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A crisis-mapping system uses information in tweets to visualize         
post-emergency damage. . Relevant messages are geoparsed       
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learning classifier detects mentions of damage, and interactive        
maps rank the situational information extracted. The system        
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A​fter an emergency, information about damage to the stricken areas is vital to the task               
of prioritizing responder interventions. Social media (SM) platforms can be invaluable           
assistants in providing this information. ​1,2 Hurricane Sandy in Central and North America            
and the Emilia earthquake in Italy, both in 2012, and the more recent Himalayan              
earthquake in Nepal in 2015 are examples of disasters that were the subject of shared               
information through such platforms. The ubiquitous and real-time data sharing through           
widespread mobile devices provided critical actionable and time-sensitive information         
to first responders. This information meets the needs of both those helping and those              
affected, and has sparked the interest of emergency responders in envisioning           
innovative approaches that can merge the data collected from traditional physical           
sensors, such as traffic cams, with that from social sensors—crowdsourced information           
from social networks. ​3 

Crowdsourced information is often unstructured, heterogeneous and fragmented        
over a large number of messages and must be mined and aggregated to provide              
contextual information that emergency responders can use. ​4 Crisis mapping increases          
situational awareness by enabling the real-time gathering and visualization of data           
contributed by many individuals. Crisis maps can also support resource allocation and            
prioritization during emergencies, when key resources are overwhelmed by the sudden           
increase in demand. ​5 ​During recent disasters, civil protection agencies developed and            
maintained live, Web-based crisis maps to help visualize and track stricken locations,            
assessing damage and coordinating rescue efforts. ​6 

However, tools for crisis maps cannot rely on geospatial metadata to geolocate SM             



messages containing crisis-specific keywords. Indeed, statistics show that only 4 percent           
or less of SM messages carry GPS coordinates,​7 which is not enough for a meaningful               
crisis map. Geoparsing emergency reports—which involves extracting mentions of         
known locations in the report text—can use preloaded names to help overcome this             
limitation but can also result in an extreme amount of data to load and manage, which                
tends to restrict the area that can be monitored.  

To overcome these limitations, we created a general and flexible SM-based           
crisis-mapping system that can create a situational description on the fly from Twitter             
messages without any prior knowledge of the affected area’s location or the extent of              
damage. To better support resource prioritization during emergency response, the          
system also ranks identified stricken areas according to the estimated amount of            
damage they suffered, thus aiming to support the idea of doing the greatest good for               
the greatest number. ​5 

Our system works solely with tweets related to unfolding emergencies. It exploits            
linguistic features and a machine learning classifier to detect mentions of damage to             
infrastructures or injuries; geoparses messages by relying on readily available online           
semantic-annotation tools and collaborative knowledge bases; and produces        
Web-based interactive crisis maps.  

To validate our system, we tested its damage detection and geoparsing components            
on published datasets and assessed the accuracy of our crisis maps relative to             
authoritative data related to a recent earthquake that struck Italy in 2012 and a flood               
that occurred in the same country the following year. Validation against these datasets             
as well as against data on another earthquake yielded an accuracy of 0.97 in detection               
the most damaged areas. We believe that accuracy is sufficient for inclusion in a              
practical crisis-mapping system. 

Crisis-Mapping Challenges 

The possibility to exploit SM data for crisis mapping was first envisioned in             
2010.[8],[9]. Since then, interest has grown in all areas related to crisis mapping—from             
data acquisition and management to analysis and visualization.[10] Current popular          
crisis-mapping platforms include Ushahidi, ESRI ArcGIS, and CrisisCommons.[12] These         
platforms combine automatic data acquisition, data fusion, and visualization with user           
participation. As such, they are hybrid crowdsensing systems: users can voluntarily load            
data onto the system, or the system can be configured to automatically perform data              
acquisition as the need arises. 

Geoparsing issues 

Early tools for producing crisis maps from crowdsourced data usually crawled SM for             
crisis-specific keywords, and geolocate messages according to metadata on GPS latitude           
and longitude coordinates. Geoparsing was seen as a way to increase geospatial            
information by looking up a number of preloaded resources, such as Geonames and             
GEOnet Names global gazetteers, that contain all the possible matches between a set of              
toponyms (names of places) and their geographic coordinates.[6] The approach          
required an offline phase, during which the system would try to match its preloaded              



resources with information about a limited monitored area. The larger the monitored            
area, the higher the amount of data to load and manage, which created scalability              
issues. More important, incidents occurring outside the monitored area could not be            
mapped, which limited geoparsing’s usefulness.  

