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ABSTRACT

Aims. We develop a statistical test on the expected difference in age estimates of two coeval stars in detached double-lined eclipsing
binary systems that are only caused by observational uncertainties. We focus on stars in the mass range [0.8; 1.6] M�, with an initial
metallicity [Fe/H] from −0.55 to 0.55 dex, and on stars in the main-sequence phase.
Methods. The ages were obtained by means of the SCEPtER technique, a maximum-likelihood procedure relying on a pre-computed
grid of stellar models. The observational constraints used in the recovery procedure are stellar mass, radius, effective temperature,
and metallicity [Fe/H]. To check the effect of the uncertainties affecting observations on the (non-)coevality assessment, the chosen
observational constraints were subjected to a Gaussian perturbation before applying the SCEPtER code. We defined the statistic W
computed as the ratio of the absolute difference of estimated ages for the two stars over the age of the older one. We determined
the critical values of this statistics above which coevality can be rejected in dependence on the mass of the two stars, on the initial
metallicity [Fe/H], and on the evolutionary stage of the primary star.
Results. The median expected difference in the reconstructed age between the coeval stars of a binary system – caused alone by
the observational uncertainties – shows a strong dependence on the evolutionary stage. This ranges from about 20% for an evolved
primary star to about 75% for a near ZAMS primary. The median difference also shows an increase with the mass of the primary star
from 20% for 0.8 M� stars to about 50% for 1.6 M� stars. The reliability of these results was checked by repeating the process with a
grid of stellar models computed by a different evolutionary code; the median difference in the critical values was only 0.01. We show
that the W test is much more sensible to age differences in the binary system components than the alternative approach of comparing
the confidence interval of the age of the two stars. We also found that the distribution of W is, for almost all the examined cases, well
approximated by beta distributions.
Conclusions. The proposed method improves upon the techniques that are commonly adopted for judging the coevality of an observed
system. It also provides a result founded on reliable statistics that simultaneously accounts for all the observational uncertainties.
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1. Introduction

The impossibility to simultaneously fit the observed characteris-
tics of stars in a double-lined detached binary system with a sin-
gle isochrone is usually interpreted as the need to introduce some
modifications in the current generation of evolutionary codes,
such as adjustments of the external convection efficiency through
the mixing-length parameter (e.g. Torres et al. 2006; Clausen
et al. 2009; Morales et al. 2009). Moreover, these systems are
often adopted in studies on the calibration of convective core
overshooting by fine-tuning the isochrone fit (see, among many,
Andersen et al. 1990; Ribas et al. 2000; Lacy et al. 2008; Clausen
et al. 2010).

However, an apparent age difference between the binary sys-
tem components could simply arise by fluctuations that arise
as a result of the uncertainties in the observational constraints
adopted in the estimation. This was already pointed out in

� On-line calculator available at http://astro.df.unipi.it/
stellar-models/W/
�� Full Table 2 is only available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A31

the literature; as an example, Gennaro et al. (2012) conducted
some tests for nine combinations of stellar masses on pre-main-
sequence stars. More recently, Valle et al. (2015b) presented
some basic results about the expected differences in the age es-
timates of the two coeval members in double-lined detached bi-
nary systems, obtained by the grid-based technique SCEPtER
(Valle et al. 2014, 2015a). We found that the differences are large
and reach a median value of 60% for a mass ratio of 0.5.

Therefore, given the relevance of the coevality hypothesis, it
is of paramount importance to set out accurate methods for eval-
uating whenever a detected difference in ages of the two stars
in an observed system is “too high” to be coeval on statisti-
cal grounds. Unfortunately, the recent literature is quite inho-
mogeneous with regard to this problem. It is common practice
to compare the observed system to sets of isochrones to deter-
mine the system age, while the best-fit ages for a single star are
seldom provided. In most cases the details of the fitting tech-
niques are scarcely discussed. Moreover, it is common to indi-
vidually obtain the system age estimates for a set of different
metallicities, compatible with the error on the observed [Fe/H],
and then to assess the error caused by the metallicity uncer-
tainty by considering the obtained age spread (see among many
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Clausen et al. 2008; Lacy et al. 2008; Torres et al. 2009; Clausen
et al. 2010; Rozyczka et al. 2011; Sowell et al. 2012). The draw-
back of this method is that it cannot account for possible error
correlations among masses, metallicities, and effective tempera-
tures of the stars. For age estimation purposes, stellar tracks for
the precise observed masses were calculated in other cases (e.g.
Vos et al. 2012). The literature also reports a two-stage fitting
method, which first estimates the best-fit stellar model metallic-
ity that is compatible with the spectroscopic determination, and
then finds the best-fitting isochrone for this fixed metallicity (see
e.g. Sandberg Lacy et al. 2010; Welsh et al. 2012). Overall, each
author relies on different methods and different stellar tracks,
computed with chemical and physical input that results in age
estimates that sometimes are vastly different. The worst problem
is that a reliable and consistent treatment of the errors, at least
those arising from the uncertainties in the observed quantities
adopted in the fitting, is generally lacking, and a reliable error
on the age estimates is rarely provided. This makes evaluating
the reliability of the deviation from coevality and comparing the
results of different authors very challenging.

The aim of this paper is to partially alleviate this problem by
providing a statistical test of the coevality hypothesis that sup-
plements the currently adopted techniques. Our intent is to de-
velop a reliable method that consistently treats the observational
errors, and to show its usage in practice. To this aim, we evalu-
ate the dependence of the expected age differences on the mass
of the two stars, on their metallicity, and on their relative age1

on the main sequence. We provide the critical values of the ex-
pected differences in age to be used to asses if the reconstructed
non-coevality is simply the result of a random fluctuation. We
also show the differences between the coevality test and the com-
monly adopted comparison of the age confidence interval of the
observed stars.

The work developed in this paper is framed in the theory of
the frequentistic statistical hypothesis testing (see among many
Snedecor & Cochran 1989; Feigelson & Babu 2012, for de-
tails). In the present-day formulation, this sound mathematical
theory is rooted in the first decades of the nineteenth century
and is mainly based on the theoretical studies of Pearson, Gosset
(Student), Neyman, and Fisher (see e.g. Fisher 1925; Neyman
& Pearson 1933). Without any claim at completeness, we re-
call that the theory requires formulating a scientific hypothesis
to check (in our case the stellar coevality) that is often referred
to as the null hypothesis H0, to define a parent population on
which the hypothesis should be verified, to define a statistic T
to be adopted in the hypothesis testing, and to derive the dis-
tribution of T under H0. From this distribution is then identi-
fied a rejection region of H0; for an unilateral test (as the one in
the present paper) this traditionally corresponds to values of the
statistics above the 95th quantile of the distribution (the value
corresponding to the 95th quantile is called critical value). By
this choice the experimenter sets the so-called level α of the test
to a value of 0.05, corresponding to the probability of type I
errors (i.e. rejecting H0 when it is indeed true). After these the-
oretical derivations, the test can be applied to a random sample
drawn from the parent population to verify H0. The reference
statistic T is computed on this sample and compared with the
chosen quantile of its distribution. A sample value of T above
the critical value leads to rejecting H0.

