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Abstract The paper deals with the behavior of restrained rocking blocks under seismic actions. Structural or 

non-structural masonry or r.c. elements, such as building façades or pre-cast panels subjected to out-of-plane 

modes, may be assimilated to rocking blocks restrained by horizontal springs. Horizontal restraints can 

represent flexible floors or steel anchorages or any anti-seismic device designed to impede overturning 

probability. Their effect could improve, in most cases, the dynamic response of blocks in terms of reduction 

of rotation amplitude. Nevertheless, this effectiveness could vanish or, surprisingly, affect the response in 

negative way, resulting in overturning when low values of stiffness or one-sided motion in particular conditions 

are assumed. Two cases of horizontal restraints are analyzed: (i) concentrated restraint as single spring and (ii) 

smeared restraint as spring bed with constant or linearly variable stiffness. The single stabilizing or 

destabilizing terms of the formulation are here analyzed and commented, providing practical evaluations to 

obtain enhancement of response in static and dynamic perspective. A numerical example of a masonry façade 

with non-linear boundary conditions has been provided highlighting how the choice of stiffness values affects 

the oscillatory motion and rebound effects. Finally, unit stiffness for masonry/concrete walls and retrofitting 

techniques, such as steel tie-rods, has been calculated. 

Keywords horizontal restraints; rocking; flexible roof; smeared restraint; masonry façade 

1 Introduction 

The identification of the behavior of rocking blocks is relevant to define their failure probability under seismic 

actions. Structural or non-structural elements of different buildings typologies can be assumed as rigid blocks. 

A typical example of r.c. rocking structures are pre-cast panels, frequently used in industrial or social buildings. 

These panels, particularly the non-structural ones, were demonstrated to be highly vulnerable to earthquakes 

if not properly connected to structural elements, as occurred in the 2012 Emilia Romagna Italian earthquake 

(Andreini et al. 2014, Giresini 2015). Moreover, walls of unreinforced masonry buildings are subjected to out-

of-plane modes that can be studied as rocking blocks. Obviously, the masonry texture has to be such to 

guarantee a monolithic behavior (Rovero et al. 2015). These issues can be faced by means of simplified 

methods based on static approaches, by performing kinematic linear/non linear analysis (NTC2008; 
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Lagomarsino 2012) through classic limit analysis. Recent developments of these methods also including 

combinations of rocking, sliding and twisting in 3D rigid block formulations are contained in (Casapulla et al. 

2014; Casapulla, Portioli 2016).  The contribution of the present paper to these topics is reported in § 2.1 and 

§ 3.1. In addition, out-of-plane modes may be analyzed with a more sophisticated procedure, evaluating the 

evolution of motion over time; the latter consists in the integration of equation of motion, generally considering 

the energy dissipation with a restitution coefficient that reduces rotation velocity after each impact. The 

contribution to these aspects is instead reported in § 2.2 and 3.2. 

The framework in which this work is developed is the Housner's formulation (Housner 1963), often used as 

basis of similar contributions related to rocking blocks (Makris, Vassiliou 2014; DeJong, Dimitrakopoulos 

2014; Sorrentino et al. 2006). Free-standing blocks were shown to have high seismic stability and post-uplift 

resources when subjected to rocking motion. This aspect was recently discussed by Makris (2014) and related 

to the fact that rotational inertia increases with the square of the column size, whereas the overturning moment 

linearly increases with size. For such a good performance, the research field of rocking isolation is going to be 

more and more explored. The first experiments in this sense were done in New Zealand, where a reinforced 

concrete bridge pier with hysteretic dampers (Beck, Skinner 1973) and a chimney (Sharpe, Skinner 1983) were 

specifically designed to survive strong ground motion while rocking. However, the rocking behavior is strictly 

dependent on the ground motion type, as shown by DeJong (2012), who identified acceleration time histories 

causing ‘rocking resonance’ for various constraints. Moreover, the author found that a negative stiffness, due 

to rocking force-displacement law, prevents the resonance condition under constant frequency excitation. 

Indeed, the frequency content strongly affects the rocking motion: pulse-type records, typically characterized 

by high peak ground velocities and lower frequency content, result in large rocking amplitude (Makris, 

Roussos 2000), whereas non-pulse type records imply random responses (Acikgoz, DeJong 2014). Also 

artificial inputs can be defined to cause amplitude resonance over motion (Casapulla 2015). 

Anyway, poor literature on rocking blocks subjected to particular boundary conditions is available (Makris, 

Vassiliou 2014; Giresini et al. 2015a). This configuration is more suitable to describe masonry and reinforced 

concrete panels that can be assimilated to rigid blocks. Indeed, those elements are generally horizontally 

connected to transverse walls, flexible roofs such as timber beams or vaults, tie-rods or a combination of them. 

Therefore, the need to investigate their response to recorded earthquakes emerges, together with the necessity 

to provide practical evaluation criteria to assess advantages or disadvantages caused by these restraints. Thus, 

in this paper, horizontal restraints are applied to rocking blocks to investigate their role in a dynamic 

perspective. A preliminary static approach is illustrated to provide an order of magnitude of the spring stiffness 

to apply to the block. In addition, information regarding its  optimized position is given. Through the 

interpretation of the restoring moment term, the minimum value of stiffness for which the global system 

stiffness becomes from negative to positive can answer these questions. The  dynamic contribution of 

horizontally restrained blocks is analyzed through the equation of motion and involves the rotational inertia, 

related to kinetic energy. Although an approach similar to the static one can provide some indications to the 

minimum stiffness to adopt, only a full rocking analysis is able to correctly predict the response.  

Two cases of horizontal restraints are analyzed: (i) concentrated restraint as single spring with stiffness 𝐾 

=[Force/Length] and (ii) smeared restraint as spring bed with stiffness of each spring 𝐾′=[Force/Length2]. 

First, the two cases are analyzed in static perspective by discussing the restoring moment expression and then 

equations of motion are obtained. For both static and dynamic approaches, indications about values of 

horizontal restraints are provided to get an enhancement of response.  
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2 Single horizontal restraint 

The model consists of a rectangular block rocking around an axis perpendicular to the 2D plane passing by O 

(Figure 1). The geometric characteristics of the block are the radius vector 𝑅, defining the position of the center 

of mass with respect to O, and the slenderness ratio 𝛼, arctangent of the ratio thickness 𝑠 to height ℎ. The 

block, whose mass is 𝑚, might be connected to a flexible roof of mass 𝑚𝑟 (Figure 1a). The roof flexibility is 

modeled with a spring, assumed without eccentricity with respect to the block thickness. The roof mass 𝑚𝑟 

changes the rotational inertia due to the variation of the centroid position, as explained in (Giresini et al. 

2015b). Moreover, when the roof is inclined with specific boundary conditions, a horizontal destabilizing thrust 

may act as well (Giresini et al. 2015b). In the following the role of the roof mass 𝑚𝑟 is considered negligible 

with respect to the block mass 𝑚, considering only the dynamics of free or restrained elements without loads 

on the top. The block may be restrained by a single restraint (Figure 1a) or a smeared one (Figure 1b), both 

acting horizontally. 

A concentrated horizontal restraint can represent, for civil engineering structures such as r.c. or masonry 

panels, steel tie-rods or timber bracings frequently installed before or after earthquakes to reduce further 

damages. Moreover, a single restraint could model horizontal floors connected to the block, such as vaults or 

arches whose equivalent stiffness can be determined by experimental or analytical tests (Giresini 2015c).  

 

 

 (a)                                                                   (b) 

Figure 1. Single horizontal restraint with stiffness K (a) or horizontal spring bed K’ (b). 

 

In this paper, only springs with linear behavior are considered for the first numerical case, to investigate the 

response by limiting uncertain parameters. Nevertheless, a non-linear constitutive law associated to the spring, 

due to different elasticity in tension and in compression, represents a more realistic assumption for civil 

engineering rocking structures. Indeed, often masonry or r.c. panels are connected to transverse walls, flexible 

roofs or strengthening techniques such as steel tie-rods acting in only one direction (Figure 9(a)). More in 

general, the stiffness could be sensitively different depending on the sign of rotation. For that reason, the 

solution of the following equations of motion should take it into account. The used MATLAB code for the 
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case study presented in § 5 contains an automatic events definition function that detects the rotation sign and 

attribute to K or K' pre-defined values. The constitutive law force-rotation is elastic (Figure 2) and a cut-off or 

a plastic phase with or without hardening could be included as well. 

