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An Evolutionary Algorithm for Global Optimization Based on Self-

Organizing Maps 

In this work a new population based algorithm for real-parameter global 

optimization is presented, which is denoted as self-organizing centroids 

optimization SOC-opt. The proposed method uses a stochastic approach which is 

based on the sequential learning paradigm for self-organizing maps (SOM). A 

modified version of the SOM is proposed where each cell contains an individual, 

which performs a search for a locally optimal solution and it is affected by the 

search for a global optimum. The movement of the individuals in the search 

space is based on a discrete-time dynamical filter, and various choices of this 

filter are possible to obtain different dynamics of the centroids. In this way a 

general framework is defined where well known algorithms represent a particular 

case. The proposed algorithm is validated through a set of problems, which 

include non-separable problems, and compared with state of the art algorithms 

for global optimization. 

Keywords: self-organizing maps; evolutionary algorithms; global optimization; 

particle-swarm optimization. 

Introduction 

A large number of applications make use of global optimization algorithms. Population 

based stochastic methods allow to carry out difficult search and optimization problems, 

which often arise in complex applications. Evolutionary algorithms (EAs) are a family 

of such methods that try to replicate the biological processes present in the natural 

evolution defining a number of heuristics that exploit the relation between biological 

evolution and optimization, Back (1996). Evolutionary algorithms and swarm 

intelligence mainly constitute the field of nature-inspired optimization algorithms.  

Among EAs, Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithms 

have shown good results on real-parameters problems, in particular on multi- modal 

functions. A number of versions of CMA-ES with restarts have been proposed to handle 



multi-modal functions: NBIPOPaCMA-ES, Loshchilov (2013), showed the best results 

together with iCMAES-ILS, Liao (2013), on the continuous optimization benchmark at 

CEC 2013. In addition, other CMA-ES versions were ranked first on the black-box 

optimization benchmark (BBOB) in 2009 and 2010 and on the continuous optimization 

benchmark at CEC 2005, Auger (2005). 

In this work a new real-parameter optimization algorithm (based on the work introduced 

by Barmada et al. (2012)) is presented. The proposed model defines a general 

framework for defining new algorithms, and a particular configuration of the proposed 

framework has strong similarities with the classic formulation of the PSO, particle 

swarm optimization, algorithm. Numerical results are reported showing that the 

performance of the proposed model can be compared to the performance of the best 

algorithms of the 2013 CEC competition for real parameter optimization.  

The problem is the minimization of an objective function,  F x ,

 : nF   ,  x , where   is the domain of the search. Some desired 

requirements of optimization algorithms are the following: 

 Simple and straightforward to implement. 

 Good performances in comparison with several others in a range of problems. 

 The number of control parameters should be low. 

The proposed algorithms is based on the paradigm of the sequential learning of self-

organizing maps, SOM, Kohonen (2001). The SOM is a popular neural network for 

unsupervised learning, and it is used in a wide number of applications from clustering to 

data visualization. The SOM performs a vector quantization of the input distribution, and 

in general it has a strong explorative power. In the case of the topology preserving SOM, 



the final centroids tend to be disposed in a predefined topological order. It has been shown 

that the topology-preserving feature of the SOM accelerates vector quantization with 

respect to non topology-preserving methods, de Bodt et al. (2004), 

A modified SOM that uses a dynamical filter to implement the movement of the 

centroids during the learning was proposed by Tucci (2009, 2010, 2011). A central 

feature is that each centroid moves towards a personal target, while in the classic SOM 

all centroids move towards the same target point. 

In this work a search strategy for optimization that tries to use the explorative 

power of the modified SOM proposed by Tucci (2011) is presented. In the proposed 

strategy, the centroid vectors of the SOM represent a population of individuals that 

undergo local perturbations, and move in the search space as well, in order to perform 

two tasks simultaneously, a local search and a global search. This is accomplished by 

moving the centroids towards the combination of two target vectors, a local target, and a 

global target. The target vectors are obtained as local perturbations of the centroids. The 

movement of centroids towards the targets takes into account the neighborhood 

interactions, and it is obtained using a discrete-time dynamical filter. The dynamical 

filter makes use of the centroid past positions, and its choice is flexible and defined a 

priori by the user. The use of the dynamical filter is a key factor of the proposed 

algorithms as it allows defining different dynamics of the centroids. For example using 

a predictive filter the movement of the centroids exhibits a more active behavior than 

using a smoothing filter, which causes a more inertial movement. In the following it is 

shown that these different behaviors give different benefits depending on the 

characteristics of the optimization problem.  

The idea to modify the SOM algorithm to define optimization algorithms can be 

found in literature, for example Grosan (2012) proposes a hybrid approach that uses 



self-organizing neurons and evolutionary algorithms, where the focus is to optimize the 

SOM neuron weights using EAs. The method proposed in this work is different as each 

neuron represents an individual of the population for optimization. 

In order to analyze the performance of the proposed algorithm, the set of 

problems proposed for CEC competition on real-parameter optimization problems in 

2013 is used. This benchmark is composed by 28 minimization problems and it is 

widely used in the literature. The results show that the proposed scheme, which is 

denote as SOC-opt (Self Organizing Centroids-optimization) is competitive with the 

most efficient optimization algorithms. Advantages and disadvantages are outlined in 

the following sections. 

Review of the modified SOM for supervised learning 

In this section we first introduce the classic SOM neural network and then the variant 

proposed by Tucci (2011), denoted as learning filter SOM. This model is a neural 

network for unsupervised data analysis, while the next section introduces the new 

optimization algorithm which is based on the learning filter SOM. 