1 The relative age is defined as the ratio between the age of the star
and the age of the same star at central hydrogen depletion (the age is
conventionally set to 0 at the ZAMS position).

2. Methods

Stellar ages were determined by means of the SCEPtER pipeline,
a maximum-likelihood technique relying on a pre-computed grid
of stellar models and a set of observational constraints (see e.g.
Valle et al. 2015a). A first application to eclipsing binary systems
has been extensively described in Valle et al. (2015b). The grid
of models covers the evolution from the zero-age main-sequence
(ZAMS) up to the central hydrogen depletion of stars with
masses in the range [0.8; 1.6] M� and initial metallicities [Fe/H]
from −0.55 dex to 0.55 dex. The grid was computed by means
of the FRANEC stellar evolutionary code (Degl’Innocenti et al.
2008; Tognelli et al. 2011), in the same configuration adopted
to compute the Pisa Stellar Evolution Data Base2 for low-mass
stars (Dell’Omodarme et al. 2012; Dell’Omodarme & Valle
2013). The details of the standard grid of stellar models, the sam-
pling procedure, and the age estimation technique are fully de-
scribed in Valle et al. (2015a,b), while the adopted input and the
related uncertainties are discussed in Valle et al. (2009, 2013a,b).

To test the ability of grid-based maximum-likelihood tech-
niques of assessing the coevality of binary components within
random error fluctuation, we chose the most favourable scenario,
that is, the case in which stellar models perfectly agree with ob-
servations and the binary members are coeval by construction.
To achieve this optimistic situation, we built a synthetic dataset
by sampling the artificial binary systems from the same grid of
stellar models as was used in the recovery procedure. The effect
on the coevality assessment of the current typical observational
errors was simulated by adding random Gaussian perturbations
– with σ equal to the uncertainty – to the chosen observational
constraints.

As already mentioned, the binary components are coeval by
construction because they have been generated with the same
age in the sampling stage. However, as a consequence of the
perturbation procedure mimicking the observational errors, the
recovery might provide two different age estimates for the binary
members.

Our aim is to devise a criterion founded on statistics to evalu-
ate the likelihood that the recovered non-coevality is genuine and
not merely the result of observational errors. More formally, the
null hypothesis H0 for which we wish to develop a statistical test
is that the stars are coeval within the random variability caused
by the observational errors. We aim to define a statistics to test
H0, obtaining a rejection region at level α, and thus a critical
value identifying it. We define A1 and A2 as the estimated ages
of the two members, with A1 > A2. We focus on the statistics W
defined as

W =
A1 − A2

A1
· (1)

W then varies from 0 (when the stars are estimated to be coeval)
to 1 (when A1 � A2). High values of W lead to the rejection of
the null hypothesis, implying that it is very unlikely that standard
stellar models might account for the coevality of the stars with
the assumed input or parameters. The point is to establish the
critical values above which the coevality rejection is statistically
significant.

To do this, we evaluated the distribution of W – under the co-
evality hypothesis H0 – that arises from observational uncertain-
ties alone and computed the critical values that define the range
of values W that are compatible with the null hypothesis itself.
As stated in the introduction, the 95th quantile of the distribu-
tion of the statistics under examination are typically adopted as

2 http://astro.df.unipi.it/stellar-models/
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Fig. 1. Outline of the design to compute the critical values. Steps 1−3 are described in Sect. 2.1, steps 4−5 in Sect. 2.2.

critical values. The choice of the quantile defines the level α of
the test. In the following we assume a level of the test α = 0.05
and compute the critical values W1−α. For W > W1−α the null
hypothesis H0, that is, the coevality of the binary components, is
rejected.

2.1. Sampling and critical values estimation

Since the critical value W1−α depends on the characteristics of
the binary system, it is not possible to provide a single value
suitable for all the possible binary configurations. To describe
the dependence of W1−α on the physical parameters that identify
the binary system, a long and time consuming procedure is re-
quired. Figure 1 outlines the steps – described in detail below –
that we followed in the estimation procedure.

Step 1 To produce a representative sample of synthetic binary
systems spanning the possible combinations of masses, metallic-
ity, and relative ages of the two stars, we performed a systematic
sampling from the standard grid of stellar models. We selected
a set of nine stellar masses from 0.8 M� to 1.6 M� with a step
of 0.1 M�. The metallicity was restricted to initial [Fe/H] val-
ues of −0.55, −0.25, 0.0, 0.25 and 0.55. The relative age r of
the primary star was chosen to assume values from 0.1 to 0.9
with a step of 0.2. Then, for each value of the primary mass
M1, metallicity [Fe/H], and relative age, we selected the corre-
sponding model from the grid. Linear interpolation in effective
temperature, radius, and metallicity was performed to obtain a
stellar model of the exact chosen relative age. This step fixes the
age of the binary system to A, that is, the age of the selected
star. This synthetic star is coupled to all the possible secondary
components with masses lower than or equal to M1, the same
initial [Fe/H], and age exactly equal to A. Linear interpolation
in effective temperature, radius, and metallicity was performed
to match these requirements. The described sampling scheme
produced 1125 possible combinations. However, since the grid
does not contain models in the pre-main-sequence phase, not all
these combinations correspond to existing pairs in the grid. For
example, a 1.6 M� model at relative age 0.1 is too young to be

matched by any model of 0.8 M�, which is still in the pre-main-
sequence phase.

In conclusion, we found that a total number of 1087 binary
systems are possible, and we estimated the corresponding criti-
cal values W1−α for each of them.

Step 2 To simulate observational uncertainties, the 1087 syn-
thetic binary systems were subjected to a Gaussian perturba-
tion of all the observed quantities with standard deviations of
100 K in Teff, 0.1 dex in [Fe/H], 1% in mass, and 0.5% in ra-
dius. To simulate realistic uncertainties, we assumed a correla-
tion of 0.95 between the primary and secondary effective temper-
atures, 0.95 between the metallicities, 0.8 between the masses,
and no correlation between the radii. A detailed discussion of
these choices and their effect on the final results, also including
the motivations for the zero correlation between the radii, can be
found in Valle et al. (2015b).

As a result, for each of these 1087 cases we produced a set of
N perturbed systems, where the actual value of N was properly
evaluated in steps 4 and 5.

Step 3 For each of the 1087 analysed systems, we computed
the N values of the statistic W corresponding to all the per-
turbed objects. Finally, we estimated from these 1087 samples
the W1−α(M1,M2, [Fe/H], r) quantiles, which approximate the
required critical values for the statistical test. Critical values
for masses, metallicities, and relative ages different from those
adopted in the computations can be obtained by interpolation.

At the end of this step, we obtained the required critical val-
ues. However, the procedure cannot stop here. In fact, a differ-
ent simulation run will produce different values; it is therefore
mandatory to estimate the random variability of the results. This
is the purpose of the following section.

