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Abstract—Bike-sharing systems are recently becoming ubiq-
uitous in most cities, as an environmentally friendly alternative
to other means of transportation. An optimal management of
the bike-sharing service would in principle benefit from the
availability of a mathematical model underlying the system.
Accordingly, in this paper we propose a Markov-chain based
approach to model the bike-sharing system, which we believe
has a potential to develop alternative methods to implement
classic control actions in a bike-sharing system (e.g., in terms
of implementing alternative relocation strategies or planning
advertising campaigns). The proposed methodology is validated
on real data from the bike-sharing system in Boston, USA, and a
first application of the proposed model is preliminarily illustrated
in the paper.

I. INTRODUCTION

Bike sharing schemes are now available in most cities
around the world as described among other in [1], [2], [3],
[4]; see for example Vélib’ in Paris, Bicing in Barcelona,
Capital Bikeshare in Washington, D.C. and Forever Bicycle
in Shanghai. A good overview can be gained from [5] and
references therein. They are not only seen as an integral
component in the public transportation networks for alleviating
congestion and obesity problems, see [6], [7], [8], [9], but also
as a fundamental tool for combating urban pollution, see [10],
[11], [12]. They are also being suggested as a step towards
solving the last mile problem1 in intelligent transportation
systems, see [13]. See also [14] for an overview over IT
based bike sharing schemes in North America and [15] on a
simulation study on the related field of electric bike sharing.

Given such a recent diffusion, there is also an interest
in developing optimal ways of managing a bike-sharing
system. In fact, as pointed out in [2], most bike-sharing
systems have to rely on public fundings from municipalities
or other public sources, since customer fees are not enough
to match the capital costs plus the annual operational costs.
Accordingly, there is a strong interest in devising smart ways
of reducing operational costs, e.g., to minimise the costs of
operating staffed trucks for manual relocation of bicycles in
order to balance the difference between supply and demand
at various stations (see [16]); or to maximise the revenues
obtained by using the bikes for advertising.

1see C. MacKechnie, The Last Mile Problem at url http://publictransport.
about.com/od/Transit Planning/a/The-Last-Mile-Problem.htm.

Our interest here is to develop a model to capture the
macroscopic aggregated properties of the bike-sharing system.
From this perspective, we are mainly interested in answering
high-level questions that pertain the identification of the
main flows in the bike network, or how important are some
bike stations with respect to others. Our ultimate goal is
finally to support bike-sharing managers in implementing
planning and control actions aiming at improving the
efficiency of the bike network, in a proactive manner (i.e.,
anticipating the expected outcome of a strategic change
in the bike network). The overall problem is particularly
challenging if one intends to embed in the model the big
quantity of data that become available in quasi real-time
from a bike network. As an example, in this paper we use
data collected from the bike-sharing network in Boston, USA2.

For this purpose, our starting point is a recently proposed
Markov-chain based framework for capturing macroscopic
urban dynamics, namely [17]. That paper employed graph
theory and Markov chain ideas to reveal some non-trivial
patterns of urban mobility and to support engineers with
practical tools to solve a number of mobility applications,
such as routing, traffic light regulation and road works
planning. Such a work has been recently extended along a
number of lines (see among other [18] and [19]) and further
validated over the small district of De Uithof, in Utrecht (in
[20]) and for real data of the city of Beijing ([21]).

The objectives of this paper are two-fold: (i) first, we
explain how the original idea of [17] can be adapted to the
particular application of interest here, i.e., the bike-sharing
network; (ii) second, we show some preliminary results that
have been obtained by adopting the proposed modelling
framework. The development of practical control applications
based on the proposed model are currently under investigation
and will be illustrated in a later work.

This paper is organised as follows: Section II explains
how we build a Markov-chain transition matrix from bike
trips data, and motivates why Markov chains are expected
to be useful to handle big-data analyses. Section III shortly
describes the used database of data and validates the transition

2http://hubwaydatachallenge.org/



matrix built on such data. Section IV shows clustering results
obtained using the second eigenvector of the transition matrix,
and provides an interpretation of the result in terms of the
bike network. Finally, Section V concludes the paper and
outlines our current lines of research.

