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Abstract—In this paper, we investigate the power control prob-
lem in a cooperative network with multiple wireless transmitters,
multiple amplify-and-forward relays, and one destination. The
relay communication can be either full- or half-duplex, and all
source nodes interferer with each other at every intermediate relay
node, and all active nodes (transmitters and relay nodes) interferer
with each other at the base station. A game-theory-based power
control algorithm is devised to allocate the powers among all active
nodes: the source nodes aim at maximize their energy efficiency
(in bits per Joule per Hertz), whereas the relays aim at maxi-
mizing the network sum-rate. We show that the proposed game
admits multiple pure/mixed-strategy Nash equilibrium points. A
Q-learning-based algorithm is then formulated to let the active
players converge to the best Nash equilibrium point that combines
good performance in terms of both energy efficiency and overall
data rate. Numerical results show that the full-duplex scheme
outperforms half-duplex configuration, Nash bargaining solution,
the max-min fairness, and the max-rate optimization schemes in
terms of energy efficiency, and outperforms the half-duplex mode,
Nash bargaining system and the max-min fairness scheme in terms
of network sum-rate.

Index Terms—Energy efficiency, reinforcement learning algo-
rithms, relay-assisted communications, full-duplex communica-
tions, mixed-strategy Nash equilibria, power control.

I. INTRODUCTION

A. Motivation

EVERY new generation of wireless communication net-

works aims at using more and more intelligent wireless

devices, that should be able to enhance the quality of service

(QoS), increase the achievable throughput, and increase the
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battery life, while not overusing the common scarce wireless

network resources, such as spectrum and battery energy. In

recent years, the idea of cooperative diversity [1], [2] has been

considered as a promising technique to significantly enhance

the transmission of information.

The basic idea is that transmit data can be aided by several

relays (intermediate nodes) in a communal manner with the

goal of either decode-and-forward (DF), compress-and-forward

(CF), or amplify-and-forward (AF) [3] the transmitted data

by the sender, and then retransmit such data to the receiver.

DF cooperative transmission requires the relay to successfully

decode and then retransmit the (encoded) received information

to the destination. The CF strategy exploits the side information

available at the decoder. Applying CF, the relay estimates the

sent data and then retransmit an encoded version of the received

information. The AF cooperative communication technique

forwards a strengthened copy of the received signal to the

destination. Since AF is the easiest strategy to implement for

relaying, in this work we will focus on AF relays, for the sake

of mathematical tractability. A similar way of reasoning can be

applied to the other two relay techniques, thus extending the

present contribution to DF and CF relays as well.

Cooperative relaying communication can be accomplished in

either half-duplex or full-duplex mode [3], [4]. In half-duplex

mode, source, relay, and destination nodes are equipped with

single transmit and receive antennas, so that a first time slot

is used by the relay to receive the transmitted signal, and a

second time slot is used to forward a delayed/processed version

of the signal to the destination node while the source node

is silent. In full-duplex mode, during the second time slot the

transmitter sends a new symbol, while the relays is forwarding

the transmitter’s first symbol.

B. Related works

In the literature, there exist many attempts to properly al-

locate the resources of a relay-aided network. Just to mention

a few relevant applications in this field, in [5], optimal power

allocation for a narrow-band end-to-end connection assisted by

a single DF relay is investigated. The goal of the proposed

algorithm is achieving the minimum bit error rate (BER) under

an overall power constraint. In [4], an optimal power control

algorithm is introduced to maximize the channel capacity of

a network with one source/destination pair and several lin-

ear AF relays. The power allocation problem for a two hop

communication assisted by one relay in an ad hoc network is

studied in [6], wherein different strategies (AF, DF, and CF)
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at relay nodes are considered. The stochastic power control

algorithm proposed in [7] enables nodes to dynamically learn

about adjusting power in a multi source-destination pairs com-

munication relayed by multiple intermediate AF nodes. Refer-

ence [8] introduces an algorithm to adjust the magnitude and

the phase of the received signals at relay nodes in end-to-end

communications assisted by multiple relays under individual

power constraints. Reference [9] devises a max-min algorithm

for the same scenario, but without direct link between two end-

nodes, with the goal of maximizing the mutual information

between two end-users.

It is reasonable to assume that transmitters do not call for any

relaying if their demanded QoS is achievable through the direct

link to destination. In a large reliable network, the questions of

“to relay or not to relay” and “the best relay node(s) election

policy” is based on the quality of the channel parameters. Shan

et al. in [10] devise a cross-layer protocol to choose the relays

which are able to increase the network throughput as much

as possible. Reference [11] proposes a method to choose the

best relay depending on geographic positions, based on the

geographic random forwarding protocol proposed in [12].

A number of game-theoretic schemes (e.g., [13]–[26]) are

proposed to allocate power resources to different transmitters

and relay nodes, and to choose the best relay node. However,

such approaches show a relatively high computational com-

plexity, which could seriously undermine their applicability.

Reference [13] investigates the problem of relay selection

in cluster-based geographical routing for wireless sensor net-

works. The authors devise an auction mechanism which deals

with contention avoidance at medium access control (MAC)

layer and contention resolution in routing between source nodes

and relays, in a cross-layer approach. References [14], in a

single relay cooperative network, and [15], [16], in multi-AF-

relay communications, seek an answer to the same questions

as above applying game-theoretic tools. In these works, the

powers of the source nodes are known, and the optimization

variables are the power levels the selected relays must spend

in a multiple end-to-end reliable network. The authors of [14],

[15] propose an auction based resource allocation, and [16]

employs a distributed Stackelberg game [27], whereas [17]

studies the problem of power allocation in a relay-aided net-

work with half-duplex relays as a noncooperative game, using

the framework of quasi-variational inequality [28] to derive a

practical iterative algorithm. Reference [18] introduces a relay

selection algorithm for end-to-end communications relayed by

multiple DF intermediate nodes with the aim of minimizing

the outage probability. References [19], [20] devise repeated

noncooperative games for the best relay assignment in a dy-

namic ad-hoc environment. The derived utility function in [19]

achieves a max-min fairness data rate vector, whereas that of

[20] aims at packet delivery reliability at the expense of delivery

time and power consumption, and a dynamic learning based

algorithm leads players to a correlated equilibrium [27].

In [21], a two-user network where each user can also work

as a relay for the other is studied. By employing a two-user

Nash bargaining game, the best power allocation is found. Ref-

erence [22] introduces a pricing game criterion which motivates

cooperation via repayments to the relays in the network. The

coalitional-based algorithm proposed by [23] determines the

best relay nodes for each coalition of source nodes, each aiming

at transmitting towards a base station (BS) at a minimum power

expenditure. Reference [23] also presents a noncooperative

power control game between coalitions. The work in [24] stud-

ies power control and pricing problems in a multi-user single-

relay network, where the relay adjusts the energy price factor to

maximize its revenue, and each user adjusts its transmit power

to maximize its own utility. A distributed iterative scheme is

proposed to achieve the unique Nash equilibrium point of the

game. Reference [25] investigates the problem of peer-to-peer

connection assisted by multiple relays and propose a noncoop-

erative game to select the best relay and power control at the

source node. Reference [26] investigates the problem of relay

power control in a multi-user single-relay communication, and

proposes a bargaining game solution to achieve a fair allocation

of the relay power.