The original SOM consists in a number P  of cells arranged in a two dimensional grid 

with a fixed topology, typically hexagonal, where a distance metric is defined between 

cells  ,d c i . Each cell is associated to a model vector (also called centroid) i nq  

lying in the same space of the input pattern, denoted by the vector r . Once the input 

vector is presented to the network, the winner node is selected by the following function 

     arg min .i
ic t t r q  (1) 

Consequently the model vector is updated according to the rule 



           1 , 1 ,i i i
cit t h t t t i P    q q r q      (2) 

where the discrete time 0,1 MAXt T   represents the generation step and  

     2 2( , ) /(2 ( ))d c i t
cih t t e    (3) 

in which  t  and  t  respectively are the learning factor and the neighborhood 

functions, both decreasing with time. Heuristically speaking, at larger times nodes far 

from the winner one are less sensitive to the new inputs; at the same time, at larger 

times the inertia of the model vectors is higher. 

A modification of the SOM based on the implementation of a discrete time 

dynamical filter has been proposed by Tucci (2009, 2010, 2011). The new approach 

introduces the concept of memory to be associated to each cell. Each cell of index 

1i P   contains two sets of N vectors, denoted as memory vectors, 1 ,i i i
N   R r r  

and 1,
i i i

N   Q q q , where i n
j q , i n

j r . Vectors i
kq  are related to the last N  

values of the model vector, while vectors i
kr  keep trace of the last N  values of the input 

that were able to update the cell state. 

For each cell the centroid vector is calculated at each time step by the following 

combination of the memory vectors: 

      
1

N
i i i

j j j j
j

t b t a t


 q r q  (4) 

which can be expressed using matrices as 

        i i i it t t t
      
 

b
q R Q M g

a
  (5) 



where
 

  
 

b
g

a
, and 1[ , , ]T

Nb bb  , 1[ , , ]T
Na aa   are the vectors containing the 

coefficients ,j jb a . 

When a new input sample  tr  is presented to the map during training, the 

winner cell is selected by (1), then the memory vectors of the cells are updated as 

follows:  

   1 1( ), ( ), ( ) ,i i i
Nt t t t    R r r r  (6a) 

   1 1( ), ( ), ( ) ,i i i
Nt t t t    Q q q q  (6b) 

          1 ,i i i i
cit t h t t t     R R R R  (6c) 

          1 .i i i i
cit t h t t t     Q Q Q Q  (6d) 

Equations (6a) and (6b) perform a one step time shift of the memory vectors, while (6c) 

and (6d) take into account neighborhood collaboration, which means that only the 

memories of cells near the winning one are substantially updated. 

Equation (4) can be interpreted as an implementation of a linear, time invariant, 

discrete time filter of order N  (also called Learning Filter, LN), which has the 

following transfer function 

  
1

1
1 2

1 2

.
N

N
N N N

N

b z b
G z

z a z a z a



 

 


  



 (7) 

The transfer function (7) is defined using the Z-Transform formalism, and the 

coefficients 1[ , , ]T
Nb bb   and 1[ , , ]T

Na aa   are fixed and define the particular 

filtering action between the input sequence and output sequence.  



By substituting (6) in (5) the following implicit expression of the update rule is 

obtained 

           1 , 1i i i i
cit t h t t t i P    q q q q     � (8) 

where .By comparing (8) with (2) it is evident that in the 

standard SOM the target vector is the randomly selected input pattern ( )tr , while in the 

modified version, the target is the filter output which is different for each cell. Thinking 

about the update direction of the model vectors, in the standard SOM it is radial with 

respect to ( )tr , while in the modified SOM it is not. 

Optimization Algorithm description: Self Organizing Centroids-optimization 

The use of the SOM as an optimization tool needs some changes with respect to the 

above described procedure. All the modern optimization techniques are based either on 

the concept of mutation or on the similarity with nature based processes characterized 

by interaction between different entities. 

The heuristic strategy discussion of the algorithm will be extensively done later, 

but in order to make the algorithm better understandable, the rationale behind it can be 

easily expressed in the following way: a fitness function (or objective function) needs to 

be defined, and the winner cell (with respect to an input vector) is selected according to 

the minimum value of the objective function. Then all the centroids (not only the one of 

the winner cell) are perturbed, in search of a local minimum of the fitness function. 

Then the new input to the SOM is defined taking into account the previous winner 

(actual global minimum) and all the local minima found by the centroids perturbations. 



Each centroid represents an individual that moves in the parameters space looking for 

better fitness values. 

Cell model 

The cell model is based on the model described in the previous section, with some 

additional features. From now on the input vectors will be denoted by ( )i tx , the 

centroids by ( )i tc , while r and q will still be used for the memory vectors. 

Given an external input the centroid at each time step is given by the same 

combination of the memory vectors, 1 ,i i i
N   R r r  and 1,

i i i
N   Q q q  as in (5). 

  (9) 

i.e. the centroid moves only when the memory matrix  i tM  changes.  

Let us define a fitness function F, which must be minimized by the optimization 

procedure; F can be evaluated for each centroid at each time step as   iF tc . 

Each cell also contains a target vector  i tt  which is the point with best fitness 

value     i i
TF t F t t .The target vector is generated as a perturbation of  i tc , as 

illustrated in the next section. The goal of the centroid  i tc  is to reach the target of the 

cell  i tt . 

Another information present in each cell i  is the index ( )neigh i  of one cell 

belonging to the neighborhood of the cell i  (the choice of the neighborhood cell is 

made a-priori). The distance, calculated in a P -norm, between the centroid ic  and the 



neighbor ( )neigh ic  will be used to determine the range of the perturbation of the cell i  as 

it is shown later.  