Another issue related to geoparsing is toponymic polysemy—the challenge of          
toponyms with multiple meanings, some of which might not refer to a location or might               
refer to multiple locations. Washington, for example, might mean the first US president             
or the US state or the US capital. 

Geoparsing solutions 

Recent scientific literature contains reports of novel solutions to address geoparsing           
problems as well as issues in extracting situational awareness from microtexts.[13]           
Some crisis-mapping systems perform geoparsing by preloading geographic databases         
for areas at risk[6] and then generate crisis maps by comparing the volume of SM               
messages that mention specific locations with a statistical baseline.  

Other researchers are experimenting with heuristics,[14] open-source software that         
recognizes named entities,[15] and machine learning techniques.[16] One effort applies          
natural-language processing techniques to detect messages carrying relevant        
information for situational awareness during emergencies.[17] Another research group         
developed a technique to extract information nuggets from tweets—self-contained         
information items relevant to disaster response.[18]  

All these proposed solutions provide fully automatic knowledge extraction. Another          
solution adopts a hybrid approach, exploiting both human and machine computation to            
classify messages.[19] A recent survey presents an extensive review of current literature            
in the broad field of SM emergency management.[20] 

Although these linguistic-analysis techniques are suitable in extracting relevant         
information from disaster-related messages, none has been used in an actual           
crisis-mapping task. In contrast, we evaluated our crisis-mapping system against data in            
two case studies of actual emergencies—an earthquake and a flood—both of which            
struck wide areas of Italy, causing widespread damage and several deaths. 

System Components 

As Figure 1 shows, our crisis-mapping system has four main components: data            
acquisition, damage detection, message geolocation, and crisis mapping.  

 



 
 
Figure 1. Architectural overview of our crisis-mapping system, which has four main            

components. Once the system acquires tweets, it parses them for mentions of damage             
and location information, and finally stores them in a relational database. Using the             
combination of damage and location information, it then creates a crisis map, coloring             
areas with the most damage. 

 

Data acquisition 

The data acquisition component exploits Twitter’s streaming API        
(https://dev.twitter.com/streaming/overview) to enable real-time message acquisition,      
while data related to past disasters can be bought from Twitter resellers            
(https://gnip.com/historical/). Both the Twitter’s streaming API and resellers’ historical         
data APIs provide access to a global set of tweets that are filtered by search keywords.                
The system exploits a specific set of search keywords for each disaster type, which              
ensures that it collects only the most relevant tweets. A flood might have an entirely               
different set of keywords than an earthquake, for example. The data acquisition            
component captures in seconds globally produced tweets that match any of the            
specified keywords and stores them in a NoSQL database ( ​https://www.mongodb.org/ ​),          
which enables rapid storage and access. 

Damage detection 

The damage detection component draws tweets from the database and analyzes their            
text, with the twofold goal of discarding irrelevant tweets and labeling the relevant ones              
according to the presence or lack thereof of damage mentions. In our system, “damage”              
refers to both damage to buildings and infrastructures, and injuries, casualties, and            
missing people. In other words, damage encompasses all harmful consequences of an            
emergency on infrastructures and communities. 

Damage detection is a multiclass classification task, which means that filtering and            
labeling operations are carried out in a single step by a multiclass machine learning              
classifier, as opposed to a binary one. The classifier labels tweets according to the three               
classes:  

● damage​—tweets related to the disaster that convey damage information; 

https://www.mongodb.org/


● no damage​—tweets related to the disaster that do not convey information           
relevant to damage assessment; and  

● not relevant​—tweets not related to the disaster. 

