
Noname manuscript No.
(will be inserted by the editor)

Compressed String Dictionary Search with Edit Distance
One

Djamal Belazzougui · Rossano Venturini

the date of receipt and acceptance should be inserted later

Abstract In this paper we present different solutions for the problem of indexing a
dictionary of strings in compressed space. Given a pattern P, the index has to report
all the strings in the dictionary having edit distance at most one with P. Our first
solution is able to solve queries in (almost optimal) O(|P|+ occ) time where occ is
the number of strings in the dictionary having edit distance at most one with P. The
space complexity of this solution is bounded in terms of the k-th order entropy of the
indexed dictionary. A second solution further improves this space complexity at the
cost of increasing the query time. Finally, we propose randomized solutions (Monte
Carlo and Las Vegas) which achieve simultaneously the time complexity of the first
solution and the space complexity of the second one.

1 Introduction

Modern web search, information retrieval, data base and data mining applications
often require solving string processing and searching tasks. Most of such tasks boil
down to some basic algorithmic primitives which involve a large dictionary of variable-
length strings. Solving approximate searches over dictionaries of strings is an impor-
tant primitive that appears frequently in many practical scenarios. In Web search, for

The work is an extended version of the paper [8] appeared in Proceedings of 23rd Annual Symposium on
Combinatorial Pattern Matching, 2012. This work has been partially supported by Academy of Finland un-
der grant 250345 (CoECGR), the French ANR-2010-COSI-004 MAPPI project, PRIN ARS Technomedia
2012, the Midas EU Project, Grant Agreement no. 318786, and the eCloud EU Project, Grant Agreement
no. 325091.

Djamal Belazzougui
Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of
Helsinki, Finland.

Rossano Venturini
Department of Computer Science, University of Pisa, Italy.

E-mail: djamal.belazzougui@cs.helsinki.fi, rossano.venturini@unipi.it

2

example, users query the engine with possibly misspelled terms that can be corrected
by choosing among the closest terms stored in a trustable dictionary. In data min-
ing and data base applications, instead, an automatically built dictionary may contain
noise in the form of misspelled strings. Thus, we may need to resort to approximate
searches in order to identify the closest dictionary strings with respect to a (correct)
input string.

The edit distance (also known as Levenstein distance) is the most commonly
used distance to deal with misspelled strings. The edit distance between two strings
is defined as the minimal number of edit operations required to transform the first
string into the second string. There are three possible edit operations: deletion of a
symbol, insertion of a symbol and substitution of a symbol with another.

The problem string dictionary search with edit distance one is defined as follows.
Let D = {S1,S2, . . . ,Sd} be a dictionary of d strings of total length n drawn from an
alphabet Σ = [σ]. We want to build a (compressed) index that, given any string P[1, p],
reports all the strings in D having edit distance at most 1 with P. For simplicity, we
assume that the strings in D are all distinct and sorted lexicographically (namely, for
any 1≤ i < d, Si < Si+1).

In this paper we provide two compressed solutions for the problem. The first
solution guarantees (almost) optimal query time while requiring compressed space.
Namely, we show how to obtain an index of 2nHk + n · o(logσ) + 2d logd bits,
that is able to report all the occ strings having edit distance at most 1 with P in
O(p+occ) time. Here Hk denotes the k-th order entropy of the strings in the dictio-
nary for any fixed k = o(logσ n). Interestingly, the time complexity of this solution
is independent of alphabet size. This is quite an uncommon result for compressed
data structures dealing with texts. The second solution provides space/time tradeoffs
by using a completely different approach. Its space occupancy, indeed, decreases to
nHk + n · o(logσ) bits. This better space bound is obtained at the cost of increasing
the query time to O(p log logσ +occ).

Interestingly, our first solution can be easily extended to support an additional
operation which has interesting practical applications. Assume that each string Si in
D has been assigned a score c(Si), which, for example, could establish the relative
importance of any string with respect to the others. The first solution can be extended
to support the extra operation Top(P[1, p],k) that reports the k highest scored strings
in D having edit distance at most one with P. This operation is solved in O(p+k logk)
time and returns the occurrences sorted by their scores.

We finally show how to introduce randomization in these solutions to derive
Monte Carlo and Las Vegas solutions. These solutions are able to either reduce the
space occupancy or improve the query time of the deterministic solutions.

2 Related work

The literature presents several solutions to the problem of indexing string dictionaries
to efficiently search with error distance one.

The theoretical study of the problem has been initiated by Yao and Yao in [34].
They present a solution in the bit probe model for the related problem of indexing a

3

dictionary of strings supporting searches with Hamming distance one. Their solution
indexes d binary strings of length m each (i.e., n = dm) by using O(n logm) bits and
solves a query with O(m log logd) bit probes. Subsequently, Brodal and Venkatesh
[12] improve the above time complexity by a factor log logd: their solution uses
O(n logd) bits of space and O(m) bit probes. In the RAM model, the time complexity
is O(m/w), where w is the size of a machine word.

Brodal and Ga̧sieniec [11] propose two solutions to solve searches with Hamming
distance one1. The first solution reports all the occ strings having Hamming distance
at most one with P in time O(p+occ) by using O(σ ·n logn) bits of space. The main
data structure is a trie that indexes strings in D plus extra strings. An extra string is a
string that does not belong to D but has Hamming distance one with at least a string in
D. Clearly, each root-to-leaf path in the trie represents either a string in D or an extra
string. The leaf representing a string S is associated with the list of indices of strings in
D having Hamming distance one with S. The query for P is solved by navigating the
trie. If a leaf is reached, the list of indices stored in the leaf is reported. Construction
time and space occupancy for non-constant size alphabets are the major drawbacks
of this solution. Indeed, it is unknown how to build this data structure in O(nσ) time
or use o(nσ logn) bits of space. Their second solution is slower than the previous one
by an additive term O(logd) (namely, query time is O(p+ logd + occ)) [11]. The
advantage is represented by its space occupancy which is O(n logn) and, thus, it is
better for non-constant size alphabets2. The solution resorts to two tries augmented
with a sorted list of identifiers. These tries index, respectively, the strings in D and
the strings in D reversed. The query algorithm exploits the following property: if
there exists a string S in D having distance one with P[1, p], it can be factorized as
S = P[1, i] · c ·P[i+ 2, p], for some index i and symbol c ∈ Σ . This is a key property
that has been exploited by almost all the subsequent solutions, including ours. These
solutions differ from each other in the data structures and the algorithms they use to
discover all these factorizations. For each string S[1,s] in D, Brodal and Ga̧sieniec
consider all the triplets (npi(S), S[i+ 1], nsi+2(S)), where npi(S) is the identifier of
the node corresponding to prefix S[1, i] in the first trie and nsi+2(S) is the identifier
of the node corresponding to S[i+2,s] reversed in the second trie. It is easy to index
these triples by inserting them in a search tree that is able to report, given a pair
of node identifiers u and v, all the triples with u in the first component and v in
the third component. This is the core operation of an algorithm solving any query
in O(p logn+ occ) time. For any index i, the algorithm identifies the nodes npi(P)
and nsi+2(P) and uses the search tree by querying for these two nodes. If the triple
(npi(P), c, nsi+2(P)) is returned, then the string S = P[1, i]c ·P[i+ 2, p] is in D and
has distance one from P. The above query time can be further improved by replacing
the search tree with a sorted list of string identifiers in each node of the reverse trie
and by resorting to (a sort of) fractional cascading during the query resolution.

The current best solution for the string dictionary search with edit distance one
problem has been presented by Belazzougui [4]. This solution follows a similar ap-

1 However, they can be easily extended to deal with the more general edit distance.
2 Actually, the paper [11] described only a solution for binary alphabet. However, it is not hard to obtain

the claimed space and time complexities also for non-constant alphabet sizes.

4

proach but obtains significantly better time and space complexities. Indeed, this so-
lution achieves O(p+occ) query time by requiring optimal O(n logσ) bits of space.
This is obtained by carefully combining compact tries, (minimal) perfect hash func-
tions and Karp-Rabin signatures.

Finally, we observe that this problem can be seen as a simpler instance of either
approximate full-text indexing or approximate dictionary matching with one or more
errors. However, currently best solutions for these more general problems are not
competitive with the solutions presented in this paper (see e.g., [1, 5, 15]).

3 Background

In this section we collect a set of algorithmic tools that will be used in our solutions.
In the following we report each result together with a brief description of the solved
problem. More details can be obtained by consulting the corresponding references.
All the results hold in the unit cost word-RAM model, where each memory word has
size w bits.

