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ABSTRACT

Aims. We develop a statistical test on the expected difference in age estimates of two coeval stars in detached double-lined eclipsing
binary systems that are only caused by observational uncertainties. We focus on stars in the mass range [0.8; 1.6] M, with an initial
metallicity [Fe/H] from —0.55 to 0.55 dex, and on stars in the main-sequence phase.

Methods. The ages were obtained by means of the SCEPtER technique, a maximum-likelihood procedure relying on a pre-computed
grid of stellar models. The observational constraints used in the recovery procedure are stellar mass, radius, effective temperature,
and metallicity [Fe/H]. To check the effect of the uncertainties affecting observations on the (non-)coevality assessment, the chosen
observational constraints were subjected to a Gaussian perturbation before applying the SCEPtER code. We defined the statistic W
computed as the ratio of the absolute difference of estimated ages for the two stars over the age of the older one. We determined
the critical values of this statistics above which coevality can be rejected in dependence on the mass of the two stars, on the initial
metallicity [Fe/H], and on the evolutionary stage of the primary star.

Results. The median expected difference in the reconstructed age between the coeval stars of a binary system — caused alone by
the observational uncertainties — shows a strong dependence on the evolutionary stage. This ranges from about 20% for an evolved
primary star to about 75% for a near ZAMS primary. The median difference also shows an increase with the mass of the primary star
from 20% for 0.8 M, stars to about 50% for 1.6 M,, stars. The reliability of these results was checked by repeating the process with a
grid of stellar models computed by a different evolutionary code; the median difference in the critical values was only 0.01. We show
that the W test is much more sensible to age differences in the binary system components than the alternative approach of comparing
the confidence interval of the age of the two stars. We also found that the distribution of W is, for almost all the examined cases, well
approximated by beta distributions.

Conclusions. The proposed method improves upon the techniques that are commonly adopted for judging the coevality of an observed

system. It also provides a result founded on reliable statistics that simultaneously accounts for all the observational uncertainties.
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1. Introduction

The impossibility to simultaneously fit the observed characteris-
tics of stars in a double-lined detached binary system with a sin-
gle isochrone is usually interpreted as the need to introduce some
modifications in the current generation of evolutionary codes,
such as adjustments of the external convection efficiency through
the mixing-length parameter (e.g. Torres et al. 2006; Clausen
et al. 2009; Morales et al. 2009). Moreover, these systems are
often adopted in studies on the calibration of convective core
overshooting by fine-tuning the isochrone fit (see, among many,
Andersen et al. 1990; Ribas et al. 2000; Lacy et al. 2008; Clausen
et al. 2010).

However, an apparent age difference between the binary sys-
tem components could simply arise by fluctuations that arise
as a result of the uncertainties in the observational constraints
adopted in the estimation. This was already pointed out in

* On-line calculator available at http://astro.df.unipi.it/
stellar-models/W/
** Full Table 2 is only available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg. fr/viz-bin/qcat?]/A+A/587/A31
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the literature; as an example, Gennaro et al. (2012) conducted
some tests for nine combinations of stellar masses on pre-main-
sequence stars. More recently, Valle et al. (2015b) presented
some basic results about the expected differences in the age es-
timates of the two coeval members in double-lined detached bi-
nary systems, obtained by the grid-based technique SCEPtER
(Valle et al. 2014, 2015a). We found that the differences are large
and reach a median value of 60% for a mass ratio of 0.5.

Therefore, given the relevance of the coevality hypothesis, it
is of paramount importance to set out accurate methods for eval-
uating whenever a detected difference in ages of the two stars
in an observed system is “too high” to be coeval on statisti-
cal grounds. Unfortunately, the recent literature is quite inho-
mogeneous with regard to this problem. It is common practice
to compare the observed system to sets of isochrones to deter-
mine the system age, while the best-fit ages for a single star are
seldom provided. In most cases the details of the fitting tech-
niques are scarcely discussed. Moreover, it is common to indi-
vidually obtain the system age estimates for a set of different
metallicities, compatible with the error on the observed [Fe/H],
and then to assess the error caused by the metallicity uncer-
tainty by considering the obtained age spread (see among many
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Clausen et al. 2008; Lacy et al. 2008; Torres et al. 2009; Clausen
etal. 2010; Rozyczka et al. 2011; Sowell et al. 2012). The draw-
back of this method is that it cannot account for possible error
correlations among masses, metallicities, and effective tempera-
tures of the stars. For age estimation purposes, stellar tracks for
the precise observed masses were calculated in other cases (e.g.
Vos et al. 2012). The literature also reports a two-stage fitting
method, which first estimates the best-fit stellar model metallic-
ity that is compatible with the spectroscopic determination, and
then finds the best-fitting isochrone for this fixed metallicity (see
e.g. Sandberg Lacy et al. 2010; Welsh et al. 2012). Overall, each
author relies on different methods and different stellar tracks,
computed with chemical and physical input that results in age
estimates that sometimes are vastly different. The worst problem
is that a reliable and consistent treatment of the errors, at least
those arising from the uncertainties in the observed quantities
adopted in the fitting, is generally lacking, and a reliable error
on the age estimates is rarely provided. This makes evaluating
the reliability of the deviation from coevality and comparing the
results of different authors very challenging.

The aim of this paper is to partially alleviate this problem by
providing a statistical test of the coevality hypothesis that sup-
plements the currently adopted techniques. Our intent is to de-
velop a reliable method that consistently treats the observational
errors, and to show its usage in practice. To this aim, we evalu-
ate the dependence of the expected age differences on the mass
of the two stars, on their metallicity, and on their relative age1
on the main sequence. We provide the critical values of the ex-
pected differences in age to be used to asses if the reconstructed
non-coevality is simply the result of a random fluctuation. We
also show the differences between the coevality test and the com-
monly adopted comparison of the age confidence interval of the
observed stars.

The work developed in this paper is framed in the theory of
the frequentistic statistical hypothesis testing (see among many
Snedecor & Cochran 1989; Feigelson & Babu 2012, for de-
tails). In the present-day formulation, this sound mathematical
theory is rooted in the first decades of the nineteenth century
and is mainly based on the theoretical studies of Pearson, Gosset
(Student), Neyman, and Fisher (see e.g. Fisher 1925; Neyman
& Pearson 1933). Without any claim at completeness, we re-
call that the theory requires formulating a scientific hypothesis
to check (in our case the stellar coevality) that is often referred
to as the null hypothesis Hy, to define a parent population on
which the hypothesis should be verified, to define a statistic 7
to be adopted in the hypothesis testing, and to derive the dis-
tribution of 7~ under Hy. From this distribution is then identi-
fied a rejection region of Hy; for an unilateral test (as the one in
the present paper) this traditionally corresponds to values of the
statistics above the 95th quantile of the distribution (the value
corresponding to the 95th quantile is called critical value). By
this choice the experimenter sets the so-called level @ of the test
to a value of 0.05, corresponding to the probability of type I
errors (i.e. rejecting Hy when it is indeed true). After these the-
oretical derivations, the test can be applied to a random sample
drawn from the parent population to verify Hy. The reference
statistic 7~ is computed on this sample and compared with the
chosen quantile of its distribution. A sample value of 7~ above
the critical value leads to rejecting H.