There are also a few global variables, which are known to each cell: one is the 

index of the winning cell (the cell that contains the global best fitness value) indicated 

as gbest , together with the corresponding fitness value  gbest
TF t  and the corresponding 

target point  gbest tt . Also the last worst fitness value of the whole population  maxF t  

is a global parameter, which allows the calculation of the deviation 

      
   max

,
i gbest

T Ti
gbest

T

F t F t
e t

F t F t





 (10) 

that indicates a relative goodness of the cell’s personal target  i tt  with respect to the 

global best point  gbest tt  (note that 0 1ie  ). The deviation  ie t  will be fundamental 

for the calculation of the perturbation and the update rate of the cells memory. 

Algorithm description 

At initialization 0t   all the cells components need to be initialized: the memory vector 

 0iM  of each cell is defined (more details about the memory initialization are given in 

following sections), and the centroids positions are consequently calculated as 

   0 0i i c M g . At 0t   the targets are coincident with the centroids    0 0i it c , 

and their fitness values are straightforwardly calculated as     0 0 .i i
TF F c  

The winner cell is selected according to: 

     0 arg min 0 ,i
T

i
gbest F  (11) 



and the best and worst values of the fitness function     0 min 0best i
T T

i
F F

    max 0 max 0i
T

i
F F  are calculated. This allows the calculation of the deviation 

      
   max

0 0
0 .

0 0

i gbest
T Ti

gbest
T

F F
e

F F





 (12) 

After the initialization, the algorithm can be divided in four fundamental steps: 

perturbation, winning cell selection, input vector creation and cells update, new centroid 

calculation. 

perturbation 

For each generation max1,2, ,t T  , a perturbation is calculated according to 

        1 1 1 ,i i i it t t e t    p c δ  (13) 

in which  i tp  is a perturbed centroid, obtained from the centroid at the previous 

generation with the addition of a random perturbation  1i t δ  whose components are  

uniformly distributed in ,neigh neighd d   , where    ( )0 0i neigh i
neigh p

d  c c .If the new 

point  i tp  verifies the given constraints for the problem, i.e. if  x , then  i tp  is 

kept, otherwise    1i it t p c .Now the fitness value in each perturbed point can be 

calculated according to     i i
PF t F t p  and the target vectors of each cell, together 

with their corresponding fitness values, can be updated if the perturbed point improves 

the fitness: 



 

   
       

   
       

1

.
1

1
1

if

if

i i
T P i i

P Ti i

i i
T T i i

P Ti i

F t F t
F t F t

t t

F t F t
F t F t

t t

 
  


     

t p

t t

 (14) 

Winning cell selection 

The winning cell is now selected based on the best value of the fitness function: 

     arg min .i
T

i
gbest t F t  (15) 

Note that due to the selection made in (14)   min i
Ti

F t  always corresponds to the 

global best fitness value found in all generations. 

Input vector creation and cells update 

The input  i tx  to each cell i  is a convex combination of the cell target  i tt  and the 

best solution  gbest tt  

          1 ,i i gbest i it t t t t     x t t  (16) 

where  i t  is a neighborhood function as in the classical SOM algorithm,  

     2

2

,
exp ,

2
i

d gbest t i
t






 
  
 
 

 (17) 

and  ,d gbest i  is the distance between the cells in the fixed grid arrangement of the 

SOM. Equation (16) and (17) show that for the winning cell,    i gbestt tx t , while for 

cells which are distant from the winning one,    i it tx t . The deviation  ie t  



according to (10) is then calculated for each cell. 

At this point also the memory vectors need to be updated. The rule which will be 

used is very similar to the one defined in equations (6), with the difference that a new 

function  iw t  needs to be introduced: 

       1
,

2
i i iw t t h t   (18) 

where  i t  is the function defined in (17) and  

    2

2
exp ,

2

i
i

h

e t
h t



 
  

 
 

 (19) 

is a goodness function which is maximum when the deviation  ie t  equals to zero, i.e. 

for the winning cell. It must be noted that  iw t  is maximum for the winning cell 

  1iw t  , and is high for cells near the winning one (high values of  i t ) and for cells 

with a low deviation (good local targets). 

The memory vectors are consequently updated as: 

 
          
          

1 1
,

1 1

i i i i i

i i i i i

t t w t t t

t t w t t t





    


   

R R + R R

Q Q + Q Q
 (20) 

where 

 
       
       

1 1

1

1 , 1
.

1 1 , 1

i i i i
N

i i i
N

t t t t

t t t t

 



      


      

R x ,r r

Q c ,q q




 (21) 



New centroid calculation 

The new centroid is then calculated by using the standard relation 

      .i i it t t
       

b
c R Q

a
 . 

Now the algorithm can proceed with the perturbation step. The generation 

number can be now increased ( 1t t  ) and all the steps are repeated until the 

termination condition is reached, which is typically a maximum number of generations 

or functions evaluations. The final best solution is represented by the vector gbestt  in the 

last iteration. 

 

Heuristic strategy discussion 

Summarizing the heuristic behind the proposed algorithm, the search strategy is based 

on a competition between local and global tasks. Each cell has a personal target which 

is a local best solution, whereas the entire network tracks a global best solution, so the 

input to each cell is a combination, based on  i t , of the local target and the global 

target. Cells near to the winner cell (high values of  i t ), are more attracted by the 

global target than by their personal targets, and they tend to track it quickly because the 

memory update rate  iw t  is high as well. Cells far from the winner (low values of 

 i t ) only follow their local targets, and their velocity depends on the goodness  ih t

: higher values of the goodness imply higher memory update rate. 