Empirical Entropy. Let T [1,n] be a string drawn from the alphabet Σ = {a1, . . . ,ah}.
For each ai ∈ Σ , we let ni denote the number of occurrences of ai in T . The zero-th
order empirical entropy of T is defined as follows.

H0(T) =
1
|T |

h

∑
i=1

ni log
n
ni

(1)

Note that |T |H0(T) provides an information-theoretic lower bound for the output
size of any compressor that encodes each symbol of T with a fixed code [33].

For any string w of length k, we denote by wT the string of single symbols fol-
lowing the occurrences of w in T , taken from left to right. For example, if T =
mississippi and w = si, we have wT = sp since the two occurrences of si in T
are followed by the symbols s and p, respectively. The k-th order empirical entropy
of T is defined as follows.

Hk(T) =
1
|T | ∑

w∈Σ k

|wT |H0(wT) (2)

We have Hk(T)≥ Hk+1(T) for any k ≥ 0. The term |T |Hk(T) is an information-
theoretic lower bound for the output size of any compressor that encodes each symbol
of T with a code that depends on the symbol itself and on the k immediately preceding
symbols [26].

Compressed strings with fast random access. In the following we will require the
availability of a storage scheme for strings that uses compressed space still being
able to access in O(1) time any symbol of the represented string T . To this aim, we
use the following result [21].

5

Lemma 1 Given a text T [1,n] drawn from an alphabet Σ = [σ], σ ≤ n, there exists a
compressed data structure that supports the access in constant time of any substring
of T of length O(logn) bits requiring nHk(T)+ρ bits, where Hk(T) denotes the k-th
empirical entropy of T and k = o(logσ n). The redundancy ρ depends on the alphabet
size σ : ρ = o(n) if logσ = o(

√
logn/k), ρ = n ·o(logσ) otherwise.

The scheme can be also used in cases in which T is the concatenation of a set of
strings (namely, T = S1 ·S2 · . . . ·Sd). The starting positions of strings in T are stored
by resorting to Elias-Fano’s representation [17, 18] within d log(n

d)+O(d) bits. This
additional structure allows us to access an arbitrary portion of any string in optimal
time.

Karp-Rabin signature. Given a string S[1,s], the Karp-Rabin signature function [25]
kr(S) is equal to ∑

s
i=1 S[i] · t i (mod M), where M is a prime number and t is a ran-

domly chosen integer in [1,M − 1]. Given a dictionary of strings D containing d
strings of total length n, we can obtain an instance kr of the Karp-Rabin function that
maps strings in D to the integers in [M−1] without collisions, with M chosen among
the first O(n ·d2) integers. It is known that a value of t that guarantees injectivity can
be found with constant number of attempts in expectation (see the analysis in [16]).
Notice that the representation of kr requires O(logn+ logd) = O(logn) bits of space.

Interestingly, the Karp-Rabin function guarantees that, after a preprocessing phase
over a string S, signatures of strings close enough to S can be computed in constant
time. This property is formally stated by the following lemma.

Lemma 2 Given a string S[1,s], for every prefix P of S, kr(P) can be computed in
constant time. Moreover, for every string Q at distance 1 from S, kr(Q) can be com-
puted in constant time, after a preprocessing phase that takes O(s) time.

Minimal perfect hash function. Given a subset of S = {x1,x2, . . . ,xn} ⊆ U = [2w]
of size n, a minimal perfect hash function has to injectively map keys in S to the
integers in [n]. Hagerup and Tholey [24] show how to build a space/time optimal
minimal perfect hash function as stated by the following lemma.

Lemma 3 Given a subset of S⊆U = [2w] of size n, one can construct in O(n) time a
minimal perfect hash function for S that can be evaluated in O(1) time and requires
n loge+o(n) bits of space.

Compressed static function. Often keys in S = {x1,x2, . . . ,xn} have associated satel-
lite data (called values) from an alphabet Σ = [σ] and we are asked to build a dictio-
nary that, given a key x∈ S, returns its associated value. An arbitrary value is returned
whenever x 6∈ S. Essentially, we are defining a static function F whose domain is the
set S and whose codomain is formed by the values associated with those keys (i.e.,
Σ = {F(x1), . . . ,F(xn)}). The problem asks to evaluate F on its domain with the pos-
sibility of returning any value for keys in U \S. Often the values associated with the
keys follow a skewed distribution: few values are considerably more frequent than
others. In these scenarios, it is desirable to achieve space that depends on the entropy
of the data rather than on the number of possible values. Thus, designing compressed

6

abracadabra$

bracadabra$a

racadabra$ab

acadabra$abr

cadabra$abra

adabra$abrac

dabra$abraca

abra$abracad

bra$abracada

ra$abracadab

a$abracadabr

$abracadabra

=⇒

F L
$ abracadabr a

a $abracadab r

a bra$abraca d

a bracadabra $

a cadabra$ab r

a dabra$abra c

b ra$abracad a

b racadabra$ a

c adabra$abr a

d abra$abrac a

r a$abracada b

r acadabra$a b

Fig. 1 Example of Burrows-Wheeler transform for the string T = abracadabra$. The matrix on the right
has the rows sorted in lexicographic order. The output of the Bwt is the column L = ard$rcaaaabb.

static functions asks to represent F with constant evaluation time by using space
close to nH0 bits, where H0 denotes the 0-th order empirical entropy of the sequence
F(x1),F(x2), . . . ,F(xn). The current best result for this problem [9] is reported in the
following theorem.

Theorem 1 A static function F defined over a subset of keys S = {x1, . . . ,xn} ⊆U =
[2w] into values drawn from an alphabet Σ = [σ], σ ≤ n can be represented with
nH0 +O(n(log logn+H0) log logn

logn)+O(σ + logw) bits of space so that evaluating F(x)
for any x takes constant time, where H0 denotes the empirical zero-th order entropy
of the sequence F(x1), . . . ,F(xn). The scheme can be built in O(n) expected time.

Approximate membership. An approximate membership data structure (AM for short)
stores an approximate representation of a set S = {x1,x2, . . . ,xn} ⊆ U = [2w]. The
representation is approximate in the following sense: the query on an element x ∈ U
always returns true if x∈ S, false with probability at least 1−ε if x∈U \S, where the
real parameter ε ∈ (0,1) (called false positive probability) is specified at construction
time. The Bloom filter [10] is the most popular approximate membership data struc-
ture, but only more recent data structures [9, 14, 30] are known to have optimal time
and space complexities (up to constant factors).

Lemma 4 Given a set S = {x1, . . . ,xn} ⊆ U = [2w] and a parameter ε such that
0 < ε < 1, there exists an approximate membership data structure for the set S with
false positive probability ε requiring O(n log(1/ε)) bits of space and answering any
query in constant time.

Burrows-Wheeler transform. In 1994 Burrows and Wheeler [13] introduced a new
compression algorithm based on a reversible transformation, now called the Burrows-
Wheeler Transform (Bwt from now on). The Bwt transforms the input string T into
a new string that is easier to compress. The Bwt of T , hereafter denoted by BwtT , is
built with three basic steps (see Figure 1):

1. append to T a special symbol $ smaller than any other symbol of Σ ;

7

2. form a conceptual matrix MT whose rows are the cyclic rotations of string T $ in
lexicographic order;

3. construct string L by taking the last column of the sorted matrix MT . We set
BwtT = L.

Every column of MT , hence also the transformed string L, is a permutation of T $.
In particular the first column of MT , call it F , is obtained by lexicographically sorting
the symbols of T $ (or, equally, the symbols of L). Note that sorting the rows of MT
is essentially equivalent to sorting the suffixes of T , because of the presence of the
special symbol $. This shows that: (1) symbols following the same substring (context)
in T are grouped together in L, and thus give raise to clusters of nearly identical
symbols; (2) there is an obvious relation between MT and the suffix array SAT of T .
Property 1 is the key for devising modern data compressors (see e.g. [26]), Property
2 is crucial for designing compressed indexes (see e.g. [19, 28]) and, additionally,
suggests a way to compute the Bwt through the construction of the suffix array of T :
L[1] = T [n] and, for any 2≤ i≤ n, set L[i] = T [SAT [i]−1].

Burrows and Wheeler [13] devised two properties for the invertibility of the Bwt:

(a) Since the rows in MT are cyclically rotated, L[i] precedes F [i] in the original
string T ;

(b) For any c ∈ Σ , the `-th occurrence of c in F and the `-th occurrence of c in L
correspond to the same character of the string T .

