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Abstract

This paper discusses a mathematical model to determine an analytical form of the equa-

tions describing the relative motion of two spacecraft that, using a suitable continuous-

thrust propulsion system, track highly non-Keplerian orbits, whose orbital plane does

not contain the primary’s center-of-mass. The relative motion is described within a

rotating reference frame via modified equinoctial elements, thus eliminating the singu-

larities that arise when a set of classical orbital elements is used. In this sense, the paper

completes and extends the recent analysis of the relative motion of two spacecraft in

closed (either circular or elliptic) displaced orbits. When the eccentricity of the displaced

orbits are sufficiently small, the method is able to calculate the approximate bounds of

the two spacecraft relative distances using a semi-analytical approach and with a re-

duced computational effort. Some numerical simulation results provide an evidence of

the effectiveness of the proposed method.
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Nomenclature

a = semimajor axis of displaced orbit, [ au]

E = eccentric anomaly, [ rad]

e = eccentricity

f, g, h, k = modified equinoctial elements

H = orbital displacement, [ au]

i = inclination of displaced orbit, [ rad]

K = eccentric longitude, [ rad]

L = true longitude, [ rad]

l = mean longitude, [ rad]

M = mean anomaly, [ rad]

n = mean motion, [ rad/day]

O = Sun’s center-of-mass

o = focus of displaced orbit

p = semilatus rectum of displaced orbit, [ au]

r = spacecraft inertial position vector (with r � ‖r‖), [ au]

S = spacecraft center-of-mass

s = auxiliary variable, see Eq. (54)

t = time, [ days]
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T = reference frame

TEI = transformation matrix between TE and TI

TER = transformation matrix between TE and TR

T = transformation matrix between TED
and TEC

Tij = (i, j) entry of matrix T

x̂, ŷ, ẑ = unit vector of x, y and z-axis

ζ, η, κ, λ, σ, τ = auxiliary (constant) coefficients

ι, υ = auxiliary variables, see Eqs. (34)

μ� = Sun’s gravitational parameter, [ au3/day2]

ν = true anomaly, [ rad]

ρ = relative position vector, [ au]

ρx, ρy, ρz = components of relative position vector in the chief’s rotating frame, [ au]

Ω = right ascension of the ascending node of displaced orbit, [ rad]

ω = argument of periapsis of displaced orbit, [ rad]

Subscripts

C = chief

D = deputy

E = equinoctial

I = inertial

R = rotating

Superscripts


 = extreme value

∧ = unit vector
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1 Introduction

A growing interest towards highly non-Keplerian orbits, that is, closed orbits

whose shape is considerably affected by the propulsive acceleration of the pri-

mary propulsion system, has arisen in recent years due to their peculiarities

in astronomical observations both in a heliocentric and in a planetocentric

mission scenario [1]. In this context, displaced orbits, that is, orbits whose or-

bital plane does not contain the primary’s center-of-mass, have been proposed

in mission applications that involve monitoring either solar plasma storms [2]

or planetary polar regions [3]. In particular, the use of displaced orbits has

been analyzed as a feasible option for the deflection of potentially dangerous

asteroids by means of the gravity tractor concept [4,5]. The basic idea is that

a spacecraft with a non-negligible mass is maintained at a prescribed distance

from the asteroid by a continuous thrust propulsion system using a suitable

control law [6], in order to change the heliocentric orbital parameters of the

asteroid by exploiting the gravitational coupling. Another interesting mission

scenario involving displaced orbits is offered by a novel concept for an Earth-

Mars interplanetary communications relay [7] in support of a future manned

mission toward Mars. In that case, a spacecraft that covers a displaced or-

bit with respect to the ecliptic plane, could be used for communicating with

Earth when Mars is occulted by the Sun. A similar idea could, in principle, be

used to build a support network for communication purposes in a hypothet-

ical manned mission toward one of the near-Earth asteroids whose orbit lies

approximately on the ecliptic plane [8].
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Those mission scenarios require a continuous propulsive acceleration to main-

tain a desired orbit’s displacement for a time-span on the order of some ter-

restrial years. With the development of advanced propulsion systems, such as

photonic solar sails [9,10] or the more recent electric solar wind sails [11,12],

the planning of displaced orbits can be considered a feasible option during the

preliminary analysis of a scientific space mission. However, the small thrust ca-