2.2. Monte Carlo variability on the critical values

The accuracy of the computed quantiles W0.95 depends on the
size N of the Monte Carlo sample, and it is obvious that a larger
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sample would provide a more accurate estimate. Our aim is to
reach a relative precision of 1% on the estimated critical values;
therefore we have to evaluate the minimum N needed to meet
this requirement.

More technically, given a sample X1, . . . , XN of size N, taken
from a distribution F and density f , we aimed to estimate the
1 − α quantile, defined as the value for which the distribution
function assumes value 1 − α, that is,

W1−α = F−1(1 − α). (2)

Standard theory establishes that the 1 − α sample quantile
X�N(1−α)� (the �N(1 − α)�th smallest observation in the sam-
ple X1, . . . , XN) is a consistent estimator3 of the real quantile.
Moreover, the asymptotic expansion for the variance σ2

N of
X�N(1−α)� is (see e.g. Stuart & Ord 1994)

σ2
N = N−1α(1 − α) f (W1−α)−2 + o(N−1), (3)

which shows that the convergence rate of Monte Carlo quan-
tile simulations is 1/

√
N. Unfortunately, Eq. (3) cannot be used

for direct computations since it depends on the unknown density
function f (W1−α). An usual way to circumvent the problem is to
relie on bootstrap estimates (see e.g. Davison & Hinkley 1997).

Steps 4 and 5 The approach requires sampling with replace-
ment a number n of samples of size N from the original W val-
ues. For each of these samples, we computed the sample quantile
ŵ1−α = {X j

�N(1−α)� , j = 1, . . . , n} and then estimated the arithmetic

mean 〈ŵ1−α〉 = 1/n
∑

j ŵ
j
1−α and the variance σ2

N by the variance
of the bootstrap quantiles, that is,

σ̂2
N = Var(ŵ1−α). (4)

For our computations we adopted n = 400.
Hall & Martin (1988) proved that σ̂2

N/σ
2
N = 1 + O(N−1/4),

which means that the convergence to the true estimator is rel-
atively slow but sufficient for our purposes. The technique also
allows estimating the bias b of the sample w1−α

b = X�N(1−α)� − 〈ŵ1−α〉 . (5)

The sample estimate can therefore be corrected to account for
the bias assuming as best quantile estimate the value 〈ŵ1−α〉.

We therefore performed some exploratory computations to
quantify the values from Eq. (4) for different N. As a result, we
found that N = 50 000 allowed us to reach the required 1% rel-
ative accuracy for all the sample. The obtained relative errors
σ̂N/ 〈ŵ1−α〉 on the 1087 quantile estimates are shown in Fig. 2,
in dependence on the relative age of the binary system. The fig-
ure presents the boxplot4 of the errors for each relative age. It is
apparent that the median relative errors on the estimated quantile
are lower than 0.5% for all the explored relative ages.

3 A consistent estimator is an estimator that converges in probability
to the value to be estimated as the sample size goes to infinity.
4 A boxplot is a convenient way to summarize a distribution. The black
thick line marks the median of the distribution, while the box extends
from the 25th to the 75th quantile. The whiskers extend to the extreme
values, but their lengths are limited to 1.5 times the width of the box.
Points outside the extension of the whiskers are omitted from the plot.
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Fig. 2. Boxplot of the relative error on the W0.95 quantile estimates as
a function of the primary relative age. Error estimates are obtained by
bootstrap resampling (see text).

3. Critical values W0.95

The computation of the 1087 critical values described in the pre-
vious section required a total of 5.4 × 107 binary system age es-
timates. The results of this huge set of simulations are presented
in Tables A.1 to A.5. Each table collects – for values of the pri-
mary relative age r from 0.1 to 0.9 with a step of 0.2 – the critical
values W0.95 in dependence on the masses of the stars and their
initial metallicity [Fe/H].

To use the test in practice, after estimating the ages of the
two stars and computing the value of the statistics W, this must
be compared with the appropriate critical value in the tables. If
the computed W is lower than the critical value W0.95, the null
hypothesis of coevality cannot be rejected.

One complication arises because the values in
Tables A.1−A.5 depend on the observationally unknown
primary relative age r. The problem can be solved by esti-
mating r, for example by means of the same grid technique
as adopted for age estimates (more details on this topic are
provided in Sect. 5).

Our main result here is that the critical values – and thus the
critical age relative differences on age estimates of two stars that
are coeval by construction – are indeed high despite the high
precision reached by the observations. The overall median of the
critical values is 0.36, with an interquartile range of [0.16; 0.61].
Restricting the test to binary systems of low or intermediate rel-
ative age of the primary star (r ≤ 0.5) results in a median critical
value of 0.60 with an interquartile range of [0.45; 0.65]. This
shows a general behaviour, which is that the closer the primary
star is to the ZAMS, the higher is the critical value W0.95 and
hence the expected difference between the ages of the two bi-
nary components.

Some trends in the critical values presented in
Tables A.1−A.5 are apparent and easily understandable.
The lowest values of W0.95 in each row or column of the tables
are usually found for binary systems composed by equal-mass
stars. These are the only combinations for which the relative
age of the two stars are the same, all the others provide a
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Fig. 3. Left: boxplot of the W0.95 quantile estimates as a function of the mass of the primary star. Right: same as the left panel, but for the dependence
on the relative age of the primary star.

lower relative age for the secondary. Since it is known (see
the extensive discussion in Valle et al. 2015a) that the relative
error in age decreases with relative age, it is straightforward
to conclude that the W0.95 values on the diagonal of the tables
should be the lowest. From the same argument it follows that
an increase of the critical values is expected farther down in
the columns – that is, increasing the mass of the primary star
– and leftward in the rows – that is, decreasing the mass of the
secondary star. However, closer to the border of the tables, the
trend is less clear since here some edge effects (see Valle et al.
2014, 2015a, for a discussion) become dominant.

The discussed trend of the critical values with the mass of
the primary star is shown in the left panel of Fig. 3. The medi-
ans of the boxes increase monotonically from the 0.8 M� mod-
els to those with 1.6 M�. The large spread of the boxes is due
to the variability of the other parameters, that is, the secondary
mass, the metallicity, and the relative age of the primary star. The
strong effect of the primary relative age r on critical values W0.95
is shown in the right panel of Fig. 3. For low values of r both
stars are at a young relative age, which leads to a large disper-
sion of single-age estimates. Conversely, at high values of r we
find systems of equal masses with high r, whose age estimates
are more precise and lead to lower critical values, and unbal-
anced systems for which the age errors and the critical values
are greater.

From the analysis of the tables in Appendix A, it appears
that the effect of the initial metallicity [Fe/H] is modest, with a
mean variation of W0.95 by about 0.03 for a change of 1.0 dex
in [Fe/H]. This explains the choice of grouping the binary sys-
tems according to their initial metallicity, neglecting the change
in chemical composition owing to the microscopic diffusion.