As a result, the original text T can be obtained backwards from L by resorting
to function LF (also called Last-to-First column mapping or LF-mapping) that maps
row indexes to row indexes, and is defined as:

LF(i) =C[L[i]]+ rankL[i](L, i),

where C[L[i]] counts the number of occurrences in T of symbols smaller than L[i] and
rankL[i](L, i) is a function that returns the number of times symbol L[i] occurs in the
prefix L[1, i]. We talk about LF-mapping because the symbol c = L[i] is located in
the first column of MT at position LF(i). The LF-mapping allows one to navigate T
backwards: if T [k] = L[i], then T [k− 1] = L[LF(i)] because row LF(i) of MT starts
with T [k] and thus ends with T [k− 1]. In this way, we can reconstruct T backwards
by starting at the first row, equal to $T , and repeatedly applying LF for n steps.
As an example, see Figure 1 in which the 3rd a in L lies onto the row which starts
with bracadabra$ and, correctly, the 3rd a in F lies onto the row which starts with
abracadabra$. That symbol a is T [1].

Compressed full-text indexing. Ferragina and Manzini [20] show that data structures
supporting rank queries on the string L suffice to search for an arbitrary pattern P[1, p]
as a substring of the indexed text T . For any i ∈ [1, |L|] and c ∈ Σ , the query rank(i,c)
on L returns the number of occurrences of symbol c in the prefix L[1, i]. The resulting
search procedure is now called backward search and is illustrated in Figure 2. It works
in p phases, each preserving the invariant: At the end of the i-th phase, [First,Last] is
the range of contiguous rows in MT which are prefixed by P[i, p]. Backward search

8

Algorithm Backward search(P[1, p])

1. i = p, c = P[p], First=C[c]+1, Last=C[c+1];
2. while ((First≤ Last) and (i≥ 2)) do
3. c = P[i−1];
4. First=C[c]+ rankc(L,First−1)+1;
5. Last=C[c]+ rankc(L,Last);
6. i = i−1;
7. if (Last< First) then return “no rows prefixed by P” else return [First,Last].

Fig. 2 The algorithm to find the range [First,Last] of rows of MT prefixed by P[1, p].

starts with i = p so that First and Last are determined via the array C (step 1). Fer-
ragina and Manzini proved that the pseudo-code in Figure 2 maintains the invariant
above for all phases, so [First,Last] delimits at the end the rows prefixed by P (if
any). Steps 4 and 5 are the dominant costs of each iteration of Backward search.
They are computed efficiently by using appropriate data structures. Array C is small
and occupies O(σ logn) bits. Efficiently supporting rank queries over Bwt requires
more sophisticated data structures. The literature offers many theoretical and practi-
cal solutions for this problem (see e.g., [2, 3, 6, 19, 28] and references therein). The
following lemma summarizes the results we use in our solution.

Lemma 5 Let T [1,n] be a string over alphabet Σ = [σ], σ ≤ n, L = BwtT be its
Burrows-Wheeler transform and w be the size of a memory word.

1. For σ = O(poly(w)), there exists a data structure which supports rank queries
and the retrieval of any symbol of L in constant time, by using nHk(T)+o(n) bits
of space, for any k ≤ α logσ n and 0 < α < 1.

2. For larger σ , there exists a data structure which supports rank queries and the
retrieval of any symbol of L in O(log logw σ) time, by using nHk(T)+ o(n)(1+
Hk(T)) bits of space, for any k ≤ α logσ n and 0 < α < 1

By plugging Lemma 5 into Backward search, we obtain the following theorem.

Theorem 2 Given a text T [1,n] drawn from an alphabet Σ = [σ], σ ≤ n, there exists
a compressed index that takes p× trank time to support Backward search(P[1, p]),
where trank is the time cost of a single rank operation over L = BwtT . The space
occupancy is bounded by nHk(T)+ρ bits, for any k ≤ α logσ n and 0 < α < 1.

The redundancy ρ is o(n) bits and trank is O(1) when σ = O(poly(w)) while
ρ = o(n)(1+Hk(T)) bits and trank = O(log logw σ) otherwise, where w is the size of
a memory word.

Notice that compressed indexes support also other operations, like locate and
extract, which are slower than Backward search in that they require polylog(n) time
per occurrence [19, 28]. We do not go into further details on these operations because
they are not required in our solution.

9

4 A hashing-based solution

Our first solution can be seen as a compressed variant of the solution presented in [4].
However, we need to apply significant and non-trivial changes to that solution in
order to achieve compressed space and to retain exactly the same (almost optimal)
query time. More formally, in this section we prove the following theorem.

Theorem 3 Given a set D = {S1,S2, . . . ,Sd} of d strings of total length n drawn
from an alphabet Σ = [σ], σ ≤ n, there exists an index that, given any pattern P[1, p],
reports in O(p+occ) worst-case time all the occ strings in D having edit distance at
most one with P. The index requires

1. nHk +o(n)+2d logd bits of space, if σ = O(1);
2. 2nHk +o(n)+2d logd bits of space, if logσ = o(

√
logn/k);

3. 2nHk +n ·o(logσ)+2d logd bits of space, otherwise,

for any fixed k = o(logσ n).

At a high level our solution works as follows. First, it identifies a set of O(p+occ)
candidate strings being a superset of the strings that have edit distance at most one
with P. Then, it discards all candidate strings that actually do not belong to D. For
the moment, let us assume that establishing whether or not a candidate string belongs
to D costs constant time. Later, we will discuss how to efficiently perform this non-
trivial task3.

Our solution asks to identify the strings in D that share prefixes and suffixes with
the query string P. For this aim we resort to two patricia tries PT and PTr that in-
dex the strings in D and the strings in D written in reversed order, respectively. Each
node in each patricia trie is uniquely identified by the time of its visit in the preorder
visit of the tree. The tree structure of each patricia trie is represented in O(d) bits
with standard succinct solutions [27]. In order to perform searches on patricia tries,
we add data structures to compute the length of longest common prefix (lcp) and
longest common suffix (lcpr) for any pair of strings in D. A standard constant time
solution requiring O(d(1+ log n

d)) bits of space is obtained by writing lcps between
lexicographically consecutive strings (resp. reverse strings) using Elias-Fano’s repre-
sentation [17, 18] and by resorting to Range Minimum Queries (rmq) (see e.g., [23])
on these arrays. Fast percolation of the tries is obtained by augmenting the branch-
ing nodes with monotone minimal perfect hash functions as described in [7]. In this
way choosing the correct edge to follow from the current node can be done in constant
time regardless of the alphabet size. The extra space cost is bounded by O(d log logσ)
bits. Thus, the representation of the two patricia tries uses O(d(log logσ + log n

d))

bits. The following fact states that this space occupancy is O(n logσ log logn
logn) bits and,

thus, within the lower-order terms of Theorem 3.

Fact 1 d(log logσ + log n
d) = O(n logσ log logn

logn)

3 Notice that just accessing each symbol of these candidate strings would cost O(p+ p · occ) time in
total which is much higher than our claimed complexity.

10

Proof Observe that, since all the d dictionary strings are distinct, their average length
must be at least logd bits. This implies that their total length in bits, i.e., n logσ bits,
must be at least d logd, i.e., d logd ≤ n logσ . Consider now two cases depending on
the value of d. In the first case we assume that d ≤ n

log2 n
, which gives d(log logσ +

log n
d) ≤

n
log2 n

(log logn + logn) = O(n
logn), and the result follows. Conversely, in

the second case we assume that d > n
log2 n

, which gives log(n/d) ≤ 2loglogn and
logd ≥ logn−2loglogn and, thus, d(logn−2loglogn)≤ d logd ≤ n logσ . This al-
lows us to deduce that d ≤ n logσ

logn−2loglogn and, thus, d(log logσ + log n
d) is at most

O(d log logn) ≤ O(n logσ

logn log logn) = O(n logσ log logn
logn) as claimed. In what preceded

we assumed that log logσ ≤ log logn. If that was not the case, then σ > n and
d log logσ = O(n logσ log logn

logn) trivially holds. ut

The correctness of the steps performed during the search on the patricia tries is
established by comparing the searched string and labels on the traversed edges. This
is done by directly accessing the appropriate portion of the strings in D from their
compressed representations. For this aim D is represented by resorting to the com-
pressed scheme of Lemma 1 that allows constant time access to any symbol of any
string in D. The space required by this is bounded by the k-th order entropy according
to Lemma 1. Since the strings do not keep their original order in the trie PTr, we store
a permutation π of {1,2, . . . ,d} that keeps track of the original order in D of each leaf
of PTr. Namely, π(i) is the index in D of the ith lexicographically smallest string in
PTr. Clearly, storing π requires d logd +O(d) bits. Figure 3 shows most of the data
structures above built on the set of strings D = {abcc,accb,baca,caac,cbcc}.