Besides following the global target each cell searches in the input space around 

the centroid for a possible better target, and this is accomplished by the perturbation of 

the centroid at each iteration. This operation is equivalent to mutation in DE or GA 



algorithms, and in general it is not present in PSO algorithms. The strength of the 

perturbation is affected by two factors: the distance between the centroid and its 

neighbor, and the deviation of the personal fitness value (which is inversely 

proportional to the goodness of the personal solution). Each cell knows its centroid 

distance from a reference neighbor in the input space ( neighd ) and use this as the 

maximum magnitude of the perturbation. In this way the mutation of the centroids tends 

to adapt to the natural scaling of the problem and a better coverage of the input space is 

possible. Cells with better personal solution are less perturbed so that they search in a 

smaller area around the good solution, while cells with relatively bad solutions has 

major perturbations so that they search far from the centroid.  

It is important to point out that the fitness function is calculated in the perturbed 

points verifying the constraints, hence a maximum of P  function evaluations are 

performed for each generation. If the fitness in the perturbed points is better than the 

one of the targets, targets are updated (14); this operation is equivalent to the selection 

in DE or GA algorithms, in fact the fitness of target points  i tt  remains the same or 

gets better according to (14).  

The target points  i tt  represent the candidate solutions, while the centroids 

 i tc  act as the center of the perturbation and act as a moving agent tracking a 

combination of the local and global best solutions. This movement is implemented by a 

discrete filter of order N, so that each centroid has a certain inertia, or activity, to track 

its input, depending on the particular choice of the filter, which can be more or less 

predictive.  

The proposed algorithm is a framework that accepts a number of different 

configurations. For example the topology between the cells can be created in the input 



space following the Neural Gas paradigm instead of the SOM paradigm. Other variants 

of the proposed method can be defined using a different definition of the random 

perturbation  1i t δ  in (13), for instance the random distribution can be chosen as 

Gaussian, while the amplitude of  1i t δ  can be chosen as proportional to the distance 

between the centroid and the global best solution. 

Parameters selection 

The proposed method is characterized by some parameters to be selected. Regarding the 

coefficients of the learning filter, some guidelines are given that reduce the potential 

choices to first or second order discrete filters: this will be discussed in the numerical 

results section. The other parameters involved in the method are the variances 2
h  and

2
 . The parameter   represents the width of the neighborhood in the fixed grid space, 

hence it is related to the fixed distances in the spatial arrangement of the cells. If an 

hexagonal arrangement is used and the distance between two adjacent cells is 1 then   

is typically chosen so that the neighborhood include the first order and second order 

neighbors. For instance by choosing 3   the neighborhood function  i t  is 

negligible for third order neighbors. The parameter 2
h determines the relationship 

between the deviation    0,1ie t   and the goodness function  ih t ; by choosing 

 0.1,0.3h   the goodness function is negligible for maximum deviation. The 

proposed method has significant different behaviors for different discrete filters. 

Regarding space memory required, it increases linearly with the filter order. 

Acceptable space is required using a discrete filter with low order as 1, 2 or 3. Using a 

filter of order 1, the memory update in (20) and (21) yields exactly the classic SOM 

update, as defined by Kohonen (2001). In the context of the classic SOM use, Tucci and 



Raugi (2011) have shown that Butterwort filters behave well for static distributions, 

while in moving environment a second order alpha-beta predictive filter has better 

tracking capabilities. Butterworth, filters have a smoother behavior, Rabiner (1975), 

while the alpha-beta filter is a predictive filter and its frequency response amplifies high 

frequencies. The equations of the alpha-beta filter are the following: 

 
            
          

1
,

1

t t t t t t

t t t t t





         


       

q q v x q v

v v x q v
 (22) 

where  ,   represents the gains of the filter,  tq  is the centroid position,  tv  is a 

velocity variable and  tx  is the input observed position to track. The discrete time 

transfer function  G z  between the measured input observation  tx  and the 

predicted output position  tq , is directly calculated from equations (22) as: 

    2
.

2 (1 )

z
G z

z z
  

  
 


    

 (23) 

For the alpha-beta filter only the normalized cut off frequency has to be chosen, which 

is included in the interval (0,1).  

Memory Initialization 

The proposed algorithm has a benefit if the initial arrangement of the centroids in the 

input space follows the ordered topology of the fixed grid of the cells. This condition 

can be obtained by calculating the initial distribution training a classical SOM 

algorithm, by considering as input distribution a uniform distribution covering the entire 

search domain. In this way the trained centroids will cover the domain of the search 

maintaining the desired ordered arrangement. If  0 , 1i i Pc   are the trained 



centroids of the SOM, the memory vectors are initialized as:    0 0 1i i
j j N r c  , 

and    0 0 1i i
j j N q c  . In this way the relation      

1

0 0 0 ,
N

i i i
j j j j

j

b a


 c r q  

holds because 
1

1
N

j j
j

b a


   by design. 

SOC-opt and Particle Swarm Optimization 

The proposed method is based on a search performed at two different levels: each 

centroid is attracted by a global target (the centroid with the actual lower value of the 

fitness function) and by a local target (the best value of the fitness function in the 

neighborhood). This philosophy is somehow similar to the Particle Swarm Optimization 

(PSO), in which the particles tend to move both towards the global best solution 

(particle with the actual lower value of the fitness function) and to the local best 

solution (lower value of the fitness function encountered by each particle). 

The standard PSO updating procedure is defined as follows (Schutte and 

Groenwold 2005) 

               1 1 2 21 1 ,L Gx t x t w x t x t c b x t c b x t           (24) 

where w is the inertia factor, which keeps the particle in its current trajectory; the last 

two terms inject deviation according to the distances to the personal Lb  and global Gb  

best location through the cognitive factor 1c  and the social factor 2c , respectively (also 

called acceleration coefficients); 1  and 2  are two random variables distributed in the 

range [0,1] , which inject the unpredictability of the particles’ movement. 