II. A MARKOV-CHAIN MODEL FOR A BIKE-SHARING
SYSTEM

In this paper we are interested in discrete-time, finite-state,
homogeneous Markov chain. A Markov chain with n states
is completely described by the n × n transition probability
matrix P, whose entry Pij denotes the probability of passing
from state Si to state Sj in exactly one step. P is a row-
stochastic non-negative matrix, as the elements in each row
are probabilities and they sum up to 1. Within Markov chain
theory, there is a close relationship between the transition
matrix P and a corresponding graph. The graph consists of
a set of nodes that are connected through edges. The graph
associated with the matrix P is a directed graph, whose nodes
are given by the states Si, i = 1, ..., n, and there is a directed
edge leading from Si to Sj if and only if Pij 6= 0. A graph
is strongly connected if for each pair of nodes there is a
sequence of directed edges leading from the first node to the
second one. The matrix P is irreducible if and only if its
directed graph is strongly connected. We do not describe here
other properties of Markov chains, and the interested reader
can refer to conventional books, e.g., [22] for more details.

In our model of a bike-sharing network, we assume
that the i′th bike station is associated with two states: state
BSi refers to a bike that is currently parked at the i′th Bike
Station; state TBi refers to a bike that is Travelling from
the i′th Bike station to any other destination. Thus, at every
time step (in our simulation, one second), a bike staying in
the BSi state can either remain in the same state, or move
to state TBi (i.e., if somebody picks the bike to reach his
destination). Similarly, a bike staying in the TBi state can
either remain in the same state (i.e., if it keeps travelling
because the destination has not been reached yet) or can
move to another state corresponding to any bike station BSj,
where the j′th bike station corresponds to the destination.
Note that j can be equal to i (i.e., some users may pick up
a bike at the i′th bike station, and then return the bike to the
same place after having completed their own business). Also,
note that it is not possible to pass directly from state BSi to
BSj if i 6= j or from state TBi to TBj if i 6= j. Our model
is exemplified in the graph shown in Figure 1.

According to the previous discussion, the transition matrix of
the Markov chain has size 2N × 2N where N is the number
of bike stations, and it is very sparse (i.e., all but two entries
for the states BSi are equal to zero, ∀i = 1, ..., N , and n− 1
entries are equal to zero for the states TBi, ∀i = 1, ..., N ).
Then, the diagonal entries pertaining the BS states should be
built proportional to the average time spent (parked) at a given
bike station (i.e., by denoting such time with tpi, then the
entry should be (tpi− 1)/tpi as explained in the Appendix in
[17]), while the other non-zero entry of the same row is easily
determined by enforcing the row to be stochastic (i.e., sum
equal to 1). The diagonal entries pertaining the TBi states
are similarly computed proportionally to the average length

Fig. 1. Graph modelling a bike-sharing network. States BSi’s are only
connected to themselves or to states TBi’s (black solid connections). States
TBi’s are connected to themselves and to every single state BS (red dashed
connections).

of trips starting from the i′th bike station. The other entries
in the same row are chosen proportionally to the frequency
with which a given bike station is chosen as a destination
for a trip starting from the i′th bike station, and scaled in
order to make the row stochastic as well. Thus, the transition
matrix can be built only if average parking times, average
trip durations and a full list of trips are available. However,
note that such a requirement is typically fulfilled, since such
data are available anyway for other purposes as well, e.g.,
typically, GPS-like sensors are mounted on bikes to prevent
people from stealing them; bike stations are monitored to
choose optimal relocation strategies to avoid bike stations
to remain empty; and finally information about the trips are
available for pricing purposes. In particular, such data were
publicly available for the city of Boston, USA, and in the
next Section we explain how we built the transition matrix
for that specific use case. The next subsection collects some
known results to motivate the adoption of Markov chains for
big-data applications.

A. Effects of simple updates of Markov chain transition ma-
trices

Markov chains are particularly suited to big data applica-
tions for several reasons.

• First, microscopic behavior is embedded into the chain
through aggregation; namely, in the form of prob-
abilities. These probabilities are easily measured or
calculated without need for large data processing or
storage capabilities.

• The suitability of Markov chains for capturing and
modelling complex dynamics is discussed and justified
in [23].

• Third, the suitability of Markov chains for big data
application is discussed, for example, in the context of
Google’s PageRank algorithm [24]. Here it is shown
that well-established and robust algorithms are already
available to handle data-sets of the size of thousands,
if not millions, of webpages that might contain the
relevant information pertaining the user’s query.



• Finally, many of the key properties (e.g., Perron eigen-
vectors) of a Markov Chain can be calculated using
simple update formulae [25]. This applies to updates
of sparse transition matrices and simple rank-1 updates
of the transition matrix (depending on application).