Candidate strings obtained by deleting a symbol. The identification of candidate
strings for deletion is an easy task. Indeed, we observe that there are just p possi-
ble candidate strings obtainable from P[1, p] by deleting one of its symbol. Thus, we
simply consider any string P[1, i] ·P[i+ 2, p] as a candidate string. However, any of
these strings is reported only after having checked that it actually belongs to D. As
said above, for the moment we assume that this non-trivial task can be done in O(1)
(amortized) time per string.

Candidate strings obtained by inserting or substituting a symbol. Identifying can-
didate strings for insertion or substitution of a symbol is an easy task whenever the
alphabet has constant size. In this case there are, indeed, O(σ · p) = O(p) candidate
strings obtained by inserting or substituting any possible symbol of Σ in any position
of P. This implies that the data structures above suffice for point 1 in Theorem 34.
Identifying insertions and substitutions with a larger alphabet is a much harder task,
which requires an additional data structure. Our additional data structure follows the
idea presented in [4] which allows us to reduce the number of candidate strings from
O(σ · p) to O(p+occ). However, our solution is forced to use more sophisticated ar-
guments in order to achieve a space bounded in terms of the k-th order entropy. Given
the set of strings D and the two patricia tries PT and PTr, our first step consists in

4 Recall that we are still assuming that we can check in O(1) whether a candidate string belongs to D.

11

0

5

54

aac bcc

31

21

bcc ccb

a
baca

c

(a) PT

0

3

5

51

a c

4

aac cb

23

acab

bcca

c

(b) PTr

1 2 3 4 5

lcp 1 0 0 1 ×

lcpr 0 0 1 3 ×

π 3 2 4 1 5

(c) lcp, lcpr , and π

〈0, 0, a, 3, 5〉

〈1, 1, b, 2, 3〉

〈1, 2, c, 1, 3〉

〈1, 3, c, 0, 0〉

(d) Tuples induced by
string abcc

Fig. 3 The picture shows a running example for the set of strings D = {abcc,accb,baca,caac,cbcc}.
Figures (a) and (b) show the patricia tries of, respectively, the strings in D and the strings in D written in
reversed order. For each internal node we report the time of its visit in a preorder visit of the tree while for
each leaf we report the identifier of the corresponding string in D. We report complete edges labels, even
if a patricia trie stores only the first symbol of each label. Figure (c) reports lcp, lcpr , and π . Figure (d)
shows the four tuples induced by the string abcc.

building a set T of tuples. For each string S in D of length s, we consider each of
its factorizations of the form S = S[1, i] · c · S[i+ 2,s]. For each of them, we add to
T the tuple 〈np, i,c = S[i+ 1],s− (i+ 1),ns〉 where np (resp. ns) is the index of the
node in PT (resp. PTr) whose locus has the longest common prefix with S[1, i] (resp.
S[i+ 2,s] reversed). Observe that the cardinality of T is at most n, since we add at
most s tuples for a string S of length s. Figure 3(d) shows the four tuples induced by
string S = abcc. For example, the second tuple is equal to 〈1,1,b,2,3〉 since the locus
of node 1 in PT has the longest common prefix with S[1,1] = a, the locus of node 3
in PTr has the longest common prefix with S[3,4] = cc reversed, and S[2] = b.

The set T contains enough information to allow the identification of all the can-
didate strings. In the following we consider only insertions since substitutions are
solved similarly. For insertions we consider all the factorizations of P having the
form P = P[1, i] ·P[i+1, p]. For each of them, we identify the (highest) nodes npi and
nsi+1 in PT and PTr that are prefixed respectively by P[1, i] and P[i+1, p] reversed.
Clearly, identifying all these nodes for all the factorizations of P requires O(p) time.

12

The key observation to identify candidate strings is the following: If there exists
a tuple 〈npi, i,c, p− i,nsi+1〉 in T , then the string S = P[1, i] · c ·P[i+ 1, p] belongs
to D and, obviously, has distance one from P.5 As an example, consider the pattern
P = acc. The node np1 = 1 has the longest common prefix with P[1,1] = a in PT
and the node ns2 = 3 has the longest common prefix with P[2,3] = cc reversed in
PTr. Since the triple 〈1,1,b,2,3〉 belongs to T , the string P[1,1] ·b ·P[2,3] = abcc

has distance one from P and belongs to D.
Our data structure is built on top of T and allows us to easily identify the required

tuples (and without requiring to store T explicitly). We notice that there may exist
several tuples of the form 〈np, i,?,ns, i′〉. These groups of tuples share the same four
components np, i, ns and i′, and differ just for the symbol c. In order to distinguish
them, we arbitrarily rank tuples in the same group and we assign to each of them its
position in the ranking. We build a data structure that, given the indexes np and ns
of two nodes, two lengths i and i′ and rank r, returns the symbol c of the rth tuple
of the form 〈np, i,?,ns, i′〉 in T . The data structure is allowed to return an arbitrary
symbol whenever such a tuple does not exist. The use of such a data structure to
solve our problem is simple. For each factorization P[1, i] ·P[i+1, p] of P, we query
the data structure above several times by passing the parameters npi, i, p− i− 1,
nsi+1 and r. The value of r is initially set to 0 and increased by 1 for each of the
subsequent queries. After every query, we check if the string S = P[1, i] ·c ·P[i+1, p]
belongs to D, where c is the symbol returned by the data structure. We pass to the
next factorization as soon as we discover that either the string S does not belong to D
or symbol c has been already seen for the same factorization. Both these conditions
provide the evidence that no tuple 〈npi, i,?, p− i−1,nsi+1〉 with rank r or larger can
belong to T . It is easy to see that the overall number of queries is O(p+occ).

We are now ready to present a data structure to index T as described above that
requires O(1) time per query and uses entropy bounded space. The first possible
compressed solution consists in defining a function F which is then represented by
using the solution of Theorem 1. For any tuple 〈np, i,c,ns, i′〉 having rank r in T , we
set F(np, i,ns, i′,r) equal to c. Queries above are solved by appropriately evaluating
function F . According to Theorem 1, each query is solved in constant time. As far
as space occupancy is concerned, we observe that F is defined for at most n values
and that any symbol of any string in D is assigned at most once. Thus, by combining
these considerations with Theorem 1, it follows that the representation of F requires
at most nH0 +O(n(H0+log logn) log logn

logn) bits. A boost of this space complexity to nHk
is obtained by defining several functions F , one for each possible context of length
k. Here k = o(logσ n) is an arbitrary but fixed parameter. The function Fcntxt is de-
fined only for tuples 〈np, i,c,ns, i′〉 where the symbol c is preceded by the context
cntxt in the string that induced the tuple. By summing up the cost of storing the
representations of these functions, we have that the space occupancy is bounded by
nHk +O(n(Hk+log logn) log logn

logn) bits for the fixed k = o(logσ n). Notice that splitting F
in several functions is not an issue for our aim. In the algorithm above, indeed, we
can always query the correct function since we are aware of the correct context.

5 Observe that similar considerations hold also for substitutions with the difference that we skip the ith
symbol in factorizations of the form P = P[1, i−1] ·P[i] ·P[i+1, p].

13

Checking candidate strings. We are left to explain how to establish, in constant time,
whether a candidate string belongs to D. Observe that any candidate string has the
form S = P[1, i] ·P[i+ 2, p] in case of deletion, S = P[1, i] · c ·P[i+ 1, p] in case of
insertion, or S = P[1, i] · c ·P[i+ 2, p] in case of substitution, for some symbol c and
index i. One of the issues behind this task is the fact that S may not fit in a constant
number of memory words and, thus, it cannot be managed directly in constant time.
For this aim Karp-Rabin function kr is used to create small sketches of the strings in
D that fit in O(1) memory words and that uniquely identify each string. Observe that
the signatures assigned by function kr are values smaller than M and, thus, each of
them fits in O(1) words of memory.

Once we have these perfect signatures, we use a minimal perfect hash function
to connect each signature to the corresponding string in D. Let Dkr be the set of sig-
natures assigned by kr to strings in D (i.e., Dkr = {kr(S) | S ∈ D}). We construct a
minimal perfect hash function mph that maps signatures in Dkr to the first d integers.
Lemma 3 guarantees O(1) evaluation time by requiring O(d) bits of space. As satel-
lite data, the entry for the string S stores in logd +O(1) bits the index of the leaf in
PTr that corresponds to S reversed. Clearly, if S belongs to D, mph(kr(S)) gives us in
constant time the index of S reversed in PTr while π(mph(kr(S))) reports the index
of S in PT. It is worth noticing that the result of these operations are meaningless
whenever S does not belong to D.

