UA?TPG: An Untestability Analyzer and Test
Pattern Generator for SEUs in the Configuration
Memory of SRAM-based FPGAs*

Cinzia Bernardeschi Luca Cassano Andrea Domenicif

Luca Sterpone?

March 29, 2019

Abstract

This paper presents UA2TPG, a static analysis tool for the untesta-
bility proof and automatic test pattern generation for SEUs in the con-
figuration memory of SRAM-based FPGA systems. The tool is based on
the model-checking verification technique. An accurate fault model for
both logic components and routing structures is adopted. Experimental
results show that many circuits have a significant number of untestable
faults, and their detection enables more efficient test pattern generation
and on-line testing. The tool is mainly intended to support on-line testing
of critical components in FPGA fault-tolerant systems.

Keywords Single Event Upset, SRAM-based FPGA, Untestability Analysis,
Model Checking

1 Introduction and Related Work

Radiations in the atmosphere are responsible for introducing Single Event Up-
sets (SEU) in digital devices [2]. SEUs (or bit flips) have particularly adverse
effects on Field programmable Logic Arrays (FPGAs) using SRAM technology,
as they may permanently corrupt a bit in the configuration memory (correctable
only with a reconfiguration of the device) and thus they may permanently mod-
ify the functionality of the system implemented in the FPGA device [20].
Testing techniques for digital systems may be divided into off-line [22, 32]
and on-line [34, 9, 11, 24] ones. Off-line techniques are applied before running

*Postprint. Published in: Integration Volume 55, September 2016, Pages 85-97. DOI:
https://doi.org/10.1016/j.v1si.2016.03.004.

TC. Bernardeschi, L. Cassano, and A. Domenici are with the Department of Information
Engineering, University of Pisa, Italy.

L. Sterpone is with the Dept. of Automatics and Informatics, Politecnico di Torino, Italy.

https://doi.org/10.1016/j.vlsi.2016.03.004

the system (such as scan chain-based tests performed by manufacturers before
delivering the circuits). On-line techniques are employed by the end-user of the
system and are applied while the system is running. On-line techniques may
further be classified into non-concurrent and concurrent ones. Non-concurrent
on-line techniques [34, 9] are applied while the system is running but during
their execution the system does not perform its “nominal” operation; thus, non-
concurrent techniques may or may not be transparent for the end-user depending
on how long the test execution takes (test patterns-based techniques, like the one
proposed in the paper, are non-concurrent on-line testing techniques). On the
other hand, concurrent on-line techniques [11, 24] (such as memory readback)
are applied while the system is running and are always transparent for the end
user.

Also the occurrence of SEUs in the configuration memory of an FPGA-based
system can be detected through memory readback as well as through on-line
testing. Memory readback allows faults to be detected without interfering with
the normal operation of the system, while on-line testing requires the operation
of the system to be periodically halted in order to execute the test patterns.
On the other hand, on-line testing has a wider applicability. While memory
readback is supported only by recent devices, on-line testing can be applied to
any device. This last point is particularly important in safety-related application
fields where design standards, such as [16, 17], often recommend, or even require,
designers to employ older but more robust and mature devices.

Automated test generation aims at finding input values (structured in test
vectors, test patterns, or sets of test patterns) that can detect a large number
of faults, while minimizing testing time. Many works addressing the problem of
automatic test pattern generation (ATPG) for digital circuits have been pub-
lished [1, 27], but very few of these works specifically address FPGAs. Test
methods devised for ASIC circuits could be effective when used for testing
structural defects in the FPGA chip, but they are not satisfactory when used
for testing SEUs in the configuration memory of FPGAs [33]. In particular,
it has been demonstrated [31] that test pattern generation methods based on
the stuck-at fault model for ASIC circuits obtain too optimistic results when
applied to FPGAs. The stuck-at fault model considers permanent faults at the
input and output terminals of the logical components. To keep into account
SEUs in the configuration bits of the FPGA chip, more accurate fault models
should be considered.

In [34, 38], methods for testing of FPGA structural defects have been pro-
posed. In [6], random testing is applied to analyze FPGA SEUs observability,
and in [4] a genetic algorithm is used to generate test patterns for testing SEUs.
The importance of detecting untestable faults has been recognized in works
addressing various aspects of the analysis of fault untestability in digital sys-
tems, aimed at improving ATPG efficiency. In [30] and [28], a new subclass
of untestable faults, called register enable stuck-on, is defined and a method
for generating property specification language (PSL) assertions for proving the
untestability of this class of faults is presented. In these papers, stuck-at faults
on the clock-enable signals of registers at the register transfer level (RTL) are

addressed. The same authors proposed in [29] a hierarchical untestability iden-
tification method. The method addresses untestable faults in functional units,
such as adders and multiplexers, at the RTL level. In [39], a preprocessing
method for accelerating SAT-based ATPGs by eliminating untestable faults is
presented. The method takes into account the stuck-at fault model and, as the
authors declare, it addresses only easy-to-classify untestable faults. In [26], two
algorithms (FILL and FUNI) for untestability demonstration of stuck-at faults
are presented. FILL identifies large subsets of illegal states in synchronous se-
quential circuits, and FUNI finds untestable faults that require illegal states
previously found by FILL to be detected.

In this paper we propose UA?2TPG, an untestability prover and automatic
test pattern generator for SEUs in the configuration memory of SRAM-based
FPGAs. The fault model adopted for SEUs in configuration bits controlling
logic components and routing structures is more accurate than the classical ones
usually considered [31, 40]. The proposed tool uses an application-dependent
analysis, i.e., it statically determines which SEUs in the configuration bits ac-
tually used by a given system are not testable, without having to examine bits
not required by the given application. Untestability is proved with a model-
checking technique [12] for automatically verifying properties of finite state sys-
tems. Moreover, at the end of the untestability analysis, the tool generates a set
of test patterns able to detect 100% of the testable SEUs by using the counter-
example facility of model checking tools [19]. These test patterns could be used
for on-line application-dependent testing of SEUs. The proposed untestability
analysis approach can be applied to combinational circuits as well as to sequen-
tial ones.

Demonstrating the untestability of faults in a VLSI design offers the designer
an evaluation of the degree of testability of the system, or, from the fault tol-
erance point of view, an estimation of the sensitivity to faults of the system.
Similarly, test patterns generated for on-line testing could also be used as in-
put patterns to stimulate the system during fault injection or radiation testing
experiments.

