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Generalised relativistic Ohm’s laws, extended gauge transformations,
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Generalisations of the relativistic ideal Ohm’s law are presented that include specific dynamical

features of the current carrying particles in a plasma. Cases of interest for space and laboratory plasmas

are identified where these generalisations allow for the definition of generalised electromagnetic fields

that transform under a Lorentz boost in the same way as the real electromagnetic fields and that obey

the same set of homogeneous Maxwell’s equations. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4935282]

I. INTRODUCTION

In the fluid description of a plasma, the momentum

equation of the lighter particle species, generally the elec-

trons, plays a fundamental role in determining the properties

of the large spatial scale, low frequency dynamics. This is

particularly evident in the case of the single fluid MHD

description where the so called ideal Ohm’s law is essen-

tially the momentum equation of massless, cold electrons.

More precisely, it expresses the vanishing of the electromag-

netic force on the electron fluid under the additional assump-

tion that the electron and the ion fluid velocities can be

assumed, within this equation, to coincide. In addition, it is

assumed that there is no electron fluid momentum transmit-

ted through collisions to different species (resistivity) or to

the electromagnetic fields through high frequency incoherent

radiation (radiation friction).

It is a fundamental feature of MHD that, if the ideal

Ohm’s law applies, the plasma dynamics is constrained by

an infinite set of topological invariants, such as the one aris-

ing from the conservation of magnetic helicity. These con-

straints express the invariance in time of magnetic
connections, i.e., the property that if the ideal Ohm’s law

holds and the plasma velocity field remains smooth, two fluid

elements that at t¼ 0 are linked by a magnetic field line

remain linked by a magnetic field line at any successive

time.1 This property goes under the abbreviated but sugges-

tive statement that the magnetic field is frozen in the plasma.

It is also well known that a number of physical effects

leads to violations of the ideal Ohm’s and that these effects

are generally related to the appearance of small spatial and/

or temporal scales due, e.g., to the nonlinearity of the plasma

dynamics. When these violations occur only locally, the

magnetic field lines in the plasma undergo the well known

process of magnetic reconnection. In this process, the iden-

tity of fields lines is lost only inside the reconnection region

but the linking between different fluid elements is changed

globally, causing a rearrangement of the global magnetic

field topology.

There are different ways in which the ideal Ohm’s law

can be violated: they can be roughly grouped into three dif-

ferent classes. In a first class, the violation amounts to a

change of the fluid with respect to which the magnetic field

is frozen, as is the case of a two-fluid plasma description

where the restriction that the ion fluid and the electron fluid

move with the same velocity is relaxed, or in the so called

Electron Magnetohydrodynamics2,3 where ions are taken to

be immobile. In this class, which includes the so called Hall-

MHD,4 the magnetic field remains frozen with respect to the

electron fluid. As a consequence, the topology of the mag-

netic field ~B is preserved, although the ion fluid is allowed to

slip with respect to the magnetic field.

A second class involves a change in the fields that define

the linking. This is the case when the assumption of massless

electrons is relaxed, and thus work must be performed in

order to accelerate them. In this case is was shown (see Ref.

5) that, if the electron fluid is assumed to be cold, a general-

ised magnetic field ~Be � r� ð~A � e~ue=meÞ is frozen in the

electron fluid and a generalised ideal Ohm’s law can be writ-

ten in the form

~Ee þ~ue � ~Be=c ¼ 0; (1)

where ~Ee ¼ �rð/� ej~uej2=ð2meÞ � @tð~A � e~ue=meÞ=c. In

addition, the fields ~Ee and ~Be satisfy the homogeneous

Maxwell’s equation r � ~Be ¼ 0 and r� ~Ee ¼ �@t
~Be=c. In

this case, the topology of the magnetic field ~B is not pre-

served but the topology of the generalised magnetic field ~Be

is, i.e., Be-connections are preserved by the electron dynam-

ics. In this case, see Ref. 6 and references therein, magnetic

reconnection can only proceed if large gradients of the elec-

tron fluid velocity ~ue, or somewhat equivalently of the

plasma current density, are produced. A similar result applies

if we relax the condition of cold electrons and introduce in

Ohm’s law the gradient of an isotropic pressure that is a

function of the plasma density only. In the non relativistic

case, this can be performed by adding the contribution aris-

ing from the gradient of the pressure to the gradient of the

electrostatic potential /. In this case, if, for example, the

electron inertia is neglected, the magnetic field ~B remains

frozen in the plasma MHD flow.