! The relative age is defined as the ratio between the age of the star
and the age of the same star at central hydrogen depletion (the age is
conventionally set to 0 at the ZAMS position).
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2. Methods

Stellar ages were determined by means of the SCEPtER pipeline,
a maximum-likelihood technique relying on a pre-computed grid
of stellar models and a set of observational constraints (see e.g.
Valle et al. 2015a). A first application to eclipsing binary systems
has been extensively described in Valle et al. (2015b). The grid
of models covers the evolution from the zero-age main-sequence
(ZAMS) up to the central hydrogen depletion of stars with
masses in the range [0.8; 1.6] M, and initial metallicities [Fe/H]
from —0.55 dex to 0.55 dex. The grid was computed by means
of the FRANEC stellar evolutionary code (Degl’Innocenti et al.
2008; Tognelli et al. 2011), in the same configuration adopted
to compute the Pisa Stellar Evolution Data Base? for low-mass
stars (Dell’Omodarme et al. 2012; Dell’Omodarme & Valle
2013). The details of the standard grid of stellar models, the sam-
pling procedure, and the age estimation technique are fully de-
scribed in Valle et al. (2015a,b), while the adopted input and the
related uncertainties are discussed in Valle et al. (2009, 2013a,b).

To test the ability of grid-based maximum-likelihood tech-
niques of assessing the coevality of binary components within
random error fluctuation, we chose the most favourable scenario,
that is, the case in which stellar models perfectly agree with ob-
servations and the binary members are coeval by construction.
To achieve this optimistic situation, we built a synthetic dataset
by sampling the artificial binary systems from the same grid of
stellar models as was used in the recovery procedure. The effect
on the coevality assessment of the current typical observational
errors was simulated by adding random Gaussian perturbations
— with o equal to the uncertainty — to the chosen observational
constraints.

As already mentioned, the binary components are coeval by
construction because they have been generated with the same
age in the sampling stage. However, as a consequence of the
perturbation procedure mimicking the observational errors, the
recovery might provide two different age estimates for the binary
members.

Our aim is to devise a criterion founded on statistics to evalu-
ate the likelihood that the recovered non-coevality is genuine and
not merely the result of observational errors. More formally, the
null hypothesis Hy for which we wish to develop a statistical test
is that the stars are coeval within the random variability caused
by the observational errors. We aim to define a statistics to test
Hy, obtaining a rejection region at level «, and thus a critical
value identifying it. We define A; and A, as the estimated ages
of the two members, with A; > A,. We focus on the statistics W
defined as

Al - A
Ay

W then varies from O (when the stars are estimated to be coeval)
to 1 (when A} > A,). High values of W lead to the rejection of
the null hypothesis, implying that it is very unlikely that standard
stellar models might account for the coevality of the stars with
the assumed input or parameters. The point is to establish the
critical values above which the coevality rejection is statistically
significant.

To do this, we evaluated the distribution of W —under the co-
evality hypothesis Hy — that arises from observational uncertain-
ties alone and computed the critical values that define the range
of values W that are compatible with the null hypothesis itself.
As stated in the introduction, the 95th quantile of the distribu-
tion of the statistics under examination are typically adopted as

W= (1

2 http://astro.df.unipi.it/stellar-models/
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Fig. 1. Outline of the design to compute the critical values. Steps 1-3 are described in Sect. 2.1, steps 4—5 in Sect. 2.2.

critical values. The choice of the quantile defines the level @ of
the test. In the following we assume a level of the test @ = 0.05
and compute the critical values W;_,. For W > W,_, the null
hypothesis Hy, that is, the coevality of the binary components, is
rejected.

2.1. Sampling and critical values estimation

Since the critical value W,_, depends on the characteristics of
the binary system, it is not possible to provide a single value
suitable for all the possible binary configurations. To describe
the dependence of W,_, on the physical parameters that identify
the binary system, a long and time consuming procedure is re-
quired. Figure 1 outlines the steps — described in detail below —
that we followed in the estimation procedure.

Step 1 To produce a representative sample of synthetic binary
systems spanning the possible combinations of masses, metallic-
ity, and relative ages of the two stars, we performed a systematic
sampling from the standard grid of stellar models. We selected
a set of nine stellar masses from 0.8 Mg to 1.6 M with a step
of 0.1 M. The metallicity was restricted to initial [Fe/H] val-
ues of —0.55, —0.25, 0.0, 0.25 and 0.55. The relative age r of
the primary star was chosen to assume values from 0.1 to 0.9
with a step of 0.2. Then, for each value of the primary mass
M, metallicity [Fe/H], and relative age, we selected the corre-
sponding model from the grid. Linear interpolation in effective
temperature, radius, and metallicity was performed to obtain a
stellar model of the exact chosen relative age. This step fixes the
age of the binary system to A, that is, the age of the selected
star. This synthetic star is coupled to all the possible secondary
components with masses lower than or equal to M|, the same
initial [Fe/H], and age exactly equal to A. Linear interpolation
in effective temperature, radius, and metallicity was performed
to match these requirements. The described sampling scheme
produced 1125 possible combinations. However, since the grid
does not contain models in the pre-main-sequence phase, not all
these combinations correspond to existing pairs in the grid. For
example, a 1.6 My model at relative age 0.1 is too young to be

matched by any model of 0.8 M, which is still in the pre-main-
sequence phase.

In conclusion, we found that a total number of 1087 binary
systems are possible, and we estimated the corresponding criti-
cal values W,_,, for each of them.

Step 2 To simulate observational uncertainties, the 1087 syn-
thetic binary systems were subjected to a Gaussian perturba-
tion of all the observed quantities with standard deviations of
100 K in Teg, 0.1 dex in [Fe/H], 1% in mass, and 0.5% in ra-
dius. To simulate realistic uncertainties, we assumed a correla-
tion of 0.95 between the primary and secondary effective temper-
atures, 0.95 between the metallicities, 0.8 between the masses,
and no correlation between the radii. A detailed discussion of
these choices and their effect on the final results, also including
the motivations for the zero correlation between the radii, can be
found in Valle et al. (2015b).

As aresult, for each of these 1087 cases we produced a set of
N perturbed systems, where the actual value of N was properly
evaluated in steps 4 and 5.

Step 3 For each of the 1087 analysed systems, we computed
the N values of the statistic W corresponding to all the per-
turbed objects. Finally, we estimated from these 1087 samples
the Wi_o(M;, M,, [Fe/H], r) quantiles, which approximate the
required critical values for the statistical test. Critical values
for masses, metallicities, and relative ages different from those
adopted in the computations can be obtained by interpolation.

At the end of this step, we obtained the required critical val-
ues. However, the procedure cannot stop here. In fact, a differ-
ent simulation run will produce different values; it is therefore
mandatory to estimate the random variability of the results. This
is the purpose of the following section.

2.2. Monte Carlo variability on the critical values

The accuracy of the computed quantiles Wy s depends on the
size N of the Monte Carlo sample, and it is obvious that a larger
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sample would provide a more accurate estimate. Our aim is to
reach a relative precision of 1% on the estimated critical values;
therefore we have to evaluate the minimum N needed to meet
this requirement.

More technically, given a sample X, ..., Xy of size N, taken
from a distribution F and density f, we aimed to estimate the
1 — @ quantile, defined as the value for which the distribution
function assumes value 1 — , that is,

Wiso = F'(1 - a). 2)

Standard theory establishes that the 1 — « sample quantile
Xin(i—ay) (the [N(1 — @)]th smallest observation in the sam-
ple Xi,...,Xy) is a consistent estimator® of the real quantile.
Moreover, the asymptotic expansion for the variance 0']2\, of
Xin(1-a)] 18 (see e.g. Stuart & Ord 1994)

oy =N"a(l —a) f(Wi_) 2 +o(N7h, 3

which shows that the convergence rate of Monte Carlo quan-
tile simulations is 1/ VN. Unfortunately, Eq. (3) cannot be used
for direct computations since it depends on the unknown density
function f(Wi_,). An usual way to circumvent the problem is to
relie on bootstrap estimates (see e.g. Davison & Hinkley 1997).