Previous work by the authors analyzed only the problem of the unexcitability
of SEUs in the configuration memory controlling logic resources [5] and routing
resources [7], i.e., SEUs that can never be activated, ignoring failure propaga-
tion and masking. With respect to the state of the art, UA2TPG represents the
first tool able to analyze the untestability of SEUs in the configuration memory
and to generate test patterns for such faults. The tool relies on the Symbolic
Analysis Laboratory [3] framework, using on the SAL description language to
model the structure of the netlist and temporal logic to specify untestability
theorems. The SAL-SMC model checker is used to prove the untestability of
faults. We used the BDD-based symbolic model-checking tool (SAL-SMC) in-
stead of the SAT-based bounded model-checking one (SAL-BMC) because, as it
has been experimentally demonstrated in [18], SAL-SMC is much more effective
than SAL-BMC in finding counterexamples (and thus test patterns). Note that
the use of model-checking (Boolean Satisfiability in particular) for automatic
test patterns generation for stuck-at faults in digital circuits has already been

proposed in the literature, for example in [15], in [25] and in [36]. Nevertheless,
the current paper is the first one to use a model-checking-based approach to
analyze the testability of, and produce test patterns for, SEUs in the configura-
tion memory of SRAM-based FPGA systems. The current version of UA2TPG
is available at: http://www.ing.unipi.it/~a009435/ua2tpg/.

The remainder of this paper is organized as follows: in Section 2 the consid-
ered fault model is presented; in Section 3 some background about model check-
ing and the SAL environment is introduced; Section 4 presents the UA2TPG
tool; Section 5 describes the analysis environment in which UA2TPG works;
Section 6 reports results from the application of the tool to some circuits from
the ITC’99 benchmark; Section 7 concludes the paper.

2 Effects of SEUs in the Configuration Memory
of SRAM-based FPGAs

An FPGA [23] is an array of programmable logic blocks, interconnected through
a programmable routing architecture and communicating with the output through
programmable I/0O pads (Figure 1).

Programming an FPGA device consists in downloading a programming code,
called a bitstream, in its configuration memory. The bitstream determines the
hardware structure, and thus the functionality, of the system to be implemented
in the FPGA. SEUs occurring in the configuration memory of an FPGA device
may alter the functionality performed by logic blocks or their interconnections.
In this paper, we define as untestable a fault in the configuration memory that
does not change the values of the external outputs with respect to the values
produced by the fault-free system, for the same inputs.

A fault may be untestable if it affects a configuration bit that (i) controls
an unused resource, or (ii) is a don’t-care bit in the configuration of a used
resource, or (iii) controls a used resource whose output is masked at further
stages of the signal propagation path, or (iv) affects a potentially used bit that
is never activated by the possible resource inputs (unexcitable fault).

2.1 SEUs in Logic Components

The functional fault model for SEUs in the configuration memory controlling
the logic resource of an FPGA proposed in [31] is assumed in this work.

The effects of SEUs in the configuration memory cannot be accurately mod-
eled as stuck-at faults. In the stuck-at fault model, an SEU in the configuration
memory of a component causes the output of the component to be stuck at a
given value. In the fault model considered in this work an SEU in the configu-
ration memory of a LUT causes the faulty LUT to produce an incorrect output
only when the configuration of its input values is the one associated with the
faulty configuration bit. On the other hand, the faulty LUT will behave cor-
rectly for every other configuration of its input values. Figure 2(a) shows an
SEU causing a bit flip in the configuration bit associated with input (0000). In

http://www.ing.unipi.it/~a009435/ua2tpg/

8 Switch Switch Switch Switch B
o box box box box)
Logic Logic Logic
block block block

itch Switch Switch Switch
bo;

x
1/0 pad

1/0 pad
g2
x
o
5]

o
o
x

Logic Logic Logic
block block block

8 = switch Swiitch Switch switch = &
Q box box box box Q
Logic Logic Logic
bl%gck bl o%k bl o%k
Switch Switch Switch Switch

1/0 pad

1/0 pad

box box box

box

Figure 1: General architecture of an FPGA device.

this case the logic function implemented by the LUT changes from the correct
function y = x1-w2+w3-24 to the faulty function yy = x1-2o+23-24+21 -T2 T3-T4.

It may be observed that in the example the behavior of the fault-free LUT
and the faulty one is different only when the values of the input signals are
(0000).

An SEU in the configuration bit of an I/O buffer causes an undesired con-
nection or disconnection between two wires. Figure 2(b) shows a 1 to 0 bit flip
causing a disconnection between points A and B.

As an example of an untestable fault, assume, with reference to Figure 3,
that an SEU affects the configuration bit of LUT_2 (a logical OR) associated
with input (10). This input configuration can never appear at the input of
LUT_2, since the first bit is the logical AND of i0 and il and the second bit
is the logical OR of the same signals, so that this fault is untestable because
unexcitable.

An example of masked fault is a flip in the configuration bit of LUT_0 (a logic
AND) corresponding to input (11). In this case, the output of LUT_0 is zero and
the output of LUT_1 is one, so that the output of LUT_2 takes the correct value,
thus masking the fault in LUT_O.

%1 t-----d

x2 |01] 0 0 1 0

3 SEU

(a) SEU in a lookup table. (b) SEU in a I/O buffer.

Figure 2: Effects of an SEU in lookup tables and buffers.

i0 Lo L2 ffo 00
LUT 0 LUT 2 b Q
" ib0 (AND) (OR) ob0
b1
L1
LUT 1
(OR) clk

Figure 3: An example netlist.

2.2 SEUs in Routing Components

The basic elements in the FPGA interconnect are wires and programmable in-
terconnect points (PIP). A PIP is a programmable switch that may connect two
or more wires, controlled by one or more configuration bits. Figure 4 shows two
PIPs, P; and Pg, which can connect one wire (a and b) to one or more wires of
a set; in this example, a is connected to x and b to y. Since a configuration bit
may also control more than one PIP, an SEU in a configuration bit may affect
several nodes [40].

More precisely, the PIP model considered is based on the one found in the
Xilinx Virtex-II devices. This type of PIPs is controlled by two to four con-
figuration memory bits, and when one of these bits is affected by a bit-flip it
can generate one of the topological modifications considered by the proposed
method. Routing and multiplexers are not controlled by single configuration
memory bits but by a group of them. It is possible that one configuration bit
controls more PIPs but not multiple multiplexers.

The topological modifications caused by a faulty configuration bit can be
described as follows [40]: (i) Open, where two wires are disconnected; (ii) an-
tenna, where a new connection is established between an unused wire and a
used one; (iii) conflict, where a new connection is established between two used
wires; and (iv) bridge, where an existing connection is broken and a new one is

Table 1: Logical effects of routing faults.

Logical effect Description
Stuck-at-0 on Py (P3) x=0(y=0)
Stuck-at-1 on Py (P2) r=1@Wy=1)
Bridge Py — P r=by=a
Wired-AND P; — P r=y=aAb
Wired-OR P; — Py r=y=aVb

. o r=1y=0 ifa#b
Wired-MIX P; — Py (Py) r—ay=b ifa=b

. r=0,y=1 ifa#bd
Wired-MIX Pl I P2 (Pg) T =a,y= b ifa=b

Figure 4: Routing example.

created between a used wire and one wire of the broken connection.

The effects of these topological modifications on the circuit’s operation de-
pend on several factors, and can be modeled at the logical level [40] as shown in
Table 1, taking Figure 4 as an example. Note that two nodes take complemen-
tary values when affected by a wired-mix, therefore the two lines for this effect
specify which node takes the 1 value.