 

Figure 2. Definition of linear case and non-linear case for the elastic horizontal restraint 

 

2.1 Static approach 

The static approach is related to the definition of stabilizing and destabilizing effects in a perspective of limit 

analysis. A kinematic chain is assumed and the collapse multiplier can be calculated with equilibrium 

considerations. Let us assume the single-degree-of-freedom block restrained by a horizontal spring and let the 

initial deformed configuration be 𝜗. The virtual horizontal displacement 𝛿𝑢, caused by an imposed virtual 

rotation 𝛿𝜗  (Figure 1a), is expressed by: 

𝛿𝑢 = 𝑅𝑟 𝑐𝑜𝑠  [𝛼𝑟 − 𝑠𝑔𝑛(𝜗) 𝜗 ]  𝛿𝜗, (1) 

 

where 𝑅𝑟 identifies the spring position, being the radius vector that connects the oscillation point O with the 

spring. Assuming that 𝜗(𝑡) > 0, without loss of generality, the finite horizontal displacement of the restrained 

point is then obtained by the definite integral over the interval [0, �̅�]: 

𝑢 = 𝑅𝑟 [sin 𝛼𝑟  −  sin(𝛼𝑟 − �̅�) ], (2) 

 

 

where �̅� is the current rotation angle. When the block is rotated by an angle 𝜗, the horizontal restraint exerts a 

restoring moment 𝑀𝑟,𝐾(𝜗) equal to:  

𝑀𝑟,𝐾(𝜗) =
𝜕

𝜕𝜗
(𝐾 𝑢 𝛿𝑢) =  𝐾𝑅𝑟

2 cos(𝛼𝑟 − 𝜗) [𝑠𝑖𝑛 𝛼𝑟 −  sin(𝛼𝑟 − 𝜗)]. 
(3) 

 

Considering also the contribution of the self-weight and assuming that 𝑅𝑟 = 𝛽𝑅 with 0 ≤ 𝛽 ≤ 2, the global 

restoring moment 𝑀𝑟(𝜗) is: 

𝑀𝑟(𝜗) = 𝑚𝑔𝑅 sin(𝛼 − 𝜗) +  𝐾𝛽2𝑅2 cos(𝛼 − 𝜗) [𝑠𝑖𝑛 𝛼 − sin(𝛼 − 𝜗)]. (4) 

 

For r.c. or masonry panels, generally 𝛽 ≥ 1. To avoid bouncing or sliding, slender blocks have to be 

considered. Let the Housner's limit of 𝛼 < 20° = 0.349 rad (Housner 1963) be valid in the hypothesis of 

slender block. This means a height to thickness ratio ℎ/𝑠 > 2.75. Lipscombe & Pellegrino (1993) studied the 

lower limit of ℎ/𝑠 for which bouncing stops within half oscillation cycle in a free vibration test. They found 

that for ℎ/𝑠 > 2.75 bouncing can be neglected if the restitution coefficient 𝑒 ≤ 0.8. For masonry and r.c. 

panels, commonly values of  ℎ/𝑠 > 5 are taken into account, in such a way to exclude bouncing, usually being  
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𝑒 ≤ 0.95. Indeed, the theoretical value of 𝑒𝐻 = 1 −
3

2
sin2 𝛼 (Housner 1963), for  

ℎ

𝑠
= 5  (that is 𝛼 = 0.197 

rad) gives  𝑒𝐻 = 0.942. The real restitution coefficient is generally lower than the theoretical one, due to 

geometrical imperfections or other damping effects, e.g. local plastic deformations (Casapulla et al. 2010). 

Thus, for small rotations, sin 𝜗 ≅ 𝜗 and cos 𝜗 ≅ 1, Equation (4) becomes: 

𝑀𝑟(𝜗) = 𝑚𝑔𝑅 sin 𝛼 [1 − ϑ (cot 𝛼 −
𝐾𝛽2𝑅

𝑚𝑔
cot 𝛼 cos 𝛼) + ϑ2  

𝐾𝛽2𝑅

𝑚𝑔
cos 𝛼], (5) 

 

Linearizing to first order terms, the dimensionless restoring moment is: 

𝑀𝑟(𝜗)

𝑚𝑔𝑅
=  sin 𝛼 [1 − ϑ (cot 𝛼 −

𝐾𝛽2𝑅

𝑚𝑔
cot 𝛼 cos 𝛼)] 

(6) 

 

The factor of the rotation angle ϑ in Equation (6) is the normalized system global stiffness, initially negative 

up to a limit value later defined. The global stiffness 𝐾𝑠𝑦𝑠 (Figure 3)  is obtained from Equation (6): 

𝐾𝑠𝑦𝑠 = 𝑚𝑔𝑅𝑐𝑜𝑠𝛼 (
𝐾𝛽2𝑅

𝑚𝑔
𝑐𝑜𝑠𝛼 − 1) 

(7) 

 

and Equation (6) becomes: 

𝑀𝑟(𝜗) =  𝑀𝑟(0) + 𝐾𝑠𝑦𝑠 ϑ (8) 

  

where  𝑀𝑟(0) = mgR sin𝛼.  

The condition for which the global stiffness 𝐾𝑠𝑦𝑠 becomes positive is: 

𝐾𝛽2𝑅

𝑚𝑔
>

1

𝑐𝑜𝑠𝛼
 

(9) 

 

If the block is rectangular, the weight  𝑚𝑔 can be written in terms of the semi-diagonal 𝑅 and unit weight 𝛾 

as: 

𝑚𝑔 = 4 𝛾 𝑅2 sin 𝛼  𝑐𝑜𝑠𝛼 𝑑 (10) 

 

where 𝑑  is the depth of the block in the direction of the axis of rotation. By substituting Equation (10) in 

Equation (9) one has: 

𝐾𝛽2

𝑅
> 4 𝛾 sin 𝛼 𝑑 

(11) 

 

From this expression it is possible to formulate some considerations on the effectiveness of the single 

horizontal restraint. The resisting moment value for the configuration 𝜗 = 0 does not change, since the effect 

of 𝐾 intervenes for 𝜗 > 0 (Figure 3). Its static contribution depends upon the semi-diagonal 𝑅. For two blocks 

with same shape restrained by a spring with same 𝐾 and spring position (defined by the dimensionless 

parameter 𝛽), the larger block requires a higher value of 𝐾 or a higher position of the spring to obtain the same 

improvement in terms of global stiffness increase. 
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Figure 3. Resisting moment-rotation relationship and variation of global stiffness depending on the values 

of a single horizontal restraint. 

 

By assuming, as numerical example, values of 𝑅 = 1.5 m, 𝛼 = 0.05 rad (corresponding to height and thickness 

equal to 3.0 m and 0.15 m and (a)  𝛽 = 1) and an unit weight  = 1.8 E4 N/m3, one can evaluate the 

improvement obtained by adding a horizontal restraint with specific 𝐾 value (Figure 4(a)). When 𝐾 = 1000 

N/m, a very low value for civil engineering restraints (for instance, it can be translated into a steel tie-rod of 

length 5.0 m and diameter 0.2 mm), the rotation capacity increases by 20%, passing from 
𝜗

𝛼
= 1.0 to 

𝜗

𝛼
= 1.20.  

 
(a) 

 
(b) 

Figure 4 - Dimensionless moment-rotation amplitude diagram for different values of the dimensionless 

stiffness 
𝐾𝛽2𝑅

𝑚𝑔
 of the horizontal restraint (α=0.05 rad and 𝑅=1.5 m) (a)  𝛽 = 1, (b)  𝛽 = 2 (Equation (4)) 

 

It is sufficient to assume a stiffness five times higher (corresponding to the same tie-rod with diameter 0.4 mm) 

to get positive global stiffness. More precisely, the minimum 𝐾 value given by Equation (11) is equal to 5400 

N/m. The effect is more positive if the position of the spring is higher, e.g. (a)  𝛽 = 2 namely at the corner top 

(Figure 4(b)). Thus, for common panels dimensions in civil engineering, there is a great enhancement of 

response even with low, but proper, values of horizontal restraint stiffness. It should be noticed that the 

difference between the non-linearized (Equation (4)) and the linearized (Equation (6)) expressions gives values 

of resisting moment different less than 1%. Resisting moment values were calculated for different normalized 
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rotation values from 0 to the maximum corresponding to a null resisting moment, with a range of 0.2. The 

values so obtained have been then averaged obtaining the following error percentages. The difference increases 

(from an average value of -0.53% for K=10000 N/m to -0.18% for K=1000 N/m for 𝛽 = 1) when high stiffness 

values are considered. The resisting moment is therefore overestimated for high stiffness values, but this 

difference is negligible.  

2.2 Dynamic approach 

The contribution of the added spring in the equation of motion might not be conservative, namely could result 

in an unexpected overturning, even though the free-standing block is safe, depending on the type of action 

involved. For this reason, the necessity of comparing the destabilizing effect given by the earthquake with 

those stabilizing emerges.  

