00 
 

0.00 0.00 

 

0.00 0.00 
 

0.00 0.00 

Mn 0.00 0.00 
 

0.00 0.00 

 

0.00 0.00 
 

0.00 0.00 

Mg 0.18 0.18 
 

0.32 0.31 

 

0.12 0.13 
 

0.26 0.28 

Ca 0.00 0.00 
 

0.00 0.00 

 

0.03 0.01 
 

0.00 0.00 

Ba 0.01 0.01 
 

0.01 0.01 

 

0.01 0.01 
 

0.01 0.01 

Na 0.58 0.55 
 

0.26 0.24 

 

0.57 0.58 
 

0.23 0.19 

K 1.41 1.47   1.75 1.70 

 

1.42 1.39   1.74 1.81 

 

 

 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

K-white mica   

  Garnet rim 

 Type II 

Point analyses Ms46_01 Ms46_02 

SiO2 46.57 46.81 

TiO2 0.24 0.29 

Al2O3 35.22 33.94 

FeO 1.55 1.87 

Fe2O3 0.00 0.00 

MnO 0.03 0.00 

MgO 0.85 1.19 

CaO 0.02 0.00 

Na2O 0.76 0.81 

K2O 10.07 9.92 

BaO 0.24 0.18 

Total 95.55 95.00 

   
Si 6.18 6.25 

Al
IV

 1.82 1.75 

Al
VI

 3.68 3.58 

Ti 0.02 0.03 

Fe
2+

 0.17 0.21 

Fe
3+

 0.00 0.00 

Mn 0.00 0.00 

Mg 0.17 0.24 

Ca 0.00 0.00 

Ba 0.01 0.01 

Na 0.20 0.21 

K 1.70 1.69 
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Table 3 

Chlorite                 

  Schistosity 
  

  

Decussate structure   Garnet rim 

Point 

analyses 
Chl01 Chl02 Chl10 Chl03   Chl07 Chl08 

SiO2 23.53 24.22 24.01 24.12 24.05 23.74 

TiO2 0.06 0.08 
 

0.07 0.07 0.07 0.04 

Al2O3 20.67 21.72 
 

20.95 20.84 
 

21.03 21.86 

FeO 31.76 31.26 
 

31.63 30.08 
 

29.51 31.58 

MnO 0.18 0.13 
 

0.14 0.10 
 

0.10 0.09 

MgO 10.65 11.30 
 

11.26 11.53 
 

12.41 10.57 

Total 86.84 88.71 
 

88.07 86.73 
 

87.17 87.89 

         
Si 5.22 5.22 

 
5.23 5.30 

 
5.24 5.18 

Al
IV

 2.78 2.79 
 

2.77 2.71 
 

2.77 2.83 

Al
VI

 2.62 2.73 
 

2.61 2.68 
 

2.63 2.79 

Ti 0.01 0.01 
 

0.01 0.01 
 

0.01 0.01 

Fe 5.89 5.63 
 

5.76 5.52 
 

5.37 5.76 

Mn 0.03 0.02 
 

0.03 0.02 
 

0.02 0.02 

Mg 3.52 3.63 
 

3.66 3.77 
 

4.03 3.44 
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Table 4 

Plagioclase       

 

      

 

    

 

Core 
 

Rim 

 

Matrix 

 
Pl02_03 Pl02_04 Pl01_04 

 

Pl01 Pl04 Pl05 

 

Pl07 Pl08 

SiO2 66.27 66.60 66.30 

 

68.59 68.74 68.86 

 

68.74 68.76 

Al2O3 21.40 21.52 21.32 

 

19.31 19.28 19.30 

 

19.05 19.29 

Fe2O3 0.05 0.09 0.10 

 

0.13 b.d.l. 0.04 

 

0.13 0.15 

CaO 1.98 2.01 2.20 

 

0.33 0.20 0.15 

 

0.12 0.25 

Na2O 10.94 10.91 10.88 

 

11.81 11.86 12.01 

 

12.34 12.08 

K2O 0.07 0.05 0.05 

 

0.02 0.02 0.00 

 

0.05 0.03 

BaO b.d.l. 0.02 b.d.l. 

 

b.d.l. b.d.l. b.d.l. 

 

b.d.l. b.d.l. 

Total 100.71 101.20 100.86 

 

100.18 100.11 100.36 

 

100.44 100.55 

           Si 2.89 2.89 2.89 
 

2.99 3.00 3.00 
 

3.00 2.99 

Al 1.10 1.10 1.10 
 

0.99 0.99 0.99 
 

0.98 0.99 

Fe
3+

 0.00 0.00 0.00 
 

0.00 n.c. 0.00 
 

0.00 0.01 

Ba n.c. 0.00 n.c. 
 

n.c. n.c. n.c. 
 

n.c. n.c. 