It may be observed that a given SEU in the configuration bit associated with
a PIP can propagate to different routing segments, and that the same SEU can
have different effects on the routing segments through which it propagates, as
discussed in [40].

An example of untestable routing fault is shown in Fig. 5. If the fault-free
network on the left is affected by a Wired-OR between P; and Ps, it becomes
logically equivalent to the one on the right, which in turn is equivalent to the
fault-free one.

wired-OR

fault—free untestable routing fault

Figure 5: Example of untestable routing fault.

3 Model checking

Model checking [12] is an automated verification technique used for the speci-
fication and verification of concurrent systems. In particular, model checking
relies on generating a finite state model of the system. A state space is a graph
consisting of nodes representing states of the system, and edges representing
state transitions. The state transition graph contains all possible behaviors.

Properties of the system are then expressed in a temporal logic language
with respect to this model; for example, one may specify that a given relation-
ship among system variables (such as signal values) holds for certain subsets of
the state space, e.g., for all states, or for some states following a state where
another condition holds, or other possible time orderings. Properties expressed
in temporal logic are automatically verified by model-checking algorithms.

Let p and q be temporal logic formulas. Typical temporal operators are:

G(p) means that p is always true;

F(p) means that p will eventually be true;

U(p,q) means that p is true until a state is reached where q is true; and

X(p) means that p is true in the next state.

Typical properties expressed with temporal logic formulas are safety, in the
form G(—y), stating that the undesired condition x is never satisfied, and live-
ness, in the form G(F(¢))) or G(y — F(¢)), stating that the desired condition
1 will be eventually satisfied or that the desired condition ¢ will be eventually
satisfied if condition -~ is satisfied.

Given a state transition graph M and a formula ¢, the assertion M F ¢
means that property ¢ holds for the system specified by M, i.e., M is a model
of the formula ¢.

The verification procedure is an exhaustive search of the state space. More-
over, if a property is not satisfied, model checking will produce a counter-
example that can be used to locate the problem in the system.

3.1 The SAL Environment

The Symbolic Analysis Laboratory (SAL) is a framework for the formal mod-
eling and analysis of systems [3]. Systems are modeled in the SAL language
and their properties can be specified in temporal logic, and verified by the SAL
model checker.

The SAL language is a strongly-typed description language. Supported types
are Booleans, scalars, integers and integer subranges, records, arrays and ab-
stract data types. Expressions consist of constants, variables, applications of
Boolean, arithmetic, bit-vector operations and array and record selection and
update.

A SAL model is made of one or more Modules. A SAL module is a self-
contained specification of a transition system. A module consists of a state set
definition, an Initialization of the state and a list of Transitions.

The state set is defined by four disjoint sets of Input, Output, Global and
Local variables. The input and global variables are observed, in the sense that
their value can only be read. The output and local variables are controlled, in
the sense that their value can be both read and written. Each SAL variable has
two values, the current value (denoted, e.g., by x) and the next value (denoted,
e.g., by x?) valid in the current and the next state (respectively) of the module.

The transitions of a module can be specified variable-wise, by means of
Definitions, or transition-wise by means of Transitions.

A definition is a system invariant represented as a simple assignment between

a controlled variable and the result of an expression, as follows:
variable = expression;

Transitions are assignments between next-state variables and the result of

expressions. A transition is 957‘“7}&%@“13:63:])7“6552'071'
)

The initialization is used to specify an initial value for all or some of the
controlled state variables of the module.

A list of transitions can be specified as a Guarded Command. A guarded
command is composed of a guard, i.e., a Boolean condition defined on state
variables, and one or more transitions. The guard must be satisfied in order to
perform the transitions. A guarded command is of the form:

guard — variabley’ = expressiony

variable,’ = expression,,

The SAL language provides the IN construct that denotes choice among a
set of values.

The language allows the composition of different modules. Several modules
can be collected in a SAL Context. Contexts may also include constants, types
declarations and theorems.

The transition graph built by SAL explores all possible reachable states
starting from the initial state and for every possible combination of the input
variables.

The SAL-SMC (Symbolic Model checker) allows properties to be specified
in Linear Time temporal Logic (LTL) and in Computation Tree Logic (CTL).
In particular, we use LTL as an assertion language.

4 The UA?TPG tool

UA2TPG works on a representation of the FPGA-based system at the netlist
level obtained before the place-and-route phase of the FPGA development pro-
cess. This representation is sufficient to analyze logic faults. In order to analyze
routing faults, the E2STAR tool is used after place-and-route to generate the
list of possible faults with their effects.

In the following, we first show how to use the SAL language to model the
netlist and SEUs occurring in the configuration memory of the device, then we
show how to write an untestability theorem using LTL and finally we illustrate
the execution flow of the tool.

4.1 Modeling SRAM-based FPGA Netlists

A netlist is described by a SAL MODULE. Inputs and outputs of the system are
modeled by INPUT and OUTPUT variables. Each component in the netlist is
modeled as a LOCAL variable that represents the output of the component itself.
The semantics of each component except flip-flops is described by Definitions.
The semantics of an input buffer can be simply described as an assignment be-
tween a local variable, modeling the buffer, and an input variable, modeling the
associated input pin. Similarly the semantics of an output buffer can be de-
scribed as an assignment between two local variables: the variable modeling the
input to the buffer is assigned to the variable modeling the buffer. Examples of
SAL specifications input/output buffers, which refers to the circuit of Figure 3
are:

ib0 = i0; ob0O = f£f0;
The semantics of LUTs is described by the corresponding logic functions.
The 2-input lookup table LUT_2 implementing the OR function is modeled as:
L2 = LO OR L1;
where L2, LO, and L1, are the logical variables representing the outputs of

the LUTs.
Multiplexers can be described by an IF THEN ELSE clause:

y IN IF(s=FALSE) THEN x1 ELSE x2 ENDIF;

where s represents the select signal for the multiplexer.

Flip-flops are described by Transitions. D-flip-flops can be described as a
simple assignment between the next value of the flip-flop and the current value
of its input:

££f0’ = L2;

10

where L2 represents the input signal and ££0 the content of flip-flop. Other
types of flip-flops can be described by an IF THEN ELSE clause. For example,
FDCE flip-flops are described as follows, where ¢ represent the state of the
flip-flop, e represents the clock enable signal, ¢ the clear signal and d the input
signal.

q’ IN IF(c=TRUE)
THEN {FALSE}
ELSIF (e=FALSE)

THEN {q}
ELSE {d} ENDIF;

4.2 Modeling SEUs in the Configuration Memory

We model the effects of SEUs affecting the configuration bits associated with
logic components by modifying the functionality performed by the faulty com-
ponent.

We model SEUs affecting configuration bits controlling routing resources,
according to the caused logical effect. For example, let ¢ and = be two wires
connected through a PIP P;, with a carrying the output of a component C. An
SEU causing a stuck-at 0 on P; is modeled by changing the function performed
by C to FALSE.