The equation of motion can be written from the Housner's formulation including, in the Euler Lagrange 

equation, the potential energy equal to the work (Equation (3)) changed in sign: 

𝐼0�̈� + 𝑠𝑔𝑛(𝜗)𝑚𝑔𝑅 sin(𝛼 − 𝑠𝑔𝑛(𝜗)𝜗) + 

+𝑠𝑔𝑛(𝜗) 𝐾𝛽2𝑅2 cos(𝛼𝑟 − 𝑠𝑔𝑛(𝜗)𝜗) [𝑠𝑖𝑛 𝛼𝑟 − sin(𝛼𝑟 − 𝑠𝑔𝑛(𝜗)𝜗)] − 𝑚 𝑔�̈�𝑔𝑅 cos(𝛼 − 𝑠𝑔𝑛(𝜗)𝜗)

= 0 

(12) 

 

where 𝐼0 is the polar inertia moment with respect to the oscillation point O, 𝐼0 =
4

3
m(h2 + s2) =

4

3
mR2, and �̈�𝑔 is 

the acceleration time-history (in gravity acceleration 𝑔 units). This equation can be re-written by distinguishing 

stabilizing and destabilizing terms: 

�̈� + 𝑊𝑆𝑇𝐴𝐵 + 𝐾𝑆𝑇𝐴𝐵 + 𝐸𝐷𝐸𝑆𝑇 = 0 (13) 

The stabilizing terms are: 

𝑊𝑆𝑇𝐴𝐵 = 𝑠𝑔𝑛(𝜗)
𝑚𝑔𝑅

𝐼0

sin(𝛼 − 𝑠𝑔𝑛(𝜗)𝜗) =  𝑠𝑔𝑛(𝜗)
3

4

𝑔

R
sin(𝛼 − 𝑠𝑔𝑛(𝜗)𝜗) ;  

𝐾𝑆𝑇𝐴𝐵 = +𝑠𝑔𝑛(𝜗)  
𝐾𝛽2𝑅2

𝐼0

cos(𝛼𝑟 − 𝑠𝑔𝑛(𝜗)𝜗) [𝑠𝑖𝑛 𝛼𝑟 −  sin(𝛼𝑟 − 𝑠𝑔𝑛(𝜗)𝜗)] = 

= 𝑠𝑔𝑛(𝜗)
3 𝐾𝛽2

4m
cos(𝛼 − 𝑠𝑔𝑛(𝜗)𝜗) [𝑠𝑖𝑛 𝛼 −  sin(𝛼 − 𝑠𝑔𝑛(𝜗)𝜗)]  

(14) 

 

It must be noticed that the stabilizing term related to self-weight 𝑊𝑆𝑇𝐴𝐵 has this positive effect for |𝜗| < 𝛼.  When 

|𝜗| > 𝛼, this effect turns to negative. The term with destabilizing effect, representing the earthquake action, is: 

𝐸𝐷𝐸𝑆𝑇 = −
𝑚 𝑔𝑅

𝐼0

�̈�𝑔cos(𝛼 − 𝑠𝑔𝑛(𝜗)𝜗) = −
3

4

𝑔

R
�̈�𝑔 cos(𝛼 − 𝑠𝑔𝑛(𝜗)𝜗) (15) 

 

by assuming that the acceleration on the ground is the same as that experienced by the center of gravity of the 

block, due to its rigidity. In this paragraph, an approximate value of 𝐾 able to provide positive effect is 

determined. Naturally, it is not possible to state it exactly, since the evolution of motion depends on dissipation 

properties, generally identified in the restitution coefficient. Only a full integration of the equation of motion 

will give a completely reliable response assessment.  

However, some indications on the minimum 𝐾 value to adopt can be furnished as follows. Let us consider 

again the block examined in the example of the previous paragraph(α=0.05 rad, 𝑅=1.5 m, 𝛽 = 1 − 2,  = 1.8 

E4 N/m3). In a graph, where the stabilizing and destabilizing effects are reported (Figure 5), the earthquake 
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can be initially assumed as constant acceleration value, like the PGA (peak ground acceleration) commonly 

considered in response spectrum seismic analysis. For 𝐸𝐷𝐸𝑆𝑇, two different constant acceleration values (0.50 

g and 0.20 g) are assumed.  

(a) 
 

(b) 

Figure 5. Stabilizing and destabilizing effects of the terms in the equation of motion, for (a) 𝛽 = 1 and (b) 

𝛽 = 2 (α=0.05 rad , 𝑅=1.5 m) - single horizontal restraint. 

 

However, it is interesting to compare the effect of the stabilizing spring and the destabilizing earthquake action, 

even though it is simply a constant acceleration value. The cosine term is common to 𝐾𝑆𝑇𝐴𝐵 and 𝐸𝐷𝐸𝑆𝑇, while 

the maximum value of the sinus term in 𝐾𝑆𝑇𝐴𝐵, named 𝑓(𝜗), can be obtained from its derivative: 

𝜕𝑓(𝜗)

𝜕𝜗
=

𝜕

𝜕𝜗
[𝑠𝑖𝑛 𝛼𝑟 − 𝑠𝑖𝑛(𝛼𝑟 − 𝑠𝑔𝑛(𝜗)𝜗)] = cos(𝛼𝑟 − 𝑠𝑔𝑛(𝜗)𝜗). 

(16) 

 

The derivative equal to zero identifies the rotation �̿� for which 𝑓(�̿�) is maximum: 

�̿� = 𝛼𝑟 −
𝜋

2
 ; 𝑓(�̿�) = 1 + 𝑠𝑖𝑛 𝛼𝑟 . (17) 

 

Anyway, the value �̿� = 𝛼𝑟 −
𝜋

2
  does not have physical sense, since the overturning condition is 𝜗 =

𝜋

2
. However, 

the maximum value of 𝑓(�̿�) is equal to 2. As general advice, to obtain effective results from a structural point 

of view,  𝐾𝑆𝑇𝐴𝐵 should be at least three orders of magnitude with respect to  𝐸𝐷𝐸𝑆𝑇, where their ratio is: 

𝐾𝑆𝑇𝐴𝐵

𝐸𝐷𝐸𝑆𝑇
=

𝐾𝛽2 𝑅 (1 + 𝑠𝑖𝑛 𝛼)

𝑚 �̈�𝑔 g
≥

𝐾𝛽2𝑅 

�̈�𝑔 m g
> 1000 

(18) 

 

if the block is slender so that 𝛼𝑟 ≅ 𝛼 and if |𝜗| < 𝛼. Being the stabilizing term related to self-weight 𝑊𝑆𝑇𝐴𝐵 

negligible with respect to 𝐾𝑆𝑇𝐴𝐵, is not considered in the numerator. Taking into account that strong ground 

motions reach a PGA (�̈�𝑔 g) of the order of 1.0 g, assuming that the spring is applied, at least, at the middle of 

the block (β=1) or higher (1<β≤2), it can be deduced that the minimum K required, estimated by the simple 

above procedure, should be: 

𝐾𝑚𝑖𝑛 = 1000 
𝑚 𝑔

𝑅
 

(19) 

 

That means, in the proposed numerical example, a minimum stiffness value around 5.4 E6 N/m. When |𝜗| >

𝛼, the self-weight effect turns to negative. Therefore, this "efficiency ratio" becomes: 

-6

-4

-2

0

2

4

6

0 0.5 1 1.5

S
ta

b
 a

n
d

 D
es

t 
 e

ff
ec

t

q (rad)
-5

0

5

10

15

20

0 0.5 1 1.5

S
ta

b
 a

n
d

 D
es

t 
  
ef

fe
ct

q (rad)

KSTAB (100

N/m)

KSTAB (1000

N/m)

KSTAB (1E4

N/m)

WSTAB

EDEST ag=0.5

EDEST ag=0.2



 

9 

 

  

𝐾𝑆𝑇𝐴𝐵

𝐸𝐷𝐸𝑆𝑇 + 𝑊𝐷𝐸𝑆𝑇
=

𝐾𝛽2 𝑅 (1 + 𝑠𝑖𝑛 𝛼)
𝑚𝑔

 �̈�𝑔 + tan(|𝜗| − 𝛼)
 

(20) 

 

The term tan(|𝜗| − 𝛼) assumes a maximum value governed by typical physical r.c. or masonry panels, whose 

maximum slenderness can attain a value of 50 (e.g., thickness of 0.1 m and height of 5.0 m or tan(𝛼) = 0.02). 