In the proposed method, the particles’ role is taken by the centroids, while Lb  

and Gb  are the actual inputs of (24), whose role is taken by the input defined in (16).In 



order to make equation (24) comparable to the SOC opt in terms of symbols, (24) is 

rewritten by substituting the particles’ variable name  x t  with  c t  

               1 1 2 21 1 .L Gc t c t w c t c t c b c t c b c t           (25) 

By substituting (20) in (9), the following holds 

                    1 .t t w t t t t w t t t 
         

  

c R + R R Q + Q Q
b

a

 (26) 

By using (9) again, (26) is rewritten as 

                1 .t t w t t t t t 
          

  

c c R R Q Q
b

a

  (27) 

By choosing a second order filter in (7), it is defined only by the coefficients 1 2, ,b b

1 2,a a , yielding  

                1 2 1 1 2 11 ,t t w t b t b t a t a t t        c c x r c q c   

which, regrouped, leads to 

                  1 2 1 1 2 11 .t t w t a t a t w t b t b t t            c c c q x r c  (28) 

By selecting 1 2 21, 1, 0a a b     and considering that    1 1t t q c , the following 

is obtained as a final result,  

                11 1t t w t t t w t b t t            c c c c x c ,  (29) 

which is actually very similar to (25), since the last two terms of (25) are related to the 



inputs (local and global best) which in (29) are both included in the input  tx . In 

addition, the random factors are also included in the input  tx  according to (16). 

The alternative form of the PSO update equation with the constriction factor 

adds an additional scalar term to the last two terms of (25), increasing the similarity 

with the proposed method (Schutte and Groenwold, 2005, Eberhart and Shi, 2000, 

Chatterjee and Siarry, 2006). 

It is important to note that the similarity of the two methods is mainly on the 

particle update step, while the perturbation in the two methods is different. 

The transfer function of the second order filter that results from (29) which 

represents a centroid update similar to PSO in the proposed framework, is given by: 

 
  1

2
.

1PSO

b z
G z

z z


    

It can be observed that this filter is marginally stable as it has two poles on the unit 

circle. The proposed model gives the flexibility to use different second order filters, and 

this adds more potential features to the method, and the similarity with the PSO 

becomes less evident. 

Numerical experiments results 

In this section, an experimental evaluation of the proposed framework is presented. The 

CEC 2013 benchmark suite, Liang, et al. (2013), which consists of 28 scalable 

benchmark functions, is considered. The definition of the 28 functions is provided by 

Lianget al. (2013). The functions have features that make them difficult minimization 

problems, such as epistasis, multimodality, noise, rotation and so on. In addition, they 

have been displaced in order to move the optimum away from the center of the search 



space. The 28 functions can be divided into three classes: functions F1 to F5 are 

unimodal, while the other ones are multimodal. From F6 to F20 are basic multimodal 

functions, and F21 to F28 are composition functions (obtained by composing different 

functions amongst the ones previously defined), with a huge number of local minima. 

The number of variables of all the functions is scalable up to 50. All the problems are 

constrained, and the constraints are given as max- min bounds on the solution 

components. The dimensions D=10, 30 and 50 are considered, and a population size 

100P    (10x10 grid with hexagonal topology). The stop criterion is given by 

reaching a function evaluation limit of 410 D that is proposed by Lianget al. (2013) 

The solution error measure is used to evaluate the performance of the 

algorithms, which is defined as     max
gbest optF T Ft x , where optx  is the known 

global optimum of the function, and  max
gbest Tt  is the is the best solution achieved by 

the algorithm after 410 D  function evaluations. Each problem is executed 

independently 51 times, to obtain an estimate of the mean solution error measure and its 

standard deviation. 

Two implementations of the proposed algorithm for two choices of the filter are 

considered: a first order Butterworth filter and the alpha-beta filter. The configurations 

of the algorithms are the same for all the problems and dimensions. Table 1 summarizes 

the parameters selected for the two SOC-opt configurations, a cut-off frequency of 0.6 

is selected for all the filters. The reason of this choice is that a normalized cut-off 

frequency of 0.6 represents a reasonable trade-off between exploitation, that require 

high values of the cut-off frequency, and exploration, that require low values of the cut-

off frequency. The influence of the meta-parameters on the centroids trajectories, and 

the exploitation/exploration tradeoff are better evidenced in the last experiment in two 

dimensions. The statistical significance of the observed differences between the 



algorithms, for each problem, is evaluated by means of the two-sided Wilcoxon rank 

sum test, with confidence level fixed to 0.95. This test evidences significant differences 

between pairs of algorithms. Two pairs of algorithms are considered for the Wilcoxon 

test, that are two variations of the proposed SOC-opt algorithm against the 

NBIPOPaCMA, a CMA-ES with restart described in Loshchilov (2013), which resulted 

to be best performing algorithm of the CEC 2013 benchmark together with the 

iCMAES-ILS algorithm, described in Liao et al. (2013). 

Tables 2, 3 and 4 report the values of the mean and the standard deviation of the 

solution error measure for the two variants of SOC-opt, the NBIPOPaCMA and the 

icmaesils respectively for the 10, 30 and 50 variables problems. For the two SOC-opt 

variants also the results of the Wilcoxon test against the NBIPOPaCMA are shown. The 

null hypothesis of the test is that the compared values are independent and drawn from 

identical continuous distributions. 