The third class involves phenomena that are the conse-

quence of a momentum transfer to the other particle species

either through collisions or higher frequency collective
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phenomena, i.e., through the effect of collisional or anoma-

lous resistivity. Electron momentum can also be lost

through high frequency incoherent radiation (the so called

radiation reaction force or radiation friction), or spatially

redistributed between different electron fluid elements by

electron viscosity. Additional violations in this class arise

from electron kinetic effects that are not accounted for

within a standard fluid description, such as Landau damping

or an anisotropic and in particular, non-gyrotropic pressure

tensor. Contrary to the two previous cases, for this class, it

is not normally possible to define a generalised magnetic

field that remains frozen in a fluid plasma component, how-

ever selected.

An important feature of the ideal Ohm’s law is that it is

in no sense restricted to a non relativistic plasma regime, as

it can be written (unmodified) in the fully covariant form

Fl�u� ¼ 0; (2)

where Fl� is the electromagnetic (e.m.) field tensor, ul is a

normalised timelike 4-vector (ulul ¼ �1) which we inter-

pret as the fluid velocity 4-vector field of the plasma species

with respect to which the magnetic field is frozen.7 While

the ideal Ohm’s law is fully covariant, its interpretation in

terms of the conservation of magnetic connections is not. In

fact, the meaning of magnetic connection and magnetic to-

pology is not clear in a relativistic context because of two

related reasons: first, the distinction between electric and

magnetic fields is frame dependent, and second, the very

concept of field lines, which are defined in coordinate space

at a given time, is frame dependent due to the violation of

simultaneity in different reference frames of events at differ-

ent spatial locations. This feature was addressed in Ref. 8

where it was shown that the covariant formulation of mag-

netic connections can be restored by means of a time reset-

ting projection along the trajectories of the plasma elements.

This projection is consistent with the ideal Ohm’s law and

compensates for the loss of simultaneity in different refer-

ence frames between spatially separated events. It was then

shown (see Ref. 9) that a frame independent definition of

magnetic topology can be recovered by referring to 2D-

hypersurfaces in 4D Minkowski space instead of 1D curves

in 3D space at fixed time. These hypersurfaces are defined

by the two linearly independent 4-vector fields10 whose con-

traction with the e.m. field tensor Fl� is identically zero,

while the corresponding homogeneous Maxwell equations

@lF l� ¼ 0, with F l� � el�krFkr=2 the dual of the e.m. ten-

sor Fl� , play the role of a Frobenius involution condition for

the existence of the foliation of Minkowski space defined by

these hypersurfaces. The covariant definition of these hyper-

surfaces makes it possible to define magnetic connection-

lines covariantly by taking cuts at the same coordinate time

in each reference frame.

In the present article, we address the relativistic covari-

ant formulation of a non-ideal Ohm’s law (Sec. II) and look

for the conditions that are required in order to define a covar-

iant form of generalised connections. In this context, we note

the analysis recently presented in Ref. 11 where generalized

magnetic connections are derived for a set of relativistic

non-ideal MHD equations that include thermal-inertial, ther-

mal-electromotive, Hall, and current-inertia effects.

We show that the conditions required in order to define

a covariant form of generalised connections can be satisfied

automatically by introducing a generalised gauge transfor-
mation of the 4-vector potential Al defined by a gauge field
sl that must satisfy a compatibility condition involving the

4-velocity ul. We refer in particular, to the case where iner-

tial and thermal electron effects are considered (Sec. III).

The results obtained in this section agree with the analysis in

Ref. 11 when the difference between the adopted plasma

descriptions is taken into account: generalized relativistic

MHD equations in Ref. 11, relativistic electron fluid equa-

tions coupled to the homogeneous Maxwell’s equations in

the present article.

An interesting extension to a fluid of relativistic spheri-

cal tops is given in Sec. IV, while two dissipative cases, radi-

ation friction and collisional resistivity, are discussed in

Secs. V and VI, respectively. The definition of generalised

helicity is given in Sec. VII, while the relevance of the pres-

ent analysis to the development of magnetic reconnection is

briefly discussed in the Conclusions.