pabilities of these propulsion systems, combined with the medium-high values

of propulsive acceleration required to maintain those displaced orbits, implies

the need of using payloads with a modest mass only. A possible solution to

this problem consists in distributing the payload among multiple spacecraft

operating in a formation flight. The formation flight concept can also be used

to create a large virtual sensor, capable of providing a resolution enhance-

ment for the purpose of multi-aspect observations. A suitable analysis of the

spacecraft formation flying dynamics and the study of the relative motion of

two (or more) spacecraft that nominally track displaced orbits of given char-

acteristics represents an important and challenging problem. In this context,

the knowledge of the bounds (i.e., the maximum and minimum values) of the

relative motion is of great importance, since the upper bounds are essential

for communication purposes, while the lower bounds are crucial for collision

avoidance.

Previous work on this subject has been devoted to investigate the relative mo-

tion of solar sails around displaced orbits [13,14], under the assumption that

the chief spacecraft covers a circular reference orbit, while the deputy adjusts

its thrust angle so as to follow a trajectory of given characteristics. However,

the necessary active control strategy requires a full relative state measure-

ment, which unavoidably complicates the control system design, especially for
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solar sails with a large and complex (gossamer) structure. A substantial sim-

plification is to assume a passive control, i.e. a control system that exploits

the natural tendency of a solar sail, of suitable shape, to maintain its attitude

with respect to a classical orbital reference frame. In this case the problem of

relative motion between two spacecraft that cover circular displaced orbits has

been firstly analyzed in Ref. [15] using a purely geometrical approach. It has

been found that the relative motion evolves on its invariant manifold, which

can be parameterized by means of a set of new displaced orbital elements that

closely resemble the classical orbital elements. Recently, the study has been

extended to include the case of elliptic displaced orbits [16], where, under

the assumption of a small orbital eccentricity, semi-analytical approximations

have been found for calculating the extreme distances of two spacecraft as a

function of the shape and orientation of the two displaced orbits involved in

the problem.

Similar to what happens with the classic orbital elements, the displaced ele-

ments introduced in Refs. [15,16] to describe the displaced orbits show inherent

singularities, since the right ascension of the ascending node (or the argu-

ment of perigee) becomes undefined as the orbital inclination (or the orbital

eccentricity) tends to zero. Such a problem calls for a regularization proce-

dure and, in this context, many different choices are available to solve the

problem [17], including the Kustaanheimo-Stiefel (KS) elements, quaternion

elements, canonical elements, and Euler parameters [18]. Among them, an in-

teresting (and widely adopted) option is provided by the modified equinoctial

elements [19,20] which, due to their clear physical interpretation, are com-

monly used to eliminate the singularities and to derive the planetary equa-

tions for arbitrarily high-order gravitational harmonics. This is exactly the
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choice adopted in this work to describe the motion of two spacecraft along

highly non-Keplerian (displaced) orbits and to circumvent the singularities of

the model discussed in Refs. [15,16]. Accordingly, this paper provides a com-

prehensive analysis of closed-form solutions and distance bounds of relative

motion between two displaced orbits via modified equinoctial elements, thus

unifying the recently developed formalisms, wherein the relative motion in

circular case [15] and elliptic case [16] have been studied separately.

The relative motion is formulated in a suitable rotating reference frame that

tracks the flight of one of the two spacecraft. In this framework, an analytical

(exact) expression of the relative distance is obtained, in terms of modified

equinoctial elements, using a sequence of coordinate transformations and a

geometrical approach. Paralleling the procedure introduced in Refs. [15,16],

this paper show that, using a suitable reference frame and a clever choice of

angular coordinates, the approximate extreme values of the relative distances

in the radial, along-track and cross-track directions can be analytically cal-

culated as a function of the modified equinoctial elements. In the latter case,

however, the semi-analytical approach requires the evaluation of the roots of

some algebraic equations that, in general, need a set of guess values. Neverthe-

less, the use of standard root finding methods allows the numerical procedure

to be quick and efficient compared to a classical numerical integration of the

equations of motion.

Even though the methodology illustrated in this paper follows the approach

discussed in Refs. [15,16], it is worth noting that the use of nonsingular pa-

rameters requires a significant change of the mathematical model as well as

a complexity increase, especially for what concerns the approximate algebraic

relations that allows the extreme values of the relative distance to be found.
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Accordingly, the main contribution of this paper is in the generalization of

the mathematical procedure that avoids any failure even when the previous

models were defective. The usefulness of the model discussed in this paper is

emphasized by means of suitable mission scenarios involving orbits that would

be difficult to analyze with the previous discussed models [15,16].