As described in Section 2, a given SEU in a configuration bit controlling a
PIP can be propagated through a number of routing segments with different
logical effects. Thus, an SEU having multiple propagation points is modeled by
modifying the functions performed by all the affected components, according to
the logical effects associated with the SEU.

In practice, modeling an SEU results in changing the SAL representation of
the netlist, which provides a complete and detailed description of the system
structure. A detailed knowledge of the underlying FPGA architecture, in par-
ticular the physical location of the configuration bits controlling each resource,
is not needed. Each fault generated by the tool is a possible configuration of
a given resource, which differs from the correct one as specified by the netlist,
independent of which particular bit causes a fault.

We observe that most of the untestable SEUs in LUTs may be related to
don’t-care configuration bits. As an example, let us consider a 3-input logic
function mapped on a 4-input LUT: In this case 8 out of the 16 configuration
bits controlling the LUT will be don’t-care and, if faulty, will not affect the
correct behavior of the circuit. Nevertheless, when generating test patterns for
fault detection, is very difficult or even impossible for the design/test engineer to
have a detailed knowledge of the don’t-care configuration bits. Thus, without an
automatic untestability analyzer, test pattern generation tools would be asked
to try to test every possible SEU. Moreover, when considering SEUs in the
routing resources, the untestability of an SEU is caused by much more complex
logic masking effects that are very hard to statically determine at design time;
thus again, an automatic untestability analysis tool such as UA2TPG would be
beneficial to the generation of test patterns.

11

4.3 System specification

In order to analyze the untestability of a given SEU, we build the SAL model
of the composition of the correct circuit and of the faulty one, we connect them
to the same inputs and we check whether the outputs of the two systems are
always the same or not.

Figure 6 reports the specification of the simple netlist shown in Figure 3,
where LUT_0 implements an AND function, LUT_1 and LUT_2 implement the OR
function.

More precisely, the SAL code describes both the fault-free circuit and the
circuit resulting from the SEU in the configuration bit of LUT_2 associated with
input (10). The tool produces the function computed by LUT-2 after the fault,
in a sum-of-products form ((—z1 A x2) V (1 A x2), where 1 and z2 are the
LUT inputs). In the specification of the faulty circuit, variables are renamed by
adding the suffix F.

The two circuits share the same inputs, including the clock, and they have the
same definitions and transitions, except for the definition of the faulty compo-
nent. The SAL model checker proves that the SEU in this example is untestable.

The model of the system is a transition system describing the system be-
havior. Whenever the clock (c1k) is true, the corresponding guarded command
is executed, thus computing the new state of both circuits. If n is the number
of input variables, there are 2" possible inputs at each clock cycle. The tran-
sition system built by SAL explores all possible reachable states, starting from
the initial state and applying every possible combination of the inputs at every
clock cycle.

We observed that, even for a small circuit, the number of all faults is very
high. To mitigate this problem, we analyze the circuit in a modular way.

For each combinational component C being tested, we prune the whole cir-
cuit of the components (including device input and output terminals) that do
not affect (directly or indirectly) the inputs of the component (i.e., not in the
input cone), or are not affected by its output (not in the output cone), or do
not affect the components in the output cone. We call the resulting subcircuit
the region of C. Figure 7 illustrates this idea.

A similar method is used for faults in PIPs, where we extract the regions of
the components affected by each fault.

4.4 Identifying Untestable SEUs

An SEU is untestable if the output of the correct circuit always equals the output
of the faulty circuit for the same inputs. We define an untestability theorem
as an LTL safety formula, in the form G(=(Oy # Of Vv ... VO, # OF)))
where O; is the i-th output of the correct circuit and Of is the i-th output of
the faulty circuit. Such formula states that it is always false that the output of
the correct system is different from the output of the faulty circuit. Thus, if for
a given SEU the theorem is proved, the SEU is demonstrated to be untestable.

12

In Figure 6, we show the theorem untestability_th for the analysis of the
untestability of the SEU of the circuit of Figure 3.

The tool produces a list of untestable faults, reporting the affected compo-
nent and the associated input configuration. A sample output for the considered
example follows:

5; Y%number of untestable faults
LUT_2 10;
LUT_1 11;
LUT_O 11;
LUT_O 01;
LUT_O 10;

4.5 Generating Test Patterns for Testable SEUs

If the theorem is not proved, a counter-example is automatically produced by
the model checker. In general, a counter-example is one of the possible sequences
of assignments of the inputs of the model that caused the theorem not to be
proved. In particular, the counter-example provided by SAL-SMC after trying
to prove an untestability theorem is a sequence of input vectors applied to the
inputs of the system that caused the output of the faulty system to be different
from the output of the correct one. In other words, the sequence of input
vectors produced by the model-checker in the counter-example is a test pattern
able to test the SEU injected in the system. In Figure 8 we show the counter-
example provided by the SAL model checker when trying to demonstrate the
untestability theorem related to the SEU in the configuration bit of LUT_2 (see
Figure 3) associated with input configuration (00). The counter-example shows
that the untestability assumption is violated at least when the input sequence
(00), (01) is applied. The first test vector places (00) at the inputs of LUT_2, and
consequently the D input of the flip-flop receives a 0 in the fault-free circuit and
a 1 in the faulty one. This difference appears at the circuit output when the
second test vector is applied. In this case, any value of the second test vector
would do, and (0, 1) is the value selected by the tool.

The UA?TPG tool extracts a test pattern for each testable fault from the
model checker output, as shown below:

LUT_O 00; 2; (0,0) (1,0);
LUT_1 00; 2; (0,0) (0,1);

LUT_1 10; 2; (1,0) (0,1);
LUT_1 01; 2; (0,1) (0,1);
LUT_2 00; 2; (0,0) (0,1);

LUT_2 01; 2; (0,1) (1,0);
LUT_2 11; 2; (1,1) (1,0);

Each row reports the affected component, the input configuration associated
with the fault, the length of the test pattern and the sequence of test vectors.
For example, the test pattern (1,1)(1,0) can be applied to test the SEU in
the configuration memory of LUT_2 corresponding to the LUT input (1,1).

13

5 The Analysis Environment

The proposed tool works in conjunction with an EDIF parser and the E2STAR
tool [10]. The parser is a tool able to translate the EDIF description of the
netlist, produced by the HDL synthesis tool, into an intermediate description of
the topology of the netlist in terms of connections among logic components and
functionalities performed by components. Moreover, the parser is also able to
produce a list of the effects of SEUs occurring in configuration bits associated
with the logic resources used by the system under analysis. In particular, the
parser produces the list of the faulty functions associated to each LUT in the
system and to each SEU in the configuration memory controlling the LUT.
E2STAR is astatic analyzer of the configuration memory of SRAM-based FPGA
devices. Given an FPGA device and a placed-and-routed design, E2STAR is
able to determine the configuration bits actually used by the design and which
are the logical effects of SEUs occurring in the configuration bits controlling the
routing resources, according to the fault model previously presented. E2STAR
analyzes the configuration bits affecting all routing resources, including the ones
that dispatch signals within CLBs.