Thus, tan(|𝜗| − 𝛼)max = tan (
π

2
− 0.02) ≅ 50 and the limit ratio can be expressed as: 

𝐾𝑆𝑇𝐴𝐵

𝐸𝐷𝐸𝑆𝑇 + 𝑊𝐷𝐸𝑆𝑇
=

𝐾𝛽2 𝑅 (1 + 𝑠𝑖𝑛 𝛼)
𝑚𝑔

 �̈�𝑔 + 50
> 1000 

(21) 

 

which means: 

𝐾𝑚𝑖𝑛 = 50000 
𝑚 𝑔

𝑅
 

(22) 

 

assumed that the stabilizing term has to be at least three orders of magnitude higher than the destabilizing term. 

Naturally, the value expressed in Equation (22) is an upper limit of the minimum. The minimum stiffness can 

be computed for the case under examination with Equation (21) by substituting the current values of 𝛼 and  �̈�𝑔. 

In the numerical example, the minimum stiffness is  𝐾𝑚𝑖𝑛 = 2.7E8 N/m. 

To numerically verify these assessments, a rocking analysis is performed in MATLAB to solve the equation 

of motion for the same block. The acceleration time-history assumed is the well known El Centro earthquake 

ground motion (Imperial Valley 5/19/40 04:39, El Centro array 9, 180) with PGA=0.348 g and PGV=33.5 

cm/s. An incremental analysis is performed by changing the factor multiplying the acceleration values Ampl. 

to focus on the range where the collapse of the block is more likely to occur. By taking into account the fore 

mentioned considerations, values of stiffness from 0 to K=1E6 N/m are assumed. The incremental analysis is 

stopped at an amplification factor equal to 1.2, corresponding to a PGA=0.418g. This way, one is inside the 

range of 0.2 <  �̈�𝑔 < 0.5 of Figure 5. However, by substituting the values of 𝛼 and  �̈�𝑔  (equal to 0.348 g), 

Equation (18) gives 𝐾𝑚𝑖𝑛 = 1.9E6 N/m . If one assumes to have |𝜗| > 𝛼, the minimum stiffness should be 

equal to 1.5E6 N/m (Equation (21)). Therefore, Equation (22) clearly overestimates the minimum value.  The 

difference of minimum stiffness given by Equation (18) and Equation (22) is negligible, and one can assume 

then about 2.0E6 N/m. All the rocking analyses are performed by adopting the same stiffness value in 

clockwise and counterclockwise rotation. The restitution coefficient is that theoretical, provided by Housner 

(1963), in favor of safety.  

Results are displayed in Table 1 in terms of maximum ratios of normalized rotation amplitude (𝜗/𝛼)𝑚𝑎𝑥. The 

free-standing block overturns for an amplification factor of 1.20. It must be noticed that in a dynamic rocking 

analysis, despite of a kinematic approach, the block could survive for 
𝜗

𝛼
> 1. Low stiffness values, K=100-

1000 N/m, do not positively affect the response: indeed, the block is unstable when the restraint is both at the 

top corner and at the middle of the block. This suggests that low stiffness values not only do not influence the 

response, but could cause block overturning amplifying rocking motion. The block can collapse with a 

restoring force even though, when it is free-standing, does not collapse. This occurs because of the change of 

vibration period (variable with amplitude), which could be closer to that of the excitation resulting in resonance 

condition. For this reason, it becomes important to evaluate an order of magnitude of minimum stiffness value 

to reduce the rotation amplitude to acceptable values. Values of K=100 N/m and K=1000 N/m are indeed of 

the same order of magnitude as the destabilizing term, as displayed in Figure 5. A spring with K=1E4-1E5 
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N/m allows stable rocking; nevertheless, the rotation amplitude (𝜗/𝛼)𝑚𝑎𝑥 attains maximum values higher 

than those of the case without restraint (except the case K=1E5 N/m and β=2). In these cases, the position of 

the spring at the top of the block (β=2) gives maximum rotations from 30% to 50% lower than the spring 

located at the middle of the block (β=1).  

Higher values, such as 1E6 N/m in this example (corresponding to a steel tie-rod of diameter 6.0 mm and 

length 5.0 m, acting in both directions), are recommended to attain safe values of maximum rotation amplitude 

(𝜗/𝛼)𝑚𝑎𝑥, since these values are lower than those without any restraint. For this order of magnitude the global 

system stiffness is largely positive (Figure 4). Thus, the minimum stiffness values given by Equations (18)-

(21) are reliable, as they guarantee safe rocking motion. For K>1E6 N/m, the amplitude ratio tends to zero 

(results not reported), confirming the benefit of the restraint. 

Table 1 - Maximum ratios of normalized rotation amplitude obtained from incremental rocking analysis 

(α=0.05 rad , 𝑅=1.5 m, El Centro earthquake, Ampl.= amplification factor) 

b=1       

Ampl. K=0 N/m K=100 N/m K=1000 N/m K=1E4 N/m K=1E5 N/m K=1E6 N/m 

1.0 0.712 overturning overturning 2.935 0.906 0.2216 

1.1 0.839 overturning overturning 3.196 1.212 0.2412 

1.2 overturning overturning overturning 3.371 1.570 0.2584 

b=2       

Ampl. K=0 N/m K=100 N/m K=1000 N/m K=1E4 N/m K=1E5 N/m K=1E6 N/m 

1.0 0.712 overturning 3.128 2.069 0.402 0.039 

1.1 0.839 overturning overturning 2.264 0.451 0.044 

1.2 overturning overturning overturning 2.431 0.486 0.049 

 

In conclusion, it is possible to numerically estimate the weight of the restoring moment, given by self-weight 

and horizontal restraint, with respect to the applied ground motion.  The check of these terms can provide a 

first insight on the effectiveness of the strengthening system, by means of the simple formula of Equations 

(18)-(22), before performing rocking analysis. It must be noticed that strengthening measures generally act 

only in one-sided motion. In this case, numerical unstable effects can emerge when a finite value of stiffness 

is assumed for a clockwise rotation and zero value is considered for a counterclockwise rotation (Giresini et 

al. 2015a). For a numerical application of such a non-linear conditions, see § 5. 

3 Smeared horizontal restraints 

The second considered configuration consists of a rectangular block restrained by smeared horizontal elastic 

restraints (Figure 1(b)). The height and thickness are respectively labeled ℎ and 𝑠. Each spring of the elastic 

“bed” is located at a distance 𝑅(𝑧) with respect to the oscillation point O. Let the angle formed by the panel 

side and 𝑅(𝑧) be 𝛼(𝑧). The dimensions of each spring of stiffness 𝐾′ is [Force/Length2].  Smeared horizontal 

restraints can model transverse connecting walls or added layers with assigned stiffness, due to a vertical 

distribution of tie-rods or similar anchorages.  

3.1 Static approach 

Analogously to the procedure illustrated in § 2, the stabilizing effect of the horizontal restraints is here 

investigated. The generic spring 𝐾′, uniformly distributed along the vertical side, is considered at depth 𝑧; the 
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axis 𝑧 rotates with the rotation of the block. The corresponding radius vector 𝑅(𝑧) is function of 𝑧 and the 

angle formed with the wall is 𝛼(𝑧). The horizontal virtual displacement 𝛿𝑢 at a generic z is in the deformed 

configuration of Figure 1(b) is: 

𝛿𝑢(𝑧) = 𝑅(𝑧) 𝑐𝑜𝑠[𝛼(𝑧) − 𝑠𝑔𝑛(𝜗)𝜗]  𝛿𝜗, (23) 

 

The finite displacement is then obtained by integrating Equation (23) over the interval [0, �̅�], where �̅� is the 

fixed current rotation: 

𝑢(𝑧) = 𝑅(𝑧){sin 𝛼(𝑧) −  sin[𝛼(𝑧) − 𝑠𝑔𝑛(𝜗)�̅� ]}, (24) 

 

The virtual work done by the spring with constant stiffness 𝐾′ is calculated by imposing a virtual differential 

displacement with respect to the virtual rotation angle 𝛿𝜗.  

When the block is rotated by an angle 𝜗, the generic horizontal restraint with stiffness 𝐾′exerts a restoring 

moment 𝑀𝑟,𝐾′(𝜗) equal to:  

𝑀𝑟,𝐾′(𝜗) =
𝜕𝛿𝑊(𝑧)

𝜕𝜗
=

𝜕

𝜕𝜗
[𝐾′𝑑𝑧 cos 𝜗  𝑢(𝑧) 𝛿𝑢(𝑧)] 

(25) 

 

being 𝑑𝑧 cos 𝜗 the influence length of the single spring at depth 𝑧 and 𝑊(𝑧) the corresponding work done. 