The checking of candidate strings requires a preprocessing phase shared among
all the candidate strings. Firstly, we compute in O(p) time the Karp-Rabin signatures
of all prefixes and suffixes of P. In this way, the signature of any candidate string S can
be computed in constant time by appropriately combining two of those signatures (see
Lemma 2). Then, we identify a leaf pleaf in PT that shares the longest common prefix
with P. Similarly, we identify a leaf sleaf in PTr having the longest common prefix
with P reversed. Given the properties of patricia tries and our succinct representation,
identifying these two leaves costs O(p) time.

The check for the single candidate string S = P[1, i] ·c ·P[i+1, p] obtained by in-
serting symbol c in the (i+1)th position is done as follows6. We compute in constant
time the values k = π(mph(kr(S))) and k′ = mph(kr(S)). Then, we have to check
that the candidate string S is equal to the string Sk in D. Instead of comparing S and
Sk symbol by symbol, we exploit the fact that S and Sk coincide if and only if the
following three conditions are satisfied:

– lcp(k,pleaf) is at least i;
– lcpr(k′,sleaf) is at least p− i;
– (i+1)th symbol of Sk is equal to c.

Clearly, these three conditions are checkable in constant time. The O(p) preprocess-
ing time is amortized over the O(p+occ) candidate strings.

Finding Top-k strings. As we mentioned in the introduction, our solution can be ex-
tended to support an additional operation which has interesting practical applications.
Assume that each string Si in D is assigned a score c(Si). For example, the score could

6 Checks for other types of errors are done in a similar way.

14

establish the relative importance of any string with respect to the others. It is possible
to extend our solution in order to support the extra operation Top(P[1, p],k) that re-
ports the k highest scored strings in D having edit distance at most one with P. This
operation is solved in O(p+k logk) time. We assume that values c() are available for
free. Notice that we can easily avoid this assumption by storing in d logd+O(d) bits
the ranking of strings in D induced by c().

We first present a simpler O((p+ k) logk) time algorithm which is, then, modi-
fied in order to achieve the claimed time complexity. We said above that an arbitrary
rank is assigned to tuples in T belonging to the same group (namely, tuples of the
form 〈np, i,?,ns, i′〉 that differ just for the symbol ?). Instead, this algorithm requires
that the assigned ranks respect the order induced by c(). Namely, lower ranks are
assigned to tuples corresponding to strings with higher values of c(). The searching
algorithm is similar to the previous one. The main difference is in the order in which
the factorizations of P[1, p] are processed. The algorithm works in steps and keeps
a heap. The role of the heap is to keep track of the top-k candidate strings seen so
far. Each factorization is initially considered active and becomes inactive later in the
execution. Once a factorization becomes inactive, it is no longer taken into consider-
ation. Each factorization also has an associated score which is initially set to +∞. At
each step, we process the active factorization with the largest score. We query func-
tion F with the correct value of r for the current factorization. Let S be the candidate
string identified by resorting to F . If S does not belong to D, the current factorization
becomes inactive and we continue with the next factorization. Otherwise, we insert S
into the heap with its score c(S) and we decrease the score associated with the current
factorization to c(S). At each step we also check the number of strings in the heap. If
there are k+1 strings in the heap, we remove the string with the lowest score and we
declare the factorization that introduced that string inactive.

Notice that, apart from the first k steps, in each step a factorization becomes in-
active. Since there are O(p) factorizations, our algorithm performs at most O(p+ k)
insertions into a heap containing at most k strings. Thus, the claimed time complexity
easily follows. The improvement is obtained by observing that most of the time (i.e.,
O(p logk)) is spent on inserting the first string of each factorization into the heap.
This is no longer necessary if we use the following strategy. We first collect the first
string of each factorization together with its score and we apply the classical linear
time selection algorithm to identify the k-th smallest score. This step costs O(p) time.
We immediately declare the p− k factorizations whose strings have a smaller score
inactive. We insert the remaining k strings into the heap and we use the previous al-
gorithm to complete the task. The latter step costs now O(k logk) time, since we have
just k active factorizations.

5 A Bwt-based solution

The term d logd and the factor 2 multiplying the Hk term in the space bound of The-
orem 3 may be too large for some applications.

In this section we provide a solution that is able to overcome this limitation at the
cost of (slightly) increasing the query time.

15

Formally, we prove the following theorem.

Theorem 4 Given a set D = {S1,S2, . . . ,Sd} of d strings of total length n drawn from
an alphabet Σ = [σ], σ ≤ n and let w be the size of a memory word, there exists an
index requiring nHk +ρ bits of space for any k ≤ α logσ n and 0 < α < 1 that, given
any pattern P[1, p] reports all the occ strings in D having edit distance at most one
with P in

1. O(p logσ n log logn+occ) worst-case time for σ = O(poly(w)) with redundancy
ρ = O(n logσ

log logn)+o(n) bits;
2. O(p log logw σ +occ) worst-case time for larger σ with redundancy ρ = o(n)(1+

Hk)+O(n log(logσ n log logn)) bits.

This solution uses a completely different approach with respect to the previous
one and solves the problem by building a collection of compressed permuterm in-
dexes [22] on the dictionary D. More precisely, we divide the strings in D into subsets
based on their lengths and we build a compressed permuterm index R` for each set
D`, where D` denotes the subset of strings in D of length `.7 This solution introduces
several possible trade-offs but, for simplicity, we report in Theorem 4 only the most
interesting ones.

The compressed permuterm index [22] is a compressed index for dictionaries
of strings based on the Burrows-Wheeler Transform (Bwt). Among other types of
queries, it solves efficiently the PrefixSuffix(P,S) query which is useful for our prob-
lem. This query, given a prefix P and a suffix S, identifies all the strings in the dictio-
nary having P as prefix and S as suffix. Below we resort to a slightly different variant
of the compressed permuterm index. The main difference is the sorting strategy used
to obtain the underlying Burrows-Wheeler Transform (Bwt) [13]. In [22] a text is ob-
tained by concatenating the strings in the dictionary by using a special symbol # not in
Σ as separator. Then, all the suffixes of this text are sorted lexicographically to obtain
the rows of the Burrows-Wheeler matrix. In our variant we first append the symbol
to each string, then we construct the (conceptual) matrix M by lexicographically
sorting all the cyclic rotations of all the strings in the set. Since every row is a rota-
tion of a single string from the dictionary it is guaranteed that any row contains only
symbols belonging to the same string. This fact turns out to be useful below when we
will define parent and depth operations on a proper (conceptual) trie. This different
construction of the Burrows-Wheeler transform was already implicitly used by Fer-
ragina and Venturini [22] and simulated at query time by means of function jump2end
(see [22] for more details). Figure 4 shows this variant of the Burrows-Wheeler Trans-
form for the cyclic rotations of the strings in D4 = {abcc,accb,baca,caac,cbcc}.
A query PrefixSuffix(P,S) can be easily solved by searching the pattern S#P with the
standard Backward search [22]. The procedure returns the range of rows of M that
are prefixed by S#P which are exactly all the strings in the dictionary that are both
prefixed by P and suffixed by S.

Given a pattern P[1, p], we solve our problem by querying only three compressed
permuterm indexes: Rp−1 for deletions, Rp for substitutions and Rp+1 for insertions.

7 We notice that the number of distinct lengths and, thus, compressed permuterm indexes is O(
√

n).

16

cb

bc

cc

acc

baca

a

cb#
a#b

#bac
c

bcc#

ac#c#ba
c

c

acc#

aca#
#ac

c

ab

aa
c

abc

ac#

#ac

cc#

#ac

cb

ab

b#a

#

c

b

a

#

c

b

a
#

F L
a b c c

a c c b

b a c a

c a a c

c b c c

a # b a c

a a c # c

a b c c #

a c # c a

a c a # b

a c c b #

b # a c c

b a c a #

b c c # a

b c c # c

c # a b c

c # c a a

c # c b c

c a # b a

c a a c #

c b # a c

c b c c #

c c # a b

c c # c b

c c b # a

Fig. 4 The matrix M4 for our variant of the Burrows-Wheeler Transform Bwt (right) which is obtained by
sorting lexicographically all the cyclic rotations of strings in the set D4 = {abcc,accb,baca,caac,cbcc}.
The resulting Burrows-Wheeler Transform is the last column of this matrix (i.e., Bwt4 = L). The Figure
shows also the compact trie built on all these cyclic rotations. Dashed arrows show the existing relation
between T4 and M4.