Faults are injected over all configuration bits except those controlling unused
resources, i.e., faults are not injected over bits that do not affect either logic
functions or the architecture topology, therefore the configuration bits analyzed
include unused or not programmed bits that could generate shorts.

The overall structure of the analysis environment is shown in Figure 9. After
the HDL specification of the system has been synthesized, the netlist descrip-
tion file and the list of the effects of SEUs in the configuration bits controlling
logic resources are generated by the parser from the EDIF representation of the
netlist.

E2?STAR produces a file containing the list of the SEUs in the configuration
bits associated with the routing elements of the FPGA. For each SEU the file
produced by E2STAR contains the list of all the components to which the
SEU propagates, and the logical effect that each SEU has on each involved
component.

An excerpt of the output of E2STAR is the following:

15 2;
0 bridge 22 0 21 0;
1 stuck-at-1 16 O;

This entry means that routing fault number 15 has two effects: a bridge
between input pin 0 of component 22 and input pin 0 of component 21, and a
stuck-at-1 on input pin 0 of component 16.

The overall execution flow of UA?2TPG is shown in Figure 10. The Logic
Fault list contains the list of SEUs in the LUTs of the implemented system,
and the faulty LUT function associated with each SEU. The Routing Fault list
contains the list of the possible SEU in the configuration memory controlling
routing resources, and for each SEU, the list of its effects. The tool performs
the following steps:

14

1. Build the model of the fault-free system (as described in Section 4.3)
starting from the Netlist Description file.

2. Build the untestability theorem (as described in Section 4.4).

3. For each SEU a:

(a) Build the model of the faulty system from the logical effects induced
by the SEU.

(b) Invoke SAL-SMC on the untestability theorem.

e If the untestability theorem is proved (thus « is untestable) then
save a in the list of the untestable SEUs.

e If the untestability theorem is not proved (thus « is testable)
then extract the test pattern able to detect « from the counter-
example provided by SAL-SMC (as described in Section 4.5) and
save it in the list of test patterns.

At the end of the untestability analysis the list of the untestable SEUs and
the list of test patterns for all the testable SEUs are generated. The list of test
patterns contains a test for each testable SEU. This list can then be compressed
by eliminating all the duplicated test patterns and all those test patterns that
are prefix of longer ones.

Note that the UA2TPG could also be applied earlier during the design pro-
cess, before the place-and-route phase. In this case the analysis carried out
by E2STAR is not needed and the untestability analysis is performed only on
the configuration bits controlling the logic resources. Moreover, it is worth
noting that, while E2STAR and the EDIF parser work only on Xilinx devices,
UA2TPG, which is actually the core of the proposed analysis flow, is completely
independent of the FPGA vendor and model.

6 Experimental results

In the following, results of the application of the proposed tool to some circuits
from the ITC’99 benchmark [14] are reported. This is a set of benchmark circuits
that are meant to be used for experimentation on Design for Testability (DFT)
and Automatic Test Pattern Generation (ATPG). The tested circuits (Table 2)
provide a diversified set of test cases composed of sequential circuits with a
single clock signal, no tristate buses or internal memories, modeled at the RTL
level, ranging from 4 to 106 LUTSs and from 4 to 59 FFs.

We synthesized the VHDL code of the circuits using the Xilinx ISE CAD
tool. As a target device we adopted the Xilinx Virtex-II XC2VP30 device. The
characteristics of the designs used in the experiments are shown in Table 3, which
reports for each circuit the number of SEUs affecting logic and routing resources
(columns LSEU and RSEU, respectively), the number of look-up tables (LUT),
flip-fLops (FF), multiplexers (Mux), input and output buffers (IB and OB).

15

Table 2: Selected benchmark circuits.
Circuit | Function

SFC Compare serial flows

BCD Recognize binary coded decimal numbers
ARB Resource arbiter

HDR Interrupt handler

SEQ Find inclusions in sequences of numbers
CVT Serial-to-serial converter

VOT Voting system

MET Interface to meteo sensors

Table 3: Characteristics of the benchmarks.

Circuit | LSEU RSEU | LUT FF Mux IB OB
SFC 124 547 9 5 0 3 2
BCD 52 304 4 4 0 2 1
ARB 954 5910 | 76 37 0 5 4
HDR 104 566 9 8 0 3 6
SEQ 504 2,680 | 40 21 0 10 4
CVT 692 3.872| 53 28 0 2 1
VOT 660 3,942 | 52 24 0 12 6
MET | 1,216 7,203| 106 59 11 11 10

The computer used for the experiments was equipped with an Intel Core i5
(QuadCore) 2.67 GHz, 256 KB L1 Cache, 1 MB L2 Cache, 8MB L3 Cache, 4
GB RAM.

In Table 4 we show the results of the analysis performed by E2STAR to
the considered circuits. The table shows the number of critical configuration
memory bits (RF) identified by the tool, and the number of affected nodes clas-
sified by logical effect: Stuck-at-0 (Sa0), Stuck-at-1 (Sal), Wired-And (Wand),
Wired-Mix (Wmix), and Bridge (Br). In the examined circuits, Wired-Or ef-
fects were not observed. It may be observed that, as we previously discussed,
the number of propagation points per SEU in the configuration bits controlling
the routing structure is much higher than the actual number of SEUs itself.

Results obtained from the application of the proposed tool are shown in
Table 5. The table shows for each circuit the total number of faults in configu-
ration bits controlling both logic and routing resources (SEU column), the num-
ber of untestable SEUs affecting logic resources (UL), the number of untestable
SEUs affecting routing resources (UR), the total number of untestable SEUs
(UT), and the execution time (Time), including check for untestability and

16

Table 4: Effects of SEUs in the routing elements.
Circuit RF Sal Sal Wand Wmix Br

SEC 547 708 2,944 5 7 0
BCD 304 118 339) 7 102
ARB 5,910 | 8,105 21,661 1,423 1,431 2,320
HDR 566 372 790 0 18 305

SEQ 2,689 | 3,074 8,061 464 496 1,217
CVT 3,872 | 6,569 15,948 567 512 1,908
vOT 3,942 | 4,603 10,727 482 692 1,498
MET 7,203 | 10,390 27,720 1,143 1,387 3,602

Table 5: Results from the application of UA2TPG.
Circuit | SEU UL UR UT Time (min)
SFC 671 0 1 1 1.29
BCD 356 6 2 8 0.66
ARB 6,864 694 214 908 62.80
HDR 670 8 6 14 1.24
SEQ 3903 76 66 142 16.34
CVT 4,564 244 73 317 3548
VOT 4,602 288 136 424 31.39
MET 8,419 640 671 1,311 263.10

test pattern generation. Figure 11 shows, for each circuit, the percentage of
untestable SEUs in configuration bits controlling logic (UL/LSEU) and rout-
ing (UR/RSEU) resources, respectively, and the total untestability percentage
(UT/SEU).