Some words of caution are needed. First of all, the com-
puted critical values directly depend on the assumed magnitude
of the observational uncertainties. A larger uncertainty produces
a stronger fluctuation in age estimates and thus critical values
higher than those presented here. Therefore we calibrated the un-
certainties we adopted here by assuming realistic values, which
are slightly higher than the average of the quoted uncertainties

in some recent determinations (e.g. Yıldız 2007; Clausen et al.
2009, 2010; Southworth 2013; Torres et al. 2014).

Moreover, we provide an on-line tool5 that allows computing
the required critical value for the supplied masses, metallicity,
evolutionary phase, and observational uncertainties. This calcu-
lator can be useful when the uncertainties on the binary system
observables are larger than those adopted here.

Another aspect that is worth discussing is whether the criti-
cal values strongly depend on the adopted stellar models. If there
is no dependence, the critical values we computed here can be
readily used regardless of the stellar models used for the age es-
timation. If the values do depend on the models, these critical
values can be safely adopted only when stellar ages are deter-
mined by means of the SCEPtER grid. To answer this question,
it is not possible to simply use the stellar model grids currently
available in literature because they are too sparse. The only way
is to compute fine grids of models covering the same parame-
ter space as that of SCEPtER by means of different evolution-
ary codes. Unfortunately, only one code is freely available: the
code MESA (Paxton et al. 2013). We therefore computed a grid
of stellar models assuming default MESA input with the fol-
lowing exceptions: solar heavy-element mixtures from Asplund
et al. (2009); solar-calibrated mixing-length αml = 1.8; includ-
ing the element diffusion with the coefficients by Thoul et al.
(1994) with radiation turbulence by Morel & Thévenin (2002);
and the 14N(p, γ)15O rate from Imbriani et al. (2004). Then we
repeated the previously described steps (see Fig. 1) to compute
the MESA-based critical values.

The comparison between FRANEC- and MESA-based criti-
cal values is quite encouraging because it shows only small vari-
ations. The median of the differences between FRANEC and
MESA was 0.009, with 16th to 84th quantile range [−0.002;
0.032]. Although a more systematic exploration with other
widely used stellar evolution codes would be worthwhile, this
first comparison suggests that the critical values provided by our
procedure are generally applicable.

5 http://astro.df.unipi.it/stellar-models/W/
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Fig. 4. Outline of the comparison between the coevality tests based on W and confidence intervals (see text).

SCEPtER age estimates for single stars and binary sys-
tems can be easily obtained from the R libraries SCEPtER6 and
SCEPtERbinary7 that are accessible on CRAN.

4. Comparison of the W test with the individual age
confidence intervals

The classical way to asses the stellar coevality in a binary sys-
tem is to fit the observations with isochrones of different ages
and claim coevality whenever a single isochrone is able to fit –
within the errors – the whole system. Equivalently, it is possible
to estimate the two stellar ages and their errors and establish the
coevality by the overlap of the two error intervals.

A natural question is therefore how the W test performs with
respect to the more intuitive approach of adopting the age error
intervals to claim system coevality. The purpose of this section
is to verify whether the two techniques are equivalent. In other
words, does the rejection of the coevality by the W test imply
that the ages of the single members are not compatible with each
other within the errors and vice versa?

The outline of the procedure is presented in Fig. 4. It required
a huge amount of Monte Carlo simulations, lasting for 12 days
on a Intel Xenon machine with 32 cores. To reduce the computa-
tional burden, we restricted the calculations to solar metallicity;
217 binary systems from the possible 1087 of Sect. 2.1 were en-
tered in the analysis.

As a first step, we generated N = 5000 Monte Carlo per-
turbed systems for each of the 217 possible couples (step 2 in
Fig. 4) for the selected 217 ideal binary systems. We estimated
the ages of the two stars for each of these N systems and com-
puted the W values (step 3). For the 5% of these perturbed sys-
tems whose values were greater than the critical W (i.e. 250 sys-
tems for each of the 217 ideal binaries) we computed the Monte
Carlo 95% confidence interval for the age. That is, for each of
these critical systems we generated n = 10 000 newly perturbed
systems, estimated the two stellar ages, and obtained the 95%

6 http://CRAN.R-project.org/package=SCEPtER
7 http://CRAN.R-project.org/package=SCEPtERbinary

confidence interval on the ages by computing the 2.5th and the
97.5th quantiles of the age estimates (see Valle et al. 2015a,
for details). The same procedure was repeated for a random set
(about 15% of the total, for computational reasons) of systems
with W lower than the critical values (steps 4 and 5 in Fig. 4).
The procedure required a total of 5.4× 108 binary age estimates.

The results of these computations showed only a few sys-
tems for which the W was lower than the critical values, but the
age confidence intervals did not overlap. We can therefore safely
disregard these cases. This means that whenever the coevality of
the binary components cannot be rejected by the W test, the in-
dividual stellar ages are compatible with each other within the
errors.

Conversely, we found a striking lack of agreement between
the two techniques for systems with W greater than the critical
values. Only in a small fraction of cases the comparison of the
age confidence intervals revealed a significant difference in the
two stellar ages. In the vast majority of cases in which the W test
allows rejecting coevality, the estimates of the individual ages
are still compatible with each other within the errors. Under the
null hypothesis H0, the confidence interval approach is therefore
more conservative for the coevality assessment than the W test,
and adopting it results in a severe underestimation of the fraction
of systems for which the coevality hypothesis is questionable.
In summary, the W test and the confidence interval computa-
tion have a different scope of applicability. Whenever the former
is specifically developed for the task of a coevality check, the
confidence interval computation lack of statistical power when
adopted for this aim and its actual level is about an order of mag-
nitude lower than the nominal α = 0.05.

The results for the 217 considered systems are summarised
in Table 1, which contains the median and the 16th and 84th
quantiles of the percentage of systems for which the W test and
the confidence interval techniques concordantly report a signifi-
cant difference between the ages of the two stars.

We found decreasing trends with increasing mass ratio of the
system; while for systems with 0.5 ≤ q ≤ 0.6 the confidence in-
terval method rejects the coevality hypothesis for a median frac-
tion of 16.2% of the systems that are significant according to the
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Table 1. Medians and ranges from the 16th to 84th quantiles (in paren-
theses) of the percentages of non-overlapping 95% confidence intervals
for age estimates for systems with W greater than the corresponding
critical value, classified according to the relative age of the primary star
and the mass ratio of the system.

Relative age
0.1 0.3 0.5 0.7 0.9

0.0 1.6 1.2 1.2 0.4
(0.0; 2.8) (0.0; 5.2) (0.0; 9.2) (0.0; 14.8) (0.0; 10.4)

mass ratio
[0.5; 0.6] [0.6; 0.7] [0.7; 0.8] [0.8; 0.9] [0.9; 1.0]

16.2 11.0 4.4 0.4 0.0
(9.5;19.6) (9.1; 18.8) (2.0; 7.6) (0.0; 1.2) (0.0; 0.0)

W test, this percentage drops to zero for systems with near equal
masses. This trend is expected and is mainly due to the assumed
correlations in the perturbation step. Systems with q ≈ 1 , which
are very near in the grid before the perturbation, will still be near
after the perturbation. Therefore their age confidence intervals
will always overlap.