To gain insight into fast recalculation of Markov chain quan-
tities for changed data, we now collect a number of theorems
that can be used in this context. To set up notation, throughout
this section let I always denote the identity matrix of appropri-
ate dimension, as well as e and ei the all ones vector and the
i′th unit vector of appropriate dimension. Our starting point is
the following well-known theorem from [25].

Theorem 1: Let P and P̃ be irreducible n×n Markov chain
transition matrices and let π and π̃ be their respective left
Perron eigenvectors. Let Π = eπ>. Let further G be a ’one
condition’ generalised inverse of I − P, i.e. G satisfies (I −
P)G(I − P) = I − P. In this situation the following equality
holds.

π̃> − π> = π̃>(P̃− P)G(I−Π). (1)

The above theorem gives insight into the relationship between
the stationary distributions of a Markov chain before and after
a parameter update. In our situation we assume that P̃ and P
as well as π along with Π are known and we wish to find an
efficient way to compute π̃ (e.g., the update of the transition
matrix after we receive information of one more trip). There
are several candidates for a matrix G with the desired property.
In particular, the group inverse matrix Q# (see e.g. [26]) can
be used. Ideally we wish to have an explicit formula for π̃.
A sufficient condition for the existence of such a formula is
that the matrix I − (P̃ − P)G(I − Π) is invertible. This is
simple to check for some forms of updates. For example, if
(P̃ − P) is rank-1 (which corresponds to the case where the
transition matrix is updated due to a new trip), then one could
use the following theorem from [27] addressing row updates
to Markov chain transition matrices and their effect on the
stationary distributions.

Theorem 2: Let P and P̃ be irreducible n×n Markov chain
transition matrices that satisfy the relationship P̃−P = −eiδ>
where δ ∈ Rn. Let π and π̃ be the respective left Perron
eigenvectors of P and P̃. Let Q = (I − P) and let Q# be its
group inverse. Then

π̃> = π> − ε>, (2)

where ε> = πi

1+δ>Q#ei
δ>Q#. Further

(I− P̃)# = Q# + eε>(Q# − ε>Q#ei
πi

I)− Q#eiε
>

πi
. (3)

The above theorem allows one to explicitly compute the sta-
tionary distribution of a Markov chain after updating a single
row using the original stationary distribution and the group
inverse of (I−P). It also allows to directly compute the group
inverse of the updated Markov chain and this theorem can thus
be used iteratively to obtain updated stationary distributions
for arbitrary changes in the transition matrix by means of
describing them as consecutive row updates. In some situations
even simpler formulas can be obtained. For example, the
following theorem was proved in [18].

Theorem 3: Let P and P̃ be irreducible n × n Markov
chain transition matrices such that P̃ is obtained from P by
multiplying the i′th diagonal entry with a factor wi > 0 for
each i = 1 . . . , n and scaling the off diagonal entries in each
row so that their ratios remain constant. Let π and π̃ be the
respective left Perron eigenvectors of P and P̃. Then

π̃ = κWπ, (4)

where W = diag(w1, . . . , wn) and κ = 1
‖Wπ‖1

is a scaling
factor that ensures that the entries of π̃ sum to 1.

In the bike example, the previous theorem can be used as
soon as updates regarding the average parking time of bikes
at a given bike station, or regarding the average time length
of trips from a given bike station are received.

III. BOSTON DATA

Tha data used in this work involve about 70000 bike trips
occurring between July 28 and September 21 in year 2011.
Overall, 53 bike stations and 569 bikes were effectively used
in the period under exam. The transition matrix was built
upon such available data, and thus corresponds to average
values in the examined time range. The transition matrix
has size 106 × 106 and, consistently with the discussion in
Section II, not more than 2N + (N + 1) ·N non-zero entries
(actually, there are even less non-zero entries, namely, 2654,
due to the fact that in the period under exam some particular
pairs of origin-destination were never chosen by the users).

All the information required to build the Markov chain
transition matrix can be extracted from the list of trips: in
particular, every trip stores the ID of the bike, the time at
which the bike is taken, the bike station of origin, the time
at which the bike is delivered back and the bike station of
destination. Other information was also available, such as
whether the user was a registered or a casual customer (i.e.,
without a membership to the bike-sharing service); the zip
code of the user; the birth year of the user and the gender.
Note that all of such information can be used to deliver
particular services (e.g., advertising), but have not been used
in this work and their analysis will be left for a future work.