C. Summary of the contributions

In this contribution, we elaborate on consolidated tools,

such as noncooperative game theory paired with reinforcement

learning methods, to investigate the problem of power allo-

cation at both source nodes and relay nodes, in a multiple-

access multiple-relayed cooperative network scenario, and to

eventually derive a low-complexity distributed algorithm. The

intermediate relay nodes are assumed to be parallel, i.e., there

is no link between the relay nodes, and each relay applies the

AF strategy, and all source nodes interfere with each other

at all relays and at the destination. To study the resource

allocation problem, we consider both the full-duplex and the

half-duplex modes from an information-theory viewpoint, and

we then model the power control problem as a distributed

noncooperative game, in which all source nodes and relays act

as players that adjust their transmit powers in order to approach

an energy efficient data rate vector with maximum spectral

efficiency. Each source node has a minimum data rate demand,

and individually tries to adjust its own transmitting power in

order to achieve the highest Shannon channel capacity, while

minimizing the transmit power consumption. Each relay node

individually adapts its own transmitting power to maximize the

network sum-rate while guaranteeing each user’s minimum rate

demand. To the best of our knowledge, this contribution is the

first work that considers multiple relays in designing power

allocation schemes at both source nodes and relay nodes in a

full-duplex communication mode. Based on this formulation,

we show that this game admits mixed-strategy Nash equilibria,

and we propose a Q-learning-based algorithm [29] to achieve

one of these equilibria, using a theoretical analysis, also sup-

ported by simulation results. The equilibrium point is shown to

represent a tradeoff between the interests of the source nodes

and those of the relays, i.e., it is the point at which the achieved

data rates by source nodes is as much as possible close to max-

rate solution, and the energy efficiency (EE) (measured in bits

per Joule per Hertz) of each individual source node is as high

as possible. Furthermore, we show that full-duplex relaying

configuration, which is considered as one of the key technolo-

gies for next-generation wireless communications, enhances
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Fig. 1: Multi-relay assisted cooperative system model in an

uplink direction.

the performance, in terms of both spectral efficiency and EE of

the system, at the cost of a more elaborate resource management

of the network, and of a more expensive and sensitive hardware

architecture [30].

D. Structure of the paper

The remainder of the paper is structured as follows. Sect. II

contains the model of the network and the formulation of

the resource allocation problem as a noncooperative game,

whose solution is computed in Sect. III using a reinforcement-

learning method. Sect. IV compares the simulation results of

the proposed algorithm with that of other methods available in

the literature, and Sect. V concludes the paper.

II. STATEMENT OF THE PROBLEM

A. Network model

The basic idea of cooperative relay-aided uplink of a multi-

access network is depicted in Fig. 1, wherein multiple sources

reach their common destination (the BS) through multiple par-

allel relays. In particular, we will study a network populated by

multiple sources, multiple AF relay nodes, and one destination.

The DF and CF cooperation strategies can be analyzed in a

similar fashion. The relaying process is done in parallel, and

both half- and full-duplex modes are investigated. Every relay

transmits a new version of the observed signal to the base-

station. In the full-duplex mode, unlike the half-duplex one,

all links are always busy, and data reception and forwarding

are performed concurrently. At the same time, all relays are

synchronized with each other to amplify the respective received

data and simultaneously forward them to the BS.

In the network, each source node s ∈ S = {1, . . . , S}
has a minimum end-to-end data-rate demand towards the

base-station d, possibly exploiting (all) relay nodes N =
{1, . . . , n, . . . , N}. Every relay node connects all transmitters

to the base-station d. Before starting to formulate our resource

allocation problem, we review the formulation of the quasi-

static additive white Gaussian noise (AWGN) capacity in co-

operative communications using AF relaying (i.e., there is no

regeneration at relay nodes). We assume that we have S + 1
available Gaussian code spaces: Xs at each source node s

s

s′
n

d

Z
n

Zd

√
h
sn √ hnd

√
hsd

√ h s
′ n √

hs′d

Xs

Xs′

Yn Xn

Yd

wS

Fig. 2: Multiple sources, multiple parallel relays, one destina-

tion communication network scenario.

encoder, and Yd at the destination’s decoder. Each source s
wishes to transmit a message ws partitioned into a sequence

of B sub-messages w1
s , ..., w

b
s, ..., w

B
s which are going to be re-

liably conveyed to the unique destination d. Each sub-message

wb
s ∈ Ws = {0, 1, ..., 2nRs − 1} is independently and fully

encoded by its own transmitter. Each source node’s encoder is a

functionWs → Xs which maps a Gaussian random codeword

Xs[b]
(
wb

s

)
to each sub-message wb

s. Each symbol sequence

Xs[1]
(
w1

s

)
, . . . , Xs[b]

(
wb

s

)
, . . . , Xs[B]

(
wB

s

)
is bounded by

an individual average power of E
{
X2

s

}
≤ ps, with E{Xs} =

0. Note that the Xs’s are statistically uncorrelated, and there is

no cooperation across source nodes. For simplicity we focus

on a real-valued AWGN channel. Every relay is shared by all

source nodes, and thus all transmitters’ outputs interfere at

every relay node. Then, in each block index b, each relay n
generates a new signal Xn[b], which is the scaled version of the

analog observed signal Yn[b− 1] (see Fig. 2):

Yn[b] =
∑

s∈S

√

hsn Xs[b]
(
wb

s

)
+ Zn (1)

where hsn denotes the real-valued power channel gain between

source s and relay n, and Zn ∼ CN
(
0, σ2

w

)
is the AWGN at

the relay n. The received signals at the relays and destination

are statistically correlated. Each relay node has its own power

constraint E
{
X2

n

}
≤ pn, with E{Xn} = 0. In each block

index b, the received signal at each relay n is related to w
b−1
S =

(wb−1
1 , . . . , wb−1

S ).
Each AF relay node n amplifies the signal received in the pre-

vious block index, and generates the informationXn[b]
(
w

b−1
S

)

and then re-sends it into the n→ d link. In each block index b,
each relay n scales the amplitude of the analog observed signal

Yn[b− 1] as:

Xn[b]
(
w

b−1
S

)
= αn[b] · Yn[b− 1]

= αn[b] ·
(
∑

s∈S

√

hsn Xs[b− 1]
(
wb−1

s

)
+ Zn

)