The machine learning classifier performs a multilevel linguistic analysis and operates           
on texts that are morphosyntactically tagged and dependency-parsed by the DeSR           
parser. DeSR is a linear-time shift-reduce dependency parser for the Italian language,            
which uses a multilayer perceptron as the learning algorithm.[23] 

How it works. Given a set of features and a training corpus, the classifier creates a                
statistical model using the feature statistics extracted from the training corpus. It then             
employs the model in classifying new tweets from the data acquisition component. We             
implemented the damage detection component as a linear support vector machine           
(SVM) classifier using LIBSVM as the machine-learning algorithm. We focused on a wide             
set of features organized into five main categories: 

● raw and lexical text features, including token count, ​n ​-gram analysis, hashtag           
number, and punctuation;  

● morphosyntactic features, such as part-of-speech ​n ​-grams; 
● syntactic features, which cover lexical and type dependencies; 
● lexical expansion features; and  
● sentiment-analysis features, including emoticons analysis, polarity ​n ​-grams,       

and polarity modifiers.  

These categories largely mirror the levels of linguistic analysis automatically carried out            
on the text being evaluated, (tokenization, lemmatization, morphosyntactic tagging, and          
dependency parsing).[23] The first three categories are related to the linguistic analysis            
of tweets. The last two are external lexical resources. Lexical expansion features are             
frequently used to overcome the problem of the lexical sparsity in tweets, which             
typically have few words. Sentiment polarity features are used to infer the polarity of              
text. Recent work has demonstrated that these features—which included but are not            
limited to punctuation and emoticons—actually contribute to damage assessment         
because post-emergency tweets and other text messages typically reflect the          
eyewitness’s emotional state.[24]. 

Evaluation results. ​We evaluated the damage detection component on three datasets           
related to different disasters that struck Italy in recent years. Table 1 shows statistics on               
the total collected data per disaster. To facilitate comparison with other work, we also              
included data from the L’Aquila earthquake, which occurred in 2009. Table 2 shows the              
results of our evaluation, carried out with a 10-fold cross-validation process against            
well-known learning-evaluation metrics, including precision, recall, and F-measure,        
which looks at both precision and recall to measure test accuracy. Results in Table 2’s               
Accuracy column show that the system achieved a good global accuracy, from 0.78 for              
Sardegna to 0.83 for L’Aquila. The scores obtained in recognizing the damage class are              
particularly important, and the F-measure score (fifth column in Table 2) for this class              
was always higher than 0.89, which is suitable for practical application. 



 
Table 1. Dataset characteristics. 

Dataset Type Year Users Tweets 

Damage No 
damage 

Not 
relevant 

Total 

L’Aquila Earthquak
e 

2009 563 312 480 270 1,062 

Emilia Earthquak
e 

2012 2,761 507 2,141 522 3,170 

Sardegna Flood 2013 597 717 194 65 976 

 
Table 2. Results of the damage-detection task on the datasets. 

Dataset Accurac
y 

Damage No damage Not relevant 

Prec. Rec. F-M 
(stdev
) 

Prec. Rec. F-M 
(stdev
) 

Prec. Rec. F-M 
(stdev
) 

L’Aquila 0.83 0.92 0.87 0.89 
(0.025) 

0.81 0.87 0.84 
(0.032) 

0.77 0.71 0.73 
(0.078) 

Emilia 0.82 0.91 0.88 0.90 
(0.039) 

0.85 0.89 0.87 
(0.016) 

0.54 0.46 0.49 
(0.060) 

Sardegna 0.78 0.86 0.93 0.89 
(0.019) 

0.50 0.46 0.47 
(0.099) 

0.31 0.14 0.29 
(0.113) 

Prec.: Precision; Rec: Recall; F-M (stdev): F-measure (standard deviation) 

 

Message geolocation 

The low number of tweets natively carrying GPS geospatial metadata[7] requires           
geoparsing techniques to increase the number of geolocated tweets and avoid sparse            
crisis maps. The message geolocation component builds on readily available semantic           
annotation tools and collaborative knowledge bases to disambiguate toponyms with          
possible multiple meanings.  

How it works. ​Semantic annotation augments a plain-text message (such as a tweet)             
with pertinent references to resources in knowledge bases like Wikipedia and DBpedia.            
The annotated text is richer because mentions of entities are linked to the             
corresponding entity in the knowledge base. The message geolocation component          
extends semantic annotation by checking whether the linked knowledge-base entities          
are actually places or locations. 

Semantic annotation also alleviates geoparsing errors from toponymic polysemy. For          
plain-text terms that can link to multiple knowledge-base entities, semantic annotators           
automatically perform a disambiguating operation, returning only the most likely          
reference to a knowledge-base entity for every annotated term. 