5. Toward the W test application on real binary
systems

Another problem deserving a detailed analysis before adopt-
ing the W test for real binary systems concerns mea-
surement errors. The empirically determined values Ŝ =

{T̂ 1,2
eff ,

ˆ[Fe/H]1,2, M̂1,2, R̂1,2} of the physical quantities of the
two stellar components used in the age estimate proce-
dure are in principle different from the real ones S =

{T 1,2
eff , [Fe/H]1,2,M1,2,R1,2}. Moreover, the evolutionary stage r

of the primary star is not observable and has to be estimated. On
the other hand, we showed in Sect. 3 that the critical values W0.95
depends on the true values of stellar masses, metallicity, and pri-
mary relative age r. As a consequence, the critical value Ŵ0.95
computed following the five steps described in Sect. 2 starting
from the empirically determined values Ŝ of the binary mem-
bers is in principle different from the true critical value W0.95
computed from the real S values. Because of this situation, the
recovered W value for the observed system should not be com-
pared with Ŵ0.95 but with W0.95. The true S values are not ob-
servables, however, and thus W0.95 cannot be directly computed.
Which values of masses, metallicity, and evolutionary stage r
should be adopted to properly compute a critical value that is
a satisfactory approximation of the true W0.95? This is a crucial
question; the W test can only be applied to real systems if the
correct critical value to be adopted in the age comparison can be
accurately recovered.

The problem is equivalent to finding the most probable true
binary system associated with the observed one, or in other
words, a system composed of two coeval members that maxi-
mizes the likelihood of generating the observed binaries after
a perturbation caused by the observational uncertainties. Valle
et al. (2015b) showed that the best solution to this problem is
provided by imposing the coevality of the two stars in the grid-
based recovery procedure. Let S̃ = { ˜Teff

1,2
, ˜[Fe/H]1,2, M̃1,2, R̃1,2}

be the best estimate of S under this assumption. We therefore
performed a new set of Monte Carlo simulations to compute the
critical values ˜W0.95 from S̃. To check the goodness of this ap-
proach, we tested it on a sample of synthetic binary systems

for which the true values S and W0.95 are known. Then the
comparison between W0.95 and W̃0.95 will prove the performance
of the adopted procedure.

Adopting the same framework as described above, we ob-
tained the best estimates S̃ and the corresponding critical values
W̃0.95 for all the systems relevant to the W test (critical systems in
the step 4 of Fig. 4). A possible complication arises whenever the
two stars have age estimates so different that no grid-based co-
eval solutions exist, respecting the observational constraints. For
these extreme cases the single-star estimates can be adopted. It
is clear, however, that the impossibility of obtaining a grid-based
coeval solution strongly advises against this hypothesis.

As a result, we found that the proposed estimator of the true
critical value computed starting from the most probable coeval
binary system associated with the observed one is good, that
is, unbiased and with a small variance. The differences between
W̃0.95 and W0.95 are small because overall the median difference
is −0.004 (16th and 84th quantile, −0.019 and 0.018, respec-
tively). No relevant trends with the mass of the stars, the evolu-
tionary phase, or the mass ratio were found. To quantify these
variations in terms of the level of the test, they correspond to a
median α of 0.048, (16th and 84th quantiles, 0.033 and 0.066).

In conclusion, the Monte Carlo simulations showed that the
test can be safely applied to real systems and is more sensitive
in rejecting the coevality than the simple computation of the in-
dividual age confidence intervals. To adopt the test in practice, it
is therefore necessary to

1. compute the two single-age estimates and the W value;
2. obtain the best coeval solution of the system;
3. adopt the masses, metallicity, and relative age of the primary

stars obtained in the preceding step to find the critical value
W0.95 by interpolating Tables A.1 to A.5; and

4. compare the W value with W0.95.

6. Analytical approximation of the W distribution

For all the combinations of masses, metallicities, and relative
ages described in Sect. 2, the Gaussian perturbations – added to
the values of the observables before the age estimation – cause
a scatter of the values of W. The actual distribution of these val-
ues ultimately depends on the position in the estimation grid of
the unperturbed values. Since the grid is irregular and the differ-
ences among near models change with the models evolutionary
stage (see Valle et al. 2014, for a detailed discussion), it is im-
possible to explicitly derive the exact distributions of W for all
the examined cases.

Nevertheless, we were able to find an empirical approxima-
tion suitable for all these distributions. In this section we show
that these distributions are closely approximated by beta distri-
butions and discuss the validity and limits of this approximation.
This result is particularly useful since it could be used to estimate
the critical values at different levels α.

The beta density function f (x, a, b) is defined on the interval
x ∈ [0, 1] and is parametrised by two positive parameters, a and
b, controlling the shape of the distribution. The density has the
expression

f (x, a, b) =
Γ(a + b)
Γ(a)Γ(b

xa−1 (1 − x)b−1 , (6)
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Fig. 5. Comparison of beta distribution functions (solid black line) with the observed distributions (red dashed line) of W for 25 randomly selected
combinations of masses M1 and M2 of stars (in solar units) and relative age r of the primary star (see text).

where Γ(.) is the gamma function. The mean μ and the variance
σ2 of the distribution are

μ =
a

a + b

σ2 =
a b

(a + b)2 (a + b + 1)
· (7)

For each of the 1087 simulated binary systems of Sect. 3 we
adapted a beta distribution to the N = 50 000 synthetic val-
ues of W. The parameters of the distribution were computed by
equating the sample mean and variance to the theoretical val-
ues given by Eq. (7). Figure 5 shows a comparison between
the theoretical and the sample distributions for 25 randomly se-
lected binary systems. The agreement is surprisingly good. All
the computed critical values, their errors, and the parameters

of the beta approximating distribution function are available at
CDS. Table 2 shows the first four lines of the table.

In Fig. 6 we show, in dependence on the mass ratio q, the
value (W0.95−B0.95)/W0.95, where W0.95 are the values computed
in Sect. 3, and B0.95 are the corresponding quantiles obtained
from the theoretical beta distribution. A positive value means
that the sample quantile is larger than the corresponding theoret-
ical value. To better show the median trend of the relative error,
the figure also shows a loess smoother8 of the data. The data
and theoretical estimates agree very well for q > 0.7, where the
spread is lower than about ±5%. For lower q there are larger

8 A loess regression smoother is a non-parametric locally weighted
polynomial regression technique that is often used to show the underly-
ing trend of scattered data (see e.g. Feigelson & Babu 2012; Venables
& Ripley 2002).
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Fig. 6. Relative difference of the W0.95 critical values obtained from the
sample data and from the approximating beta distribution, in depen-
dence on the mass ratio q (see text). A positive value implies that the
computed quantile is larger than the theoretical one. The red line is a
loess smoother of the data that shows the mean trend of the relative
error.