Ca 0.09 0.09 0.10 
 

0.02 0.01 0.01 
 

0.01 0.01 

Na 0.93 0.92 0.92 
 

1.00 1.00 1.01 
 

1.04 1.02 

K 0.00 0.00 0.00 
 

0.00 0.00 0.00 
 

0.00 0.00 
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Table 5 

Analysis Mnz01_01 Mnz04_01 Mnz02_05 Mnz01_01a Mnz01_02a Mnz01_05a Mnz02_01a Mnz02_04a Mnz02_09a Mnz04_04a Mnz03_02a Mnz03_03a 

SiO2 0.66 0.58 0.72 0.78 0.81 0.79 0.81 0.58 0.71 0.49 
 

0.94 0.99 

P2O5 29.07 29.34 29.40 27.44 27.30 26.75 30.00 29.98 29.96 30.51 
 

28.99 27.10 

SO3 0.04 0.03 0.02 0.03 0.02 0.03 0.03 0.03 0.02 0.02 
 

0.04 0.03 

CaO 1.53 1.54 1.33 1.52 1.58 1.80 1.36 1.47 1.42 1.40 
 

0.52 3.16 

Y2O3 0.07 0.05 0.03 0.09 0.09 0.05 0.06 0.01 0.04 0.09 
 

0.31 0.32 

La2O3 13.72 14.56 15.31 14.01 13.42 13.37 14.81 15.39 15.14 14.69 
 

16.91 16.40 

Ce2O3 27.73 28.64 29.41 27.83 27.53 26.66 28.06 29.16 29.34 29.02 
 

32.51 31.68 

Pr2O3 3.01 3.05 3.06 2.93 2.65 2.94 3.10 3.04 3.08 3.09 
 

3.33 3.00 

Nd2O3 11.98 11.95 11.59 11.82 11.48 11.55 12.00 11.63 11.50 12.19 
 

12.59 12.49 

Sm2O3 2.17 2.11 1.60 2.01 2.05 2.11 2.07 1.54 1.50 2.15 
 

1.89 1.86 

Gd2O3 1.66 1.54 0.84 1.53 1.57 1.50 1.50 0.79 0.86 1.59 
 

1.11 1.12 

Dy2O3 0.23 0.20 0.12 0.25 0.27 0.21 0.20 0.11 0.10 0.27 
 

0.31 0.36 

PbO 0.13 0.10 0.09 0.12 0.13 0.13 0.10 0.11 0.09 0.09 
 

b.d.l. 0.02 

ThO2 8.20 6.89 7.32 8.26 9.08 9.62 6.66 7.44 7.69 5.87 
 

1.33 2.22 

UO2 0.45 0.42 0.38 0.49 0.48 0.50 0.30 0.42 0.39 0.43 
 

b.d.l. b.d.l. 

Tot 100.65 100.99 101.22 99.11 98.46 98.02 101.05 101.70 101.84 101.88 
 

100.79 100.75 

           
 

  
Si 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.02 

 

0.04 0.04 

P 0.97 0.97 0.97 0.95 0.95 0.94 0.98 0.98 0.98 0.99 

 

0.96 0.91 

S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

0.00 0.00 

Ca 0.06 0.07 0.06 0.07 0.07 0.08 0.06 0.06 0.06 0.06 

 

0.02 0.14 

Y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

0.01 0.01 

La 0.20 0.21 0.22 0.21 0.20 0.20 0.21 0.22 0.22 0.21 

 

0.24 0.24 

Ce 0.40 0.41 0.42 0.42 0.41 0.40 0.40 0.41 0.41 0.41 

 

0.47 0.46 

Pr 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

 

0.05 0.04 

Nd 0.17 0.17 0.16 0.17 0.17 0.17 0.17 0.16 0.16 0.17 

 

0.18 0.18 

Sm 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.02 0.02 0.03 

 

0.03 0.03 

Gd 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.02 

 

0.01 0.02 

Dy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

0.00 0.01 

Pb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

n.c. n.c. 

Th 0.07 0.06 0.07 0.08 0.09 0.09 0.06 0.07 0.07 0.05 

 

0.01 0.02 

U 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

 

n.c. n.c. 

           
 

  
Dates 311.5 289.6 19.2 292.1 294.4 281.3 294.8 293.1 250.4 307.4 

 

n.c. n.c. 

statistical error 6.5 7.2 0.3 6.2 5.9 5.7 7.7 6.8 6.5 8.0   n.c. n.c. 
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Table 6 

 

unfractioned 

composition 

(bulk1) 

fractioned compositions 

  garnet inner 

and outer core 

fract. (bulk2) 

whole garnet 

fract. 

(bulk3) 

  wt. % wt. % wt. % 

SiO2 53.31 57.03 57.85 

TiO2 1.17 1.31 1.36 

Al2O3 24.22 24.18 24.32 

FeO 12.00 8.26 7.13 

MnO 0.44 0.03 0.00 

MgO 2.56 2.71 2.72 

CaO 0.62 0.09 0.00 

Na2O 1.19 1.33 1.38 

K2O 4.49 5.06 5.25 
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