2 Problem Formulation

Consider a spacecraft that tracks a (closed) displaced orbit around the Sun ,

with a given eccentricity e < 1 and a given semimajor axis a or, equivalently,

a given semilatus rectum p, see Fig. 1. The figure also shows an International

Celestial Reference Frame J2000.0 (ICRF/J2000.0) TI (O; x̂I , ŷI , ẑI) and a

rotating reference frame TR (S; x̂R, ŷR, ẑR). In particular, the origin O of TI is

at the Sun’s center-of-mass, the unit vector x̂I is directed from O to the vernal

equinox, and ẑI points to the celestial north pole. The frame TR is centered

at the spacecraft center-of-mass S, which belongs to a plane P placed at a

distance H from the Sun’s center-of-mass O, the unit vector x̂R is in the

radially outward direction from the focus of the displaced orbit o to S, ẑR is

normal to the plane P and is positive in the direction of the spacecraft angular

velocity vector. Note that the plane P and the focus o are both assumed to

be fixed in time.

In previous studies [15,16], the spacecraft position has been expressed by

means of a set of displaced orbital elements {a, e, i, Ω, ω, ν, H}, where the

true anomaly ν is measured anticlockwise from the line connecting the orbital

focus o with the pericenter of the displaced orbit, the inclination i is the angle

between the direction of ẑI and the O-o line, the argument of periapsis ω is
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defined as the angle between the line of nodes (i.e., the intersection of P with

the plane E containing the orbital focus o and parallel to the ecliptic plane)

and the direction of the periapsis, and the right ascension of the ascending

node Ω is the angle measured from the direction of x̂I to the line of nodes.

As is well known, the angle Ω is undefined when the inclination i becomes

zero, whereas ω is indeterminate when the eccentricity e is zero. This intrin-

sic limitation of the (classical) orbital elements-based approach, restricts the

applicability of the mathematical model discussed in Ref. [16]. In particular,

the singularity of Ω prevents the application of the semi-analytical model pro-

posed in Ref. [16] when the spacecraft has to maintain a constant displacement

above (or below) the ecliptic plane. This is an important case, as is represen-

tative of a mission scenario in which the spacecraft tracks a celestial body

whose orbit is close to the ecliptic plane as happens, for example, for some

near-Earth objects [21,22] or the Earth itself. According to Refs. [19,20], these

singularities can be eliminated by introducing the set of modified equinoctial

elements {p, f, g, h, k, L} defined as

p = a
(
1− e2

)
(1)

f = e cos (Ω + ω) (2)

g = e sin (Ω + ω) (3)

h = cosΩ tan(i/2) (4)

k = sinΩ tan(i/2) (5)

L = Ω+ ω + ν (6)

and using [23] an equinoctial reference frame TE (S; x̂E, ŷE, ẑE), whose axes
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are obtained by performing a negative rotation of the rotating frame TR, about

zR-axis, of an angle equal to the true longitude L, see Fig. 1. Let r be the

absolute spacecraft position vector, i.e., the vector from the Sun’s center-of-

mass O to the spacecraft’s center-of-mass S. Its components in the rotating

frame TR can be written as a function of the true longitude L as

[r]TR =

[
p

1 + f cosL+ g sinL
, 0, H

]T

(7)

whereas the components of r in the equinoctial frame TE are [23]

[r]TE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p

1− f 2 − g2

[(
1− g2

1 +
√
1− f 2 − g2

)
cosK +

f g

1 +
√
1− f 2 − g2

sinK − f

]

p

1− f 2 − g2

[(
1− f 2

1 +
√
1− f 2 − g2

)
sinK +

f g

1 +
√
1− f 2 − g2

cosK − g

]

H

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

where K is the so called eccentric longitude [23], defined as

K � Ω + ω + E (9)

while E is the eccentric anomaly of the displaced (closed) orbit. Note that

the eccentric longitude K can be used in place of the true longitude L by

exploiting the equations

cosL =
1

1− f cosK − g sinK

[(
1− g2

1 +
√
1− f 2 − g2

)
cosK +

f g

1 +
√
1− f 2 − g2

sinK − f

]