(2)

wherein the scaling factor αn is chosen to satisfy each relay’s

power constraint E
{
X2

n

}
≤ pn. Hence, in AWGN mode, this

bound translates into

|αn[b]| ≤
√

pn
σ2
w +

∑

s∈S hsnps
(3)



4 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. Y, MONTH 2015

Yd[b]=
√

hsdXs+
∑

n∈N

|αn|
√

hsnhndXs

︸ ︷︷ ︸

(a)

+
∑

s6=s′∈S

√

hs′dXs′+
∑

n∈N

∑

s6=s′∈S

|αn|
√

hs′nhndXs′

︸ ︷︷ ︸

(b)

+
∑

n∈N

|αn|
√

hndZn+Zd

︸ ︷︷ ︸

(c)

(7)

γs =

(√
hsd +

∑

n∈N |αn|
√
hsnhnd

)2 · ps
∑

s′∈S,s′ 6=s

(√
hs′d +

∑

n∈N |αn|
√
hs′nhnd

)2 · ps′ +
(

1 +
∑

n∈N |αn| 2 hnd

)

· σ2
w

(8)

that does not depend on b based on the assumption of

quasi-stationarity of the channel. As can be seen, if σ2
w +

∑

s∈S hsnps ≫ pn, the relay is basically useless. The desti-

nation’s decoder tries to reconstruct the whole sequences of B
sub-messages wb

S =
(
wb

1, . . . , w
b
S

)
. The decoding process is a

(Gaussian) joint de-mapping function Yd → W1 × · · · × WS .

The decoder at the destination jointly estimates the messages

ŵS = (ŵ1, . . . , ŵS), block-by-block or after having collected

the whole sequence of Yd[1], . . . , Yd[B + 1].
The probability of error at destination’s decoder is formu-

lated as:

Pn
e =

∏

s∈S

2−nRs ·
∑

w
S
=(w1

,...,w
S)

Pr {ŵS 6= wS |wS is sent}

(4)

which is based on the assumption that the messages are inde-

pendent, and uniformly distributed over their respective alpha-

bet ranges.

Let us try to model the performance at the receiver as a func-

tion of the signal parameters in full- and half-duplex modes,

respectively.

1) Full-duplex mode: At the destination, in every block in-

dex b, the BS receives a combination of the signals Xs[b]
(
wb

s

)

∀ s ∈ S and Xn[b]
(
w

b−1
S

)
∀n ∈ N over a multiple-access

channel (see Fig. 2):

Yd[b]=
∑

s∈S

√

hsdXs[b]
(
wb

s

)
+
∑

n∈N

√

hndXn[b]
(
w

b−1
S

)
+Zd

(5)

where Zd ∼ CN
(
0, σ2

w

)
. In fact, each received Yd[b] ∈ Yd is

a linear combination of the sent signals based on wb
1, . . . , w

b
S

over the direct channels, and N different relayed signals based

on w
b−1
S . Combining (2) and (5) yields the following observed

signal at the destination:

Yd[b] =
∑

s∈S

√

hsdXs[b]
(
wb

s

)

+
∑

s∈S

∑

n∈N

|αn|
√

hsn hndXs[b− 1]
(
wb−1

s

)

+
∑

n∈N

|αn|
√

hnd Zn + Zd. (6)

Since every relay node amplifies whatever it receives, includ-

ing noise and interference, and noting that all source nodes

interferer at every relays, the AF technique is mainly useful

in sufficiently high signal-to-noise ratio (SNR) environments.

Increasing the amplification factor αn has the effect of also

increasing interference at the destination. If the network is able

to adjust the power of the relay, the relay should thus trans-

mit with a properly fine-tuned power. This is the reason that

motivates us to include the relays into our resource allocation

problem. When the relays’ transmitting powers are adjusted,

full-duplex relaying also proves to be better than half-duplex

relaying, whose exploitation of capacity is limited.

We decompose now the received signal Yd[b] as in (7), shown

at the top of this page, where (a) is the useful signal term,

(b) is the multiple access interference (MAI), and (c) is the

Gaussian thermal noise. Consequently, for each source node

in the AWGN mode, we can express the received signal-to-

interference-plus-noise ratio (SINR) at the destination as in (8),

where

|αn| =
√

pn
σ2
w +

∑

s∈S hsnps
. (9)

Using (8), we can approximate the (normalized) Shannon

capacity achievable by the single point-to-point link source

node s as:

Rs = log2 (1 + γs) [ b/s/Hz]. (10)

Hence, when inspecting (8), it is straightforward to note the

coupling among the powers of all nodes (sources and relays)

on the rate achievable by each source node.

2) Half-duplex mode: In half-duplex mode, the communica-

tion is done in two stages (times) and sources and relays share

the time equally, and sources remains silent while relays trans-

mit in the second half of the time. In the first transmitting stage

(time), sources broadcast symbols to relays and the destination,

while relays are silent. So, the received signal at each relay is

the same as (1), and the received signal at the destination is

described as:

Yd[b] =
∑

s∈S

√

hsd Xs[b]
(
wb

s

)
+ Zd. (11)

Thus, in the first stage, the achieved SINR by each source s can

be expressed by

γ̇s =
hsdps

∑

s′∈S,s′ 6=s

hs′dps′ + σ2
w

. (12)

In the second stage, sources are silent and each relay trans-

mits a scaled version of the signal received in the first stage

to the destination. The received signal at the destination is

described by

Yd[b] =
∑

n∈N

√

hndXn[b]
(
w

b−1
S

)
+ Zd (13)
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γ̈s =

(∑

n∈N |αn|
√
hsn hnd

)2 · ps
∑

s′∈S,s′ 6=s

(∑

n∈N |αn|
√
hs′nhnd

)2 · ps′ +
(
1 +

∑

n∈N |αn|
√
hnd

)2 · σ2
w

(15)

By substituting Xn[b] from (2) in the above equation, the

received signal at destination is described as:

Yd[b] =
∑

s∈S

∑

n∈N

|αn|
√

hsn hnd Xs[b− 1]
(
wb−1

s

)

+
∑

n∈N

|αn|
√

hnd Zn + Zd (14)

where |αn| is equal to (9). By decomposing Yd[b] as in the case

of the full-duplex mode, the achieved SINR by each source s in

the second stage can be formulated by (15), shown at the top of

this page.

Using (12) and (15), we can approximate the Shannon ca-

pacity achievable by the single point-to-point link source s as

[31]:

Rs =
1

2
· log2 (1 + γ̇s + γ̈s) [ b/s/Hz] (16)

where the coefficient 1/2 accounts for the fact that the through-

put is accomplished in two consecutive stages for each block

index b.