Steps 4 and 5 The approach requires sampling with replace-
ment a number 7 of samples of size N from the original W val-
ues. For each of these samples, we computed the sample quantile

A _ J . . . .
Wi_q = {X[N(l—a)'l’ j =1,...,n}and then estimated the arithmetic

mean (o) = 1/n }; &){_a and the variance 0']2\, by the variance
of the bootstrap quantiles, that is,

6% = Var(id)_y). 4)

For our computations we adopted n = 400.

Hall & Martin (1988) proved that 6+ /0% = 1 + O(N~'/%),
which means that the convergence to the true estimator is rel-
atively slow but sufficient for our purposes. The technique also
allows estimating the bias b of the sample w;_,

b = Xin(i—an — {D1-0) - (5)

The sample estimate can therefore be corrected to account for
the bias assuming as best quantile estimate the value (i;_, ).

We therefore performed some exploratory computations to
quantify the values from Eq. (4) for different N. As a result, we
found that N = 50000 allowed us to reach the required 1% rel-
ative accuracy for all the sample. The obtained relative errors
Gn/ (W1-o) on the 1087 quantile estimates are shown in Fig. 2,
in dependence on the relative age of the binary system. The fig-
ure presents the boxplot* of the errors for each relative age. It is
apparent that the median relative errors on the estimated quantile
are lower than 0.5% for all the explored relative ages.

3 A consistent estimator is an estimator that converges in probability

to the value to be estimated as the sample size goes to infinity.

4 Aboxplot is a convenient way to summarize a distribution. The black
thick line marks the median of the distribution, while the box extends
from the 25th to the 75th quantile. The whiskers extend to the extreme
values, but their lengths are limited to 1.5 times the width of the box.
Points outside the extension of the whiskers are omitted from the plot.
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Fig. 2. Boxplot of the relative error on the W95 quantile estimates as
a function of the primary relative age. Error estimates are obtained by
bootstrap resampling (see text).

3. Critical values Wy g5

The computation of the 1087 critical values described in the pre-
vious section required a total of 5.4 x 107 binary system age es-
timates. The results of this huge set of simulations are presented
in Tables A.1 to A.5. Each table collects — for values of the pri-
mary relative age » from 0.1 to 0.9 with a step of 0.2 — the critical
values Wy o5 in dependence on the masses of the stars and their
initial metallicity [Fe/H].

To use the test in practice, after estimating the ages of the
two stars and computing the value of the statistics W, this must
be compared with the appropriate critical value in the tables. If
the computed W is lower than the critical value W gs, the null
hypothesis of coevality cannot be rejected.

One complication arises because the values in
Tables A.1-A.5 depend on the observationally unknown
primary relative age r. The problem can be solved by esti-
mating r, for example by means of the same grid technique
as adopted for age estimates (more details on this topic are
provided in Sect. 5).

Our main result here is that the critical values — and thus the
critical age relative differences on age estimates of two stars that
are coeval by construction — are indeed high despite the high
precision reached by the observations. The overall median of the
critical values is 0.36, with an interquartile range of [0.16; 0.61].
Restricting the test to binary systems of low or intermediate rel-
ative age of the primary star (r < 0.5) results in a median critical
value of 0.60 with an interquartile range of [0.45; 0.65]. This
shows a general behaviour, which is that the closer the primary
star is to the ZAMS, the higher is the critical value Wy9s and
hence the expected difference between the ages of the two bi-
nary components.

Some trends in the critical values presented in
Tables A.1-A.5 are apparent and easily understandable.
The lowest values of Wy 95 in each row or column of the tables
are usually found for binary systems composed by equal-mass
stars. These are the only combinations for which the relative
age of the two stars are the same, all the others provide a
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Fig. 3. Left: boxplot of the Wy o5 quantile estimates as a function of the mass of the primary star. Right: same as the left panel, but for the dependence

on the relative age of the primary star.

lower relative age for the secondary. Since it is known (see
the extensive discussion in Valle et al. 2015a) that the relative
error in age decreases with relative age, it is straightforward
to conclude that the Wy 9s values on the diagonal of the tables
should be the lowest. From the same argument it follows that
an increase of the critical values is expected farther down in
the columns — that is, increasing the mass of the primary star
— and leftward in the rows — that is, decreasing the mass of the
secondary star. However, closer to the border of the tables, the
trend is less clear since here some edge effects (see Valle et al.
2014, 2015a, for a discussion) become dominant.

The discussed trend of the critical values with the mass of
the primary star is shown in the left panel of Fig. 3. The medi-
ans of the boxes increase monotonically from the 0.8 M mod-
els to those with 1.6 M. The large spread of the boxes is due
to the variability of the other parameters, that is, the secondary
mass, the metallicity, and the relative age of the primary star. The
strong effect of the primary relative age r on critical values Wy o5
is shown in the right panel of Fig. 3. For low values of r both
stars are at a young relative age, which leads to a large disper-
sion of single-age estimates. Conversely, at high values of r we
find systems of equal masses with high r, whose age estimates
are more precise and lead to lower critical values, and unbal-
anced systems for which the age errors and the critical values
are greater.

From the analysis of the tables in Appendix A, it appears
that the effect of the initial metallicity [Fe/H] is modest, with a
mean variation of W5 by about 0.03 for a change of 1.0 dex
in [Fe/H]. This explains the choice of grouping the binary sys-
tems according to their initial metallicity, neglecting the change
in chemical composition owing to the microscopic diffusion.

Some words of caution are needed. First of all, the com-
puted critical values directly depend on the assumed magnitude
of the observational uncertainties. A larger uncertainty produces
a stronger fluctuation in age estimates and thus critical values
higher than those presented here. Therefore we calibrated the un-
certainties we adopted here by assuming realistic values, which
are slightly higher than the average of the quoted uncertainties

in some recent determinations (e.g. Yildiz 2007; Clausen et al.
2009, 2010; Southworth 2013; Torres et al. 2014).

Moreover, we provide an on-line tool® that allows computing
the required critical value for the supplied masses, metallicity,
evolutionary phase, and observational uncertainties. This calcu-
lator can be useful when the uncertainties on the binary system
observables are larger than those adopted here.

Another aspect that is worth discussing is whether the criti-
cal values strongly depend on the adopted stellar models. If there
is no dependence, the critical values we computed here can be
readily used regardless of the stellar models used for the age es-
timation. If the values do depend on the models, these critical
values can be safely adopted only when stellar ages are deter-
mined by means of the SCEPtER grid. To answer this question,
it is not possible to simply use the stellar model grids currently
available in literature because they are too sparse. The only way
is to compute fine grids of models covering the same parame-
ter space as that of SCEPtER by means of different evolution-
ary codes. Unfortunately, only one code is freely available: the
code MESA (Paxton et al. 2013). We therefore computed a grid
of stellar models assuming default MESA input with the fol-
lowing exceptions: solar heavy-element mixtures from Asplund
et al. (2009); solar-calibrated mixing-length @y, = 1.8; includ-
ing the element diffusion with the coefficients by Thoul et al.
(1994) with radiation turbulence by Morel & Thévenin (2002);
and the '*N(p, )30 rate from Imbriani et al. (2004). Then we
repeated the previously described steps (see Fig. 1) to compute
the MESA-based critical values.

The comparison between FRANEC- and MESA-based criti-
cal values is quite encouraging because it shows only small vari-
ations. The median of the differences between FRANEC and
MESA was 0.009, with 16th to 84th quantile range [—0.002;
0.032]. Although a more systematic exploration with other
widely used stellar evolution codes would be worthwhile, this
first comparison suggests that the critical values provided by our
procedure are generally applicable.

5 http://astro.df.unipi.it/stellar-models/W/
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Fig. 4. Outline of the comparison between the coevality tests based on W and confidence intervals (see text).

SCEPtER age estimates for single stars and binary sys-
tems can be easily obtained from the R libraries SCEPtER® and
SCEPtERbinary’ that are accessible on CRAN.