Table 2. W0.95 critical values and the parameters of the beta distribution,
which approximate the W distribution, for the 1087 considered binary
systems.

M1 M2 [Fe/H] r W0.95 σ(W0.95) a b

0.8 0.8 –0.55 0.1 0.5911 0.0016 1.120367 3.617874
0.9 0.8 –0.55 0.1 0.6430 0.0022 1.502503 3.389753
0.9 0.9 –0.55 0.1 0.5607 0.0026 1.225152 3.921876
1.0 0.8 –0.55 0.1 0.6255 0.0028 1.529220 3.580155

. . .

Notes. The full table is available at the CDS. The columns report the
mass of the primary star, the mass of the secondary, the initial metal-
licity [Fe/H] of the system, the relative age r of the primary star, the
critical value W0.95, its bootstrap error (see text), and the parameters a
and b of the approximating beta distribution.

differences and the beta distribution overestimates the desired
quantile by as much as 15%. A global weak bias is present
and the theoretical quantiles generally overestimate the observed
ones, providing a more conservative test. The median differ-
ences among theoretical and empirical quantiles, marked by the
loess smoother, are of about −2% at high q, and reach a −5% at
q = 0.5.

Figure 6 shows that the variability in the differences between
the observed and theoretical quantiles is higher at q = 0.5. The
typical behaviour for these systems is shown in Fig. 7, which
displays the case of worst agreement between theoretical and
empirical distributions (M1 = 1.6 M�, M2 = 0.8 M�, r = 0.5).
The empirical distribution shows a lack of values around W =
0.3 and an accumulation at W = 0.5.
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Fig. 7. Comparison of beta distribution function (solid black) with the
observed distribution (dashed red) for the case of worst agreement
(M1 = 1.6 M�, M2 = 0.8 M�, r = 0.5).

7. Conclusions

We devised a statistical test on the difference in the estimated
ages of two coeval stars in a binary system as a result of the fluc-
tuations caused by observational errors. This test allows assess-
ing on statistical grounds whether the apparent non-coevality of
binary members is merely the consequence of observational un-
certainties. We also provided an on-line tool to be used for real
systems.

We introduced the statistics W, defined as the absolute value
of the difference between the two estimated ages and the age of
the older star. We studied how the W values are scattered as a re-
sult of the uncertainty on the observational constraints adopted
in the age estimation procedure. We assumed a level of the sta-
tistical test α = 0.05, corresponding to critical values W0.95. The
coevality hypothesis is rejected when W > W0.95. We analysed
the dependence of W0.95 on the masses of the two stars, the initial
metallicity [Fe/H], and the relative age of the primary star.

We found that the values W0.95 range in median from 0.65
for relative age r = 0.1 to 0.2 at relative age r = 0.9, meaning
that the younger the system, the larger the expected difference
between the estimated ages of the two components that is due
to the observational uncertainties. Moreover, W0.95, and thus the
expected age discrepancy, also increases with the mass of the pri-
mary star. The dependence on the initial metallicity is negligible.

We also verified that the results are robust to a change of the
adopted stellar evolution code. To this purpose, we repeated the
process by using a grid of stellar models computed by the MESA
evolutionary code (Paxton et al. 2013). The median difference in
the critical values was about 0.01.

The magnitude of the critical values, in particular for systems
near the ZAMS, should be taken into account in the analysis of
observational data before concluding that the coevality of the
stars cannot be accounted for by standard stellar models without
changes in the input physics and/or in the adopted calibration of
the free parameters, such as the mixing-length or the convective
core overshooting.
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We demonstrated how the test can be adapted to real binary
systems in presence of measurements errors on the observed
quantities. We showed that the true critical values, computed
with perfect knowledge of the observables, are closely approxi-
mated by the corresponding values derived by assuming the grid-
based best estimates of the masses imposing the coevality of the
solution. We compared the performance of the W test in assess-
ing the (non-)coevality of the binary components with the com-
mon approach, which relies on confidence intervals of the indi-
vidual age estimates. We found that the latter approach is too
conservative for the assumed level α, meaning that most of the
systems signalled to be non-coeval by the W test have estimated
individual ages that are compatible with each other within the er-
rors. In contrast to the W test, which is specifically developed for
the task of a coevality check, the confidence interval comparison
is not statistically powerful when adopted for this aim, and it has
an actual level of about an order of magnitude lower than the
nominal α = 0.05. More in detail, the common approach gives
significant differences ranging from about 16% of the systems
with a significant W value at q ≈ 0.5 to 0% for systems at q ≈ 1.

Finally, we showed that the distributions of W for the vari-
ous combinations of star masses, metallicities, and primary rela-
tive ages are approximated by beta distributions with appropriate
shape parameters. The approximation is very good for systems
with a mass ratio higher than 0.7, while it is less accurate for
more unbalanced systems.
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Appendix A: Tables of critical values

Table A.1. Critical values W0.95 in dependence on masses of the stars M1 and M2 (both in solar units), and on their initial metallicity [Fe/H].

M1 [Fe/H] M2

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
0.80 –0.55 0.591
0.90 –0.55 0.643 0.561
1.00 –0.55 0.625 0.595 0.517
1.10 –0.55 0.617 0.603 0.581 0.536
1.20 –0.55 0.683 0.692 0.641 0.620 0.545
1.30 –0.55 0.786 0.741 0.667 0.611 0.588
1.40 –0.55 0.816 0.763 0.663 0.617 0.594 0.579
1.50 –0.55 0.792 0.695 0.601 0.594 0.587 0.568
1.60 –0.55 0.692 0.564 0.554 0.582 0.605 0.472
0.80 –0.25 0.598
0.90 –0.25 0.662 0.585
1.00 –0.25 0.661 0.629 0.572
1.10 –0.25 0.629 0.606 0.603 0.534
1.20 –0.25 0.623 0.619 0.613 0.603 0.507
1.30 –0.25 0.726 0.699 0.688 0.614 0.539
1.40 –0.25 0.779 0.734 0.682 0.593 0.574
1.50 –0.25 0.796 0.740 0.676 0.592 0.574 0.562
1.60 –0.25 0.732 0.650 0.582 0.576 0.601 0.458
0.80 0.00 0.602
0.90 0.00 0.659 0.603
1.00 0.00 0.673 0.645 0.598
1.10 0.00 0.681 0.637 0.628 0.588
1.20 0.00 0.702 0.648 0.615 0.610 0.541
1.30 0.00 0.686 0.623 0.628 0.604 0.518
1.40 0.00 0.730 0.696 0.674 0.618 0.535
1.50 0.00 0.806 0.767 0.710 0.677 0.571 0.544
1.60 0.00 0.774 0.688 0.670 0.592 0.594 0.455
0.80 0.25 0.625
0.90 0.25 0.683 0.618
1.00 0.25 0.678 0.660 0.620
1.10 0.25 0.678 0.654 0.648 0.608
1.20 0.25 0.708 0.658 0.630 0.633 0.584
1.30 0.25 0.717 0.644 0.632 0.606 0.535
1.40 0.25 0.688 0.631 0.616 0.577 0.534
1.50 0.25 0.769 0.713 0.674 0.632 0.595 0.510
1.60 0.25 0.780 0.729 0.677 0.661 0.586 0.445
0.80 0.55 0.643
0.90 0.55 0.693 0.644
1.00 0.55 0.687 0.671 0.630
1.10 0.55 0.671 0.653 0.659 0.620
1.20 0.55 0.715 0.653 0.649 0.647 0.604
1.30 0.55 0.699 0.643 0.633 0.630 0.580
1.40 0.55 0.731 0.659 0.611 0.630 0.626 0.495
1.50 0.55 0.708 0.643 0.592 0.601 0.537 0.421
1.60 0.55 0.748 0.685 0.612 0.610 0.619 0.559 0.281