Substituting in Equation (25) Equations (23)-(24), the work 𝑊(𝑧) becomes: 

δ𝑊z = −𝑠𝑔𝑛(𝜗) 𝐾′𝑅(𝑧)2 cos[𝛼(𝑧) − 𝑠𝑔𝑛(𝜗)𝜗] {sin 𝛼(𝑧) −  sin[𝛼(𝑧) − 𝑠𝑔𝑛(𝜗)�̅� ]} cos 𝜗  sin δ𝜗 𝑑𝑧, (26) 

The work δ𝑊 along the vertical side of the block is then calculated by integrating Equation (26) over the 

interval [0, ℎ] in 𝑑𝑧 with 𝑅(𝑧) = √𝑠2 +  𝑧2: 

δ𝑊 =  ∫ δ𝑊z =
ℎ

0

−𝑠𝑔𝑛(𝜗) 𝐾′ cos 𝜗 sin δ𝜗 ∫ (s2
ℎ

0

+ z2)[cos 𝛼(𝑧) cos 𝜗 + 𝑠𝑔𝑛(𝜗) sin 𝛼(𝑧) sin 𝜗] [sin 𝛼(𝑧)(1

− cos 𝜗) + 𝑠𝑔𝑛(𝜗) cos 𝛼(𝑧) sin 𝜗]dz. 

(27) 

It is convenient to express the trigonometric functions in terms of coordinate 𝑧 and thickness 𝑠: 

cos 𝛼(𝑧) =
𝑧

√𝑠2 + 𝑧2
;  sin 𝛼(𝑧) =

𝑠

√𝑠2 + 𝑧2
. (28) 

 

This way, the expression of work done by the spring bed is simplified in: 

δ𝑊 =  −𝑠𝑔𝑛(𝜗) 𝐾′ cos 𝜗 sin δ𝜗 ∫ (z cos ϑ
ℎ

0

+ 𝑠𝑔𝑛(𝜗) s sin ϑ)[s (1 − cos 𝜗) + 𝑠𝑔𝑛(𝜗) z sin ϑ]  dz. 

(29) 

Equation (29) can be expressed in the short form: 

δ𝑊 =  −𝑠𝑔𝑛(𝜗) 𝐾′sin δ𝜗 ∫ A + B z + C z2
ℎ

0

 dz, 
(30) 

where: 
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𝐴 = 𝑠𝑔𝑛(𝜗) 𝑠2 sin 𝜗 cos 𝜗 (1 − cos 𝜗); 

𝐵 = 𝑠 (sin2 𝜗 cos 𝜗 − cos3 𝜗 + cos2 𝜗); 

𝐶 = 𝑠𝑔𝑛(𝜗) sin 𝜗 cos2 𝜗 

(31) 

and: 

δ𝑊 =  −𝑠𝑔𝑛(𝜗) 𝐾′sin δ𝜗 ℎ (𝐴 +
𝐵ℎ

2
+

𝐶ℎ2

3
). 

(32) 

 

By linearizing sin δ𝜗 ≅ δ𝜗, it is finally possible to write the restoring moment relative to the spring bed: 

𝑀𝑟,𝐾′(𝜗) = −
𝜕𝛿𝑊(𝑧)

𝜕𝜗
= 𝑠𝑔𝑛(𝜗) 𝐾′ℎ (𝐴 +

𝐵ℎ

2
+

𝐶ℎ2

3
) 

(33) 

 

Considering also the contribution of the self-weight and considering 𝜗 > 0, the global restoring moment 

𝑀𝑟′(𝜗) is: 

𝑀𝑟(𝜗) = 𝑚𝑔𝑅 sin(𝛼 − 𝜗) + 𝐾′ℎ (𝐴 +
𝐵ℎ

2
+

𝐶ℎ2

3
). 

(34) 

 

or, in terms of 𝑅: 

𝑀𝑟(𝜗) = 𝑚𝑔𝑅 sin(𝛼 − 𝜗) + 𝐾′ℎ (𝐴 + 2𝐵𝑅 cos 𝛼 +
4𝐶𝑅2 cos2 𝛼

3
). 

(35) 

 

The spring bed might be active only in a portion of the vertical side, e.g. from depth 𝑧 = ℎ′ > 0 to 𝑧 = ℎ̅. In 

this more general case, the restoring moment would be: 

𝑀𝑟(𝜗) = 𝑚𝑔𝑅 sin(𝛼 − 𝜗) +  𝐾′ (ℎ̅ − ℎ′) [𝐴 +
𝐵(ℎ̅ + ℎ′)

2
+

𝐶(ℎ̅2 + ℎ̅ ℎ′ +  ℎ′2)

3
]. 

(36) 

 

For small rotations ϑ, it implies sin 𝜗 ≅ 𝜗 and cos 𝜗 ≅ 1; substituting 𝑠 = 2𝑅 sin 𝛼 and ℎ = 2𝑅 cos 𝛼,  one 

obtains A=0 ; B = s ϑ2 ; C = ϑ; and Equation (34) becomes: 

𝑀𝑟(𝜗) = 𝑚𝑔𝑅 sin 𝛼 [1 − ϑ (cot 𝛼 −
8

3

𝐾′𝑅2

𝑚𝑔
cot 𝛼 cos2 𝛼) + ϑ2 4

𝐾′𝑅2

𝑚𝑔
cos2 𝛼], (37) 

 

By neglecting the second order term depending on ϑ2 one has: 

𝑀𝑟(𝜗) = 𝑚𝑔𝑅 sin 𝛼 [1 − ϑ (cot 𝛼 −
8

3

𝐾′𝑅2

𝑚𝑔
cot 𝛼 cos2 𝛼)], (38) 

 

and the system global stiffness can be written as: 

𝐾𝑠𝑦𝑠
′ = 𝑚𝑔𝑅 cos 𝛼 (

8

3

𝐾′𝑅2

𝑚𝑔
cos2 𝛼 − 1), (39) 

 

The condition of 𝐾𝑠𝑦𝑠
′  to be positive is therefore for rectangular blocks: 

𝐾′ >
3

2
𝛾 tan 𝛼  𝑑 

(40) 
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where 𝑑  is the depth of the block in the direction of the axis of rotation. For smeared horizontal restraints the 

minimum stiffness value does not depend on 𝑅 but only on the block shape. When blocks are stockier, a higher 

value of 𝐾′ is required to get the same stabilizing effect. A numerical application can be useful to understand 

the benefit introduced by the spring bed. Let us assume two blocks with same 𝑅 but different shape, namely 

α = 0.32  rad and  α = 0.05  rad. The results are displayed in Figure 6.  

The minimum values of 𝐾 to attain positive global stiffness, for the stocky and the more slender block, are 

respectively 9000 N/m and 1350 N/m (Equation (40)). 

 
(a) 

 
(b) 

Figure 6 - Dimensionless moment-rotation amplitude diagram for different values of the spring bed 

stiffness K' (𝑅=1.5 m): (a)  α = 0.32  rad, (b)  α = 0.05  rad (Equation (34)). 

 

The difference between the linearized and the non-linearized expression is less negligible for the stockier 

block, with an average difference of -8.9% (K=0) up to 3.4% (K=10000 N/m). In other words, in absence of 

spring bed the restoring moment is overestimated by about 10% when the linearized expression is considered. 

For the more slender block, one has a negligible average difference of +0.05% (K=0) up to 0.15% (K=10000 

N/m) between the two expressions. Indeed, the linearization has to be adopted carefully for stocky blocks as 

discussed by Giresini et al. (2015b). 

3.2 Dynamic approach 

The equation of motion of the block restrained by smeared springs can be written from the Housner's equation 

including in the Euler Lagrange equation the potential energy (Equation (33)): 

𝐼0�̈� + 𝑠𝑔𝑛(𝜗)𝑚𝑔𝑅 sin(𝛼 − 𝑠𝑔𝑛(𝜗)𝜗) + 𝑠𝑔𝑛(𝜗) 𝐾′ℎ̅  (𝐴 +
𝐵ℎ̅
2

+
𝐶ℎ̅

2

3
) − 𝑚 𝑔�̈�𝑔𝑅 cos(𝛼 − 𝑠𝑔𝑛(𝜗)𝜗) = 0 

(41) 
 

where 𝐼0 is the polar inertia moment with respect to O and �̈�𝑔 is the acceleration time-history (in gravity 

acceleration 𝑔 units) and 𝐴, 𝐵, 𝐶 are expressed by Equation (31). 