4. Comparison of the W test with the individual age
confidence intervals

The classical way to asses the stellar coevality in a binary sys-
tem is to fit the observations with isochrones of different ages
and claim coevality whenever a single isochrone is able to fit —
within the errors — the whole system. Equivalently, it is possible
to estimate the two stellar ages and their errors and establish the
coevality by the overlap of the two error intervals.

A natural question is therefore how the W test performs with
respect to the more intuitive approach of adopting the age error
intervals to claim system coevality. The purpose of this section
is to verify whether the two techniques are equivalent. In other
words, does the rejection of the coevality by the W test imply
that the ages of the single members are not compatible with each
other within the errors and vice versa?

The outline of the procedure is presented in Fig. 4. It required
a huge amount of Monte Carlo simulations, lasting for 12 days
on a Intel Xenon machine with 32 cores. To reduce the computa-
tional burden, we restricted the calculations to solar metallicity;
217 binary systems from the possible 1087 of Sect. 2.1 were en-
tered in the analysis.

As a first step, we generated N = 5000 Monte Carlo per-
turbed systems for each of the 217 possible couples (step 2 in
Fig. 4) for the selected 217 ideal binary systems. We estimated
the ages of the two stars for each of these N systems and com-
puted the W values (step 3). For the 5% of these perturbed sys-
tems whose values were greater than the critical W (i.e. 250 sys-
tems for each of the 217 ideal binaries) we computed the Monte
Carlo 95% confidence interval for the age. That is, for each of
these critical systems we generated n = 10 000 newly perturbed
systems, estimated the two stellar ages, and obtained the 95%

® http://CRAN.R-project.org/package=SCEPtER
7 http://CRAN.R-project.org/package=SCEPtERbinary
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confidence interval on the ages by computing the 2.5th and the
97.5th quantiles of the age estimates (see Valle et al. 2015a,
for details). The same procedure was repeated for a random set
(about 15% of the total, for computational reasons) of systems
with W lower than the critical values (steps 4 and 5 in Fig. 4).
The procedure required a total of 5.4 x 10® binary age estimates.

The results of these computations showed only a few sys-
tems for which the W was lower than the critical values, but the
age confidence intervals did not overlap. We can therefore safely
disregard these cases. This means that whenever the coevality of
the binary components cannot be rejected by the W test, the in-
dividual stellar ages are compatible with each other within the
errors.

Conversely, we found a striking lack of agreement between
the two techniques for systems with W greater than the critical
values. Only in a small fraction of cases the comparison of the
age confidence intervals revealed a significant difference in the
two stellar ages. In the vast majority of cases in which the W test
allows rejecting coevality, the estimates of the individual ages
are still compatible with each other within the errors. Under the
null hypothesis Hy, the confidence interval approach is therefore
more conservative for the coevality assessment than the W test,
and adopting it results in a severe underestimation of the fraction
of systems for which the coevality hypothesis is questionable.
In summary, the W test and the confidence interval computa-
tion have a different scope of applicability. Whenever the former
is specifically developed for the task of a coevality check, the
confidence interval computation lack of statistical power when
adopted for this aim and its actual level is about an order of mag-
nitude lower than the nominal @ = 0.05.

The results for the 217 considered systems are summarised
in Table 1, which contains the median and the 16th and 84th
quantiles of the percentage of systems for which the W test and
the confidence interval techniques concordantly report a signifi-
cant difference between the ages of the two stars.

We found decreasing trends with increasing mass ratio of the
system; while for systems with 0.5 < ¢ < 0.6 the confidence in-
terval method rejects the coevality hypothesis for a median frac-
tion of 16.2% of the systems that are significant according to the


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201526183&pdf_id=4
http://CRAN.R-project.org/package=SCEPtER
http://CRAN.R-project.org/package=SCEPtERbinary
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Table 1. Medians and ranges from the 16th to 84th quantiles (in paren-
theses) of the percentages of non-overlapping 95% confidence intervals
for age estimates for systems with W greater than the corresponding
critical value, classified according to the relative age of the primary star
and the mass ratio of the system.

Relative age

0.1 0.3 0.5 0.7 0.9
0.0 1.6 1.2 1.2 0.4
(0.0; 2.8) (0.0;5.2) (0.0,9.2) (0.0;14.8) (0.0;10.4)
mass ratio
[0.5;0.6] [0.6;0.7] [0.7;0.8] [0.8;0.9] [0.9;1.0]
16.2 11.0 4.4 0.4 0.0
9.5;19.6) (9.1;18.8) (2.0;7.6) (0.0;1.2) (0.0; 0.0)

W test, this percentage drops to zero for systems with near equal
masses. This trend is expected and is mainly due to the assumed
correlations in the perturbation step. Systems with ¢ = 1, which
are very near in the grid before the perturbation, will still be near
after the perturbation. Therefore their age confidence intervals
will always overlap.

5. Toward the W test application on real binary
systems

Another problem deserving a detailed analysis before adopt-
ing the W test for real binary systems concerns mea-

surement errors. The empirically determined values S =

{f‘elff, [Fe/H]"2, M2, R} of the physical quantities of the
two stellar components used in the age estimate proce-
dure are in principle different from the real ones & =
{Telf’fz, [Fe/H]"?, M2, R"?}. Moreover, the evolutionary stage r
of the primary star is not observable and has to be estimated. On
the other hand, we showed in Sect. 3 that the critical values W 95
depends on the true values of stellar masses, metallicity, and pri-
mary relative age r. As a consequence, the critical value Wo.05
computed following the five steps described in Sect. 2 starting
from the empirically determined values S of the binary mem-
bers is in principle different from the true critical value Wy s
computed from the real S values. Because of this situation, the
recovered W value for the observed system should not be com-
pared with Wo.0s but with Wy9s. The true S values are not ob-
servables, however, and thus W, g5 cannot be directly computed.
Which values of masses, metallicity, and evolutionary stage r
should be adopted to properly compute a critical value that is
a satisfactory approximation of the true Wy 95? This is a crucial
question; the W test can only be applied to real systems if the
correct critical value to be adopted in the age comparison can be
accurately recovered.

The problem is equivalent to finding the most probable true
binary system associated with the observed one, or in other
words, a system composed of two coeval members that maxi-
mizes the likelihood of generating the observed binaries after
a perturbation caused by the observational uncertainties. Valle
et al. (2015b) showed that the best solution to this problem is
provided by imposing the coevality of the two stars in the grid-
based recovery procedure. Let S = {Toq ", [Fe/H]"2, M2, R!2)
be the best estimate of S under this assumption. We therefore
performed a new set of Monte Carlo simulations to compute the
critical values Wy o5 from S. To check the goodness of this ap-
proach, we tested it on a sample of synthetic binary systems

for which the true values S apd Wo.os are known. Then the
comparison between W 95 and Wy 9s will prove the performance
of the adopted procedure.

Adopting the same framework as described above, we ob-
tained the best estimates S and the corresponding critical values
Wo.05 for all the systems relevant to the W test (critical systems in
the step 4 of Fig. 4). A possible complication arises whenever the
two stars have age estimates so different that no grid-based co-
eval solutions exist, respecting the observational constraints. For
these extreme cases the single-star estimates can be adopted. It
is clear, however, that the impossibility of obtaining a grid-based
coeval solution strongly advises against this hypothesis.

As aresult, we found that the proposed estimator of the true
critical value computed starting from the most probable coeval
binary system associated with the observed one is good, that
is, unbiased and with a small variance. The differences between
Wo.05s and Wy o5 are small because overall the median difference
is —0.004 (16th and 84th quantile, —0.019 and 0.018, respec-
tively). No relevant trends with the mass of the stars, the evolu-
tionary phase, or the mass ratio were found. To quantify these
variations in terms of the level of the test, they correspond to a
median a of 0.048, (16th and 84th quantiles, 0.033 and 0.066).