In the following we will only describe the solution for insertion since deletion and
substitution are solved in a similar way. The basic idea behind our searching algo-
rithm is the following. For each cyclic rotation Pi = P[i, p]#P[1, i−1] of P[1, p]#, we
use the compressed permuterm index Rp+1 to identify the range of rows (say, [l,r])
of Mp+1 that are prefixed by Pi, if any, where Mp+1 is the matrix for the strings in
Dp+1. We observe that having that range suffices for identifying the strings in D ob-
tained by inserting a symbol at the ith position of P. These symbols are, indeed, the
ones contained in Bwtp+1[l,r], where Bwtp+1 is the Burrows-Wheeler Transform for
the strings in Dp+1. However, we cannot compute all these ranges in a naı̈ve way by
searching each Pi separately using the backward search, since it would cost Ω(p2)
time. Thus, a faster solution has to efficiently move from rows prefixed by Pi to rows
prefixed by Pi−1. This is achieved by augmenting the compressed permuterm index
with a data structure that supports the two operations: parent and depth on a (con-
ceptual) compact trie Tp+1 which indexes all the cyclic rotations of strings in Dp+1.
The trie for our set of five strings D4 is shown in Figure 4. There exists a very strong
relation between Tp+1 and Mp+1: the locus of the ith leaf of Tp+1 is equal to the
ith row of Mp+1. Moreover, any internal node u of Tp+1 is in correspondence with a

17

range of rows in Mp+1 (namely, the rows corresponding to the leaves in the subtree
rooted at u). These rows share a longest common prefix which is equal to the locus
of u.

Let u be a node of the above trie corresponding a range of rows [l,r] in Mp+1.
The two operations are defined as follows:

1. parent(u) returns the range [l′,r′] corresponding to the parent of the node u;
2. depth(u) returns the length of the locus of node u.

It is possible to support both these operations in O(logσ n log logn) time by re-
quiring O(n̂ logσ

log logn) bits of additional space when σ = O(poly(w)) [31], where n̂ is
the total size of the indexed dictionary.

Our solution works in two phases. In the first phase, it identifies the range of rows
of Bwtp+1 sharing the longest common prefix with P0 = #P[1, p]. This is done by
using the following strategy. We search P0 backwards. At any step j, we keep the
following invariant: [l j,r j] is the range of all rows of Bwtp+1 prefixed by q j, where
q j is the longest prefix of P0[p− j + 2, p+ 1] that is a prefix of at least one row of
Bwtp+1. We also keep a counter ` that tells us the length of q j. Notice that it may
happen that a backward step from [l j,r j] with the next symbol P[p− j+1] returns an
empty range. In this case, we repeatedly enlarge the range [l j,r j] via parent operations
until the subsequent backward step is successful. The value of ` is kept updated by
increasing it by one after every successful backward step or by setting it equal to the
value returned by depth after every call to parent. This approach has been already
used to compute the so-called matching statistics [29].

Similarly, the second phase matches rotations of P# backwards. The main dif-
ference is given by the fact that the starting range and the value of ` are the ones
computed at the end of the previous phase. At each step i, we identify the range of
rows [li,ri] that share the maximal common prefix with P[i, p]#P[1, p]. The correct-
ness of each step follows from the following fact.

Fact 2 The range of rows prefixed by Pi = P[i, p]#P[1, i−1] is non-empty if and only
if the value of ` reaches p+1 or p+2.

Proof In the former case, the obtained range [li,ri] is clearly the range of rows pre-
fixed by Pi = P[i, p]#P[1, i− 1]. In the latter case8, we need one additional step. In
order to identify Pi = P[i, p]#P[1, i−1], we enlarge the range [li,ri] via parent opera-
tion, apply depth operation on it and check whether the returned value equals p+1.
If that is the case, then the range of rows prefixed by Pi = P[i, p]#P[1, i− 1] is the
enlarged range. Otherwise, it is the original range. ut

Even if this solution works for any alphabet size, we state its time and space
complexities in point 1 of Theorem 4 for σ = O(poly(w)) only. The overall time
complexity of these two phases is O(p logσ n log logn), since we have at most 2p
calls to parent and depth which dominate the cost of the O(p) calls to rank in the
backward search. The overall space occupancy is nHk +o(n) bits for the compressed

8 Notice that this case occurs only when PiP[i] ∈ D. In order to properly deal with this case, the value
of ` is not increased after a successful backward step if it already reached the maximal value p+2.

18

permuterm indexes and O(n logσ

log logn) bits for the data structures to support parent and
depth operations. This proves Point 1 of Theorem 4.

A better solution for larger alphabet sizes is reported in point 2 of Theorem 4.
This solution is obtained by showing that, if we are allowed to use more space, a
faster solution is possible. More precisely, we can improve the time of parent (for all
cases) and depth (for the case of large depths) by augmenting every permuterm index
R` with some auxiliary data structures:

1. The operation parent can be supported in constant time using O(n̂) additional bits
of space. This is feasible by using Sadakane’s compressed suffix tree [32] on top
the permuterm index R`.

2. The operation depth can be supported in constant time using O(n̂ log t) bits of
space when the string depth is at least `− t, for some parameter t. For this aim,
we resort to a table ∆` which stores log(t +1) bits per node. For any node u, we
store the difference between the depth of the node u and p whenever the string
depth of u is at least `− t. Otherwise, we store a special symbol indicating that
the string depth of u is less than `− t.

Now that we have a constant time parent operation, the depth operation remains
as the only bottleneck for achieving faster query time. Indeed, for larger alphabets,
each depth operation requires O(logσ n(log logn)2) time and uses O(n̂ logσ

log logn) bits
of additional space [31]. To circumvent this, we introduce a lazy strategy that com-
putes the correct value of ` only whenever its value may be p+ 1 or p+ 2 (i.e, we
have a match), thus, avoiding most of the calls to depth operation. Assume that the
compressed suffix tree supports the depth operation in time t. Instead of performing
depth operation after each parent, the algorithm keeps track of the last node u ob-
tained by parent operation with an associated variable du, which may be undefined.
The value is always the depth of u whenever u’s depth is at least p+1− t, but may be
undefined otherwise. Every time we perform a parent operation, we use table ∆` to
try to compute in constant time the value of du, but we set it to undefined whenever
∆` does not contain its depth (i.e., ∆` returns the special symbol). The algorithm also
keeps track of the number t ′ of successive backward step after the last parent oper-
ation. This way, if du is defined, we can compute ` as du + t ′, this is because every
backward step after the last parent operation have increased it by one. Instead, if du
is undefined, at least t backward steps are required for ` to be at least p+1. Thus, we
compute the value du with a depth operation as soon as t ′ becomes equal to t. This
way, we can check whether `= du + t ′ is at least p+1.

It follows that a depth operation is computed only after exactly t successive back-
ward steps from the last parent operation and that the result is kept for the subsequent
successive backward steps. As a first consequence of this fact, the cost of depth oper-
ation can be amortized over the t successive backward steps. Another consequence is
that the value du is always defined whenever t ′ ≥ t. The correctness of the algorithm
follows by observing that the range may correspond to a Pi only if either t ′ ≥ t or ∆`

does not return the special symbol, and in both cases, du will be defined.
Point 2 of Theorem 4 is obtained by setting t = O(logσ n(log logn)2). Indeed, the

backward search becomes the dominant time cost, namely, O(p log logw σ) time ac-
cording to Theorem 2. To the space occupancy of Theorem 2 we have to add O(n) bits

19

for the Sadakane’s compressed suffix trees and O(n log t) = O(n log(logσ n log logn))
bits to store the tables ∆`.

6 Randomized solutions

In this section we provide two randomized solutions. The first one is a Monte Carlo
solution which may report O(ε) false positives in expectation (i.e., spurious non ex-
isting occurrences). Formally, we prove the following theorem.

Theorem 5 Given a set D = {S1,S2, . . . ,Sd} of d strings of total length n drawn
from an alphabet Σ = [σ], σ ≤ n, there exists an index that, given any pattern P[1, p],
reports all the occ strings in D having edit distance at most one with P in O(p+
occ) randomized time. A query may report O(ε) false positives in expectation (i.e.,
spurious non existing occurrences), for any parameter ε with 0 < ε < 1. The index
has size nHk +O(n(log logn+logσ) log logn

logn)+O(d log 1
ε
) bits, for any fixed k = o(logσ n).