We used the TagMe[21] and DBpedia Spotlight[22] annotators to implement and           
validate the geoparsing technique used in the message geolocation component. Tweets           



that made it through the damage detection component were annotated through           
queries to the two annotators’ APIs. Because the geoparser can return multiple            
annotations for a single tweet, the message geolocation component sorts returned           
annotations according to their confidence score. Thus, annotations that are more likely            
to be correct are processed first. It then geolocates a tweet using the coordinates of the                
first annotation that correspond to a place or location. Geographic information about            
annotations is fetched through a Wikipedia crawler or through SPARQL queries to            
DBpedia. 

Evaluation results. To allow for a comparison with previous literature, we benchmarke​d our             
geoparsing technique with the TagMe annotator against the well-known datasets from           
the Milan blackout and Christchurch earthquake. The results in Table 3 are comparable             
to those in earlier work.[6],[15]—an F-measure of 0.96 and 0.92 (fourth column).  

 
Table 3. Results of benchmarking the TagMe geoparsing technique on 

two datasets. 

Dataset Precision Recall Accuracy F-Measure 

Milan blackout 0.98 0.94 0.92 0.96 
Christchurch earthquake 0.97 0.88 0.94 0.92 

 
We then used implementations of both TagMe and DBpedia Spotlight to geocode all             

the tweets of our datasets. Following an approach in earlier work,[6] we manually             
annotated a random sample of 1,900 tweets to validate the geoparsing operation. Table             
4 shows the results for this sample. Our geoparsing technique achieved better results on              
the benchmark datasets (shown in Table 3), than on our sample datasets, which are              
related to emergencies in rural areas: The F-measures for the Milan blackout and             
Christchurch earthquake were 0.96 and 0.92, while the highest F-measure for our            
sample was 0.84 (TagMe). These results are evidence that crisis mapping for a rural and               
sparsely populated area is more difficult than it is for a highly populated metropolitan              
area. 

 
Table 4. Results geoparsing a random sample of 1,900 tweets. 

 Precision Recall Accuracy F-Measure 

TagMe 0.88 0.80 0.86 0.84 
DBpedia Spotlight 0.85 0.51 0.74 0.64 

 
However, if we report the number of tweets natively carrying GPS geospatial            

metadata and the number of geolocated tweets using TagMe and DBpedia Spotlight            
implementations, the results are quite different. As Table 5 shows, the average for all              
tweets in the Sardegna dataset jumps from a low of 4.6 percent with GPS to 25.7                
percent with DBpedia Spotlight and 34.7 percent with TagMe. for the same dataset. The              
average percentages of geolocated tweets across the three datasets are 4.7 with GPS,             
27.3 with DBpedia Spotlight and 39.0 with TagMe—a considerable increase. 



The average percentages of geolocated tweets improve even more for tweets in the             
damage class (bottom half of Table 5), moving from 3.2 percent with GPS to 28.5               
percent with DBpedia Spotlight and 44.5 percent with TagMe. The implication is that             
tweets reporting damage also report location information more often than tweets that            
do not report damage—a finding that further motivates the combination of damage            
detection and message geolocation in a crisis-mapping system. 

 
Table 5. Contribution of the proposed geoparsing technique on the 

number of geolocated tweets (Tgeo). 

Dataset GPS DBpedia Spotlight TagMe 

# Tgeo % Tgeo # Tgeo % Tgeo # Tgeo % Tgeo 

All tweets in the datasets 
L’Aquila 0 0 285 26.8 522 49.1 
Emilia 198 6.2 888 28.0 1,169 36.9 
Sardegna 45 4.6 251 25.7 339 34.7 
Tweets only in the damage class 
L’Aquila 0 0 91 29.2 180 57.7 
Emilia 23 4.5 139 27.4 252 49.7 
Sardegna 26 3.6 208 29.0 252 35.1 
 

Crisis mapping 

Given a set of tweets with damage and geolocation information, the crisis mapping             
component uses choropleth mapping to represent the geographical distribution of a           
statistical variable and provide a clear picture of the unfolding emergency. 