The experiments show that all the considered circuits have a number of
faults that cannot be tested. The average untestability is 6.6%. The highest
untestability is 15.5% for the meteo sensors interface, while the lowest is 0.15%
for the serial flow comparator. SEUs in logic resources seem to be much harder
to test than SEUs in routing resources. This may be explained, if we take
two points into account: (i) the excitation of an SEU in a configuration bit
controlling a LUT depends on the values of all the inputs of the LUT while,
as we previously discussed, the excitation of an SEU in a configuration bit
controlling a PIP depends on the value of one or two signals; and (ii) as we
previously discussed, each SEU in the routing structure has a very large number
of propagation points, thus they are more likely to be propagated. If we consider
only SEUs in logic resources we find an average untestability of 29.8%, with a

17

Table 6: Results for previous tools (presented in [5, 7]).

Circuit | Unex-L. Unex-R Unex-SEU
SFC 0 0 0
BCD 6 0 6
ARB 462 170 632
HDR 8 0 8
SEQ 21 0 21
CVT 190 0 190
VOT 231 0 231
MET 483 321 804

peak of about 72.7% for the resource arbiter. Considering only SEUs in routing
resources we find an average untestability of 2.8%, with a peak of about 9.3%
for the Meteo sensors interface.

Table 6 shows results only about the unexcitability of SEUs in logic and
routing components of the considered circuits, calculated with the tools pre-
sented in [5, 7]. Comparing this table with Table 5, we note that a considerable
number of faults are always masked.

6.1 Test pattern generation

Table 7 reports results from the test pattern generation performed by UA2TPG.
The table shows the number of faults of each circuit (SEUs) and the length
of the test patterns generated by the proposed tool before (TPLen) and after
(Compacted) compaction. TPLen has been computed as the sum of the length of
the tests including the reset cycle between different tests. The table shows that
TP compression is very effective in reducing the length of TPs. This efficacy can
be explained by the fact that the model checker methodically explores the input
space in a fixed order, thus producing counter-examples having long prefixes
in common. Longer TPs tend to contain shorter TPs, which are eliminated by
compaction. Further improvements are not currently supported by the tool, but
additional techniques, such as genetic algorithms [4], can be applied to minimize
the test pattern set.

In order to assess the effectiveness of the test pattern generation process
performed by UA?TPG, we performed a random test experiment using the
SEU simulator presented in [8]. Each circuit was simulated by applying 10000
randomly generated test patterns and simulating the occurrence of each SEU in
the configuration memory of the circuit, one at a time. Table 8 reports the fault
coverage values obtained by this experiment. It can be noticed that, although
the number of random test patterns was always (apart from the meteo sensors
interface) much larger than the number of test patterns generated by UA2TPG,
the fault coverage obtained with random testing is always lower than 100%,
and, for 4 out of 8 circuits, even lower than 50%.

18

Table 7: Automatic Test Pattern Generation Results.

Circuit | SEUs TPLen Compacted
SFC 671 3,424 460
BCD 356 2,292 224
ARB 6,864 58,890 1,062
HDR 670 2,930 258
SEQ 3,903 99,218 6,307
CVT 4,564 86,374 5,456
VOT 4,602 43,032 5,198
MET 8,419 219,564 14,827

Table 8: Random testing coverage (10.000 test vectors).

Circuit | Random_Cov
SFC 100.0%
BCD 98.0%
ARB 47.8%
HDR 98.7%
SEQ 4.9%
CvT 45.5%
VOT 76.8%
MET 29.8%

6.2 Validation of Results

The same simulator mentioned above was used to assess the correctness of the
results produced by UA2TPG. First, the SEUs identified as testable by UA2TPG
were exhaustively injected and the simulated circuit was fed with the test pat-
terns generated by the proposed tool: In this way we verified that the test pat-
terns generated by UA2TPG were actually able to detect all the testable SEUs.
Then, in order to verify that the faults identified as untestable by UA2TPG
were actually untestable, we exhaustively injected them and we fed the sim-
ulated circuit with 100,000 randomly generated test patterns: this additional
validation experiment showed that none of the faults identified by UA2TPG as
untestable had been detected.

6.3 Performance

Table 9 compares computational and time complexity for the different circuits,
related to the respective number LR of logical resources (LUTs, flip-flops, and

19

Table 9: Complexity of the SAL-generated models.
Circuit | LR IN NTR Time (min)

SEFC 14 3 1053 1.29
BCD 8 2 110 0.66
ARB 113 5 10009 62.80
HDR 17 3 115 1.24
SEQ 61 10 1002 16.34

CVT 81 2 1434 3548
VOT 78 12 1266 31.39
MET 176 11 10010 263.10

multiplexers) and number IN of inputs. The number NTR of nodes in the tran-
sition relationship for each SAL-generated model has been adopted as a measure
of computational complexity. Since this value varies with each different fault,
the maximum value is reported. The time required for the analysis performed
by UA2TPG ranges from some seconds up to some minutes for very small and
medium size circuits. For larger circuits the required time is a few hours. We be-
lieve that these times are reasonable taking into account the inherent complexity
of sequential ATPG. In fact, the aim of this work is achieving full coverage of
testable faults, thus guaranteeing correct functionality. This is achieved at a
high cost in time complexity for the off-line test pattern generation, but it pro-
vides a very effective and efficient set of patterns to be employed at run-time.
Effectiveness results from the application of a formal method, and efficiency
results from (i) analyzing only the resources actually used by the application,
and (ii) excluding tests for untestable faults, which would included in test sets
generated with random testing techniques.

Further, we observe that UA2TPG is mainly intended to support the anal-
ysis of critical components in fault-tolerant designs. Ensuring the absence of
SEUs in the configuration memory of these components, e.g., a voter in a TMR,
architecture, guarantees safe operation of the system, under the single failure
assumption. Techniques for fault tolerant design include fault detection and
masking and system recovery and rely on dedicated components, such as com-
parators, voters, and cyclic redundancy code checkers [37]. These critical com-
ponents are relatively small compared to full systems, and a thorough testing
of their circuits is affordable with the proposed tool, as indicated by the above
results for the voting system and for the serial low comparator. For the voter,
the length of the test pattern is 5198 clock cycles to test 4602 SEUs, and for
the comparator the length is 470 clock cycles to test 671 SEUs.

In general, untestability checking and test pattern generation can be applied
to any modular part of a larger application. For example, they can be used in
reconfigurable systems, where the FPGA is partitioned in regions which host
different subsystems at different times [35].

20

7 Conclusions and Future Work

We have proposed a static analysis tool for the untestability proof and automatic
test pattern generation for SEUs in the configuration memory of SRAM-based
FPGA systems. The tool is based on an accurate fault model for both logic
components and routing structures. The test patterns generated by the tool can
detect 100% of the testable SEUs and may be used for in-service application-
dependent testing of the system. The application of the tool to some circuits
from ITC’99 benchmark shows that many circuits have a significant number of
untestable faults.