Equation (41) can be re-written by distinguishing stabilizing and destabilizing terms: 

�̈� + 𝑊𝑆𝑇𝐴𝐵 + 𝐾′𝑆𝑇𝐴𝐵 + 𝐸𝐷𝐸𝑆𝑇 = 0 (42) 

The stabilizing terms are: 
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𝑊𝑆𝑇𝐴𝐵 = 𝑠𝑔𝑛(𝜗)
𝑚𝑔𝑅

𝐼0

sin(𝛼 − 𝑠𝑔𝑛(𝜗)𝜗) =  𝑠𝑔𝑛(𝜗)
3

4

𝑔

R
sin(𝛼 − 𝑠𝑔𝑛(𝜗)𝜗) ;  

𝐾′𝑆𝑇𝐴𝐵 = +𝑠𝑔𝑛(𝜗)
𝐾′ℎ 

𝐼0

(𝐴 +
𝐵ℎ

2
+

𝐶ℎ2

3
) == +𝑠𝑔𝑛(𝜗)

𝐾′ 

𝐼0

𝑓(ℎ) 

 

(43) 

The term with destabilizing effect, representing the earthquake action, is: 

𝐸𝐷𝐸𝑆𝑇 = −
𝑚 𝑔𝑅

𝐼0

�̈�𝑔cos(𝛼 − 𝑠𝑔𝑛(𝜗)𝜗) = −
3

4

𝑔

R
�̈�𝑔 cos(𝛼 − 𝑠𝑔𝑛(𝜗)𝜗) (44) 

Obviously, only 𝐾′𝑆𝑇𝐴𝐵 differs from the case of single restraint. The terms of the equation for the block 

previously considered, α=0.05 rad and 𝑅=1.5 m, are displayed in Figure 7. The same values of acceleration �̈�𝑔  

and stiffness as the single restraint case are assumed. Naturally, the difference between 𝐾′𝑆𝑇𝐴𝐵 and 𝐸𝐷𝐸𝑆𝑇 is 

much more evident in this case, due to the smeared restraint. The stockier block with α=0.32 rad and 𝑅=1.5 m 

gives similar trends as those shown in Figure 7 without appreciable difference. 

 

Figure 7 - Stabilizing and destabilizing effect of the terms in the equation of motion (α=0.05 rad , 𝑅=1.5 m) 

(𝐾′𝑆𝑇𝐴𝐵,𝑀𝐴𝑋 ≅ 40 for K'=10 N/m2, 𝐾′𝑆𝑇𝐴𝐵,𝑀𝐴𝑋 ≅ 400 for K'=100 N/m2, 𝐾′𝑆𝑇𝐴𝐵,𝑀𝐴𝑋 ≅ 4000 for K'=1000 N/m2) - 

smeared horizontal restraint. 

  
Figure 8 - Stabilizing terms  𝑓(ℎ) of Equation (43) - (α=0.05 rad , 𝑅=1.5 m). 
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Referring to a quantitative assessment, one can again state that the ratio between stabilizing and destabilizing 

effect could be at least three orders of magnitude. This time, the contribution (negative or positive depending 

on the rotation value) is neglected in favor of simplicity. 

𝐾′
𝑆𝑇𝐴𝐵

𝐸𝐷𝐸𝑆𝑇

=
𝐾′ℎ (𝐴 +

𝐵ℎ
2

+
𝐶ℎ2

3
)

𝑚 𝑔𝑅�̈�𝑔cos(𝛼 − 𝜗)
=

𝐾′𝑓(ℎ)

𝑚 𝑔𝑅 �̈�𝑔cos(𝛼 − 𝜗)
> 1000 (45) 

 

The shape of 𝑓(ℎ), specialized for the considered numerical case (α=0.05 rad , 𝑅=1.5 m), is displayed in Figure 8. 

The maximum 𝑓(ℎ) value is about 3.7. By substituting the other values in Equation (45), one obtains 𝐾′
𝑚𝑖𝑛 = 

1.1E6 N/m2. Analogously to what was done for the case of single horizontal restraint, a rocking analysis is 

performed by integrating Equation (41). The acceleration time-history is again that registered in the El Centro 

earthquake and the Housner's theoretical value of restitution coefficient was adopted to maximize the response. 

From Figure 7 and Equation (44), if one assumes as reliable value to impede overturning equal to K'=100-

1000 N/m2, that prevision is not always in favour of safety (Table 2). In the rocking analysis, the stiffness limit 

of 1.1E6 N/m2 is enough to make the response safe, as reported in Table 2, obtaining normalized ratio amplitudes 

lower than 0.5. By contrast, when the value of K' is not sufficient, the spring bed could cause unexpected 

responses, as collapse for the restrained block that does not fail when it is free (e.g. K'=0, Ampl.1.0 or 1.1). 

Moreover, again as in the case of single restraint, the maximum amplitude ratio can overcome that of the case 

in absence of restraints (K'=1000 N/m2). 

Table 2 - Maximum ratios of normalized rotation amplitude obtained from incremental rocking analysis 

(α=0.05 rad , 𝑅=1.5 m, El Centro earthquake, Ampl.= amplification factor) - smeared horizontal restraint 

Ampl. K'=0 N/mxm K'=100 N/mxm K'=1000 N/mxm K'=1E4 N/mxm K'=1E5 N/mxm K'=1E6 N/mxm 

1.0 0.712 overturning 3.13 2.062 0.4079 0.072 

1.1 0.839 overturning overturning 2.264 0.4506 0.043 

1.2 overturning overturning overturning 2.652 0.4855 0.049 

3.4 Case of unit stiffness variable with linear law 

In the previous paragraphs the unit stiffness has been considered constant (Figure 9(a)). Nevertheless, in 

practical cases such as out-of-plane modes of existing masonry buildings, the stiffness cannot be assumed 

constant but variable with the z coordinate. In fact, portion of perpendicular walls of triangular shape often 

participate together with the wall in the rocking response, offering a not uniform transverse stiffness. Let us 

consider the simplest case of linear variation. Let the spring stiffness at the lowest position be 𝐾′0 and the 

corresponding spring flexibility or compliance 𝐶′0 = 1/𝐾′0. If ∆𝐶 is the flexibility increment, the linear 

variability of the spring flexibility is: 

C′(z) =
1

𝐾′(𝑧)
=  𝐶′0 + ∆𝐶

𝑧

ℎ̅
 (46) 

 

where ℎ̅ is the maximum height of the spring bed (Figure 9) and ∆𝐶 its variation such as: 

∆𝐶 =
1

𝐾′1
−

1

𝐾′0

=  
𝐾′0 − 𝐾′1

𝐾′0𝐾′1
 (47) 

 

By expressing 𝐾′(𝑧) from Equation (46) taking into account Equation (47) one has: 
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𝐾′(𝑧) =  
𝐾′

0

1 + (
𝐾′

0

𝐾′
1

− 1)
𝑧

ℎ̅

=
𝐾′

0

1 + 𝛺 𝑧
 (48) 

being 𝛺 =
1

ℎ̅
(

𝐾′
0

𝐾′
1

− 1). The contribution of it to the equation of motion can be now obtained by simply 

including the variation with z of the spring stiffness in the integral of Equation (30): 

δ𝑊 =  −𝑠𝑔𝑛(𝜗) 𝐾′
0 sin δ𝜗 ∫

A + B z + C z2

1 + 𝛺 𝑧

ℎ̅

0

 dz, (49) 

 

The variation of work done by the spring bed is therefore: 

δ𝑊 =  −𝑠𝑔𝑛(𝜗) 𝐾′
0 sin δ𝜗 | 

𝐴

𝛺
ln(1 + 𝛺𝑧) +

𝐵

𝛺
(𝑧 −

1

𝛺
ln(1 + 𝛺𝑧) )

+
𝐶

𝛺3
[
(1 + 𝛺𝑧)2

2
− 2(1 + 𝛺𝑧) + ln(1 + 𝛺𝑧)]|

0

ℎ̅

 , 

(50) 

that is: 

δ𝑊 =  −𝑠𝑔𝑛(𝜗) 
𝐾′

0

𝛺
 sin δ𝜗 {𝐴 ln(1 + 𝛺ℎ̅) + 𝐵 (ℎ̅ −

1

𝛺
ln(1 + 𝛺ℎ̅)) 

+
𝐶

𝛺2
[
(1 + 𝛺ℎ̅)2

2
− 2(1 + 𝛺ℎ̅) + ln(1 + 𝛺ℎ̅) +

3

2
]} . 

(51) 

 

Obviously, the limit of δ𝑊 as 𝛺 tends to zero, is given by Equation (32) with ℎ = ℎ̅. 

 

Figure 9. Smeared horizontal restraints varying with linear law of spring flexibility C'(z). 