How it works. In choropleth mapping, subareas of a map are filled with different shades               
of a color, in proportion to the measurement of the variable being displayed. The              
technique is usually applied to depict the spatial distribution of demographic features            
such as population, land use, and crime diffusion, but we use it to show the spatial                
distribution of damage after a disaster or other emergency. The ability to apply different              
shades to different areas is a clear advantage over the on or off maps used in existing                 
crisis-mapping systems. This gives responders an at-a-glance look at areas with high            
damage, which fits well with the need for rapid prioritization in the early stages of               
emergency response. 

Evaluation results. ​To evaluate our crisis mapping component and the whole pipeline of             
our system, we created crisis maps using data from the 2012 Emilia earthquake and              
2013 Sardegna flood. Both emergencies affected large parts of Italy, causing widespread            
damage and several deaths. 

Figure 2 shows the choropleth crisis maps generated by our system for the Emilia              
earthquake. Despite geolocating tweets in all northern Italy, the system correctly           
identified the areas with the most damage. This can be highlighted by comparing the              
crisis map generated by our system (Figure 2a), against a map derived from             
authoritative data about economic loss (Figure 2b). 



 

Figure 2. (a) tweet-derived map of damage, and (b) map of economic loss generated              
from authoritative data for the 2012 Emilia earthquake in Italy. In (a), the system assigns               
a color to a municipality according to the number of damage tweets (tweets with              
damage information) geolocated in that municipality. Areas in which the system did not             
geolocate any damage tweets are gray, while areas with the most damage tweets are in               
orange and red. Economic loss data courtesy of the Emilia Romagna regional district             
(www.openricostruzione.it). 

Figure 3 shows similar crisis maps for the Sardegna flood. 
 
 
 
 
 
 
 
 
(a)  (b) 
 

Figure 3. Crisis maps for the 2013      
Sardegna flood in Italy. (a)     

Map of most damaged areas     (red) and (b) map of areas      
with the highest economic loss. Economic loss data courtesy of the Civil Protection             
Agency of Sardegna regional district     
(www.regione.sardegna.it/documenti/1_231_20140403083152.pdf). 



Quantitative Evaluation of Crisis Maps 

We conducted a quantitative evaluation of our crisis maps as a classification task,[6]             
in which the system’s goal was to detect damaged municipalities, disregarding those            
that suffered the most damage and require high-priority intervention. We used           
well-known metrics for machine-learning evaluation to compare crisis maps generated          
by our system with those generated from official data. 

Our evaluation metrics included precision; recall, specificity, accuracy, the F-measure,          
and the Matthews correlation coefficient (MCC). The MCC is essentially an unbiased            
version of the F-measure with a range of values from 1 (total agreement) to ​−​1 (total                
disagreement) indicating the degree to which the predicted class agrees with the real             
class. The class comparison checks whether a municipality with associated damage in            
official data (Figures 2b and 3b) also appears as a damaged area in our crisis maps                
(Figures 2a and 3a).  

Identifying all damaged areas 

Table 6 reports the results of this comparison for the Emilia earthquake. We first              
consider all the municipalities of the affected region, and then repeat the comparison by              
considering only municipalities that suffered significant damage. For example, Ferrara          
suffered more than 10 percent of the total damage, which was the maximum value for               
the Emilia earthquake. 

 
Table 6. Results of evaluating our system’s ability to detect areas 

damaged by the Emilia earthquake. 

Task Evaluation metrics 

Precisio
n 

Recall Specificit
y 

Accurac
y 

F-measure MCC 

Detect all damaged areas 0.895 0.202 0.992 0.797 0.330 0.365 
Detect areas that suffered    
significant damage 

0.867 0.813 0.992 0.982 0.839 0.830 

MCC: Matthews correlation coefficient 

 
As Figure 2 clearly shows, our crisis-mapping system accurately identified the areas            

where damage actually occurred. However, the low recall values in Table 6 (first row)              
indicate that the system did not identify all damaged municipalities. However, removing            
municipalities that suffered the least damage raises the recall metric to a more             
acceptable value of 0.813. This pattern is an indication that most identification errors             
occurred for municipalities with relatively low damage, not those requiring immediate           
attention. We observed the same pattern in a comparison of Sardegna flood data. In              
Table 7, the recall metric improves from 0.410 for all affected municipalities to 0.643 for               
municipalities that suffered significant damage. 