Before proceeding, we recall that the tensor contractions

Fl�Fl� and Fl�F l� are Lorentz invariants proportional to

j~Ej2 � j~Bj2 and ~E � ~B, respectively, and that Fl�F l� vanishes

if an equation of the form of Eq. (2) holds where, in general,

the 4-vector field that is annihilated by the e.m. field tensor

Fl� need not be timelike.

II. RELATIVISTIC OHM’S LAW

We write the relativistic Ohm’s law in formal terms as

Fl�u� ¼ Rl; (3)

with Rl a 4-vector field such that

ulRl ¼ 0: (4)

The 4-vector Rl is taken to include any non ideal effect not

included in Eq. (2). Note however that if Rl can be put in the

form Rl ¼ �Fl�v� such that if ul þ vl 6¼ 0 is still a timelike

4-vector field, this violation of the ideal Ohm’s law can in

principle be removed by a different choice of the “reference”

4-velocity.12 For this to occur the Lorentz invariant Fl�F l�

must vanish. This case will not be considered in the rest of

this article as we will require that the violation of the ideal

Ohm’s law makes Fl�F l� 6¼ 0 at least locally.

Using the standard decomposition13–15 of the field

tensor

Fl� ¼ el�krbkur þ ½ule� � u�el� ; (5)

where bl is the 4-vector magnetic field and el is the 4-vector
electric field, with ulel ¼ 0 and ulbl ¼ 0, we find

Rl ¼ el: (6)

The 4-vectors el and bl in Eq. (5) are related to the standard

electric and magnetic fields ~E and ~B in 3D space by
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bl ¼ cð~B �~v ; ~B þ ~E �~vÞ; (7)

and

el ¼ cð~E �~v ; ~E þ~v � ~BÞ; (8)

with elbl ¼ ~E � ~B, c is the relativistic Lorentz factor, and we

have used ul ¼ cð1;~vÞ.
The representation given in Eq. (5) is physically conven-

ient as it allows us to separate covariantly the magnetic and

the electric parts of the e.m. field tensor relative to a given

plasma component moving with 4-velocity ul. In the local

rest frame of this plasma component, the time components of

el and bl vanish, while their space components reduce to the

standard 3-D electric and magnetic fields. In addition, as

shown by Eqs. (3) and (6), the electric part vanishes if the

ideal Ohm’s law holds. In this case, we can use el ¼ 0 in

order to express bl in terms of ~B and~v only, and magnetic

connections, defined by the cuts at constant time of the 2D-

hypersurfaces generated by the 4-vectors bl and ul, are

preserved.

In order to search for generalized connections when

el 6¼ 0, we consider the magnetic part of Fl� , introduce a

generalised magnetic 4-vector field b̂l � bl þ dl, and define

the generalised field tensor

Fb
l� ¼ el�krb̂kur: (9)

Then, we look for the conditions such that Fb
l� satisfies the

homogeneous Maxwell’s equations

@lF b
l� ¼ 0; (10)

where the dual tensor F b
l� is defined by

F b
l� � el�krFb

kr=2 ¼ ulb̂� � b̂lu�: (11)

Following the usual procedure where the homogeneous

Maxwell’s equations allow us to define the 4-vector poten-

tial, we set

Fb
l� � @lAb

� � @�Ab
l ¼ @lA� � @�Al þ @ls� � @�sl; (12)

where Al is the 4-vector potential that defines Fl� , while Ab
l

is a generalized 4-vector potential, and sl � Ab
l � Al is a

“gauge” field. Combining Eqs. (5), (9), and (12) gives

el�kr dkur þ ule� � u�el ¼ �@ls� þ @�sl: (13)

Contracting Eq. (13) with ul, we obtain the compatibility

condition

el ¼ u�@�sl � u�@ls� ¼ @ssl � u�@ls�; (14)

with @s � ul@l the convective derivative with respect to the

proper time s, while the remaining components of Eq. (13)

determine the 4-vector dl which can be obtained from Eq.

(13) by contracting it with uaeabl� and using dlul ¼ 0. Any

choice of the 4-vector field sl compatible with a specified el

in Eq. (14) defines a generalised ideal Ohm’s law in terms of

modified e.m. fields given by the field tensor

Fb
l� � el�krb̂kur � Fl� þ @ls� � @�sl; (15)

and generalised conserved connections defined by the cuts

at constant time of the 2D-hypersurfaces generated by the

4-vectors b̂l and ul.