Hence, in both the full- and half-duplex schemes, when in-

specting (10) and (16), it is straightforward to note the coupling

among the powers of all nodes (sources and relays) on the rate

achievable by each source node. It is important to note that a

change in the transmit power of each active node, be either

a source or a relay, significantly impacts the achieved SINRs

by all source nodes, and this is the reason for studying this

kind of interaction as a game [27]. A joint power control to be

implemented by all nodes is thus highly desirable to increase

the performance of the network, as described in the following

subsection.

B. Problem formulation

Our power control strategy consists in finding a vector of

transmit powers [p1, . . . , pS ] and [p1, . . . , pN ], wherein ps ≤ ps
and pn ≤ pn represent the powers allocated by wireless

terminal s and relay node n, respectively, bounded by their

respective maximum levels, while the QoS constraint on the

minimum rates Rs is fulfilled at each source node s.

To investigate the solution to this problem, we will use the

analytical tools of game theory, by modeling the interaction

among different nodes as the following noncooperative game:

G =
{
M, {Pm}m∈M , {um (pm;p−m)}m∈M

}
(17)

where M = S ∪ N , with |M| = M = S + N , is the

set of all active nodes (both source and relay nodes), that

represent the players of the game; um (pm;p−m) is the utility

function of each user m ∈ M, detailed in the following;

and Pm is the discrete set of user s’s transmit power, defined

as Pm = {0,∆pm, 2∆pm, · · · ,Km ·∆pm} = {k∆pm}Km

k=0,

where (Km + 1), with 1 ≤ Km < ∞, denotes the number of

power levels (including zero power), and ∆pm = pm/Km is

the power step, with pm denoting user m’s maximum transmit

power. Without loss of generality, for simplicity we assume

Km = K ∀m ∈ M. Note that, as the number of players M is

finite, and the number K+1 of actions available to each player

is also finite, G is called a finite game [27].
To account for the different needs demanded by the two

classes of users, we will define two different utility functions,

one for the source nodes, and another one for the relay nodes.

The goal of each source node is to trade off its achieved channel

capacity with its minimum power consumption. On the other

hand, the goal of each relay node is to adjust its transmit power

in order to increase the spectral efficiency of the source nodes.

To this end, we define the utility function for source nodes as

follows:

us (ps ; p−s) =
Rs(p)

ps + pc
s.t. Rs ≥ Rs and ps > 0

(18)

where p−s = p \ ps is the power vector of all nodes (including

both sources and relays) excluding source s’s power ps, with p

denoting the M×1 power vector collecting the transmit powers

by all M nodes in the network; Rs(p) = log (1 + γs(p)) is

Shannon capacity achievable by transmitter s, with the SINR

γs(p) = γs(ps ; p−s) defined as in (8); and pc > 0 is the

background power consumption of the terminal, independent of

the transmission rate and modeled as in [32], [33]. To explicitly

account for the constraints in (18), the payoff of a source node

is equal to zero when either Rs < Rs or ps = 0.
On the other hand, as the relays are just ancillary nodes that

aim at increasing the network performance while not showing

significant power-saving constraints, their main purpose is to

increase the spectral efficiency of the system. Hence, we define

the utility function for each relay node as follows:

un (pn ; p−n) =
∑

s∈S

Rs(p)

pc
s.t. Rs ≥ Rs ∀ s ∈ S

(19)

where the parameter pc is used just to let un (pn ; p−n)
have the same unit of measure of us (ps ; p−s); Rs(p) =
Rs(pn ; p−n) = log (1 + γs(pn ; p−n)) is again the Shannon

capacity achievable by transmitter s, in which we explicitly

emphasize the impact of each relay node n’s transmit power

pn on the SINR γs as outlined in (8), since each relay n
has control only on its own pn. Similarly to (18), we assign

un (pn ; p−n) = 0 when Rs(pn) < Rs for at least one source

node s. Note that, for a given power vector p = {pm}Mm=1,

all relay nodes n ∈ N earn the same payoff un (p). This is

because we model the relays as altruistic players which aim at

maximizing the overall data rate. The transmit power selected

by each relay impacts on the data rate of all source nodes, and

hence each relay individually tries to increase the performance

of the network, which measures its own utility. A close in-

spection of the utilities (18) and (19) reveals that including the
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QoS constraints on the minimum rate demands Rs introduces a

coupling between the power sets that provide positive utilities

for all players m ∈ M. While there is a competition between

players m ∈ S to individually increase their own EE, the

players m ∈ N interact with the source nodes to increase

the sum-rate. In the remainder of the paper, we assume that

the network setup (that includes channel realizations and set

of minimum rate demands) is such that all sources are able to

meet their requirements Rs, otherwise the problem is declared

to be unfeasible, as better detailed in Sect. III.1

Given the game formulation detailed above, it is apparent that

there exists a tradeoff between achieving a high network sum-

rate (in terms of achievable Shannon capacity) and maximizing

the EE of each individual source node (without considering

the power expenditure at the relay nodes). Each source node

tries to pick its optimal power transmission level in order to

to maximize the surplus achieved Shannon channel capacity

above the proper demand, while each relay node tries to pick its

best transmit power such that the achieved data rate vector of

source nodes coincides with the maximum sum rate. Note that

the source nodes’ power allocations are coupled in a conflicting

way, as increasing each sources’ power level increases its own

SINR while generating a higher interference level to the others

at both the relays and the destination. Similarly, the relay nodes’

power allocation affects the performance of all sources in a

conflicting way according to the coupling among source-to-

relay and relay-to-destination links. To solve the maximization

problem2

p∗m = arg max
pm∈Pm

um (pm ; p−m) (20)

in a scalable and distributed way, and thus keeping its com-

plexity low, we can make use of the analytical tools of non-

cooperative game theory [27], whose aim is to help us predict

the behavior of rational agents with conflicting interests com-

peting for some common resources. One such prediction is the

pure-strategy Nash equilibrium: each player chooses an action

pm ∈ Pm that is its “best response” (in the sense of utility

maximization) to the other players’ choices. Unfortunately, not

all games have pure-strategy Nash equilibria.

A generalization of this concept is represented by mixed-

strategy Nash equilibria, which are probabilistic distributions

on the set of actions available to each player. In general, a

mixed-strategy vector σm = {σm(pm)}pm∈Pm
is a probability

distribution over the strategy set Pm, where σm : Pm →
[0, 1] is the probability function associated to action pm, with
∑

pm∈Pm
σm(pm) = 1. A mixed-strategy Nash equilibrium is

a joint probabilistic distribution on the set of actions of each

player, with the property that each player’s distribution is a best

response to the others’ distributions, i.e., it is the maximizer of

each player’s expected payoff to the joint probabilistic distribu-

tion of all others:

1The theoretical analysis of the feasibility of the problem is out of scope
of the present contribution, and is left as a future work. The feasibility of the
problem is assessed numerically, as detailed in Sect. III.

2Note that, although all relay nodes earn the same payoff for a given power
allocation p, the optimal transmit powers p∗

n
for n ∈ N are in general not

equal, due to the different channel link conditions.