The symbol '=' is used to indicate that the null hypothesis is not rejected, so that 

the performance difference is not statistically significant. When the null hypothesis is 

rejected the symbol '+' indicates that the SOC-opt variant exhibits better performance 

than NBIPOPaCMA, while the symbol '−' is used if the proposed algorithm exhibits 

inferior performance with respect to NBIPOPaCMA. The last row of the table also 

shows the total number of occurrences of statistical cases +/ - /=. It is important to point 

out that the statistical significance has been assessed by considering the final results 

after 51 runs of the benchmark algorithm NBIPOPaCMA to perform the two-sided 

Wilcoxon rank sum test against the proposed SOC-opt solutions.  

The results show that in the 30 variables case the SOC-opt based on the alpha 

beta filter is significantly better or equal to NBIPOPaCMA in 22/28 problems (14 better 

and 8 equal); the other SOC-opt variants (Butterworth and first order filter) are 



characterized by reasonably good performances which are comparable to the 

NBIPOPaCMA for the first order filter and slightly better for the Butterworth filter. 

This shows that, in general, using the second order filter improves performance of SOC-

opt, with respect to first order filter; in particular the SOC-opt with first order filter 

shows its limit with the composition functions with respect to the NBIPOPaCMA. 

Figures 1-6 show the development of the mean error, among the 51 runs for 

SOC-opt alpha-beta and NBIPOPaCMA, between the best candidate solution and the 

optimal solution as a function of the number of evaluation, for some of the problems (10 

dimensions case). It can be observed that the SOC-opt alpha-beta performance is in 

general comparable to NBIPOPaCMA. 

Figures 7-10 show the movement of one centroid during the optimization 

process, for problem 1 in 2 dimensions. From figures 7 and 8 it can be observed that for 

fixed filter bandwidth and increasing the BW filter order the dynamics of the trajectory 

is smoother. Figures 9-10 show the centroid trajectory for fixed filter order (a second 

order alpha-beta filter), and changing the filter bandwidth. The trajectories for higher 

bandwidth values exhibit a faster movement.  Figure 11 also shows the points obtained 

as centroids perturbations (13), where the objective function is actually calculated, for 

the case of Fig 9 that only shows the centroids. From Fig 11 it is evident that a slow 

trajectory allows the centroid to better explore the search space nearby, improving 

exploration, while a fast trajectory will converge faster to the best solutions found by 

the population, improving exploitation. We believe that the proposed model defines a 

tool where the tradeoff between exploration and exploitation, which is a fundamental 

paradigm of global optimization, can be easily controlled by the user, as they are 

directly related to the meta-parameters, represented by the filter order and filter 

bandwidth.  



Conclusions 

A new algorithm for optimization has been proposed, that defines a new strategy based 

on mutation and selection, where the individuals represent moving agents that track a 

personal target solution and are affected by a global dynamic through a neighborhood 

interaction. The main strength of the proposed algorithm is its flexibility to different 

competitive paradigms, which can be topology preserving like SOM or not like vector 

quantization or Neural Gas, and the possibility to design different centroids dynamics 

by selecting the low pass filter.  

A drawback of the proposed algorithm is the memory requirement, as each cell 

contains 2N+1 vectors of the dimension of the parameter vector, where N is the order of 

the filter. Anyway, good performance is obtained when the filter order is low, so 

memory requirement is not critical.  
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Table 1. Parameters of the SOC-opt algorithm 

SOC-opt first order filter SOC-opt alpha-beta 

Filter    
h  Filter   

h  

1

1

0.549

0.451

a

b




 
3 0.3 

0.669

0.360






 
3 0.3 



Table 2. Mean values and standard deviations of the solution error measure, 10 

variables. 