 

Now, the equation of motion can be modified in the general case of linearly variable spring deformability by 

including the term of the work in the Euler-Lagrange's equation: 

𝐼0�̈� + 𝑠𝑔𝑛(𝜗)𝑚𝑔𝑅 sin(𝛼 − 𝑠𝑔𝑛(𝜗)𝜗)

+ 𝑠𝑔𝑛(𝜗) 
𝐾′

0

𝛺
{𝐴 ln(1 + 𝛺ℎ̅) + 𝐵 (ℎ̅ −

1

𝛺
ln(1 + 𝛺ℎ̅)) 

+
𝐶

𝛺2 [
(1 + 𝛺ℎ̅)2

2
− 2(1 + 𝛺ℎ̅) + ln(1 + 𝛺ℎ̅) +

3

2
]} − 𝑚 𝑔�̈�𝑔𝑅 cos(𝛼 − 𝑠𝑔𝑛(𝜗)𝜗) = 0 

(52) 
 

where the terms 𝐴, 𝐵, 𝐶 are expressed by Equation (31). 
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4 Parametric analysis and discussion of results 

A parametric analysis was performed by considering different acceleration time-histories, later used for a 

practical case study in § 5. These earthquakes have been chosen as they have similar PGA and PGV values as 

those of the El Centro earthquake (Table 3). Indeed, particularly the PGV is a relevant parameter for the risk 

of collapse in rocking motion. The geometric dimensions and weight are the same adopted in § 3 and § 4, 

namely α=0.05 rad , 𝑅=1.5 m, g=1.8E4 N/m3. Both concentrated and smeared restraints are considered. The 

so obtained rocking spectra, reported in § 4.1 and § 4.2, allow both to identify a safe domain and to confirm 

the minimum stiffness value obtained from Equations (18)-(20). 

Table 3 - Earthquakes used for the parametric analysis of restrained block (PGA=peak ground acceleration, 

PGV=peak ground velocity) 

Station code PGA (g) PGV (cm/s) Station code PGA (g) PGV (cm/s) 

AQK 0.334 32.210 AQG 0.446 30.959 

AQA 0.402 31.910 ELCENTRO 0.348 33.450 

 

4.1 Parametric dynamic analysis of blocks with single restraint 

By widening the analysis started in § 2.2 (Table 1), one can see that the results are similar adopting different 

acceleration time-histories. The results are displayed in terms of rocking spectra, intending them as maximum 

rotation amplitude (𝜗/𝛼)𝑚𝑎𝑥 function of the restraint stiffness (Figure 10). The rocking response for different 

earthquakes with similar characteristics is similar, with and without restraint. Generally, for the same 

earthquake and the same K value, a higher position of the restraint (𝛽 = 2) determines a safer conditions, 

especially for the higher K values. An exception is given by AQK. Moreover, for example for AQG earthquake, 

overturning does not occur for K>1E4 N/m, but the values of normalized rotations are higher or close to 1, 

resulting in a situation not in favour of safety. A good reduction of maximum normalized rotation is achieved 

for K≥1E6 N/m, value suggested by Equation (18). It is relevant to notice that for these values of K, rocking 

attenuates tending to zero in a monothonic and therefore reliable way. This means that, adopting for value 

higher than a limit value, higher K, safer the rocking condition. 

 
(a) 

 
(b) 

Figure 10. Parametric analysis of block restrained by a single horizontal spring with α=0.05 rad , 𝑅=1.5 m, 

g=1.8E4 N/m3: (a) 𝛽 = 1; (b) 𝛽 = 2. 
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4.2 Parametric dynamic analysis of blocks with smeared restraints 

Similarly to what occurred for the single restraint, also for the smeared one higher the stiffness values, lower 

the maximum amplitude ratio. Different earthquakes with similar characteristics give analogous results, 

confirming that a minimum stiffness of the order of 1E6 N/m2 (Equation (45)) is necessary to get a safe 

response. Also lower values, such as 1E5 N/m2, can guarantee rocking without overturning, but if one wants 

to define limit states such as maximum amplitude ratio lower than 0.1 (Dimitrakopoulos and Paraskeva 2015), 

the value of 1E6 N/m2 is required. 

 

Figure 11. Parametric analysis of block restrained by a smeared bed spring with α=0.05 rad , 𝑅=1.5 m. 

5 Case study: a masonry church façade 

5.1 Façade of Santa Gemma church in L'Aquila and seismic records 

The rocking analysis in both linear and non-linear range is applied to the church of S. Gemma Vergine in 

Goriano Sicoli (L'Aquila, Italy), which was strongly damaged after the 2009 earthquake. The  considered 

boundary conditions are a spring bed with constant stiffness, as discussed in the following. The historic church 

was built in the 15th century for the first time, and nearly totally rebuilt after a strong earthquake occurred in 

the 18th century (Di Giannantonio 2003). The three nave church is made of stone masonry and lime stone in 

the external walls with internal filling and nearly regular texture. The vaults are constructed with brick masonry 

and lime mortar and the colonnade with inner irregular stone masonry. 
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(a)                                                                          (b) 

Figure 12. Santa Gemma church in Goriano Sicoli (AQ): dimensions (in meters, a) and façade rocking 

mechanism (b). 

 

The church suffered from widespread damage in both structural and non-structural elements from the 2009 

earthquake. The non-homogeneous damage on the columns allowed to estimate seismic microzonation effects 

due to local soil stratigraphy (Sassu et al. 2009).  Several collapse mechanisms were identified in the church 

macro-elements, particularly in the apse and in the main façade (Andreini et al., 2011). The latter was subjected 

to two out-of-plane modes around horizontal hinge: the first nearly at the base of the wall and the second in 

correspondence of the tympanum. The first mechanism is here considered and displayed in Figure 12. The 

final detachment of the façade, with respect to the perpendicular walls, is evident from a visual inspection and 

the gap between façade and transverse walls is of about 30 cm. In out-of-plane mechanism, a portion of the 

perpendicular longitudinal walls, 70 cm long, participated to the rocking motion. The longitudinal walls are 

here considered as spring bed limited to the lower portion of the façade. By means of a back analysis, the 

survival of the façade to the seismic records that it experienced can be verified. For calculating the unit stiffness 

𝐾′ offered by the longitudinal walls, it is necessary to define masonry elastic modulus, cross section and depth 

of the walls (in grey in Figure 12). The portion where the stiffness is active (namely ℎ̅ in Equation (52)) is 4.9 

m long.  

 

 
(a) 

 
(b) 

Figure 13. View from south of the façade mechanism at the top (a) and at the lower part(b). 
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Masonry elastic modulus Ey, in vertical direction, was obtained from on site double flat jack tests, taken from 

similar masonry type specimens tested on site in L'Aquila district, and it is equal to 1700 MPa (Conti 2011). 

The value of Ex adopted in horizontal direction has been taken equal to Ey/0.8 according to the masonry type 

and ratio between block and mortar thickness (Anna Brignola et al. 2008).  

 
(a) 

 
(b)                         (c) 

Figure 14. Horizontal restraints of typical masonry façade connected to transverse walls: (a) rocking 

façade-cyan and transverse walls as boundary conditions-violet; (b) equivalent rocking block at first step and 

real smeared constraints; (c) equivalent rocking block and considered smeared constraints in the analysis. 

 

The rocking phenomenon involves the façade in two steps: first the block rocks having as boundary conditions 

the rectangular perpendicular portion identified by the larger crack, and secondly, when the block is detached 

as in Figure 12, its center of mass changes by taking into account the increased masonry volume. At this step, 

boundary conditions are represented by the triangular shape walls visible in Figure 12b as red and blue cracks. 

The model is described in Figure 14. The two steps can be separately analyzed in the rocking analysis, by 

considering the first nearly constant stiffness (Equation (41)) and the linearly variable one (Equation (52)). 

The bed spring stiffness can be defined for masonry walls perpendicular to the façade as:  

𝐾′ =
Ex  A

L ℎ̅ 
= Ex

t

L
 , (53) 

 

being Ex the elastic modulus in the horizontal direction, t and ℎ̅ respectively the thickness and depth of the 

participating transverse walls while A=t ℎ̅ is the perpendicular walls cross section (Figure 11a). L is the length 

of the perpendicular walls portion involved in the rocking motion, variable with 𝑧.  

By substituting the geometric and mechanical values in Equation (53) assuming the constant stiffness of the 

first step, one obtains two stiffness values due to the different thicknesses of the perpendicular walls, equal to 

0.61 m and 1.06 m for left and right side respectively of the façade: 

𝐾𝐿𝐸𝐹𝑇
′ = 1.85E9

N

m2
;  𝐾𝑅𝐼𝐺𝐻𝑇

′ = 3.22E9
N

m2
.  (54) 

 

By assuming an elastic behavior of the bed spring, these values are simply summed up to get the final value 

of stiffness equal to 𝐾𝑇𝑂𝑇
′ =5.07E9 N/m2.  

The analysis is carried out by applying the natural seismic records registered nearby the site of Goriano Sicoli 

during the main shock on 2009 April 6th (ITACA 2.0 earthquake database; Luzi et al. 2008). All the seismic 

records considered are referred to West-East orientation due to the façade position (Table 4). 
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Table 4. Seismic records features, 2009-04-06 UTC01:32:40, MW=6.3, ML=5.9, orientation West-East (Repi: 

distance of the station from the epicentre; distance: distance of the church from the station; PGA, PGV, 

PGD: peak ground acceleration, velocity, displacement). 