In conclusion, the Monte Carlo simulations showed that the
test can be safely applied to real systems and is more sensitive
in rejecting the coevality than the simple computation of the in-
dividual age confidence intervals. To adopt the test in practice, it
is therefore necessary to

1. compute the two single-age estimates and the W value;

2. obtain the best coeval solution of the system;

3. adopt the masses, metallicity, and relative age of the primary
stars obtained in the preceding step to find the critical value
Wo.05 by interpolating Tables A.1 to A.5; and

4. compare the W value with Wy gs.

6. Analytical approximation of the W distribution

For all the combinations of masses, metallicities, and relative
ages described in Sect. 2, the Gaussian perturbations — added to
the values of the observables before the age estimation — cause
a scatter of the values of W. The actual distribution of these val-
ues ultimately depends on the position in the estimation grid of
the unperturbed values. Since the grid is irregular and the differ-
ences among near models change with the models evolutionary
stage (see Valle et al. 2014, for a detailed discussion), it is im-
possible to explicitly derive the exact distributions of W for all
the examined cases.

Nevertheless, we were able to find an empirical approxima-
tion suitable for all these distributions. In this section we show
that these distributions are closely approximated by beta distri-
butions and discuss the validity and limits of this approximation.
This result is particularly useful since it could be used to estimate
the critical values at different levels a.

The beta density function f(x, a, b) is defined on the interval
x € [0, 1] and is parametrised by two positive parameters, a and
b, controlling the shape of the distribution. The density has the
expression

I'(a+b)

T(@)I(b U ©)

f(x,a,b) =
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Fig. 5. Comparison of beta distribution functions (solid black line) with the observed distributions (red dashed line) of W for 25 randomly selected
combinations of masses M, and M, of stars (in solar units) and relative age r of the primary star (see text).

where I'(.) is the gamma function. The mean y and the variance
o of the distribution are

a

a+b

) ab .
(@+b’@+b+1)

ﬂ:

(N

For each of the 1087 simulated binary systems of Sect. 3 we
adapted a beta distribution to the N = 50000 synthetic val-
ues of W. The parameters of the distribution were computed by
equating the sample mean and variance to the theoretical val-
ues given by Eq. (7). Figure 5 shows a comparison between
the theoretical and the sample distributions for 25 randomly se-
lected binary systems. The agreement is surprisingly good. All
the computed critical values, their errors, and the parameters
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of the beta approximating distribution function are available at
CDS. Table 2 shows the first four lines of the table.

In Fig. 6 we show, in dependence on the mass ratio ¢, the
value (W95 — Bo.9s)/ Wo.95, where Wy o5 are the values computed
in Sect. 3, and Bygs are the corresponding quantiles obtained
from the theoretical beta distribution. A positive value means
that the sample quantile is larger than the corresponding theoret-
ical value. To better show the median trend of the relative error,
the figure also shows a loess smoother® of the data. The data
and theoretical estimates agree very well for g > 0.7, where the
spread is lower than about +5%. For lower ¢ there are larger

8 A loess regression smoother is a non-parametric locally weighted
polynomial regression technique that is often used to show the underly-
ing trend of scattered data (see e.g. Feigelson & Babu 2012; Venables
& Ripley 2002).
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Fig. 6. Relative difference of the Wy s critical values obtained from the
sample data and from the approximating beta distribution, in depen-
dence on the mass ratio g (see text). A positive value implies that the
computed quantile is larger than the theoretical one. The red line is a
loess smoother of the data that shows the mean trend of the relative
error.

Table 2. W s critical values and the parameters of the beta distribution,
which approximate the W distribution, for the 1087 considered binary
systems.

M, M, [Fe/H] r  Wyos o(Wpos) a b

0.8 0.8 -0.55 0.1 05911 0.0016 1.120367 3.617874
09 08 -055 0.1 06430 0.0022 1.502503 3.389753
09 09 -055 0.1 0.5607 0.0026 1.225152 3.921876
1.0 0.8 -0.55 0.1 0.6255 0.0028 1.529220 3.580155

Notes. The full table is available at the CDS. The columns report the
mass of the primary star, the mass of the secondary, the initial metal-
licity [Fe/H] of the system, the relative age r of the primary star, the
critical value Wy s, its bootstrap error (see text), and the parameters a
and b of the approximating beta distribution.

differences and the beta distribution overestimates the desired
quantile by as much as 15%. A global weak bias is present
and the theoretical quantiles generally overestimate the observed
ones, providing a more conservative test. The median differ-
ences among theoretical and empirical quantiles, marked by the
loess smoother, are of about —2% at high ¢, and reach a —5% at
q=0.5.

Figure 6 shows that the variability in the differences between
the observed and theoretical quantiles is higher at ¢ = 0.5. The
typical behaviour for these systems is shown in Fig. 7, which
displays the case of worst agreement between theoretical and
empirical distributions (M; = 1.6 My, M, = 0.8 My, r = 0.5).
The empirical distribution shows a lack of values around W =
0.3 and an accumulation at W = 0.5.

—— theoretical —— observed

distribution function

T T T T T T

00 02 04 06 08 L0
4

Fig.7. Comparison of beta distribution function (solid black) with the
observed distribution (dashed red) for the case of worst agreement
(M, =1.6 Mg, M, = 0.8 Mg, r=0.5).

7. Conclusions

We devised a statistical test on the difference in the estimated
ages of two coeval stars in a binary system as a result of the fluc-
tuations caused by observational errors. This test allows assess-
ing on statistical grounds whether the apparent non-coevality of
binary members is merely the consequence of observational un-
certainties. We also provided an on-line tool to be used for real
systems.

We introduced the statistics W, defined as the absolute value
of the difference between the two estimated ages and the age of
the older star. We studied how the W values are scattered as a re-
sult of the uncertainty on the observational constraints adopted
in the age estimation procedure. We assumed a level of the sta-
tistical test @ = 0.05, corresponding to critical values Wy gs. The
coevality hypothesis is rejected when W > Wj95. We analysed
the dependence of W 95 on the masses of the two stars, the initial
metallicity [Fe/H], and the relative age of the primary star.

We found that the values Wy 95 range in median from 0.65
for relative age r = 0.1 to 0.2 at relative age » = 0.9, meaning
that the younger the system, the larger the expected difference
between the estimated ages of the two components that is due
to the observational uncertainties. Moreover, W, 95, and thus the
expected age discrepancy, also increases with the mass of the pri-
mary star. The dependence on the initial metallicity is negligible.

We also verified that the results are robust to a change of the
adopted stellar evolution code. To this purpose, we repeated the
process by using a grid of stellar models computed by the MESA
evolutionary code (Paxton et al. 2013). The median difference in
the critical values was about 0.01.

The magnitude of the critical values, in particular for systems
near the ZAMS, should be taken into account in the analysis of
observational data before concluding that the coevality of the
stars cannot be accounted for by standard stellar models without
changes in the input physics and/or in the adopted calibration of
the free parameters, such as the mixing-length or the convective
core overshooting.
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We demonstrated how the test can be adapted to real binary
systems in presence of measurements errors on the observed
quantities. We showed that the true critical values, computed
with perfect knowledge of the observables, are closely approxi-
mated by the corresponding values derived by assuming the grid-
based best estimates of the masses imposing the coevality of the
solution. We compared the performance of the W test in assess-
ing the (non-)coevality of the binary components with the com-
mon approach, which relies on confidence intervals of the indi-
vidual age estimates. We found that the latter approach is too
conservative for the assumed level @, meaning that most of the
systems signalled to be non-coeval by the W test have estimated
individual ages that are compatible with each other within the er-
rors. In contrast to the W test, which is specifically developed for
the task of a coevality check, the confidence interval comparison
is not statistically powerful when adopted for this aim, and it has
an actual level of about an order of magnitude lower than the
nominal @ = 0.05. More in detail, the common approach gives
significant differences ranging from about 16% of the systems
with a significant W value at ¢ = 0.5 to 0% for systems at g ~ 1.