Note that the choice where s� is a 4-gradient corre-

sponds to el ¼ 0 and is simply a standard gauge transforma-

tion of the vector potential Al that does not affect the e.m.

fields.

III. RELATIVISTIC INERTIAL OHM’S LAW

An interesting choice of the gauge 4-vector sl is

sl ¼ Pul; (16)

with P a scalar field. From Eq. (14), we obtain

el ¼ @sðPulÞ þ @lP ¼ ðulu� þ dl�Þ@�PþP@sul

¼ @�½ðulu� þ dl�ÞP� þ ulu�ðP=nÞ@�n; (17)

where ulu� þ dl� is the projector perpendicular to ul, and

the scalar function n is defined by the continuity equation

@�ðnu�Þ ¼ 0. Thus, we can write

n el ¼ @�½nulu�P� þ n@lP: (18)

If we set P � ðPþ �Þ=ðnqÞ; where we interpret P and � as

the invariant pressure and mass-energy density, n as the

invariant numerical density with m and q as the mass and

charge, respectively, we obtain

nq el ¼ nq Fl�u� ¼ @�½ ulu�ðPþ �Þ� þ n @l½ðPþ �Þ=n�;
(19)

that gives

nq el ¼ @�Tl� � ðP=nÞ@lnþ n @lð�=nÞ; (20)

where Tl� � ðPþ �Þulu� þ Pdl� can be interpreted as the

fluid energy momentum tensor.

If we further assume that � and P are functions of n
only, consistently with the assumption made in the nonrela-

tivistic case in the Introduction, and use the thermodynamic

relationship (see, e.g., Eq. (8) of Ref. 15 with all dependen-

ces on the entropy density dropped having in effect assumed

that the entropy density of the fluid is uniform and constant)

P ¼ n@�=@n� �; (21)

we find that the last two terms in Eq. (20) cancel. Writing the

dissipationless relativistic single fluid momentum-energy

equation in the form

@�Tl� ¼ nq Fl�u�; (22)

we see that, if � and P are functions of n only, the choice of

the gauge field sl ¼ ½ðPþ �Þ=ðnqÞ�ul defines conserved gen-

eralized connections in agreement with Ref. 11. In the cold

P¼ 0 limit, P ¼ m=q and the combination Al þ sl reduces,

aside for a multiplication factor, to the standard (cold) fluid

canonical momentum mul þ qAl. In the non relativistic limit
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for the electron fluid, the generalised e.m. fields that are

obtained from the generalised 4-vector potential Al þ mul=q
reduce to the electric and magnetic fields ~Ee and ~Be defined

in the Introduction.

IV. RELATIVISTIC FLUID OF SPHERICAL TOPS

An interesting choice of sl that can be related to the

motion of relativistic spherical tops,16 in view of the descrip-

tion of a classical fluid of electrons with an internal degree

of freedom (such as spin, see, e.g., the recent Ref. 17, Chap.

7, and references therein), is

sl ¼ C rl�r�kuk; (23)

with rl� an antisymmetric matrix function and C a scalar

constant. We obtain

el ¼ C ½@sðrl�r�kukÞ � u�@lðr�brbkukÞ�: (24)

If rl� is taken to be constant, Eq. (24) can be written as

el ¼ C½ðrl�r�k@sukÞ � @lðR�R�Þ=2�; (25)

with Rl ¼ rl�u� . The gauge field in Eq. (23) is compatible

with an equation of motion with a modified inertia term

ðrl�r�k@sukÞ and a gradient force term �@lðR�R�Þ=2, which

ensures the consistency of the constraint ulul ¼ �1.