Station code Eurocode 8 soil type Repi (km) Distance (km) PGA (cm/s2) PGV (cm/s) PGD (cm) 

AQV B 5.1 58 644.247 -40.206 6.787 

AQK B 1.8 53 327.730 -32.210 7.191 

AQA B 5.2 60 394.745 31.910 5.429 

AQG B 5.1 60 -437.428 -30.959 5.995 

CLN B* 30.6 25 -79.780 4.857 -2.877 

SUL A* 53.6 20 -33.680 -2.800 1.006 

5.2 Rocking analysis 

The analysis is performed in non-linear assumptions (Figure 2), since for clockwise rotation the perpendicular 

masonry walls are compressed and behave as horizontal restraint, while in the counterclockwise rotation, when 

rocking motion is activated and masonry is no tension resistant, any restraint is available. However, the rocking 

analysis is also carried out considering the linear case, where in both rotations the stiffness is supposed to act. 

Other approaches on the evaluation of one-sided rocking motion are available in the literature, as those that 

reduce the velocity after impact by a damping coefficient together with the restitution coefficient (Sorrentino 

et al., 2008). A parametric analysis allows to make some considerations about the response of the restrained 

block. The adopted parameter is the stiffness spring bed, assumed to vary between 0 (free-standing block) and 

1E12 N/m2 with intervals of one order of magnitude (0, 10, 100, 1E3, ..., 1E12 N/m2). The overturning 

condition is fixed to (
𝜗

𝛼
)

𝑚𝑎𝑥
> 10. 

The outcomes of the parametric analysis applied to the main façade of Santa Gemma church are reported in 

Figure 15. Such graphs are a sort of failure domains of the rocking block subjected to several seismic actions 

and variable boundary conditions (Giresini et al. 2015a). When the façade is stable, the maximum amplitude 

ratio (𝜗/𝛼)
𝑚𝑎𝑥

 is below 1.0 (Figure 15(a),(b)). A higher number of overturning results for the seismic records 

with higher PGV (AQV and AQK with 40 cm/s and 32 cm/s respectively).  

 
(a) 

 
(b) 
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(c) 

 
 (d) 

 
  

(e) 
 

(f) 

Figure 15. Rocking analysis results of the façade of Santa Gemma church in Goriano Sicoli: (a) non-linear 

case in the real configuration; (b) non-linear case with bed spring smeared over the whole height of the 

façade; (c) façade subjected to AQV record and 𝐾𝑇𝑂𝑇
′ =5.07E9 N/m2; (d) façade subjected to AQK seismic 

record and 𝐾𝑇𝑂𝑇
′ =1E7 N/m2; (e) oscillatory motion for non-linear case and value of stiffness K'=1E6 N/m2 

and AQK record; (f) linear case in the real configuration. 

 

However, a slightly lower PGV value of 31 cm/s (that of AQA seismic record) does not imply any collapse. 

The response is strongly influenced by the stiffness value for the earthquakes with higher intensity. There is 

not a correspondence between the entity of non-linear stiffness and probability of collapse. However, the 

church façade is stable as displayed in Figure 15(a). If the restraint was smeared over the whole height of the 

façade, the safe domain would have been slightly reduced (Figure 15 (b)).  

The rebound effect exerted by the perpendicular walls is clear in Figure 15(c). Indeed, for K' higher than 1E6 

N/m2 (for AQK action, (d)) the rebound effect is visible while with lower stiffness values the motion is 

oscillatory Figure 15(c), since the bed spring does not affect the response enough. Finally, the linear case 

shows that higher the stiffness, lower the maximum amplitude ratio. The minimum value of K' to obtain a 

positive global stiffness is given by Equation (40) and is equal to 2.1E4 N/mxm. 

This is valid for all the seismic records and it is a reason why it is preferable to have similar stiffness in 

clockwise and counterclockwise rotations to achieve a reduction of amplitude ratio by increasing it. It is worthy 

to notice that some values of stiffness can worsen the block response with respect to the free-standing condition 

in both non-linear (Figure 15(a),(b)) and linear (Figure 15(f)) cases. 
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6 Common values of unit stiffness for masonry and r.c. panels 

Theoretically the lower limit of unit stiffness of the spring bed is not of interest in performing parametric 

analysis, since the block might be free-standing. By contrast, to define an upper limit of unit stiffness could be 

relevant for structural engineers who want to verify the seismic vulnerability assessment of a rigid block 

however restrained. The bed spring stiffness can be defined for masonry walls/r.c. panels perpendicular to the 

rigid block and connected to it as expressed in Equation (53). The masonry elastic modulus Ey, in vertical 

direction, can be obtained from on site tests such as double flat jack tests.  

(a)  

 
 

(b) 

Figure 16. Orders of magnitude of bed spring stiffness: (a) two masonry/concrete walls, stiffness depending 

on elastic modulus, thickness and depth of perpendicular walls; (b) four steel tie-rods/m with different 

diameter  

 

This mechanical parameter can be used for defining the horizontal modulus Ex with coefficients depending on 

the masonry type (stone or brick), on the ratio of block modulus over mortar modulus and on the ratio mortar 

to block thickness (Anna Brignola et al. 2008). In absence of experimental tests, range of values of elastic 

modulus are given by the Italian codes (Circ. espl. 02.02.2009) for existing masonry. The minimum elastic 

modulus is equal to 690 MPa for irregular stone masonry, whereas the maximum is 5600 MPa for solid brick 

and cement mortar. For historic buildings made of brick and lime mortar, a common average value provided 

by the codes is 1600 MPa. Maximum and minimum thickness of perpendicular masonry walls can be 1.0 and 

0.1 m, while a reference value of 0.20 m could be assumed for concrete. By varying the depth of the 

perpendicular walls, it is possible to assess that the range of values of stiffness is between 2E8 N/m2 and 2E10 

N/m2 (Figure 16(a)). Naturally, for depth lower than 50 cm much higher stiffness value can be obtained, but 

those are not significant from an engineering point of view.  

In Figure 16(b) the stiffness of two steel tie-rods/m per each perpendicular wall is obtained for different 

parameters and tie-rod length. As maximum values of the order of 1E9 and 1E8 N/m2 are obtained for diameter 

of respectively 4 cm and 1 cm. These abaci can provide preliminary values for the stiffness of steel tie-rods to 

be used for historical constructions (De Falco et al. 2013, These values are then comparable to those calculated 

for masonry walls and can be taken into account for obtaining an oscillatory motion. Indeed, when the stiffness 

is different depending on the sign rotation (see section 5) a rebound effect can emerge and could cause 

overturning. If a masonry façade rocking against perpendicular walls is unstable under a given set of 

acceleration time-histories due to a rebound effect, the panel can be restrained by steel tie-rods commonly used 
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in retrofitting techniques of historic structures. The benefit introduced by them can therefore be assessed with 

a rocking analysis. If the stiffness is the same order of magnitude in clockwise and counterclockwise rotations 

it generally implies oscillatory motion, without potentially risky rebound effect. 

7 Conclusions 

This paper deals with the dynamics of horizontally restrained blocks. For two type of restraints, one 

concentrated with variable position and another smeared as spring bed, the equations of motion were obtained. 

The check of stabilizing and destabilizing terms can provide a first information on the effectiveness of the 

strengthening system, defined by a stiffness value. Minimum stiffness values can be set before performing 

rocking analysis to get a safe response. The obtained expressions of minimum stiffness have been confirmed 

by full dynamic analyses. Moreover, it was shown that sometimes low stiffness values could cause block 

overturning, even though the free-standing block is stable under a given earthquake.  

When the same stiffness value is considered in clockwise and counterclockwise rotation, the rocking motion 

is oscillatory and tends to vanish for high stiffness values. It must be noticed that strengthening measures 

generally act only in one-sided motion for civil engineering applications. In this case, unstable effects due to 

the rebound effect can emerge when a finite value of stiffness is assumed for clockwise rotation and very low 

or null value is considered for counterclockwise rotation and vice-versa. In a non-linear range with different 

values of stiffness in clockwise and counterclockwise rotations, there exists a minimum stiffness value, under 

which the motion is oscillatory since the restraint does not influence enough the response. This minimum value 

depends on the considered seismic record. In case of very different values of stiffness in clockwise and 

counterclockwise rotations, overturning occurs due to the rebound effect without any failure correspondence 

with the stiffness value. It is then preferable to have similar stiffness in clockwise and counterclockwise 

rotations to achieve a reduction of amplitude ratio by increasing this stiffness and make the response safer.  
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