 
Table 7. Results of evaluating our system’s ability to detect areas 



damaged by the Sardegna flood.  

Task Evaluation metrics 

Precisio
n 

Recall Specificit
y 

Accurac
y 

F-measure MCC 

Detection of all damaged areas 0.640 0.410 0.973 0.915 0.500 0.470 
Detection of areas that suffered     
significant damage 

0.500 0.643 0.973 0.960 0.563 0.545 

MCC: Matthews correlation coefficient 

Overall, the results of evaluating our system’s ability to detect damaged areas are             
comparable to those reported in other work.[6] However, our system was able to             
pinpoint damage in specific areas within regions that were both rural and sparsely             
populated. In contrast, the other system has a fine resolution only for an emergency              
affecting a densely and uniformly populated area such as Manhattan, New York; the             
authors present results with a coarse resolution for a disaster striking a wide area, such               
as the state of Oklahoma. When considering only municipalities that suffered significant            
damage, our results were better than those reported for the other system (accuracy of              
0.982 and F-measure of 0.839 for the Emilia earthquake case study). 

Identifying areas with the most damage 

Our system’s ability to rank municipalities according to the number of tweets            
conveying damage information is an unprecedented feature. To evaluate it, we used            
typical performance metrics of ranking systems, such as search engines, to compare the             
ranking of damaged municipalities based on tweets with a ranking derived from            
authoritative sources.  

In our evaluation, we viewed our system as a basic search engine that returns a list of                 
areas and must then answer a single complex query: Which areas suffered the most              
damage? Search engines results are evaluated on their ability to order retrieved            
documents, and evaluation metrics generally include the normalized discounted         
cumulative gain (nDCG) and Spearman’s Rho coefficient. 

The nDCG metric compares the order of documents returned against the ideal            
document order and assesses ranking quality over a 0 to 1 range, with 1 representing               
the ideal ranking. Spearman’s Rho correlation coefficient assesses how well the           
relationship between two variables can be described using a monotonic function. Being            
a correlation coefficient, it ranges from −1 to 1, with values of 0 indicating no               
correlation. 

The results of assessing our system’s ability to detect the most stricken areas against              
official post-event data on economic losses in the affected municipalities showed           
considerable agreement between tweet-derived rankings and those based on the          
authoritative data. The nDCG metric was 0.894 for Emilia and 0.765 for Sardegna, and              
the Spearman’s Rho coefficient was 0.596 for Emilia and 0.521 for Sardegna. A simple              
test for statistical significance resulted in a confidence score of more than 99             
percent—further evidence of system’s ability to detect the most damaged areas           
accurately. 

 



W ​e have demonstrated the feasibility of generating accurate impromptu crisis maps           
that give responders an overview of the various damage levels in areas affected by a               
disaster. The results of evaluating our system’s ability to detect the most damaged areas              
are promising, particularly taking into account the rural nature of the areas studied. The              
number of potential tweeters in a monitored area is always a consideration, as the              
performances of any SM-based system can be impaired by the lack of data from a low                
message rate. 

Our evaluations also raised issues that require further investigation. Among them is            
the need to conduct a deeper linguistic analysis aimed at identifying the object that              
suffered the damage (a building, bridge, or person, for example) and the severity of that               
damage. The damage detection component could then output tuples of <object, degree            
of damage>, thus enabling a more specific prioritized intervention. 

Another area of concern is the validation of geoparsing, particularly the recall metric.             
A fine-grained assessment of geoparsing results with semantic annotators is needed as            
is a comparison with other geoparsing approaches. With recent developments of           
semantic annotators, it might be possible to provide more implementations of our            
geoparsing technique. For example, we could simultaneously exploit multiple         
annotators in an ensemble or voting system.  

We would like to explore extending our analysis pipeline to languages other than             
Italian and assessing the resulting system performance. Also, tweets contain more than            
just text, and other content, such as images and URLs, might also be useful. We could                
enhance our system to include the online analysis of images and content of linked              
webpages to improve damage detection and geoparsing. 

Finally, given its modest requirements, our system could be easily generalized for            
noncrisis scenarios, such as event monitoring and nowcasting, that require          
time-sensitive spatiotemporal analyses on big data streams. 
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