(10)

sinL =
1

1− f cosK − g sinK

[(
1− f 2

1 +
√
1− f 2 − g2

)
sinK +

f g

1 +
√
1− f 2 − g2

cosK − g

]

(11)

Consider now the general case of two spacecraft tracking different closed dis-
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placed orbits around the primary body (the Sun, for instance). The first space-

craft is referred to as the chief (subscript C), the other as the deputy (subscript

D), see Fig. 2 . Bearing in mind Eq. (7), the components of the relative position

vector

ρ � rD − rC (12)

in the chief’s rotating reference frame TRC
can be calculated once the compo-

nents of vector rD are known in TRC
. To this end, extending the procedure

described in Ref. [16], three concatenated coordinate transformations are per-

formed, viz. TED
→ TI → TEC

→ TRC
.

Let TEI be the transformation matrix from frame TR to frame TI , which can

be written as a function of {h, k} as [23]

TEI (h, k) =
1

1 + h2 + k2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + h2 − k2 2h k 2 k

2h k 1− h2 + k2 −2h

−2 k 2h 1− h2 − k2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

and TER is the transformation matrix from frame TE to frame TR

TER (L) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosL sinL 0

− sinL cosL 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

Accordingly, the relative position vector ρ in the chief’s rotating reference

frame TRC
is

[ρ]TRC
= TER(LC)T

T

EI (hC , kC) TEI (hD, kD) [rD]TED
− [rC ]TRC

(15)
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where [rD]TED
is a function of the set {pD, fD, gD, HD, LD} via Eqs. (8), (10)

and (11), whereas [rC ]TRC
is a function of the set {pC , fC , gC , HC , LC} via

Eq. (7). For brevity, the eccentric longitude KD is now used in place of the

true longitude LD for the deputy, and the following shorthand notation is

introduced

T � T
T

EI (hC , kC) TEI (hD, kD) (16)

where T represents the transformation matrix (with generic entry Tij) from

frame TED
to frame TEC

.

Substituting Eqs. (7), (10) and (13)-(14) into Eq. (15), after some algebraic

manipulations the three components ρx, ρy and ρz of vector ρ are expressed

in the chief’s rotating reference frame as

ρx = λ1 cosLC cosKD + λ2 sinLC cosKD + λ3 cosLC sinKD + λ4 sinLC sinKD

+ λ5 cosLC + λ6 sinLC − pC
1 + fC cosLC + gC sinLC

(17)

ρy = λ2 cosLC cosKD − λ1 sinLC cosKD + λ4 cosLC sinKD − λ3 sinLC sinKD

+ λ6 cosLC − λ5 sinLC (18)

ρz = λ7 cosKD + λ8 sinKD + λ9 (19)

where the coefficients λ1, λ2, . . . , λ9 depend on the modified orbital elements
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that define the shape and orientations of the two displaced orbits, viz.

λ1 �
pD

1− f 2
D − g2D

⎡
⎣
⎛
⎝1− g2D

1 +
√
1− f 2

D − g2D

⎞
⎠ T11 +

fD gD

1 +
√
1− f 2

D − g2D
T12

⎤
⎦

(20)

λ2 �
pD

1− f 2
D − g2D

⎡
⎣
⎛
⎝1− g2D

1 +
√
1− f 2

D − g2D

⎞
⎠ T21 +

fD gD

1 +
√
1− f 2

D − g2D
T22

⎤
⎦

(21)

λ3 �
pD

1− f 2
D − g2D

⎡
⎣
⎛
⎝1− f 2

D

1 +
√
1− f 2

D − g2D

⎞
⎠ T12 +

fD gD

1 +
√
1− f 2

D − g2D
T11

⎤
⎦

(22)

λ4 �
pD

1− f 2
D − g2D

⎡
⎣
⎛
⎝1− f 2

D

1 +
√
1− f 2

D − g2D

⎞
⎠ T22 +

fD gD

1 +
√
1− f 2

D − g2D
T21

⎤
⎦

(23)

λ5 � HD T13 −
pD (T11 fD + T12 gD)

1− f 2
D − g2D

(24)

λ6 � HD T23 −
pD (T21 fD + T22 gD)

1− f 2
D − g2D

(25)

λ7 �
pD

1− f 2
D − g2D

⎡
⎣
⎛
⎝1− g2D

1 +
√
1− f 2

D − g2D

⎞
⎠ T31 +

fD gD

1 +
√
1− f 2

D − g2D
T32

⎤
⎦

(26)