The second solution is a Las Vegas solution which guarantees the space and time
complexities reported in the following theorem.

Theorem 6 Given a set D = {S1,S2, . . . ,Sd} of d strings of total length n drawn from
an alphabet Σ = [σ], σ ≤ n and let w be the size of a memory word, there exists an
index of size nHk +ρ +O(d log 1

ε
) bits, for any k ≤ α logσ n with 0 < α < 1 and any

parameter ε with 0 < ε < 1, such that, given any pattern P[1, p] reports all the occ
strings in D having edit distance at most one with P in

1. O(p + occ) time with probability ε and redundancy ρ = O(n) bits, for σ =
O(poly(w));

2. O(p log logw σ +occ) time with probability ε and redundancy ρ =O(n)+o(n)(1+
Hk) bits, for larger σ and logσ = O(logn/ log logn).

Notice that these solutions could provide strong probabilistic guarantees by set-
ting ε = 1

nc for some constant c at the expense of using O(d logn) more bits of space.
In this case the first solution only returns O(1

nc) spurious occurrences in expectation,
while the second one guarantees that the query time holds with high probability.

Monte Carlo solution. In this paragraph we show how to derive a Monte Carlo so-
lution from the result of Theorem 3 in Section 4. The possibility of returning spu-
rious answers combined with the use of approximate membership data structures
suffices for reducing the dominant term in the space of this solution from 2nHk to
nHk without increasing the query time. Fix the parameter ε and build an approximate
membership AM` for each subset of strings D` of length ` by fixing the false pos-
itive probability to ε

` . According to Lemma 4 the space of AM` is O(log`+ log 1
ε
)

bits for each string in D`. Overall the space used by all the approximate member-
ship data structures is O(d(log n

d + log 1
ε
)) bits, which is O(n logσ log logn

logn + d log 1
ε
)

bits according to Fact 1. The presence of these data structures and the relaxed goal
allow us to remove the compressed scheme of Lemma 1 and the permutation π

20

in the solution of Section 4. This reduces the space occupancy in Theorem 3 to
nHk +O(n(log logn+logσ) log logn

logn)+O(d log 1
ε
) bits.

Because of the suppression of the compressed string representations, the correct-
ness of the steps performed during the percolation of the patricia tries can no longer be
established by comparing the searched string and labels on the traversed edges. How-
ever, the percolation never introduces any false negative. Indeed, if lcp(|P|,pleaf) is
at least i, then npi is correctly computed. Similarly, if lcpr(|P|,sleaf) is at least p− i,
then nsi+1 is also correctly computed. This is because we can always follow the cor-
rect edge thanks to the monotone minimal perfect hash function stored at each node.
Notice that a tuple 〈npi, i,c, p− i,nsi+1〉 can exist in T only if lcp(|P|,pleaf)≥ i and
lcpr(|P|,sleaf)≥ p− i. Thus, we conclude that the traversal of the trie introduces no
false negatives.

Also although it is no longer possible to establish whether a candidate string
belongs to D, we can use the approximate membership data structure to ensure that
a non-existing string is reported with probability at most ε . The check for a single
candidate string S = P[1, i] · c ·P[i+ 1, p] obtained by inserting symbol c in the (i+
1)th position is done simply by querying AMp+1. Notice that a single non-existing
candidate is reported only with probability ε

` . Moreover, a second candidate S =
P[1, i] · c′ ·P[i+ 1, p] with c′ 6= c is checked only if the first candidate was reported
as existing 9. Thus, on expectation the number of false positive candidates obtained
by inserting a symbol in the (i+1)th position is bounded by O(ε

`). This gives O(ε)
false positive candidates when summing up over all positions of insertion. Similar
considerations can be used to deal with substitutions and deletions.

Las Vegas solution. We now present the Las Vegas solution of Theorem 6 which is
obtained by introducing randomization in the solution of Section 5. The goal here is
to remove the use of depth operation whose time complexity was the dominant cost in
Theorem 4. Similarly to the previous randomized solution, we build an approximate
membership data structure AM` for each set D`. As in Section 5 we use Sadakane’s
compressed suffix tree [32] to support parent operation by using a constant number
of bits per symbol. Given a pattern P[1, p], we show how to find insertions using the
compressed permuterm index Rp+1 in conjunction with the approximate member-
ship data structure AMp+1, the parent operation, and the decompression of strings
with LF steps on Bwtp+1. As for the other solutions, substitutions and deletions are
solved with a similar approach. Recall from Section 5 that our goal is to identify the
range of rows (say, [l,r]) of Mp+1 that are prefixed by Pi, for each cyclic rotation
Pi = P[i, p]#P[1, i−1] of P[1, p]#. Indeed, the symbols to be inserted at position i of P
are the ones contained in Bwtp+1[l,r]. As in Section 5 the solution identifies, for each
i, the range of rows sharing the maximal common prefix with P[i, p]#P[1, p] by com-
bining the use of Backward search and parent operation. The solution in Section 5
establishes that one of these ranges contains answers for insertion by checking that

9 If we have false positives then the same character may be checked and thus potentially reported twice.
To avoid this case, we can use a dynamic hash table at query time which stores all the characters reported
so-far. Whenever we find that a character has been already reported, then the query stops and does not
report more characters, since a correct query answer can not return the same character twice at the same
position.

21

depth operation returns a value at least p+1 (i.e., the length of the maximal common
prefix above is at least p+ 1). We show here how to replace the use of depth oper-
ation with LF steps. Indeed, we use the function LF to extract symbols backwards
from one position in each of these ranges to check whether the depth is at least p+1.
Notice that doing this in a naı̈ve way would require to extract Ω(p2) symbols. In the
following we show an approach that extracts only O(p) symbols from ranges having
depth at least p+ 1. Proper queries to AMp+1 are used to filter (most of the) ranges
with a shorter depth.

More in detail, let [li,ri] denote the range sharing the maximal common prefix
with P[i, p]#P[1, p] computed with the only use of Backward search and parent op-
eration. For each i, we query AMp+1 for the candidate string P[1, i− 1] · c ·P[i, p]
obtained by inserting the symbol c in ith position of P, where c is any symbol in
Bwtp+1[li,ri]. This is the preliminary filter that removes a range with depth smaller
than p+1 with probability at least 1−ε/p. Let I = {i1, i2, . . . , it}, with i1 < i2, . . . < it ,
be set of indices for which AMp+1 returns true. A naı̈ve approach would work as fol-
lows. For each index i in I, it starts to extract p+ 2 symbols with p+ 2 LF steps
starting from any row in [li,ri] and computes the maximal common prefix between
the extracted string and P[i, p]#P[1, p]. By definition, the depth of the range coin-
cides with the length of this common prefix. Unfortunately, this approach requires
O(p) LF steps for each of the O(p) indices in I. In our solution we use the ap-
proach above starting from the smallest index i1 to check that the range of rows
M[li1 ,ri1] is prefixed by Pi1 = P[i1, p]#P[1, i1− 1] . If this check succeeds, then we
know that for any other index j > i1, the range of rows M[l j,r j] and P[j, p]#P[1, p]
share a prefix of length at least p+1− (j− i1). Indeed, if we rotate the range of rows
M[li1 ,ri1] by j− i1 positions to the left, we get a range prefixed by P[j, p]#P[1, i1−1]
that shares a prefix with P[j, p]#P[1, p] of length at least p+ 1− (j− i1). Thus, we
can check whether M[li2 ,ri2] is prefixed by Pi2 = P[i2, p]#P[1, i2− 1] by performing
only i2− i1 + 1 LF steps to check whether any row in M[li2 ,ri2] is preceded by the
string P[i1, i2− 1]c where c is some symbol in Bwtp+1[li2 ,ri2] (i.e., the row ends by
P[i1, i2−1]c). If the check for i1 fails (i.e., the range of rows M[li1 ,ri1] is not prefixed
by Pi1 = P[i1, p]#P[1, i1−1]), then the check for i2 would require p+2 LF steps. This
procedure is repeated for the subsequent indices in I.

To compute the number of LF steps required by this approach, it is convenient to
split the set I in the two subsets Ia and Ib that contain indices that pass and fail the
above check, respectively. Assume Ia = {i′1, i′2, . . . , i′t ′}, with i′1 < i′2 < .. . < i′t ′ . The
check for i′1 asks to perform p+ 2 LF steps. The check for any other i′j > i′1 in Ia is
done by making i′j− i′j−1 +1 LF steps. Summing up over all the elements in Ia, this
gives O(p) LF steps, which, by using the data structure in Lemma 5, require O(p)
or O(p log logw σ) time depending on the alphabet size. Indices in Ib, instead, require
O(p) LF steps each. However, since the AMp+1 has a false positive probability ε

p+2 ,
Ib contains on expectation O(ε) indices, incurring O(ε · p) additional LF steps.