Finally, we showed that the distributions of W for the vari-
ous combinations of star masses, metallicities, and primary rela-
tive ages are approximated by beta distributions with appropriate
shape parameters. The approximation is very good for systems
with a mass ratio higher than 0.7, while it is less accurate for
more unbalanced systems.

Acknowledgements. We thank our referee for the useful comments that helped
us in clarifying and improving this paper. This work has been supported by
PRIN-MIUR 2010-2011 (Chemical and dynamical evolution of the Milky Way
and Local Group galaxies, PI F. Matteucci), and PRIN-INAF 2012 (The M4 Core
Project with Hubble Space Telescope, PI L. Bedin).

References

Andersen, J., Clausen, J. V., & Nordstrom, B. 1990, AplJ, 363, L33

Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47,
481

Clausen, J. V., Torres, G., Bruntt, H., et al. 2008, A&A, 487, 1095

Clausen, J. V., Bruntt, H., Claret, A., et al. 2009, A&A, 502, 253

Clausen, J. V., Frandsen, S., Bruntt, H., et al. 2010, A&A, 516, A42

Davison, A. C., & Hinkley, D. V. 1997, Bootstrap Methods and Their
Application, Cambridge Series in Statistical and Probabilistic Mathematics
(Cambridge University Press)

A31, page 10 of 15

Degl’Innocenti, S., Prada Moroni, P. G., Marconi, M., & Ruoppo, A. 2008,
Ap&SS, 316, 25

Dell’Omodarme, M., & Valle, G. 2013, The R Journal, 5, 108

Dell’Omodarme, M., Valle, G., Degl’Innocenti, S., & Prada Moroni, P. G. 2012,
A&A, 540, A26

Feigelson, E. D., & Babu, G. J. 2012, Modern Statistical Methods for Astronomy
with R applications (Cambridge University Press)

Fisher, R. A. 1925, Statistical Methods for Research Workers (Oliver and Boyd)

Gennaro, M., Prada Moroni, P. G., & Tognelli, E. 2012, MNRAS, 420, 986

Hall, P., & Martin, M. A. 1988, Probability Theory and Related Fields, 80, 261

Imbriani, G., Costantini, H., Formicola, A., et al. 2004, A&A, 420, 625

Lacy, C. H. S., Torres, G., & Claret, A. 2008, AJ, 135, 1757

Morales, J. C., Torres, G., Marschall, L. A., & Brehm, W. 2009, ApJ, 707,
671

Morel, P., & Thévenin, F. 2002, A&A, 390, 611

Neyman, J., & Pearson, E. 1933, Math. Proc. Cambridge Philosophical Society,
29, 492

Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, 4

Ribas, 1., Jordi, C., & Giménez, A. 2000, MNRAS, 318, L55

Rozyczka, M., Kaluzny, J., Pych, W., et al. 2011, MNRAS, 414, 2479

Sandberg Lacy, C. H., Torres, G., Claret, A., et al. 2010, AJ, 139, 2347

Snedecor, G., & Cochran, W. 1989, Statistical methods, Statistical Methods
No. v. 276 (Iowa State University Press)

Southworth, J. 2013, A&A, 557, A119

Sowell, J. R., Henry, G. W., & Fekel, F. C. 2012, AJ, 143, 5

Stuart, A., & Ord, J. K. 1994, Kendall’s Advanced Theory of Statistics (Edward
Arnold)

Thoul, A. A., Bahcall, J. N., & Loeb, A. 1994, Apl, 421, 828

Tognelli, E., Prada Moroni, P. G., & Degl’Innocenti, S. 2011, A&A, 533,
A109

Torres, G., Lacy, C. H., Marschall, L. A., Sheets, H. A., & Mader, J. A. 2006,
AplJ, 640, 1018

Torres, G., Sandberg Lacy, C. H., & Claret, A. 2009, AJ, 138, 1622

Torres, G., Vaz, L. P. R., Sandberg Lacy, C. H., & Claret, A. 2014, AJ, 147, 36

Valle, G., Marconi, M., Degl’Innocenti, S., & Prada Moroni, P. G. 2009, A&A,
507, 1541

Valle, G., Dell’Omodarme, M., Prada Moroni, P. G., & Degl’Innocenti, S. 2013a,
A&A, 549, A50

Valle, G., Dell’Omodarme, M., Prada Moroni, P. G., & Degl’Innocenti, S. 2013b,
A&A, 554, A68

Valle, G., Dell’Omodarme, M., Prada Moroni, P. G., & Degl’Innocenti, S. 2014,
A&A, 561, A125

Valle, G., Dell’Omodarme, M., Prada Moroni, P. G., & Degl’Innocenti, S. 2015a,
A&A, 575, A12 (V15)

Valle, G., Dell’Omodarme, M., Prada Moroni, P. G., & Degl’Innocenti, S. 2015b,
A&A, 579, AS9

Venables, W., & Ripley, B. 2002, Modern applied statistics with S, Statistics and
computing (Springer)

Vos, J., Clausen, J. V., Jgrgensen, U. G., et al. 2012, A&A, 540, A64

Welsh, W. E., Orosz, J. A., Carter, J. A., et al. 2012, Nature, 481, 475

Yildiz, M. 2007, MNRAS, 374, 1264


http://linker.aanda.org/10.1051/0004-6361/201526183/1
http://linker.aanda.org/10.1051/0004-6361/201526183/2
http://linker.aanda.org/10.1051/0004-6361/201526183/2
http://linker.aanda.org/10.1051/0004-6361/201526183/3
http://linker.aanda.org/10.1051/0004-6361/201526183/4
http://linker.aanda.org/10.1051/0004-6361/201526183/5
http://linker.aanda.org/10.1051/0004-6361/201526183/7
http://linker.aanda.org/10.1051/0004-6361/201526183/8
http://linker.aanda.org/10.1051/0004-6361/201526183/9
http://linker.aanda.org/10.1051/0004-6361/201526183/12
http://linker.aanda.org/10.1051/0004-6361/201526183/13
http://linker.aanda.org/10.1051/0004-6361/201526183/14
http://linker.aanda.org/10.1051/0004-6361/201526183/15
http://linker.aanda.org/10.1051/0004-6361/201526183/16
http://linker.aanda.org/10.1051/0004-6361/201526183/16
http://linker.aanda.org/10.1051/0004-6361/201526183/17
http://linker.aanda.org/10.1051/0004-6361/201526183/18
http://linker.aanda.org/10.1051/0004-6361/201526183/18
http://linker.aanda.org/10.1051/0004-6361/201526183/19
http://linker.aanda.org/10.1051/0004-6361/201526183/20
http://linker.aanda.org/10.1051/0004-6361/201526183/21
http://linker.aanda.org/10.1051/0004-6361/201526183/22
http://linker.aanda.org/10.1051/0004-6361/201526183/24
http://linker.aanda.org/10.1051/0004-6361/201526183/25
http://linker.aanda.org/10.1051/0004-6361/201526183/27
http://linker.aanda.org/10.1051/0004-6361/201526183/28
http://linker.aanda.org/10.1051/0004-6361/201526183/28
http://linker.aanda.org/10.1051/0004-6361/201526183/29
http://linker.aanda.org/10.1051/0004-6361/201526183/30
http://linker.aanda.org/10.1051/0004-6361/201526183/31
http://linker.aanda.org/10.1051/0004-6361/201526183/32
http://linker.aanda.org/10.1051/0004-6361/201526183/32
http://linker.aanda.org/10.1051/0004-6361/201526183/33
http://linker.aanda.org/10.1051/0004-6361/201526183/34
http://linker.aanda.org/10.1051/0004-6361/201526183/35
http://linker.aanda.org/10.1051/0004-6361/201526183/36
http://linker.aanda.org/10.1051/0004-6361/201526183/37
http://linker.aanda.org/10.1051/0004-6361/201526183/39
http://linker.aanda.org/10.1051/0004-6361/201526183/40
http://linker.aanda.org/10.1051/0004-6361/201526183/41

G. Valle et al.: A statistical test on the reliability of the non-coevality of stars in binary systems

Appendix A: Tables of critical values

Table A.1. Critical values Wy s in dependence on masses of the stars M; and M, (both in solar units), and on their initial metallicity [Fe/H].