Definition 1: A mixed-strategy Nash equilibrium for a game

G is a M -tuple of vectors [σ∗
1 , . . . ,σ

∗
M ], with σ

∗
m ∈ [0, 1]K+1,

such that, for all m ∈M, and for all σm ∈ [0, 1]K+1,
∑

pm∈Pm

∑

p−m∈P−m

σ
∗
−m(p−m)σ∗

m(pm)um (pm ; p−m) ≥

≥
∑

pm∈Pm

∑

p−m∈P−m

σ
∗
−m(p−m)σm(pm)um (pm ; p−m)

(21)

where pm ∈ Pm is a pure strategy, P−m is the cartesian

product of all strategy sets other than m, i.e.

P−m = P1× · · · ×Pm−1×Pm+1× · · · ×PM (22)

and, likewise, σ∗
−m(p−m) is the product of probability of the

opponents’ joint strategy p−m, given by

σ
∗
−m(p−m) =

= σ∗
1(p1) · · ·σ∗

m−1(pm−1) · σ∗
m+1(pm+1) · · ·σ∗

M (pM )

=
∏

i∈M,i6=m σ∗
i (pi) (23)

where the product stems from the independence of each

player’s action with respect to the other ones. �

The interest in considering mixed-strategy Nash equilibria

for the game G introduced above comes from the following

theorem, which constitutes a seminal result in the framework

of noncooperative game theory.

Theorem 1 (Nash [34]): In every finite static game G there

exists at least one mixed-strategy Nash equilibrium.
The proof makes use of the Brouwer-Kakutani fixed-point

theorem and can be found in [27]. �

Once the existence of such equilibrium point is assessed, the

next question is how to find it in a practical system.

III. COMPUTING MIXED-STRATEGY NASH EQUILIBRIA VIA

Q-LEARNING

We aim now at finding the mixed-strategy Nash equilibrium

points of the proposed game. In general, there does not exist a

specific algebraic method to solve mixed-strategy best response

equations, and solving such problems is typically NP-hard, in

particular when the number of strategies and players is huge.

The question we seek to answer here is: “How to find a mixed-

strategy Nash equilibrium when there are a large number of

strategies and players?”

The computational complexity of solving (21) is discussed

in [35], which shows that the problem is NP-hard, and the con-

vergence to such equilibrium point(s) might take prohibitively

long times. For a two-player game, in the literature there are

some efforts for explicitly computing the Nash equilibrium

points. The main algorithm for doing so is the Lemke-Howson

algorithm [36]. More effective algorithms in terms of computa-

tional complexity are introduced in [37], [38]. The algorithm

GAMBIT [39], and the techniques introduced in [40] and

[41] “approximate” the Nash equilibrium with a certain error.

Furthermore, three methods for detecting the Nash equilibrium

based on computational intelligence methods are described in

[42]. Unfortunately, all these algorithms focus either on two-

player or three-player games with a (very) small number of

strategies.
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To address the question that opened this section, we can

resort to learning methods [43], that are able to let the players

interact so that they can learn about the game and gather

information about each other in the course of playing, to finally

end up with computing the mixed-strategy Nash equilibrium

point. Learning in strategic environments presents in fact some

phenomena not found in individual decision-making, because

the environment in which each individual gains experience

includes the others players, whose behavior changes as they

gain experience as well. Roth and Erev in [44] show how

players converge to equilibrium points by applying a simple

model of learning, also highlighting the impact of different

parameters of the learning model on the convergence speed of

the algorithm.

Another variant of the learning techniques is the reinforce-

ment learning [45], well-suited for multi-agent systems, where

each agent knows little about the other agents. Reinforcement

learning deals with a learning agent that interacts with a un-

known and possibly stochastic environment, in order to learn

optimal control policies. During the play, each agent adapts its

behavior, i.e., evolves by learning, based on its own experience

gathered by the environment and adapted to the other agents’

behaviors. To cache the results of experience, most reinforce-

ment learning methods use Q-value functions [29], that lead

agents to the optimal strategy (i.e., the mixed-strategy Nash

equilibrium). Q-learning has been deeply investigated, and

possesses a firm foundation in the theory of Markov decision

processes. In addition, it is also quite easy to use, and has

been widely employed in many fields of application, such as

communications and networking [46].

For the reader’s convenience, let us introduce some typi-

cal notation used for Q-learning-based techniques, specifically

adapted to the game G introduced in Sect. II-B. Q-learning de-

fines a value Qm for each agent m. At the beginning of the algo-

rithm, each agent starts with an arbitrary initial value Qt=0
m (p)

for all pure joint actions p = (pm; p−m) ∈ P1× . . .×PM . At

each time step t, according to the seminal paper of Watkins and

Dayan [29], each agent m:

1) computes its optimal probability associated to each action

pm ∈ Pm, given joint strategies (pm; p−m), for all p−m ∈
P−m, based on the received payoff um (pm; p−m);3

2) according to some individual (unilateral) criteria, chooses

its best joint strategy p̃m ∈ Pm×P−m; and

3) adjusts the proper Q-value according to:

Qt+1
m (p̃m) ←−

(
1− f t+1

m

)
·Qt

m(p̃m)

+ f t+1
m ·

(
um (p̃m) + δm ·Qt

m(p̃m)
)
,

(24)

where δm ∈ [0, 1] is a “discount factor”; um (pm; p−m) is

the utility defined as in (18)-(19); and f t
m is the learning rate,

which is a function of t. In [29], it is shown that the Q-

learning algorithm converges provided that, for all m ∈ M,

the following conditions hold:

• the payoff um (pm; p−m) is bounded;

3Note that, if the network setup is such that the problem is not feasible, as
discussed in Sect. II-B, then the algorithm exits, as better detailed at the end of
this section.

• the learning rate fm is such that 0 ≤ f t
m < 1;

•
∑∞

t=1 f
t
m =∞; and

•
∑∞

t=1 (f
t
m)

2
<∞.

Even-Dar et al. in [47] show that, with a polynomial learning

rate defined by f t
m = t−α, such that α ∈ (0.5, 1), the conver-

gence rate is the minimum one. In the simulation results, we

will apply f t
m = t−0.8 as the learning rate. The Q-learning

algorithm and other reinforcement learning techniques, such

as the Boltzmann-Gibbs learning and the fuzzy learning, only

guarantee the convergence to an operating point. This implies

that they do not per se guarantee the convergence to the optimal

joint strategy representing a Nash equilibrium [48]. There are

some learning algorithms [39]–[41] that estimate the Nash

equilibrium with a certain error. On the contrary, in this work,

we will introduce a QNash learning algorithm which converges

to the Nash equilibrium point with probability one.