 SOC-opt 
First order filter 

SOC-opt 
Alpha beta 

NBIPOP-aCMA iCMAES-ILS 

 Mean St.D  Mean St.D  Mean St.D  Mean St.D 

F1 0.00 0.00 = 0.00 0.00 = 0.00 0.00  0.00 0.00 
F2 0.00 0.00 = 0.00 0.00 = 0.00 0.00  0.00 0.00 
F3 0.00 0.00 = 0.00 0.00 = 0.00 0.00  0.00 0.00 
F4 0.00 0.00 = 0.00 0.00 = 0.00 0.00  0.00 0.00 
F5 0.00 0.00 = 0.00 0.00 = 0.00 0.00  0.00 0.00 
F6 3.73 4.303 - 0.00 0.00 = 0.00 0.00  3.89 4.80 
F7 8.65e-02 9.30e-01 - 4.21e-06 9.02e-06 - 0.00 0.00  4.91e-06 1.34e-05 
F8 2.00e+01 1.14e-01 = 2.01e+01 9.00e-02 = 2.03e+01 9.00e-02  2.04e+01 7.61e-02 
F9 2.81e-01 5.22e-01 - 2.18e-01 4.33e-01 = 2.32e-01 4.40e-01  2.86e-01 5.38e-01 
F10 0.00 0.00 = 0.00 0.00 = 0.00 0.00  0.000 0.000 
F11 9.95e-01 5.34e-01 - 3.48 3.91e-01 + 3.64e-01 5.06e-01  4.77e-01 5.71e-01 
F12 2.48e-01 5.95e-01 = 2.35e-01 5.30e-01 = 2.38e-01 5.42e-01  2.34e-01 4.26e-01 
F13 5.02e-01 7.49e-01 = 4.24e-01 5.31e-01 + 4.84e-01 6.76e-01  3.33e-01 4.73e-01 
F14 1.69e+02 1.80e+02 - 7.50e+01 1.04e+02 + 1.15e+02 9.24e+01  5.08e+01 9.99e+01 
F15 1.59e+02 1.52e+02 = 1.38e+02 1.01e+02 + 1.58e+02 1.17e+02  4.42e+01 1.02e+02 
F16 2.89e-02 3.25e-01 - 4.30e-02 2.19e-02 + 1.20e-01 2.63e-01  3.73e-01 3.00e-01 
F17 1.36e+01 5.80e-01 - 1.13e+01 5.28e-01 = 1.13e+01 5.45e-01  1.12e+01 5.08e-01 
F18 1.44e+01 5.74 - 1.30e+01 5.03 - 1.13e+01 1.28  1.12e+01 5.01e-01 
F19 4.07e-01 1.12e-01 + 4.80e-01 1.28e-01 + 5.25e-01 1.39e-01  6.98e-01 1.50e-01 
F20 2.34 5.49e-01 + 2.05 3.86e-01 + 2.73 6.50e-01  2.72 5.24e-01 
F21 4.00e+02 0.00 - 4.00e+02 0.00 - 1.53e+02 5.04e+01  2.18e+02 1.11e+02 
F22 1.97e+02 1.38e+02 - 1.91e+02 1.16e+02 - 1.75e+02 1.15e+02  1.66e+02 8.10e+01 
F23 1.56e+02 1.19e+02 + 1.60e+02 1.28e+02 + 1.74e+02 1.23e+02  4.08e+01 2.08e+01 
F24 1.11e+02 3.01e+01 = 1.17e+02 3.10e+01 = 1.20e+02 3.22e+01  1.32e+02 3.25e+01 
F25 1.81e+02 2.82e+01 = 1.60e+02 2.65e+01 + 1.77e+02 3.99e+01  1.92e+02 2.47e+01 
F26 1.04e+02 1.44e+01 + 1.03e+02 7.55 + 1.11e+02 2.50e+01  1.18e+02 1.30e+01 
F27 3.20e+02 3.12e+01 = 4.00e+02 0.00 - 3.17e+02 2.96e+01  3.25e+02 4.20e+01 
F28 2.50e+02 1.07e+02 = 2.44e+02 9.66e+01 = 2.49e+02 8.80e+01  2.24e+02 1.01e+02 
 +/-/=  4/10/14  +/-/= 10/5/13       

 

 

 

 

 

 

 

 

 

 

 

 



Table 3.Mean values and standard deviations of the solution error measure, 30 

variables. 

 SOC-opt 
First order filter 

SOC-opt 
Alpha beta 

NBIPOP-aCMA iCMAES-ILS 

 Mean St.D  Mean St.D  Mean St.D  Mean St.D 

F1 0.00 0.00 = 0.00 0.00 = 0.00 0.00  0.00 0.00 
F2 0.00 0.00 = 0.00 0.00 = 0.00 0.00  0.00 0.00 
F3 0.00 0.00 = 0.00 0.00 = 0.00 0.00  0.00 0.00 
F4 0.00 0.00 = 0.00 0.00 = 0.00 0.00  0.00 0.00 
F5 0.00 0.00 = 0.00 0.00 = 0.00 0.00  0.00 0.00 
F6 0.00 0.00 = 0.00 0.00 = 0.00 0.00  0.00 0.00 
F7 2.30 5.41 + 2.28 3.36 + 2.31e+00 6.05  7.01e-02 1.56e-01 
F8 2.28e+01 5.6e-02 - 2.14e+01 0.12 - 2.09e+01 0.05  2.09e+01 6.23e-02 
F9 3.00 1.29 + 3.13 1.28 + 3.30 1.38  4.34 1.72 
F10 0.00 0.00 = 0.00 0.00 = 0.00 0.00  0.00 0.00 
F11 4.27 2.00 - 3.88 1.39 - 3.04 1.41  2.25 1.05 
F12 2.37 1.18 + 2.70 1.38 + 2.91 1.38  1.72 1.23 
F13 2.69 1.23 + 2.28 1.49 + 2.78 1.45  2.16 1.30 
F14 8.00e+02 5.42e+02 - 6.58e+02 2.37e+02 + 8.10e+02 3.60e+02  7.08e+02 2.94e+02 
F15 7.42e+02 2.09e+02 + 4.57e+02 2.64e+02 + 7.65e+02 2.95e+02  2.59e+02 1.18e+02 
F16 6.54e-01 9.69e-01 - 8.97e-01 1.29 - 4.40e-01 0.93  3.75e-01 2.65e-01 
F17 3.28e+01 1.33 + 2.75e+01 1.32 + 3.44e+01 1.87  3.43+01 1.86 
F18 6.55e+01 4.77e+01 = 6.23e+01 4.50e+01 = 6.23e+01 4.56e+01  4.01e+01 1.87e01 
F19 6.83 4.65e-01 - 2.85 0.44 - 2.23 3.41e-01  2.24 5.66e-01 
F20 9.76 7.26e-01 + 9.27 0.33 + 1.29e+01 5.98e-01  1.44e+01 7.38e-01 
F21 1.92e+02 3.10e+01 = 2.15e+02 31.84 - 1.92e+02 2.72e+01  1.88e+01 3.25e+01 
F22 9.76e+02 4.33e+02 - 4.36e+02 2.35e+02 + 8.38e+02 4.60e+02  5.33e+02 3.63e+02 
F23 6.58e+02 2.69e+02 + 3.51e+02 1.34e+02 + 6.67e+02 2.90e+02  2.69e+02 1.41e+02 
F24 1.61e+02 291.632 = 8.63e+01 2.35e+01 + 1.62e+02 3.00e+01  2.00e+02 6.16e-04 
F25 2.58e+02 1.20e+01 - 3.04e+02 1.58e+01 - 2.20e+02 1.11e+01  2.40e+02 5.12 
F26 1.34e+02 1.74e+01 + 9.74e+01 7.32 + 1.58e+02 3.00e+01  2.16e+02 3.67e+01 
F27 4.79e+02 7.50e+01 - 2.65e+02 4.33e+01 + 4.69e+02 7.38e+01  3.00e+02 9.34e-03 
F28 3.88e+02 8.00e+01 - 2.01e+02 3.24e+01 + 2.69e+02 7.35e+01  2.45e+02 9.01e+01 
 +/-/=  9/9/10  +/-/= 14/6/8       

 

 

 

 



Table 4.Mean values and standard deviations of the solution error measure, 50 

variables. 