We have to address a small technical detail to conclude the proof of Theorem 5.
Once we have determined the indices i such that the rows in M[li,ri] are prefixed by
Pi = P[i, p]#P[1, i−1], we need one more step. If li < ri, we report all the symbols in
Bwtp+1[li,ri] because we are sure that S = P[1, i−1] ·c ·P[i, p] is a correct answer. On
the other hand, if ri = li, it may happen that the row M[li] equals P[i, p]#P[1, i−1]P[i].

22

In this case, there may exist a larger range of rows prefixed by P[i, p]#P[1, i−1] that
lead to correct answers. This larger range is identified by taking the parent for the
interval [li,ri] and by checking that the resulting new interval corresponds to a node
of depth exactly p+ 1. If it is the case, we replace [li,ri] with the larger interval.
Instead of computing the depth for that node, we associate one additional bit to mark
every internal node of the trie that has depth exactly p+ 1. This solves the issue by
adding O(n) additional bits.

7 Conclusion

In this paper we described two different compressed solutions for searching with
edit distance one in a dictionary of strings. The first solution requires 2Hk(S) +
n · o(logσ) + 2d logd bits of space for any fixed k = o(logσ n). The query time
is (almost optimal) O(|P|+ occ) time where occ is the number of strings in the
dictionary having edit distance at most one with the query pattern P. The second
solution further improves this space complexity but the time complexity grows to
O(|P| logσ n log logn+ occ) or O(|P| log logw σ + occ) depending on the amount of
redundancy, where w is the size of a memory word. Interestingly enough, the two so-
lutions solve the problem at hand with two different approaches: the former is based
on (perfect) hashing while the latter is based on the compressed permuterm index.
Finally, we have shown how to introduce randomization in these solutions to derive
Monte Carlo and Las Vegas solutions in order to either reduce the space occupancy
or improve the query time of the deterministic solutions.

An interesting open problem asks for a deterministic approach that obtains si-
multaneously the time complexity of our first deterministic solution and the space
complexity of the second one. Furthermore, it is still open whether one can design a
solution that solves the problem in O(|P| · logσ/w+occ) time. At the moment, there
does not exist any solution achieving such a time complexity, even a non compressed
solution (using say O(n polylog(n)) space).

Finally, building efficient dictionaries for edit distance d larger than 1 is still an
open problem. However, the approaches we used in our two solutions are not eas-
ily extendible to efficiently solve query for higher edit distance. Indeed, we could
just solve a query in O(σd−1|P|d + occ) time for edit distance d by resorting to the
standard dynamic programming approach.

References

1. Amihood Amir, Dmitry Keselman, Gad M. Landau, Moshe Lewenstein, Noa
Lewenstein, and Michael Rodeh. Text indexing and dictionary matching with
one error. Journal of Algorithms, 37(2):309–325, 2000.

2. Jérémy Barbay, Meng He, J. Ian Munro, and Srinivasa Rao Satti. Succinct in-
dexes for strings, binary relations and multilabeled trees. ACM Transactions on
Algorithms, 7(4):52, 2011.

23

3. Jrmy Barbay, Francisco Claude, Travis Gagie, Gonzalo Navarro, and Yakov
Nekrich. Efficient fully-compressed sequence representations. Algorithmica,
69(1):232–268, 2014.

4. Djamal Belazzougui. Faster and space-optimal edit distance ”1” dictionary. In
Proceedings of the 20th Annual Symposium on Combinatorial Pattern Matching
(CPM), pages 154–167, 2009.

5. Djamal Belazzougui. Improved space-time tradeoffs for approximate full-text
indexing with one edit error. Algorithmica, pages 1–27, 2011.

6. Djamal Belazzougui and Gonzalo Navarro. New lower and upper bounds for
representing sequences. In Proceedings of the 20th Annual European Symposium
on Algorithms (ESA), pages 181–192, 2012.

7. Djamal Belazzougui and Gonzalo Navarro. Alphabet-independent compressed
text indexing. ACM Transactions on Algorithms, 10(4):23, 2014.

8. Djamal Belazzougui and Rossano Venturini. Compressed string dictionary look-
up with edit distance one. In Proceedings of the 23rd Annual Symposium on
Combinatorial Pattern Matching (CPM), pages 280–292, 2012.

9. Djamal Belazzougui and Rossano Venturini. Compressed static functions with
applications. In Proceedings of the 24th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 229–240, 2013.

10. Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, July 1970.

11. Gerth Stølting Brodal and Leszek Ga̧sieniec. Approximate dictionary queries. In
Proceedings of the 7th Annual Symposium on Combinatorial Pattern Matching,
pages 65–74. Springer Verlag, 1996.

12. Gerth Stølting Brodal and Venkatesh Srinivasan. Improved bounds for dictionary
look-up with one error. Information Processing Letters, 75(1-2):57–59, 2000.

13. Michael Burrows and David Wheeler. A block sorting lossless data compression
algorithm. Technical Report 124, Digital Equipment Corporation, 1994.

14. Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and Ayellet Tal. The bloomier
filter: an efficient data structure for static support lookup tables. In Proceed-
ings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 30–39, 2004.

15. Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary matching
and indexing with errors and don’t cares. In Proceedings of the 36th Annual
ACM Symposium on Theory of Computing (STOC), pages 91–100, 2004.

16. Martin Dietzfelbinger, Joseph Gil, Yossi Matias, and Nicholas Pippenger. Poly-
nomial hash functions are reliable (extended abstract). In Proceeding of the 19th
International Colloquium on Automata, Languages and Programming (ICALP),
pages 235–246, 1992.

17. Peter Elias. Efficient storage and retrieval by content and address of static files.
Journal of the ACM, 21:246–260, 1974.

18. Robert Mario Fano. On the number of bits required to implement anassociative
memory. Memorandum 61, Computer Structures Group, Project MAC, 1971.

19. Paolo Ferragina, Rodrigo González, Gonzalo Navarro, and Rossano Venturini.
Compressed text indexes: From theory to practice. ACM Journal of Experimental
Algorithmics, 13, 2008.

24

20. Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal of
the ACM, 52(4):552–581, 2005.

21. Paolo Ferragina and Rossano Venturini. A simple storage scheme for strings
achieving entropy bounds. Theorectical Computer Science, 372(1):115–121,
2007.

22. Paolo Ferragina and Rossano Venturini. The compressed permuterm index. ACM
Transactions on Algorithms, 7(1):10, 2010.

23. Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes
for range minimum queries on static arrays. SIAM Journal on Computing,
40(2):465–492, 2011.

24. Torben Hagerup and Torsten Tholey. Efficient minimal perfect hashing in nearly
minimal space. In Proceedings of the 18th Annual Symposium on Theoretical
Aspects of Computer Science (STACS), pages 317–326, 2001.

25. Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching
algorithms. IBM Journal of Research and Development, 31(2):249–260, 1987.

26. Giovanni Manzini. An analysis of the Burrows-Wheeler transform. Journal of
the ACM, 48(3):407–430, 2001.

27. J. Ian Munro and Venkatesh Raman. Succinct representation of balanced paren-
theses and static trees. SIAM Journal on Computing, 31(3):762–776, 2001.

28. Gonzalo Navarro and Veli Mäkinen. Compressed full text indexes. ACM Com-
puting Surveys, 39(1), 2007.

29. Enno Ohlebusch, Simon Gog, and Adrian Kügel. Computing matching statistics
and maximal exact matches on compressed full-text indexes. In SPIRE, pages
347–358, 2010.

30. Anna Pagh, Rasmus Pagh, and S. Srinivasa Rao. An optimal bloom filter replace-
ment. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 823–829, 2005.

31. Luı́s M. S. Russo, Gonzalo Navarro, and Arlindo L. Oliveira. Fully compressed
suffix trees. ACM Transactions on Algorithms, 7(4):53, 2011.

32. Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory of
Computing Systems, 41(4):589–607, 2007.

33. Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Com-
pressing and Indexing Documents and Images. Morgan Kaufmann Publishers,
1999.

34. Andrew Chi-Chih Yao and Frances F. Yao. Dictionary look-up with one error.
Journal of Algorithms, 25(1):194–202, 1997.