One of the major challenges of Q-learning is the strategy of

choosing the best joint action by each individual agent. When

the number of strategies and players are large, the number

of time steps to achieve an optimal joint action exponentially

increases. It is fairly clear that the best manner is to start with

“exploration” of different strategies; and then focus on “ex-

ploitation” of the strategies with the best value of Q. Kaelbling

et al. in [49] make use of the Boltzmann function [45] as an

efficient strategy selection to strike a balance between explo-

ration and exploitation. At each time step t + 1, every player

will individually select the joint strategy p = (pm; p−m) with

a probability πt
m(pm; p−m) defined as

πt
m(pm; p−m) =

[exp {um (pm; p−m)}]Ω
t

m

∑

p∈P
[exp {um (p)}]Ωt

m

(25)

wherein P = Pm×P−m, and Ωt
m =

∑t

ℓ=0 (δm)ℓ / T t
m prop-

erly discounts the reward for taking joint action (pm; p−m)
by the user m in time step t, with the parameter T t

m being a

function which provides a randomness component to control

exploration and exploitation of the actions. In practice, the

“temperature function” T t
m is a decreasing function over time

to decrease exploration and increase exploitation. High values

of T t
m yield a small πt

m(pm; p−m) value, and this encourages

exploration, whereas a low T t
m makes Qm(pm; p−m) more

important, and this encourages exploitation. In the simulation

results, we will show that the temperature function significantly

impacts the convergence to the Nash equilibrium point.

A great deal of attention in multi-agent learning schemes

has been paid to coordination in order to converge to a desired

equilibrium point. Hu and Wellman in [50] design a multi-agent

stochastic Q-learning method, called QNash algorithm, which

converges to one of the (mixed or pure) Nash equilibria under

specific conditions. They show that, when the Nash equilib-

rium is unique, the proposed algorithm converges to it with

probability one, and when there are multiple Nash equilibria,

the agents surely converge to one of them. When there exist

multiple Nash equilibria in the game, we can properly tune

the learning parameters and the game parameters (notably, the

temperature function) to let the QNash algorithm converge to

the optimal strategies, as described in Sect. IV.
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σ∗
m(pm) =

∑

p1∈P1

· · ·
∑

pm−1∈Pm−1

∑

pm+1∈Pm+1

· · ·
∑

pM∈PM

πt
m(p1, . . . , pm−1, pm, pm+1, · · · , pM ) (28)

Initialization:

for every m ∈M do

for every p ∈ P = Pm×P−m do

set Q0
m (p) = um (p);

end for

set p̃m using (26);

end for

Feasibility check:

if
(
∃m ∈M s.t. Q0

m (p) = 0 ∀p ∈ P
)

then exit;

else set t = 0 and a tolerance ε≪ 1;

Loop:

repeat

{updating probabilities}
for every m ∈M do

for every p ∈ P = Pm×P−m do

update πt
m(p) using (25);

end for

end for

{updating Q-values}
for every m ∈M do

update Qt+1
m (p̃m) using (27);

end for

update t = t+ 1;

untilmaxm∈M

∣
∣Qt

m(p̃m)−Qt−1
m (p̃m)

∣
∣ ≤ ε

Output:

compute the mixed-strategy Nash equilibrium σ∗
m(pm)

using (28).

Table I: The QNash algorithm [50].

The algorithm proposed in this paper, which adapts the one

derived in [50], starts with an initialization of the Q-values to

Qt=0
m (pm; p−m) = um (pm; p−m) for all m ∈ M and for all

p ∈ P , also selecting the best joint strategy p̃m, based on

p̃m = arg max
p∈P

um (p) . (26)

Then, at the beginning of each time step t, each agent m
individually updates the table π

t
m = [πt

m(p)] for all p ∈
Pm×P−m using (25), and updates its own Q-value according

to the following recursion:

Qt+1
m (p̃m)←−

(
1− f t+1

m

)
·Qt

m(p̃m)

+ f t+1
m ·

(

um (p̃m) + δm ·Qt
m(p̃m) ·

M∏

i=1

πt
i(p̃m)

)

.

(27)

In order to calculate this scalar product, agent m would

need to know the information about others agents at beginning

of each time step. Hu and Wellman in [50] proves that the

Q-values updates by recursion (27) for all agents m ∈ M
converge (in the long-run) with probability one to a Nash

equilibrium point. To show the convergence of Q-values up-

dated by (27), and to prove that the convergence point of

the QNash learning algorithm is actually the Nash equilib-

rium point, Hu and Wellman in [50] resort to fixed-point

theorem [27]. The computational complexity of the proposed

algorithm is unknown, however it is obvious that learning

rate, discount factor, and probability distribution impact the

convergence speed, as discussed in Sect. IV. When all Q-

values converge, the profile σ
∗
m = [σ∗

m(pm)], with elements

(28) for all pm ∈ Pm, coincides with a mixed-strategy Nash

equilibrium of the game G. For the reader’s convenience, the

QNash learning algorithm is summarized in Table I. Note that,

if there exists some agent m ∈ M, such that its initial Q-

values Qt=0
m (pm; p−m) = um (pm; p−m) = 0 for all p ∈ P ,

then its strategy set becomes empty. In this case, the problem

is declared to be unfeasible, as the network resources are not

enough to accommodate all users given their QoS constraints

and the channel realizations. Since we are focusing on an

infrastructure network, this task can be naturally accomplished

by the destination node (the BS). As is customarily assumed in

all infrastructure networks, the source nodes undergo a phase

of network association with the BS: during this stage, the BS

can check whether the network possesses enough resources to

accommodate the incoming nodes with their own QoS require-

ments, and thus perform some form of admission control.

It is worth emphasizing that, as is apparent in Table I,

most complexity of the algorithm is devoted to i) initializing

the utilities {um (p)}
p∈P ,m∈M, that requires a matrix with

M × (K + 1)
M

entries; and ii) updating the probabilities

{πt
m(p)}

p∈P ,m∈M at each step of the algorithm t. As better

detailed in Sect. IV, the algorithm achieves good results even

with very low power levels K, and hence the size of the matrix

can be reasonably kept low for a large range of M . However, in

order to guarantee the scalability of the system (i.e., very large

M ’s), we need to equip the BS with very high computational

power (i.e., by exploiting some parallel computing) to initialize

the utility matrix. Interestingly, computing πt
m(p) as in (25)

only requires the exponentiation of exp {um (p)} (that can be

easily accesses by looking up the table built during the initial-

ization step) with the coefficient Ωt
m, that does not depend on

p. Hence, the complexity of (25) can be significantly reduced

in practice by an efficient use of look-up tables.

IV. NUMERICAL RESULTS

In this section, we compare the performance of the proposed

algorithm with that of well known power allocation schemes,

namely: i) Nash bargaining solution (NBS) [51]; ii) max-min

fairness solution [52]; and iii) max rate solution [53]. Then, we

show that the proposed power control at both source nodes and

relay nodes outperforms a power control algorithm where only

the source nodes update their power levels.
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Fig. 3: Performance of the QNash algorithm as a function of S
for different exploration policies.
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Fig. 4: Full-duplex performance vs. half-duplex performance as

a function of S with N = 3 and K = 2.