 SOC-opt 
First order filter 

SOC-opt 
Alpha beta 

NBIPOP-aCMA iCMAES-ILS 

 Mean St.D  Mean St.D  Mean St.D  Mean St.D 

F1 0.00 0.00 = 0.00 0.00 = 0.00 0.00  0.00 0.00 
F2 0.00 0.00 = 0.00 0.00 = 0.00 0.00  0.00 0.00 
F3 2.14e+01 1.41e+02 - 1.93e+01 1.40e+02 - 1.82e+01 1.21e+02  2.01e-02 1.08e-1 
F4 0.00 0.00 = 0.00 0.00 = 0.00 0.00  0.00 0.00 
F5 0.00 0.00 = 0.00 0.00 = 0.00 0.00  1.52e-08 0.00 
F6 0.00 0.00 = 0.00 0.00 = 0.00 0.00  4.19e+01 7.82 
F7 4.64 5.39 + 3.42 4.33 + 4.97 5.72  5.44e-01 1.10 
F8 1.98e+01 3.9e-02 + 1.5e+014 4.00e-02 + 21.1 4.5e-02  2.11e+01 6.29e-02 
F9 1.40e+01 2.81 - 4.32 1.48 - 7.22 2.29  8.18 3.28 
F10 0.00 0.00 = 0.00 0.00 = 0.00 0.00  0.00 0.00 
F11 8.73 3.00 - 5.00 1.36 - 5.51 2.96  5.94 1.98 
F12 5.03 1.80 + 3.55 1.37 + 5.37 2.54  5.77 1.81 
F13 1.68e+01 5.98 - 8.94 6.43 - 7.56 5.47  5.73 2.64 
F14 1.23e+03 5.43e+02 + 6.77e+02 4.37e+02 + 1.38e+03 5.67e+02  8.59e+02 7.10e+02 
F15 2.01e+03 5.53e+02 - 9.82e+02 0.27e+02 + 1.55e+03 5.48e+02  6.42e+02 2.97e+02 
F16 1.21 9.98e-01 - 8.43e-01 1.45 = 8.78e-01 1.44  6.28e-01 3.53e-01 
F17 1.03e+02 6.94 - 9.84e+01 7.87 - 5.74e+01 2.73  5.75e+01 1,57 
F18 1.29e+02 9.88e+01 + 1.00e+02 8.99e+01 + 1.34e+02 1.00e+02  6.43e+01 8.39 
F19 4.00 4.72e-01 + 4.41 6.21e-01 = 4.46 5.93e-01  3.62 8.79e-01 
F20 2.03e+01 1.00 + 1.84e+01 9.99e-01 + 2.25e+01 1.18  2.44e+01 4.52e-01 
F21 3.16e+02 2.29e+01 - 2.20e+02 1.69e+01 - 1.98e+02 1.40e+01  2.00e+02 0.000 
F22 1.22e+03 5.87e+02 + 7.85e+02 5.43e+02 + 1.45e+03 6.01e+02  5.87e+02 5.62e+02 
F23 2.51e+03 8.84e+02 - 2.01e+03 9.00e+02 - 1.71e+03 8.09e+02  5.57e+02 3.26e+02 
F24 3.21e+02 2.20e+01 - 1.99e+02 2.28e+01 - 2.40e+02 2.04e+01  2.00e+02 5.39e-02 
F25 4.89e+02 1.64e+01 - 3.13e+02 1.29e+01 - 2.48e+02 5.06  2.74e+02 6.24 
F26 3.22e+02 2.24e+01 - 1.99e+02 13.953 = 1.96e+02 1.43e+01  2.41e+02 4.97e+01 
F27 5.98e+02 1.33e+02 + 4.32e+02 1.05e+02 + 7.28e+02 1.44e+02  3.02e+02 1.49e+01 
F28 4.00e+02 0.00 = 4.00e+02 0.00 = 4.00e+02 0.00  4.00e+02 0.000 
 +/-/=  9/12/7  +/-/= 12/6/10       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 1. Mean error versus number of function evaluations for problem 23 

 

Figure 2. Mean error versus number of function evaluations for problem 19 

 

Figure 3. Mean error versus number of function evaluations for problem 18 

 

Figure 4. Mean error versus number of function evaluations for problem 17 

 

Figure 5. Mean error versus number of function evaluations for problem 16 

 

Figure 6. Mean error versus number of function evaluations for problem 15 

 

Figure 7. Centroids movement in the search space for problem 1 in two dimensions, the 

filter order changes while the band of the filter is fixed. 

 

Figure 8. Centroids movement in the search space for problem 1 in two dimensions, the 

filter order changes while the band of the filter is fixed. Zoomed area around the final 

(optimal) point 

 

Figure 9 Centroids movement in the search space for problem 1 in two dimensions, the 

filter order is fixed while the band of the filter changes 

 

Figure 10 Centroids movement in the search space for problem 1 in two dimensions, the 

filter order is fixed while the band of the filter changes. Zoomed area around the final 

(optimal) point 



 

Figure 11 Centroids and perturbation points in the search space for problem 1 in two 

dimensions, the filter order is fixed while the band of the filter changes.  

 