Notes. Values are computed for primary relative age r = 0.1.
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Table A.2. As in Table A.1, but for a primary relative age r = 0.3.

M1 [Fe/H] M2

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
0.80 –0.55 0.230
0.90 –0.55 0.358 0.229
1.00 –0.55 0.521 0.310 0.215
1.10 –0.55 0.638 0.448 0.291 0.204
1.20 –0.55 0.618 0.592 0.423 0.288 0.200
1.30 –0.55 0.547 0.651 0.539 0.401 0.265 0.209
1.40 –0.55 0.461 0.604 0.602 0.489 0.345 0.288 0.210
1.50 –0.55 0.468 0.628 0.614 0.600 0.469 0.435 0.310 0.210
1.60 –0.55 0.483 0.674 0.589 0.672 0.605 0.563 0.465 0.345 0.162
0.80 –0.25 0.231
0.90 –0.25 0.367 0.238
1.00 –0.25 0.542 0.331 0.230
1.10 –0.25 0.662 0.487 0.318 0.217
1.20 –0.25 0.646 0.629 0.482 0.303 0.195
1.30 –0.25 0.557 0.665 0.628 0.449 0.275 0.204
1.40 –0.25 0.484 0.632 0.676 0.571 0.370 0.258 0.209
1.50 –0.25 0.467 0.622 0.658 0.642 0.449 0.351 0.285 0.202
1.60 –0.25 0.482 0.655 0.639 0.684 0.551 0.485 0.447 0.303 0.158
0.80 0.00 0.236
0.90 0.00 0.358 0.244
1.00 0.00 0.527 0.340 0.241
1.10 0.00 0.632 0.505 0.328 0.232
1.20 0.00 0.606 0.628 0.487 0.319 0.217
1.30 0.00 0.551 0.662 0.638 0.480 0.298 0.196
1.40 0.00 0.493 0.621 0.689 0.641 0.440 0.271 0.182
1.50 0.00 0.514 0.633 0.661 0.705 0.560 0.379 0.226 0.184
1.60 0.00 0.537 0.667 0.639 0.717 0.664 0.473 0.348 0.265 0.149
0.80 0.25 0.238
0.90 0.25 0.364 0.237
1.00 0.25 0.537 0.324 0.242
1.10 0.25 0.657 0.491 0.330 0.238
1.20 0.25 0.646 0.637 0.509 0.319 0.227
1.30 0.25 0.569 0.653 0.661 0.488 0.304 0.213
1.40 0.25 0.508 0.611 0.683 0.644 0.450 0.265 0.192
1.50 0.25 0.525 0.643 0.647 0.712 0.609 0.385 0.239 0.176
1.60 0.25 0.701 0.639 0.716 0.694 0.526 0.356 0.237 0.147
0.80 0.55 0.237
0.90 0.55 0.345 0.248
1.00 0.55 0.529 0.333 0.242
1.10 0.55 0.686 0.507 0.316 0.241
1.20 0.55 0.660 0.682 0.470 0.307 0.238
1.30 0.55 0.598 0.685 0.639 0.450 0.295 0.229
1.40 0.55 0.524 0.633 0.708 0.658 0.473 0.310 0.206
1.50 0.55 0.494 0.604 0.658 0.695 0.598 0.376 0.232 0.187
1.60 0.55 0.517 0.655 0.631 0.701 0.701 0.537 0.299 0.241 0.142
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Table A.3. As in Table A.1, but for a primary relative age r = 0.5.

M1 [Fe/H] M2

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
0.80 –0.55 0.129
0.90 –0.55 0.201 0.132
1.00 –0.55 0.318 0.195 0.126
1.10 –0.55 0.474 0.288 0.180 0.117
1.20 –0.55 0.618 0.416 0.275 0.165 0.103
1.30 –0.55 0.678 0.536 0.364 0.235 0.143 0.101
1.40 –0.55 0.608 0.619 0.455 0.315 0.193 0.143 0.113
1.50 –0.55 0.526 0.653 0.558 0.418 0.285 0.202 0.146 0.117
1.60 –0.55 0.457 0.613 0.611 0.498 0.404 0.349 0.236 0.162 0.090
0.80 –0.25 0.129
0.90 –0.25 0.208 0.138
1.00 –0.25 0.337 0.196 0.132
1.10 –0.25 0.496 0.308 0.196 0.129
1.20 –0.25 0.647 0.455 0.299 0.183 0.112
1.30 –0.25 0.698 0.599 0.427 0.274 0.156 0.098
1.40 –0.25 0.629 0.661 0.551 0.377 0.221 0.144 0.110
1.50 –0.25 0.541 0.676 0.652 0.459 0.280 0.192 0.148 0.113
1.60 –0.25 0.477 0.643 0.690 0.553 0.366 0.288 0.222 0.158 0.092
0.80 0.00 0.130
0.90 0.00 0.212 0.140
1.00 0.00 0.329 0.201 0.138
1.10 0.00 0.490 0.303 0.195 0.136
1.20 0.00 0.627 0.452 0.300 0.197 0.132
1.30 0.00 0.676 0.610 0.442 0.286 0.179 0.108
1.40 0.00 0.597 0.700 0.594 0.419 0.257 0.157 0.099
1.50 0.00 0.529 0.675 0.687 0.548 0.363 0.223 0.131 0.104
1.60 0.00 0.483 0.638 0.725 0.638 0.457 0.296 0.189 0.149 0.087
0.80 0.25 0.132
0.90 0.25 0.203 0.139
1.00 0.25 0.314 0.197 0.141
1.10 0.25 0.499 0.289 0.194 0.139
1.20 0.25 0.649 0.436 0.293 0.191 0.134
1.30 0.25 0.699 0.608 0.450 0.288 0.186 0.122
1.40 0.25 0.630 0.701 0.615 0.418 0.256 0.161 0.109
1.50 0.25 0.545 0.671 0.698 0.574 0.364 0.220 0.148 0.104
1.60 0.25 0.481 0.636 0.729 0.671 0.498 0.325 0.222 0.151 0.079
0.80 0.55 0.134
0.90 0.55 0.210 0.144
1.00 0.55 0.308 0.202 0.141
1.10 0.55 0.469 0.295 0.194 0.148
1.20 0.55 0.663 0.441 0.278 0.191 0.147
1.30 0.55 0.709 0.636 0.406 0.273 0.187 0.136
1.40 0.55 0.640 0.737 0.598 0.396 0.271 0.186 0.127
1.50 0.55 0.567 0.696 0.696 0.542 0.348 0.240 0.156 0.112
1.60 0.55 0.494 0.652 0.748 0.639 0.459 0.323 0.201 0.167 0.082
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Table A.4. As in Table A.1, but for a primary relative age r = 0.7.