Throughout the simulations, unless otherwise specified, we

make use of the following system parameters: σ2
w = 10 nW,

pc = 100mW [33], and pm = 1W for all m ∈ M. For

simplicity, we set Rs = 0.1 b/s/Hz for all source nodes s ∈ S.

The distances of relays and source nodes from the base stations

are assumed to be uniformly distributed between 10 and 100m,

whereas the path gains Γij between transmitter i and receiver j
is modeled as

Γij = Gtx ·Grx ·
(
λ0

4π

)2

· d−ς
ij ·

(
dR
10

)ς−2

(29)

wherein Gtx = Grx = 1 are the gains of the transmit re-

ceive antennas, respectively, assumed to be omnidirectional;

the parameter λ0 ≅ 0.12m represents the carrier wavelength;

dij denotes the distance between any two nodes i and j;

dR = 100m denotes the radius of the cell; and the path loss

exponent is set to ς = 4. To reproduce the effects of shadowing

and scattering, we use a 24-tap channel model [54].
As mentioned in Sect. III, one of the most important param-

eters of the Q-learning algorithm is the temperature function,

which significantly impacts on the system performance. Unfor-

tunately, it is not possible to mathematically derive the optimal

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.4

0.5

0.6

2 4 6 8 10 12 14
0.5

0.6

0.7

 
 energy efficiency

sum-rateav
er

ag
e

E
E
R

s
/
(p

s
+

p
c
)
[b

/
J
/
H
z]

av
er

ag
e

su
m

-r
at

e
∑

s
R

s
[b

/
s/
H
z]

K

Fig. 5: Performance of the QNash algorithm as a function of K
(S = N = 3).

temperature function for the problem at hand. To this aim, we

use a heuristic approach to find the best exploration policy, by

applying the QNash algorithm of Table I with a number of

tentative temperature functions, to a single-cell network, con-

sisting of N = 2 relay nodes and a variable number of source

nodes S, all using K = 2 power steps. We also set the learning

rate f t
m = t−0.8 and the discount factor δm = 0.85 in Q-value

updating steps (25) and (27). Fig. 3 reports the performance of

the QNash as a function of S: solid black lines, corresponding

to the left axis, represent the average EE of the source nodes,

whereas dashed blue lines, corresponding to the right axis, rep-

resent the average sum-rate achieved by the source nodes. Three

different temperature functions (all decreasing with t) are used:

T t
m = 80−t (squares), T t

m = 109 · exp {−10 · t} (diamonds),

and T t
m = 10−2 · um (p̃m) · exp

{
−10−2 · um (p̃m) · t

}
(cir-

cles), where um (p̃m) = maxp∈P um (p), as follows from

(26). As can be seen, a good tradeoff between achieving a

good EE while ensuring high data rates is provided by T t
m =

10−2·um (p̃m)·exp
{
−10−2 · um (p̃m) · t

}
, which is then used

in all subsequent simulations for the application of the proposed

algorithm, together with f t
m = t−0.8 and δm = 0.85.

Fig. 4 exhibits a comparison between the performance of

full-duplex mode and half-duplex mode as a function of the

number of source nodes in a network using N = 3 relays,

applying QNash algorithm with K = 2. In this simulation,

we assume Rs = 0.04 b/s/Hz, to allow feasible scenarios for

the half-duplex mode. As can be seen, full-duplex mode shows

much better performance in both terms of EE and overall rate.

In terms of sum-rate, the increasing rate of full-duplex mode is

higher than that of half-duplex. In terms of EE, the decreasing

rate of the half-duplex mode is lower than that of the full-duplex

mode. This is because, accomplishing the data transfer in two

consecutive phases in half-duplex mode reduces the MAI more

efficiently than in the case of the full-duplex mode.

To reduce the computational burden of the proposed algo-

rithm, which is exponentially increasing with the number of

power steps K + 1, we aim at identifying a suitable tradeoff

between the system performance and a low K. Fig. 5 reports

the performance in terms of EE (black line, left axis) and sum-
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rate (blue line, right axis) as a function of K, by averaging over

2, 000 random realizations of a network with S = N = 3
nodes. As can be seen, increasing the number of power steps

K+1 increases the EE while decreasing the spectral efficiency

(in terms of sum-rate). In the following simulations, we will

thus select the cases K = 1, corresponding to the situation

in which the sum-rate is maximized and the computational

load is the minimum one, at the cost of a reduced EE, and

K = 3, which provides an interesting tradeoff between spectral

efficiency, EE, and computational complexity of the algorithm.

In the following set of simulations, we will compare the per-

formance of our proposed algorithm, using K = 1 (circles) and

K = 3 (squares), with the following optimization techniques,

formalized below, and depicted by diamonds, lower triangles,

and asterisks, respectively:4

NBS fairness: max
pm∈[0, p

m
]

∏

s∈S

Rs −Rs

ps + pc
(30a)

4Throughout the simulations, and unlike our proposed algorithm, the trans-
mit power set is assumed to be continuous in [0, p

m
] for all three methods.
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max-min fairness: max
pm∈[0, p

m
]
min
s∈S

Rs

ps + pc
(30b)

max rate: max
pm∈[0, p

m
]

∑

s∈S

Rs (30c)

Figs. 6 and 7 report the average EE as functions of the

number of source nodes S, and the number of relays N ,

respectively. As expected, the EE is a decreasing function of S
and an increasing function of N . When N is fixed, increasing

S increases the MAI, thus reducing the EE. On the contrary,

increasing N while S is constant increases the overall data rate

in the long run, without additional power expenditure required

at the source side. Furthermore, in accordance with Fig. 5, the

case K = 3 outperforms the case K = 1. However, note

that, even in the extreme case K = 1 (i.e., each node selects

either zero power or its maximum one), the QNash algorithm

outperforms the well-known solutions (30).

Similar conclusions can be drawn for the average spectral ef-

ficiencies, reported in Figs. 8 and 9, where the average sum-rate

is reported as a function of S andN , respectively. Obviously, by

definition the maximum sum-rate is given (30c), and confirmed

by our numerical results. However, the performance gap paid
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by the proposed algorithm is still acceptable, especially when

compared with NBS and max-min approaches.

To measure the improvement achieved by including the relay

powers into the resource allocation problem, which, to the best

of our knowledge, is not present in the available literature,

we now compare the performance of the proposed algorithm,

whereM = S ∪ N , with that achieved by the same algorithm,

but with M = S, while each relay nodes n ∈ N adopts

the same power level pn = p at all steps of the algorithm.