V. RELATIVISTIC RADIATION REACTION ON A COLD
FLUID PLASMA

A different result can be expected in a “dissipative” case

setting

sl ¼ C @sul: (26)

This choice requires the introduction in the fluid momentum

equation of the second (proper) time convective derivative

of the fluid 4-velocity and could be used to make a compari-

son with the radiation reaction force18 on a cold relativistic

plasma due to emission of (classical) incoherent high fre-

quency radiation (see also Ref. 19 for a thermal relativistic

plasma). We obtain

el ¼ C ½@sð@sulÞ � u�@lð@su�Þ�
¼ C ½@s@sul þ ð@lu�Þð@su�Þ�; (27)

which can be rewritten more transparently as

el ¼ C ðdl� þ ulu�Þ½@s@su� � ua@�@sua�; (28)

where ðdl� þ ulu�Þ is the projector perpendicular to ul and

ð@lu�Þð@su�Þ.
While, taking the electron distribution function to be a d

function in momentum space, the term in Eq. (28) that

involves the second derivative of the 4-velocity with respect

to the proper time s can be related to the single particle

Lorentz-Abraham-Dirac (LAD) equation,18 the second

involves the coordinate derivatives of the acceleration

4-vector @sul. Thus, the introduction in the 4-momentum

equation of a LAD-force term does not lead to a generalised

Ohm’s law compatible with Eq. (10) unless the contribution

of the second term vanishes. Conversely, one can use Eq.

(28) to split the LAD force into a term that defines a general-

ised ideal Ohm’s law and a term that cannot be included in

such a framework. This is important when looking, as is

done in Sec. VII, for conservation laws of the plasma

dynamics.

VI. RESISTIVE OHM’S LAW

A similar splitting of the term that violates the ideal

Ohm’s law can in principle be found in the case of a resistive

Ohm’s law.

We write the relativistic covariant form20 of the resistive

term as

el ¼ g ðdl� þ ulu�Þj� ¼ g ðjl � qulÞ; (29)

where g is a scalar resistivity, jl is the current density four

vector, and q � uljl is the invariant charge density. The pro-

jector operator, which is required in order to satisfy the con-

straint elul ¼ 0, subtracts from jl the current density arising

from the charge advected by the fluid 4-velocity ul which is

not affected by resistivity. For the sake of simplicity, we take

g to be a constant.

Using the inhomogeneous Maxwell’s equation @�Fl�

¼ ð4p=cÞ jl, we write Eq. (29) as

el ¼ ðcg=4pÞ ð@�Fl� þ ulu�@aFa�Þ; (30)

and compare it with Eq. (14) that requires el ¼ @ssl

� u�@ls� . A possible choice for sl, in a sense the counterpart

of the choice made in Eq. (26) as it involves integration with

respect to the proper time s0 along the fluid trajectories

instead of differentiation, is to take

sl ¼
ðs

ds0elðs0Þ ¼ ðcg=4pÞ
ðs

ds0ð@�Fl� þ ulu�@aFa�Þ0;

(31)

which leaves the term u�@ls� unbalanced. Similarly to the

result of Sec. V, the unbalanced term depends on the coordi-

nate derivatives of sl.

VII. GENERALISED MAGNETIC HELICITY

As already mentioned, if the generalised Ohm’s law can

be written in the form Fb
l�ul ¼ 0 with @lF b

l� ¼ 0, it is possi-

ble to define in a covariant way generalised magnetic con-

nections between plasma elements. In this section, we

consider the generalisation on magnetic helicity that in the

case of the ideal Ohm’s law in Eq. (1) is represented by the

4-vector

Kl ¼ F l�A�: (32)

The 4-vector Kl, which is defined modulo a 4-divergence

because of the standard gauge freedom in the choice of the

vector potential (Al ! Al þ @lw), satisfies the continuity

equation
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@lKl ¼ F l�Fl�=2 ¼ 0; (33)

where the last equality holds because of the ideal Ohm’s

law. In the framework of the above analysis, Eqs. (32) and

(33) can be generalised by defining

Kb
l ¼ F b

l�A
b
�; (34)

where F b
l� and Ab

� are defined by Eqs. (11) and (12), and Kb
l

satisfies the continuity equation

@lKb
l ¼ el�ab @l½ðA� þ s�Þ@aðAb þ sbÞ� ¼ 0: (35)

Referring, for example, to the case of the ideal inertial

Ohm’s law for cold electrons, we see that this generalised

continuity equation involves the conservation of the sum of

the magnetic helicity defined by Eq. (32), of a term propor-

tional to the fluid 4-helicity defined by Xl�u� where Xl� ¼
el�ab@aub is the fluid vorticity, and of two mixed terms pro-

portional to F l�u� and Xl�A� , respectively.