M, [Fe/H] M,
08 09 10 1.1 12 13 14 15 1.6

080 -0.55 | 0.591

090 -0.55 | 0.643 0.561

100 -0.55 | 0.625 0595 0.517

1.10 055 | 0.617 0.603 0.581 0.536

120 -055 | 0.683 0.692 0641 0.620 0.545

130 -0.55 0786 0741 0667 0611 0.588

140  -0.55 0816 0763 0.663 0617 0594 0579

1.50  -0.55 0792 0695 0601 0594 0587 0.568

1.60 -0.55 0692 0564 0554 0582 0.605 0472

080 -025 | 0.598

090 -025 | 0.662 0.585

100 025 | 0.661 0.629 0.572

110 -025 | 0.629 0.606 0.603 0.534

120 -025 | 0.623 0619 0613 0.603 0.507

130 -0.25 0726 0.699 0688 0.614 0.539

140 -0.25 0779 0734 0682 0593 0.574

150  -0.25 0796 0.740 0.676 0592 0574 0.562

1.60  -0.25 0732 0650 0582 0576 0.601 0.458

080 0.00 | 0.602

090 0.00 | 0.659 0.603

100 0.00 | 0.673 0645 0.598

1.10 000 | 0.681 0.637 0628 0.588

120 000 | 0702 0648 0615 0610 0.541

130 0.00 0.686 0.623 0628 0604 0518

140 0.00 0730 0.696 0.674 0618 0.535

1.50  0.00 0.806 0.767 0.710 0.677 0571 0.544

1.60  0.00 0774 0.688 0670 0.592 0594 0455

080 025 | 0.625

090 025 | 0.683 0.618

100 025 | 0.678 0.660 0.620

110 025 | 0.678 0.654 0.648 0.608

120 025 | 0708 0.658 0630 0633 0.584

130 025 0717 0.644 0632 0606 0.535

140 025 0688 0.631 0616 0577 0534

1.50 025 0769 0713 0674 0.632 0595 0.510

1.60 025 0780 0.729 0.677 0.661 0.586 0445

080 055 | 0.643

090 055 | 0.693 0.644

100 055 | 0.687 0671 0.630

110 055 | 0.671 0653 0659 0.620

120 055 | 0715 0.653 0.649 0647 0.604

130 055 0.699 0643 0633 0.630 0.580

140 055 0731 0659 0611 0630 0.626 0.495

150  0.55 0708 0.643 0592 0.601 0537 0421

1.60 0.5 0748 0.685 0612 0610 0619 0559 0281

Notes. Values are computed for primary relative age r = 0.1.
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Table A.2. As in Table A.1, but for a primary relative age r = 0.3.
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M, [Fe/H] M,
0.8 0.9 1.0 1.1 1.2 1.3 1.4 15 1.6

0.80 -0.55 | 0.230

090 -0.55 | 0.358 0.229

1.00  -0.55 | 0521 0310 0215

1.10  -0.55 | 0.638 0448 0291 0.204

120 -0.55 | 0.618 0592 0.423 0288 0.200

130 -0.55 | 0547 0.651 0539 0401 0265 0.209

140  -0.55 | 0461 0.604 0.602 0489 0345 0288 0.210

1.50 -0.55 | 0.468 0.628 0.614 0.600 0.469 0435 0310 0.210

1.60  -0.55 | 0483 0.674 0.589 0.672 0.605 0.563 0465 0345 0.162

0.80 -0.25 | 0.231

090 -025 | 0367 0.238

1.00  -0.25 | 0542 0331 0.230

.10 -025 | 0.662 0487 0318 0.217

120 -025 | 0.646 0.629 0482 0303 0.195

130 025 | 0557 0.665 0.628 0449 0275 0.204

140 -025 | 0484 0.632 0676 0571 0370 0258 0.209

1.50 025 | 0467 0.622 0.658 0.642 0.449 0351 0285 0.202

1.60  -025 | 0482 0.655 0.639 0.684 0.551 0485 0447 0303 0.158

0.80 0.00 | 0.236

090 0.00 | 0358 0.244

1.00  0.00 | 0527 0340 0.241

110 0.00 | 0.632 0505 0328 0232

120 0.00 | 0.606 0.628 0.487 0319 0217

130 0.00 | 0551 0662 0.638 0480 0.298 0.196

140  0.00 | 0493 0.621 0.689 0.641 0.440 0271 0.182

150 0.00 | 0.514 0633 0.661 0705 0.560 0379 0226 0.184

1.60  0.00 | 0537 0.667 0.639 0717 0.664 0473 0348 0265 0.149

0.80 025 | 0.238

090 025 | 0364 0.237

1.00 025 | 0537 0324 0242

1.10 025 | 0.657 0491 0330 0.238

120 025 | 0.646 0.637 0509 0319 0.227

130 025 | 0569 0.653 0.661 0488 0.304 0213

140 025 | 0508 0.611 0683 0644 0450 0265 0.192

150 025 | 0525 0.643 0.647 0712 0.609 0385 0239 0.176

1.60 025 0.701 0.639 0.716 0.694 0526 0.356 0237 0.147

080 055 | 0.237

090 055 | 0345 0.248

1.00 055 | 0529 0333 0242

1.10 055 | 0.686 0507 0316 0.241

120 0.55 | 0.660 0.682 0470 0307 0.238

130 055 | 0598 0.685 0.639 0450 0295 0.229

140 055 | 0524 0633 0708 0.658 0473 0310 0.206

1.50 055 | 0494 0.604 0.658 0.695 0.598 0376 0232 0.187

1.60  0.55 | 0517 0655 0.631 0701 0701 0537 0299 0241 0.142
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Table A.3. As in Table A.1, but for a primary relative age r = 0.5.