Untestability results reduce the effort required by automated test patterns
generators. From the point of view of fault tolerance, UA2TPG can perform a
worst case assessment of the sensitivity to SEUs of FPGA-based systems and
the generated test patterns can be used to drive the circuit in fault injection or
radiation testing experiments.

As further work we intend to explore advanced techniques as on-the-fly
model-checking [21] (that avoids an explicit construction of the complete state
space) and state-space abstraction [13] (that works on conservative over-approximations
of the system states) to tackle the state-space explosion problem typical of model
checking approaches.

Acknowledgments

The authors wish to thank the anonymous referees for their valuable comments
and suggestions.

References

[1] Miron Abramovici, Melvin A. Breuer, and Arthur D. Friedman. Digital
Systems Testing and Testable Design. John Wiley & Sons., 1990.

[2] R.C. Baumann. Radiation-induced Soft Errors in Advanced Semiconduc-
tor Technologies. IEEE Transactions on Device and Materials Reliability,
5(3):305 — 316, September 2005.

[3] Saddek Bensalem, Vijay Ganesh, Yassine Lakhnech, Cesar Mufioz, Sam
Owre, Harald Ruef}; John Rushby, Vlad Rusu, Hassen Saidi, N. Shankar,
Eli Singerman, and Ashish Tiwari. An Overview of SAL. In Proceedings
of the Fifth NASA Langley Formal Methods Workshop (LFM 2000), pages
187-196, 2000.

[4] C. Bernardeschi, L. Cassano, M.G.C.A. Cimino, and A. Domenici. Appli-
cation of a genetic algorithm for testing SEUs in SRAM-FPGA Systems.
In Proceedings of the 6th HiPEAC Workshop on Reconfigurable Computing
(WRC2012), 2012.

21

[5]

[10]

[12]

[13]

C. Bernardeschi, L. Cassano, and A. Domenici. SEU-X: a SEu Un-
uXecitbility prover for SRAM-FPGAs. In Proceedings of the 18th IEEE
International On-Line Testing Symposium (IOLTS2012), June 2012.

C. Bernardeschi, L. Cassano, A. Domenici, G. Gennaro, and M. Pasquar-
iello. Simulated Injection of Radiation-Induced Logic Faults in FPGAs.
In Proceedings of the 8rd International Conference on Advances in System
Testing and Validation Lifecycle (VALID 2011), 2011.

C. Bernardeschi, L. Cassano, A. Domenici, and L. Sterpone. Unexcitability
Analysis of SEUs Affecting the Routing Structure of SRAM-based FPGAs.
In Proceedings of the Great Locations Symposium on Very Large Scale of
Integration (GLSVLSI2013), May 2013.

C. Bernardeschi, L. Cassano, A Domenici, and L. Sterpone. ASSESS: A
Simulator of Soft Errors in the Configuration Memory of SRAM-Based FP-
GAs. IEEFE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 33(9):1342-1355, Sept 2014.

Cinzia Bernardeschi, Luca Cassano, Mario G.C.A. Cimino, and Andrea
Domenici. GABES: A genetic algorithm based environment for SEU testing
in SRAM-FPGAs. J. of Systems Architecture, 59(10, Part D):1383-1254,
2013.

Cinzia Bernardeschi, Luca Cassano, Andrea Domenici, and Luca Sterpone.
Accurate Simulation of SEUs in the Configuration Memory of SRAM-based
FPGAs. In IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT 2012), 2012.

Carl Carmichael, Earl Fuller, Phil Blain, and Michael Caffrey. SEU mit-
igation techniques for Virtex FPGAs in space applications. In Proceeding
of the Military and Aerospace Programmable Logic Devices International
Conference (MAPLD), 1999.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems, 8:244-263, 1986.

Edmund M. Clarke, Orna Grumberg, and David E. Long. Model check-
ing and abstraction. ACM Transactions on Programming Languages and
Systems, 16(5):1512-1542, September 1994.

F. Corno, M. Sonza Reorda, and G. Squillero. RT-Level ITC’99 Bench-
marks and First ATPG Results. IEFE Des. Test, 17:44-53, July 2000.

S. Eggersgluss and R. Drechsler. A highly fault-efficient SAT-based ATPG
flow. Design Test of Computers, IEEE, 29(4):63-70, Aug 2012.

22

[16]

[17]

[21]

[25]

[26]

[27]

European Committee for Electrotechnical Standardization (CENELEC).
EN 50129: Railway applications - Communications, signaling and process-
ing systems - Safety related electronic systems for signaling, February 2003.

International Organization for Standardization (ISO). 26262-5: Road ve-
hicles - Functional safety - Part 5. Product development: hardware level,
December 2009. Draft.

G. Fraser and A. Gargantini. An evaluation of model checkers for spec-
ification based test case generation. In Proceedings of the International
Conference on Software Testing Verification and Validation, pages 41-50,
April 2009.

Gordon Fraser, Franz Wotawa, and Paul E. Ammann. Testing with model
checkers: a survey. Softw. Test. Verif. Reliab., 19(3):215-261, September
2009.

P. Graham, M. Caffrey, J. Zimmerman, D. E. Johnson, P. Sundararajan,
and C. Patterson. Consequences and Categories of SRAM FPGA Configu-
ration SEUs. In Proceedings of the 6th Military and Aerospace Applications
of Programmable Logic Devices (MAPLD’03), September 2003.

Moritz Hammer, Alexander Knapp, and Stephan Merz. Truly on-the-fly
LTL model checking. In Proceedings of the 11th international conference
on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’05, pages 191-205, Berlin, Heidelberg, 2005. Springer-Verlag.

N.G. Herron, E.J. Thorne, Q. Wang, A. Correale, and T.A. Dick. Testing
a programmable logic device with embedded fixed logic using a scan chain,
jul 18 2006. (US Patent 7,080,300).

Tan Kuon, Russell Tessier, and Jonathan Rose. FPGA architecture: Survey
and challenges. Foundations and Trends in Electronic Design Automation,
2(2):135-253, 2008.

M. Lanuzza, P. Zicari, F. Frustaci, S. Perri, and P. Corsonello. Exploiting
Self-Reconfiguration Capability to Improve SRAM-based FPGA Robust-
ness in Space and Avionics Applications. ACM Transactions on Reconfig-
urable Technology and Systems, 4:8:1-8:22, December 2010.

T. Larrabee. Test pattern generation using Boolean satisfiability. IFEFE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 11(1):4-15, Jan 1992.

D.E. Long, M.A. Iyer, and M. Abramovici. FILL and FUNI: Algorithms to
Identify Illegal States and Sequential Untestable Faults. ACM Transaction
on Design Automation of FElectronic Systems, 5(3):632-657, 2000.

Alexander Miczo. Digital Logic Testing and Simulation. John Wiley &
Sons., 2003.

23

28]

[31]

[35]

[36]

[37]

[38]

J. Raik, H. Fujiwara, R. Ubar, and A. Krivenko. Untestable Fault Identifi-
cation in Sequential Circuits Using Model-Checking. In Proceedings of the
17th Asian Test Symposium (ATS08), pages 21-26, 2008.