Remark 1 : One might expect that the destination of
one trip should coincide with the origin of the next trip (of
the same bike). This is true unless the bike gets relocated to
another bike station, some time during the two successive
trips (e.g., because there is a shortage of bikes at one bike
station). Accordingly, in the list of trips from the available
data, most of the times the two stations coincide, but in
some cases there is a discrepancy. We assumed that every
discrepancy was due to relocations, and did not consider such
inconsistent trips when computing parking times (because
the time of relocation was not available, and thus it could
not be established how long the bike had been parked before
relocation, or after relocation before being used again).

Remark 2 : Note that the available data only reveal a
part of the true story. For instance, some users might have
wanted to use a bike to take a specific trip but did not find any
available bike at the origin bike station; or some users might
have wanted to choose a specific destination but found that it



Fig. 2. Comparison between the Perron eigenvector of the Markov chain transition matrix (in red) and the same information extracted from the trip data (in
blue).

was already full of bikes. We do not have information of such
(somewhat) unsatisfied customers, but note that they might
introduce some noise in the data (i.e., due to unavailability
of bikes, they might choose a different starting point than the
desired one; or due to full bike stations, they might choose a
different destination point than the desired one).

Figure 2 shows in blue the Perron eigenvector of the
Markov chain transition matrix built according to the
procedure described in Section II. The entries of the Perron
eigenvector correspond to the long-run fraction of time that
a bike spends in the corresponding state, i.e., either parked
at the i′th bike station, or on a trip starting from the i′th
bike station. Figure 2 also compares the Perron eigenvector
with the same information extracted from the same data (and
shown in red). As can be noticed from the figure, the two
densities are very close, and discrepancies are due to the
fact that the real data correspond to a possible realisation of
the Markov chain transition matrix given a specific initial
distribution of bikes. Another interesting information that can
be extracted from the figure is that bikes are available more
likely than busy.

IV. CLUSTERING

As illustrated in reference [17] in a different context, the
advantage of aggregating data in a Markov chain, is that
some quantities that can be easily computed in the context of
Markov chains have an insightful interpretation in terms of
the original data that in some cases can not be easily extracted
in other ways. As an example, the “second eigenvector”

Fig. 3. Second eigenvector of the submatrix corresponding to the trips of
vehicles.

(i.e., the eigenvector associated with the second eigenvalue
of largest module, if real) is known to have clustering
properties (see Appendix of the reference [17]). To obtain a
meaningful interpretation of clusters in the bike network, we
only considered the flows of bikes neglecting the times spent
parked in the station, and the time spent travelling along a
trip. Thus, we considered the submatrix of the original one
whose states would correspond to TBi, and renormalised its
rows to have a unitary sum. Then, the second eigenvector of
the matrix is shown in Figure 3.

The interpretation of clusters is that people most likely
travel within a single cluster, and more rarely travel from



Fig. 4. Positive and negative entries of the second eigenvector do seem to
provide a natural geographical characterisation of the bike stations in Boston.

one cluster to the other cluster. The possible membership
to one cluster rather than to another one is given by the
sign of the corresponding entry of the second eigenvector,
and Figure 4 shows the positive and the negative entries of
the second eigenvector with a different colour (the figure is
taken from Google Map, using the information of the latitude
and longitude of each single bike station, available from the
data-set). The interesting property of the so-obtained clusters
is that they do not exploit any geographical information about
the position of the bike stations, but they only exploit the
knowledge of the typical trips made by the customers, and
thus, of the typical choice of origin-destination pairs. As
shown in the figure, the clusters do seem to provide a correct
information, as the locations are in fact consistently situated
in two geographically separated regions.

Remark 3 : In principle, it could occur that different
clusters arise at different times of the day. In this case, we
further computed the second eigenvector taking into account
only the trips occurring in the morning, those in the afternoon,
and still we obtained the same results. This suggests that in
this specific application clusters appear not to be time-varying.

The knowledge of the clusters can be used for a number
of applications: since most trips occur within a cluster, and
more rarely from one cluster to another cluster, the number
of bikes within a cluster should be constant most of the time.
Accordingly, one could plan two separate trucks performing
relocation actions in the two clusters. Also, since there are
two (quite) separate flows of trips within the two clusters,
two advertising campaigns could be conducted in parallel in
the two areas.

V. CONCLUSION

This paper proposed a new Markov chain based model
to describe the functioning of a bike-sharing network. The
model was inspired by a similar work pertaining vehicular
flows, and adapted for the specific application which, among
other things, required two states for each bike station (i.e., one
to take into account the bikes parked at the bike station, and
one to consider all trips starting from that given bike station).
We used real data from the Boston bike-sharing network to
build our Markov chain transition matrix, and to validate the

model with respect to the data.