VIII. CONCLUSIONS

The dynamics of relativistic plasmas is a subject of

great present interest for both laboratory plasma

physics21,22 and astrophysical plasmas23,24 and, in particu-

lar, for the conversion of electromagnetic field energy into

kinetic and thermal energy of the plasma particles, and

vice versa. In this context, the equations of magnetohydro-

dynamics have been extended (see Refs. 13 and 14) and

used in numerical simulations (see, e.g., Ref. 25) so as to

include fluid and thermal velocities close to the speed of

light, and the concept of reconnection of magnetic field

lines, a fundamental process in plasmas, has been extended

to relativistic regimes.26 Magnetic reconnection is in fact

ubiquitous in magnetised plasmas and can be viewed as a

process that converts magnetic energy inside highly inho-

mogeneous regions into plasma particle energy and as a

process that modifies the magnetic topology, more pre-

cisely the connections drawn by the magnetic field lines.

These processes are made possible by local effects that are

outside the large spatial-scale, long time-interval descrip-

tion of (ideal) MHD theory. Thus, an important point in

this relativistic extension of MHD is to provide a frame in-

dependent definition of magnetic reconnection. Such a def-

inition is not obvious both from a theoretical and an

observational point of view, since the distinction between

electric and magnetic fields is frame dependent and the

tracing of field lines, which are defined in coordinate space

at a given time, is also frame dependent due to the viola-

tion of simultaneity in different reference frames of events

at different spatial locations. This point was addressed in

Refs. 8 and 9.

A second important point is to find a covariant relativis-

tic extension of the generalised magnetic connections that

are known to occur when the ideal Ohm’s law is violated by

terms that can be accounted for by defining generalised e.m.

fields.11 Generalised e.m. fields must satisfy:

(1) an ideal Ohm’s law (see Eq. (1)),

(2) and a set of equations analogous to the homogeneous

Maxwell’s equations (see Eq. (10)).

The inclusion of electron inertia terms in the ideal

Ohm’s equation expressed in terms of the electron fluid ve-

locity is a well studied example27 in the nonrelativistic case.

The connections between plasma elements defined by

the generalised electromagnetic fields that satisfy conditions

(1) and (2) are conserved by the plasma dynamics and, for

the electron inertia case, it was shown in the literature (see,

e.g., Refs. 28–30 and references therein) that they can have

important consequences on the development of magnetic

reconnection. In fact in this case, the generalized magnetic

field ~Be cannot reconnect, and thus the reconnection of ~B can

only proceed by developing increasingly steeper layers of

the electron velocity, and thus of the plasma current density,

on scalelength related to the so called electron inertial skin

depth.

In the present article, we have examined within a formal

framework whether such extensions can be performed in a

covariant relativistic way in terms of a gauge 4-vector field

that adds to the 4-vector potential field so as to implement

conditions (1) and (2) automatically.

We have shown that the extension that includes the elec-

tron inertial term is straightforward in a cold relativistic

plasma and leads to a generalised vector potential that is pro-

portional to the well known fluid canonical momentum. It

can easily be extended to include electron thermal effects if

the pressure and mass-energy density are assumed to be

functions of the electron density only.

We have also exploited the formal framework developed

in Sec. II in order to examine more exotic situations, such as

the equation for relativistic spherical tops with the aim of

looking how to include in this formalism internal degrees of

freedom of the particles in the plasma.

Dissipative terms ranging from a relativistic formulation

of resistivity (frequently used in the study of relativistic

reconnection, see, e.g., Ref. 31) and the radiation reaction

force (of interest for present laser plasma interactions32 and

suggested as a mechanism for relativistic reconnection in

Ref. 33) have been examined. It appears that only part of

their contributions can be accounted for by generalised e.m.

fields and that the part that cannot be accounted for involves

coordinate derivatives and is thus related to inhomogeneities

in the dissipation process between neighbouring plasma

elements.

Finally, in Sec. VI, we have shown that, when general-

ised e.m. fields can be defined according to the requirements

(1) and (2), a generalised helicity 4-vector field can be con-

structed that has vanishing 4-divergence, i.e., that obeys a

conservation law expressed by a continuity equation as is the

case for the helicity 4-vector field in the context of ideal

MHD.
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