J. Raik, A. Rannaste, M. Jenihhin, T. Viilukas, R. Ubar, and H.; Fujiwara.
Constraint-Based Hierarchical Untestability Identification for Synchronous
Sequential Circuits. In Proceedings of the 16th European Test Symposium
(ETS’11), pages 147-152, 2011.

J. Raik, R. Ubar, A. Krivenko, and M. Kruus. Hierarchical Identification
of Untestable Faults in Sequential Circuits. In Proceedings of the 10th
Euromicro Conference on Digital System Design Architectures, Methods
and Tools (DSD’07), 2007.

M. Rebaudengo, M. Sonza Reorda, and M. Violante. A new functional fault
model for FPGA application-oriented testing. In Proceedings of the 17th
IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems (DFT 2002), pages 372 — 380, 2002.

M. Renovell, P. Faure, J.M. Portal, J. Figueras, and Y. Zorian. IS-FPGA :
a new symmetric FPGA architecture with implicit scan. In Proceedings of
the International Test Conference, pages 924-931, 2001.

M. Renovell, J.M. Portal, P. Faure, J. Figueras, and Y. Zorian. Analyzing
the Test Generation Problem for an Application-Oriented Test of FPGAs.
In Proceedings of the IEEE Furopean Test Workshop, pages 75 —80, 2000.

M. Rozkovec, J. Jenicek, and O. Novak. Application Dependent FPGA
Testing Method. In Proceedings of the 13th Euromicro Conference on Dig-
ital System Design: Architectures, Methods and Tools (DSD10), pages 525
-530, sept. 2010.

D. Sorrenti, D. Cozzi, S. Korf, L. Cassano, J. Hagemeyer, M. Porrmann,
and C. Bernardeschi. Exploiting dynamic partial reconfiguration for on-
line on-demand testing of permanent faults in reconfigurable systems. In
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
2014 IEEFE International Symposium on, pages 203-208, Oct 2014.

P. Stephan, R.K. Brayton, and A.L. Sangiovanni-Vincentelli. Combina-
tional test generation using satisfiability. IEEE Transactions on Computer-
Aided Design of Integrated Clircuits and Systems, 15(9):1167-1176, Sep
1996.

L. Sterpone, M. Sonza Reorda, M. Violante, F. Lima Kastensmidt, and
L. Carro. Evaluating different solutions to design fault tolerant systems
with SRAM-based FPGAs. J. Electron. Test., 23(1):47-54, February 2007.

M. Tahoori. Application-Dependent Testing of FPGAs. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 14(9):1024 —1033, 2006.

24

[39] D. Tille and R. Drechsler. A Fast Untestability Proof for SAT-based ATPG.
In Proceedings of the 12th International Symposium on Design and Diag-
nostics of Electronic Circuits & Systems (DDECS’09), pages 38-43, 2009.

[40] M. Violante, N. Battezzati, and L. Sterpone. Reconfigurable Field Pro-
grammable Gate Arrays for Mission-Critical Applications. Springer Science
& Business Media, 2011.

25

untestability : CONTEXT =
BEGIN
untest_circuit : MODULE =
BEGIN
% Input pins and clock
input clk, i0, il : boolean
% Fault-free circuit
local ib0O, ibl : boolean
local LO, L1, L2 : boolean
local f£f0, obO : boolean
output o0 : boolean
% Faulty circuit
local ibO_F, ib1_F : boolean
local LO_F, L1_F, L2_F : boolean
local ffO_F, obO_F : boolean
output oO_F : boolean
DEFINITION
% Fault-free circuit
ib0 = i0; ibl = i1;
LO = ib0O AND ibil; L1 = ibO OR ibli;
L2 = LO OR L1;
ob0 = f£f0; o0 = ob0;
% Faulty circuit
ibO_F = i0; ibl_F = i1;
LO_F = ibO_F AND ibil_F;
L1_F = ibO_F OR ibl_F;
L2_F = NOT LO_F AND L1_F OR LO_F AND L1_F;
obO_F = ffO_F; oO_F = obO_F;
INITIALIZATION
ff0 = FALSE; ffO_F = FALSE;
TRANSITION
[clk = false --> % do nothing
[1 clk = true -—>
£ff0’ = L2; ffO_F’ = L2_F;]
END;
untestability_th : THEOREM
untest_circuit |- G(NOT(oO /= o0_F));
END

Figure 6: Example of SAL specification

26

|

Figure 7: The region of component C (in thick lines).

Step O:
--- Input Variables (assignments) ---
i0 = false

il = false

Step 1:
--- Input Variables (assignments) ---
i0 = false

il = true

Figure 8: A SAL-SMC counter-example

27

Behavioural
Description

Logic Synthesis

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
|
|
| B [N
| ,\I‘EDII_F [Netlist
etlist | Parser Description 2
I Description [, UASTPG
| —>
| |
| |
| | < >
| | N]
Place & Route || Logic Test Untestable
! | Faults Patterns Faults
| | List
|
| : N~
|
| N —
| xdI post I \R_t/
Place&Rout | 2 outing
! file | E“STAR Faults
| | List
|
| : N
| .
| FPGA Design |
Process I

Figure 9: Flow Diagram of the Untestability Analysis and Automatic Test Pat-
tern Generation Environment.

28

| |
| |
I ‘ Netlist :
Select an SEU e |
| ‘ Specifications SAL-SMC
& ¢ i
proof checking)
(. Untestability |
| ‘ Theorem |
|
Routing !
| Unfaulty and Faulty
Fa_ult T Netlist Model ‘ !
List ‘ | Generation I
| ‘ |
X I '
| Ur_1|_t:stab|l|ty ‘ | Data
Netlist | Ge:;r;et?;n T
Description |
| | Activities
| .
| |
Yes |

Retrieve
I B
Test Pattern

Proved? Log Fault |~

More SEUs?

Untestable
Faults

Test
Patterns

e e e e e e e e e D e = —
Figure 10: The execution flow of UA2TPG.
80
Logical untestability
70 | Routing untestability m—— -
60 | Total untestability ———1 i

a
=}
T
L

Untestability (%)
w B
o o
—
L

2N
o o
T T
L L

o

A
PR % % 2,
% e} S S, £
CR) 2 ol
Z 2 2, % b
) @ % .
3 % S % %
o) Q. > 2 3
) > S, % .
2, % % % >
% ?, e s
o

circuit

Figure 11: Fault untestability for the considered circuits.

29

	Introduction and Related Work
	Effects of SEUs in the Configuration Memory of SRAM-based FPGAs
	SEUs in Logic Components
	SEUs in Routing Components

	Model checking
	The SAL Environment

	The UA2TPG tool
	Modeling SRAM-based FPGA Netlists
	Modeling SEUs in the Configuration Memory
	System specification
	Identifying Untestable SEUs
	Generating Test Patterns for Testable SEUs

	The Analysis Environment
	Experimental results
	Test pattern generation
	Validation of Results
	Performance

	Conclusions and Future Work