The paper mainly focussed on the modelling part, while the
only practical application described so far was the clustering
one, which indeed did provide an interesting partitioning of
the bike-sharing network, which could not be extracted from
the same information in a straightforward manner. However,
in our mind many other practical applications can be based
on the proposed model, and in particular we are currently
working towards designing novel relocation strategies and
new ideas for advertising campaigns. For this purpose we plan
to use other variables which can be easily extracted from the
Markov chain (e.g., the Mean First Passage Times (MFPTs)),
and other information from the database (e.g., the age and the
gender of customers) which have not been used yet.

ACKNOWLEDGMENT

This work was supported in part by Science Foundation
Ireland grant 11/PI/1177.

REFERENCES

[1] S. Shaheen, S. Guzman, and H. Zhang, “Bikesharing in Europe, the
Americas, and Asia: Past, present and future,” Transportation Research
Record, 2010.

[2] P. Midgley, “Bicycle-sharing schemes: enhancing sustainable mobility
in urban areas,” United Nations, Department of Economic and Social
Affairs, 2011.

[3] J. E. Pucher and R. E. Buehler, City cycling. Cambridge, MA: MIT
Press, 2012.

[4] E. Fishman, S. Washington, and N. Haworth, “Bike share: A synthesis
of the literature,” Transport Reviews: A Transnational Transdisciplinary
Journal, vol. 33, no. 2, pp. 148–165, 2013.

[5] P. DeMaio, “Bike-sharing: History, impacts, models of provision, and
future,” Transport Reviews: A Transnational Transdisciplinary Journal,
vol. 12, no. 4, pp. 41–56, 2009.

[6] P. Midgley, “The role of smart bike-sharing systems in urban mobility,”
Journeys, pp. 23–31, 2009.

[7] E. Fishman, “The impact of public bicycle share schemes on transport
choice,” in Asia-Pacific Cycle Congress, Berlin, Germany, 2011, pp.
18–21.

[8] N. Lathia, S. Ahmed, and L. Capra, “Measuring the impact of opening
the London shared bicycle scheme to casual users,” Transportation
Research Part C, vol. 22, pp. 88–102, 2012.

[9] E. Murphy and J. Usher, “The role of bicycle-sharing in the city:
Analysis of the Irish experience,” International Journal of Sustainable
Transportation, vol. 9, no. 2, pp. 116–125, 2015.

[10] J. Pucher, J. Dill, and S. Handy, “Infrastructure, programs, and policies
to increase bicycling: An international review,” Preventive Medicine,
vol. 50, no. Supplement, pp. S106–S125, 2010.

[11] R. Buehler and J. Pucher, “Cycling to sustainability in Amsterdam,”
Sustain: A Journal of Environmental and Sustainability issues, vol. 21,
pp. 36–40, 2010.

[12] J. Pucher, R. Buehler, and M. Seinen, “Bicycling renaissance in North
America? An update and re-appraisal of cycling trends and policies,”
Transportation Research Part A, vol. 45, no. 6, pp. 451–475, 2011.

[13] J. Pucher and R. Buehler, “Making cycling irresistible: Lessons from the
Netherlands, Denmark and Germany,” Transport Reviews: A Transna-
tional Transdisciplinary Journal, vol. 28, no. 4, pp. 495–528, 2008.

[14] S. Shaheen, E. Martin, A. Cohen, and R. Finson, “Public bikesharing
in North America: Early operator and user understanding,” Research
Report 11-26, Mineta Transportation Institute, 2012.

[15] S. Ji, C. Cherry, L. Han, and D. Jordan, “Electric bike sharing:
simulation of user demand and system availability,” Journal of Cleaner
Production, vol. 85, pp. 250–257, 2013.



[16] J. Pfrommer, J. Warrington, G. Schildbach, and M. Morari, “Dynamic
vehicle redistribution and online price incentives in shared mobility
systems,” IEEE Transactions on Intelligent Transportation Systems,
vol. 15, no. 4, pp. 1567–1578, 2014.

[17] E. Crisostomi, S. Kirkland, and R. Shorten, “A Google-like model
model of road network dynamics and its application to regulation and
control,” International Journal of Control, vol. 84, no. 3, pp. 633–651,
2011.

[18] E. C. A. Schlote, S. Kirkland, and R. Shorten, “Traffic modelling
framework for electric vehicles,” International Journal of Control,
vol. 85, no. 7, pp. 880–897, 2012.

[19] T. Morimura, T. Osogami, and T. Idé, “Solving inverse probem of
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