M1 [Fe/H] M2

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
1.40 –0.55 0.688 0.503 0.348 0.219 0.135 0.082 0.063
1.50 –0.55 0.641 0.616 0.431 0.294 0.199 0.144 0.083 0.064
1.60 –0.55 0.581 0.666 0.498 0.394 0.283 0.220 0.177 0.112 0.050
0.80 –0.25 0.086
0.90 –0.25 0.142 0.098
1.00 –0.25 0.225 0.141 0.090
1.10 –0.25 0.357 0.228 0.149 0.086
1.20 –0.25 0.507 0.323 0.208 0.124 0.088
1.30 –0.25 0.639 0.458 0.308 0.186 0.104 0.065
1.40 –0.25 0.713 0.577 0.415 0.264 0.150 0.084 0.064
1.50 –0.25 0.658 0.660 0.518 0.343 0.200 0.132 0.092 0.065
1.60 –0.25 0.599 0.719 0.606 0.424 0.266 0.201 0.162 0.114 0.049
0.80 0.00 0.083
0.90 0.00 0.142 0.099
1.00 0.00 0.227 0.139 0.093
1.10 0.00 0.351 0.219 0.137 0.087
1.20 0.00 0.506 0.329 0.220 0.138 0.096
1.30 0.00 0.636 0.464 0.311 0.197 0.125 0.076
1.40 0.00 0.692 0.606 0.440 0.291 0.177 0.100 0.070
1.50 0.00 0.625 0.670 0.572 0.399 0.250 0.150 0.079 0.064
1.60 0.00 0.566 0.722 0.646 0.492 0.331 0.208 0.134 0.094 0.047
0.80 0.25 0.084
0.90 0.25 0.139 0.093
1.00 0.25 0.217 0.138 0.092
1.10 0.25 0.345 0.208 0.136 0.090
1.20 0.25 0.526 0.305 0.213 0.135 0.087
1.30 0.25 0.660 0.440 0.301 0.199 0.127 0.086
1.40 0.25 0.713 0.608 0.444 0.283 0.181 0.111 0.083
1.50 0.25 0.654 0.678 0.595 0.397 0.250 0.155 0.093 0.076
1.60 0.25 0.595 0.718 0.671 0.509 0.346 0.233 0.155 0.102 0.057
0.80 0.55 0.083
0.90 0.55 0.140 0.093
1.00 0.55 0.217 0.139 0.091
1.10 0.55 0.330 0.218 0.139 0.095
1.20 0.55 0.492 0.313 0.205 0.138 0.098
1.30 0.55 0.675 0.451 0.289 0.199 0.137 0.098
1.40 0.55 0.716 0.629 0.402 0.275 0.188 0.127 0.104
1.50 0.55 0.662 0.728 0.539 0.361 0.249 0.163 0.112 0.096
1.60 0.55 0.611 0.739 0.651 0.480 0.336 0.241 0.154 0.116 0.069
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Table A.5. As in Table A.1, but for a primary relative age r = 0.9.

M1 [Fe/H] M2

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
0.80 –0.55 0.057
0.90 –0.55 0.097 0.056
1.00 –0.55 0.164 0.110 0.055
1.10 –0.55 0.254 0.166 0.094 0.064
1.20 –0.55 0.381 0.241 0.148 0.081 0.051
1.30 –0.55 0.511 0.328 0.209 0.117 0.069 0.047
1.40 –0.55 0.620 0.418 0.279 0.170 0.108 0.115 0.039
1.50 –0.55 0.703 0.513 0.352 0.225 0.155 0.095 0.071 0.051
1.60 –0.55 0.668 0.596 0.436 0.321 0.240 0.195 0.143 0.127 0.079
0.80 –0.25 0.057
0.90 –0.25 0.105 0.062
1.00 –0.25 0.171 0.111 0.060
1.10 –0.25 0.266 0.182 0.117 0.068
1.20 –0.25 0.403 0.253 0.161 0.101 0.066
1.30 –0.25 0.539 0.365 0.241 0.144 0.086 0.045
1.40 –0.25 0.664 0.472 0.326 0.205 0.123 0.070 0.045
1.50 –0.25 0.721 0.595 0.425 0.280 0.182 0.139 0.132 0.113
1.60 –0.25 0.695 0.669 0.515 0.362 0.240 0.207 0.179 0.162 0.093
0.80 0.00 0.056
0.90 0.00 0.103 0.063
1.00 0.00 0.175 0.109 0.067
1.10 0.00 0.271 0.175 0.108 0.062
1.20 0.00 0.399 0.258 0.170 0.105 0.075
1.30 0.00 0.547 0.367 0.244 0.155 0.098 0.056
1.40 0.00 0.654 0.497 0.343 0.228 0.143 0.092 0.065
1.50 0.00 0.694 0.621 0.461 0.308 0.216 0.148 0.136 0.112
1.60 0.00 0.656 0.681 0.556 0.409 0.294 0.205 0.164 0.157 0.100
0.80 0.25 0.056
0.90 0.25 0.101 0.063
1.00 0.25 0.166 0.104 0.063
1.10 0.25 0.263 0.167 0.104 0.064
1.20 0.25 0.407 0.242 0.164 0.098 0.063
1.30 0.25 0.567 0.346 0.246 0.158 0.091 0.055
1.40 0.25 0.668 0.468 0.335 0.227 0.154 0.119 0.090
1.50 0.25 0.717 0.621 0.455 0.296 0.197 0.137 0.114 0.093
1.60 0.25 0.681 0.676 0.567 0.393 0.264 0.201 0.141 0.128 0.101
0.80 0.55 0.058
0.90 0.55 0.103 0.060
1.00 0.55 0.163 0.104 0.062
1.10 0.55 0.251 0.169 0.105 0.064
1.20 0.55 0.376 0.248 0.158 0.101 0.065
1.30 0.55 0.535 0.353 0.238 0.160 0.104 0.058
1.40 0.55 0.685 0.491 0.319 0.222 0.159 0.116 0.081
1.50 0.55 0.723 0.633 0.411 0.286 0.201 0.137 0.105 0.080
1.60 0.55 0.688 0.700 0.516 0.370 0.272 0.191 0.143 0.119 0.060
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