M, [Fe/H] M,
08 09 1.0 1.1 12 1.3 1.4 1.5 1.6

080 055 | 0.129

090 -0.55 | 0201 0.132

1.00  -0.55 | 0.318 0.195 0.126

1.10 055 | 0474 0288 0.180 0.117

120 -0.55 | 0.618 0416 0275 0.165 0.103

130 -055 | 0.678 0.536 0364 0235 0.143  0.101

140 -0.55 | 0.608 0.619 0.455 0315 0.193 0.143  0.113

150 -0.55 | 0526 0.653 0.558 0418 0285 0202 0.146 0.117

1.60  —0.55 | 0457 0.613 0.611 0498 0404 0349 0236 0.162 0.090

0.80 -0.25 | 0.129

090 -0.25 | 0208 0.138

.00 025 | 0337 0.196 0.132

1.10  -025 | 0496 0308 0.196 0.129

120 —025 | 0.647 0455 0299 0.183 0.112

130 -025 | 0.698 0599 0.427 0274 0.156 0.098

140 —025 | 0629 0.661 0551 0377 0221 0.144 0.110

150  —025 | 0.541 0.676 0.652 0459 0280 0.192 0.148 0.113

1.60 025 | 0477 0.643 0.690 0553 0366 0288 0222 0.158 0.092

0.80  0.00 | 0.130

090 0.00 | 0212 0.140

.00 0.00 | 0329 0201 0.138

1.10  0.00 | 0490 0303 0.195 0.136

120 000 | 0.627 0452 0300 0.197 0.132

130 0.00 | 0676 0.610 0442 0286 0.179 0.108

140 000 | 0597 0700 0.594 0419 0257 0.157 0.099

150 0.00 | 0529 0.675 0.687 0548 0363 0223 0.131 0.104

1.60  0.00 | 0483 0.638 0.725 0.638 0457 0296 0.189 0.149 0.087

080 025 | 0.132

0.90 025 | 0203 0.139

1.00 025 | 0314 0.197 0.141

110 025 | 0499 0289 0.194 0.139

120 025 | 0649 0436 0293 0.191 0.134

130 025 | 0.699 0.608 0450 0288 0.186 0.122

140 025 | 0630 0701 0615 0418 0256 0.161 0.109

150 025 | 0545 0.671 0.698 0574 0364 0220 0.148 0.104

1.60 025 | 0481 0.636 0729 0671 0498 0325 0222 0.151 0.079

0.80 055 | 0.134

090 055 | 0210 0.144

.00 055 | 0308 0202 0.141

1.10 055 | 0469 0295 0.194 0.148

120 055 | 0663 0441 0278 0.191 0.147

130 055 | 0709 0.636 0406 0273 0.187 0.136

140 055 | 0.640 0.737 0.598 0396 0271 0.186 0.127

150 055 | 0567 0.696 0.696 0542 0348 0240 0.156 0.112

1.60 055 | 0494 0.652 0748 0.639 0459 0323 0201 0.167 0.082
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Table A.4. As in Table A.1, but for a primary relative age r = 0.7.
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M, [Fe/H] M,
08 09 10 1l 12 1.3 14 15 1.6

140 055 | 0.688 0503 0348 0219 0.135 0.082 0.063

150  —0.55 | 0.641 0616 0431 0294 0.199 0.144 0.083 0.064

1.60  —0.55 | 0.581 0.666 0498 0394 0283 0220 0.177 0.112 0.050

0.80 -0.25 | 0.086

090 025 | 0.142 0.098

100 025 | 0225 0.141  0.090

1.10  —025 | 0357 0228 0.149 0.086

120 -025 | 0507 0323 0.208 0.124 0.088

130 -025 | 0.639 0458 0308 0.186 0.104 0.065

140 —025 | 0713 0577 0415 0264 0.150 0.084 0.064

150 025 | 0.658 0.660 0518 0343 0200 0.132 0.092 0.065

1.60  —025 | 0599 0719 0.606 0424 0266 0201 0.162 0.114 0.049

0.80 0.00 | 0.083

090 0.00 | 0.142 0.099

100 000 | 0227 0.139 0.093

1.I0 000 | 0351 0219 0.137 0.087

120 000 | 0506 0329 0220 0.138 0.096

130 000 | 0636 0464 0311 0.197 0.125 0.076

140 000 | 0.692 0.606 0440 0291 0.177 0.100 0.070

150 0.00 | 0625 0670 0572 0399 0250 0.150 0.079 0.064

160 0.00 | 0.566 0722 0.646 0492 0331 0208 0.134 0.094 0.047

080 025 | 0.084

090 025 | 0.139 0.093

1.00 025 | 0217 0.138 0.092

110 025 | 0345 0208 0.136 0.090

120 025 | 0526 0305 0213 0.135 0.087

130 025 | 0.660 0440 0301 0.199 0.127 0.086

140 025 | 0713 0.608 0444 0283 0.181 0.111 0.083

150 025 | 0.654 0.678 0.595 0397 0250 0.155 0.093 0.076

1.60 025 | 0595 0718 0671 0509 0346 0233 0.155 0.102 0.057

080 055 | 0.083

090 055 | 0.140 0.093

100 055 | 0217 0139 0.091

1.10 055 | 0330 0218 0.139 0.095

120 055 | 0492 0313 0205 0.138 0.098

130 055 | 0675 0451 0289 0.199 0.137 0.098

140 055 | 0716 0.629 0402 0275 0.188 0.127 0.104

150 055 | 0662 0728 0539 0361 0249 0.163 0.112 0.096

1.60 055 | 0.611 0739 0651 0480 0336 0241 0.154 0.116 0.069
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Table A.5. As in Table A.1, but for a primary relative age r = 0.9.

M, [Fe/H] M,
0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
0.80 -0.55 | 0.057
090 -0.55 | 0.097 0.056
1.00 -0.55 | 0.164 0.110 0.055
.10  -0.55 | 0254 0.166 0.094 0.064
120 055 | 0381 0.241 0.148 0.081 0.051
1.30  -0.55 | 0511 0328 0.209 0.117  0.069  0.047
140 055 | 0.620 0418 0.279 0.170 0.108 0.115 0.039
1.50 -0.55 | 0703 0513 0352 0225 0.155 0.095 0.071 0.051
1.60 055 | 0.668 0.596 0.436 0.321 0.240 0.195 0.143 0.127 0.079
0.80 -0.25 | 0.057
090 -0.25 | 0.105 0.062
1.00 -0.25 | 0.171 0.111  0.060
1.10  -0.25 | 0.266 0.182 0.117 0.068
120 025 | 0403 0.253 0.161 0.101 0.066
130 -0.25 | 0539 0365 0.241 0.144 0.086 0.045
140 025 | 0.664 0472 0326 0205 0.123 0.070 0.045
1.50 -0.25 | 0.721 0.595 0425 0.280 0.182 0.139 0.132 0.113
1.60 025 | 0.695 0.669 0515 0362 0.240 0.207 0.179 0.162 0.093
0.80  0.00 | 0.056
090 0.00 | 0.103 0.063
1.00  0.00 | 0.175 0.109 0.067
1.10  0.00 | 0.271 0.175 0.108 0.062
120 0.00 | 0399 0.258 0.170 0.105 0.075
1.30 0.00 | 0547 0367 0.244 0.155 0.098 0.056
1.40  0.00 | 0.654 0497 0.343 0.228 0.143 0.092 0.065
1.50  0.00 | 0.694 0.621 0.461 0308 0.216 0.148 0.136 0.112
1.60 0.00 | 0.656 0.681 0.556 0.409 0.294 0.205 0.164 0.157 0.100
0.80  0.25 0.056
090  0.25 0.101  0.063
1.00 025 0.166 0.104 0.063
1.10  0.25 0.263 0.167 0.104 0.064
120 025 0.407 0.242 0.164 0.098 0.063
1.30  0.25 0.567 0.346 0246 0.158 0.091 0.055
1.40 025 0.668 0.468 0335 0.227 0.154 0.119 0.090
1.50  0.25 0.717 0.621 0455 0.296 0.197 0.137 0.114 0.093
1.60  0.25 0.681 0.676 0.567 0.393 0.264 0.201 0.141 0.128 0.101
0.80  0.55 0.058
090  0.55 0.103  0.060
1.00  0.55 0.163 0.104 0.062
1.10  0.55 0251 0.169 0.105 0.064
120 0.55 0376  0.248 0.158 0.101  0.065
1.30  0.55 0.535 0.353 0.238 0.160 0.104 0.058
1.40  0.55 0.685 0491 0319 0222 0.159 0.116 0.081
1.50  0.55 0.723  0.633 0411 0.286 0.201 0.137 0.105 0.080
1.60  0.55 0.688 0.700 0516 0.370 0.272 0.191 0.143 0.119 0.060
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