For the sake of completeness, we also report the comparison

between the source-plus-relay versus source-only power con-

trol schemes for the NBS, max-min fairness, and max-rate

solutions. Figs. 10 and 11 report the percentage of improvement

in terms of average EE at the mixed-strategy Nash equilibrium

of the game, expressed as the ratio of the average utility u∗
s

achieved by the source nodes using the proposed algorithm,

to the average utility ũ∗
s, achieved by regulating the power for

source nodes only, using p = 1W for the relays, as a function

of S, using N = 4, and of N , using S = 4, respectively.

Figs. 12 and 13 report analogous results when comparing the
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improvement in terms of spectral efficiency, measured as the

ratio of achieved sum-rates at the equilibrium, where R∗
net and

R̃∗
net are the average sum-rates at the equilibrium in the above-

mentioned cases. Similar results, not reported for brevity, can

be obtained with different relay powers. As can be seen, apart

from the max-min fairness case,5 allowing the relays to regulate

their transmit powers jointly with the source nodes is always

beneficial in terms of both average EE and average sum-rate.

This is particularly apparent for the case K = 3 when S
increases, but the same behavior can also be observed for all

other curves. More importantly, the proposed source-plus-relay

approach outperforms not only the source-only case, as the

improvement is always positive, but also both versions (i.e.,

source-plus-relay and source-only) at all other schemes in terms

of energy efficiencies, and NBS and max-min fairness in terms

of sum-rates.

Let us now investigate the impact of the circuit power pc
on the performance of the resource allocation techniques in-

troduced above. As mentioned in Sect. II-B, pc depends upon

characteristics of electrical architecture of the nodes. Using

some results available in the literature (e.g., [61]–[63]), it is

known that the EE increases as pc decreases. To verify this

behavior in our simulation results, we measure the performance

as a function of circuit power for a network consisting of S = 6
source nodes and N = 4 relay nodes. Figs. 14 and 15 depict

the EE and the overall data rate of the network, respectively.

As can be seen, pc has a weak impact on max-min fairness

and max-rate solutions, whose performance in terms of EE is

always lower than that achieved by the technique illustrated in

Sect. III. On the contrary, the NBS outperforms the proposed

algorithm for low values of pc (in this particular scenario, when

pc < 7mW). However, note that such small values are not

yet available in practical systems (e.g., see [64]), and typical

values of pc are in the order of 100mW [33], [64], wherein

5Here, we fall into a Braess-type paradox [55], i.e., a situation in which
adding extra strategies to a network when the entities operate selfishly can in
some cases reduce the overall performance, already observed in other different
contexts (such as routing in [56], [57], and wireless communications in [58]–
[60]).
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Fig. 16: Q-values as functions of the time step t (K = 1, S = 6,

N = 4).

the algorithm derived in this paper shows significantly higher

performance.

Finally, Fig. 16 shows an example of the convergence of the

Q-values for the network investigated above (S = 6 and N =
4),6 using K = 1. As can be seen, in this scenario with M =
S +N = 10 active players and (K + 1)M = 210 entries in the

payoff matrix of the game, Q-values converge in the first time

step. Our experiments with different network scenarios show

that the convergence speed always happens before the third time

step, thus confirming the hypothesis of quasi-static channels.

The major reason for a cheap time complexity of the algorithm

is an appropriate choice of the learning rate (f t
m = t−0.8) to

update the Q-values [47].

V. CONCLUSION

In this work, we considered a reliable wireless communi-

cation network consisting of multiple source nodes, multiple

parallel amplify-and-forward relays, and one destination. First,

we modeled the interactions between active nodes, source

nodes, and intermediate relay nodes, using an information-

theoretic viewpoint to derive the relevant system parameters,

namely, signal-to-interference-plus-noise ratios and maximum

achievable rates, in both the full- and the half-duplex modes.

Then, we modeled each active wireless node as a player in

a noncooperative finite game, in which the strategy of each

player is to adjust its transmit power using a discrete set of

radiative powers. Under the assumption that each node has its

own power constraint, we formulated each node’s interest as

follows: each source node is a self-interested player which aims

at maximizing its own energy efficiency in terms of the ratio

between its achievable rate and its total power (including the

nonradiative one); and each relay is an altruistic player which

aims at maximizing the network sum-rate with constraints on

the minimum rates of all sources. The mixed-strategy Nash

equilibrium points of the game are then computed using a Q-

6Since all N = 4 relays earn the same payoffs, Fig. 16 reports S + 1 = 7
different curves only.
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learning-based algorithm, which leads the players to compute a

probability distribution among all available pure strategies.

Numerical results show that our proposed algorithm in the

full-duplex mode outperforms the half-duplex counterpart, the

Nash bargaining solution and the max-min fairness approach

in terms of both energy efficiency and network sum-rate, and

significantly outperforms the max-rate solution in terms of

energy efficiency, which is our major performance metric, while

paying a tolerable performance gap in terms of network sum-

rate. This performance improvement is obtained with a low-

complexity algorithm, that uses a low number of power levels

and converges after a few iteration steps, thus providing a prac-

tical, scalable, and adaptive solution. Simulations also show

that our method increases the energy efficiency of the system

when either the number of relays increases, or the number

of sources decreases, or the nonradiative powers of the active

nodes decreases, in accordance with recent studies in this field.

Further work is needed: i) to assess the feasibility of the

problem given a particular network realization; ii) to assess

the complexity of the proposed algorithm as a function of the

system parameters; and iii) to extend the formulation of the

problem to a multicarrier system, so that the additional degrees

of freedom may improve the both the energy and the spectral

efficiency of the network.
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Supérieure des Télécommunications, Paris, France, 2011.

[56] T. Roughgarden, Selfish Routing and the Price of Anarchy. Cambridge,
MA: MIT Press, 2005.

[57] E. Altman, T. Boulogne, R. El Azouzi, T. Jimenez, and L. Wynter, “A
survey on networking games in telecommunications,” Computers and

Operations Research, vol. 33, no. 2, pp. 286–311, Feb. 2006.
[58] E. Altman, V. Kamble, and H. Kameda, “A Braess type paradox in

power control over interference channels,” in Proc. Int. Symp. Modeling

and Optimization in Mobile, Ad Hoc, and Wireless Networks, Berlin,
Germany, Apr. 2008.

[59] L. Rose, S. M. Perlaza, and M. Debbah, “On the Nash equilibria in
decentralized parallel interference channels,” in Proc. IEEE Int. Conf.

Commun. (ICC), Kyoto, Japan, Jun. 2011.
[60] G. Bacci, L. Sanguinetti, M. Luise, and H. V. Poor, “Energy-efficient

power control for contention-based synchronization in OFDMA systems
with discrete powers and limited feedback,” EURASIP J. Wireless Com-

mun. Networking (JWCN), vol. 2013, no. 1, p. 2013:192, Jul. 2013.
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