λ8 �
pD

1− f 2
D − g2D

⎡
⎣
⎛
⎝1− f 2

D

1 +
√
1− f 2

D − g2D

⎞
⎠ T32 +

fD gD

1 +
√
1− f 2

D − g2D
T31

⎤
⎦

(27)

λ9 � HD T33 −HC − pD T32 gD
1− f 2

D − g2D
(28)

Equations (17)–(19) provide the general (closed form) solution to the relative
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motion between two spacecraft flying along two different displaced closed or-

bits in terms of modified equinoctial elements. Note that, unlike the displaced

orbit’s orbital elements discussed in Refs. [15,16], Eqs. (17)–(19) hold both in

the circular case and/or in the zero-inclination case. Moreover, Eqs. (17)–(19)

can also be conveniently used to analyze the relative motion of a spacecraft

with respect to a celestial body (the latter can be either a planet or an as-

teroid). In fact, assuming that the celestial body plays the role of the chief

body within the mathematical model, its motion turns out to be Keplerian by

simply enforcing the condition HC = 0 in Eq. (28). In that particular case,

the deputy spacecraft tracks a displaced orbit as long as HD �= 0.

3 Bounds of Relative Motion

The analysis of relative motion through a geometrical approach provides an

useful analytical tool for evaluating the bounds of relative distances, that is,

the extreme values of each component ρx, ρy and ρz of the relative position

vector. These extreme values can be calculated by investigating two qualita-

tively different cases, depending on whether the relative motion of the two

spacecraft are periodic or quasi-periodic [16]. In particular, the periodic case

happens when the ratio of the mean motions of the two spacecraft (nC for

the chief and nD for the deputy) is a rational number. On the other hand,

in the quasi-periodic case, the ratio nC/nD is an irrational number. In both

cases, the relative motion evolves on its invariant manifold described by the

angular coordinates (LC , KD). The parametric equations of the three compo-

nents, ρx, ρy and ρz, in terms of equinoctial elements, also serve as the basis

for calculating the extreme values of the relative distances for both cases, as
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is illustrated in the following sections. The following results can be thought of

as an extension and a completion of the results discussed in Ref. [16], where

the classical orbital parameters have been used.

3.1 Quasi-periodic motion

As far as the quasi-periodic case is concerned, i.e. when the ratio nC/nD is an

irrational number, the relative motion evolving on the invariant manifold is

open, though it takes place within a well-defined region characterized by an

upper and a lower bound (recall that the two displaced orbits are closed by

assumption). Such a relative motion has an ergodic feature related to its topol-

ogy, meaning that each orbit winds endlessly, but never intersects itself. The

trajectory in this case is termed dense, because each orbit evolves arbitrarily

close to (rather than passing through) each point on its invariant manifold.

When the extreme values of the relative distances are sought, the time cannot

be chosen as the independent variable, since the relative motion approaches

its bounds as the time tends to infinity. For this reason, the angular variables

LC and KD in Eqs. (17)–(19) are treated as independent of each other when

differentiating the relative distances with respect to them. Therefore, according

to the procedure described in Refs. [15,16], the following necessary conditions

should be met to find the extreme values along each coordinate axis:

∂ρi
∂LC

= 0 and
∂ρi
∂KD

= 0 with i = {x, y, z} (29)

The critical values of the chief’s true longitude and deputy’s eccentric longitude

that solve Eq. (29) are denoted as LC = L�
C and KD = K�

D, respectively,

whereas the corresponding extreme values of the relative distances can be
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found from Eqs. (17)–(19).

Regarding the radial distance bounds given by the extreme values of ρx, see

Eq. (17), the necessary conditions are

∂ρx
∂LC

= 0 and
∂ρx
∂KD

= 0 (30)

In this case, a closed-form solution to L�
C cannot be recovered. However, as-

suming that fC � 1 and gC � 1, that is, assuming that the eccentricity eC of

the chief’s displaced orbit is sufficiently small, the last term in Eq. (17) can be

approximated by a first order truncation of the Taylor series expansion, viz.

pC
1 + fC cosLC + gC sinLC

	 pC (1− fC cosLC − gC sinLC) (31)

Based on the preliminary simulation analyses of Ref. [16], the previous approx-

imation provides sufficiently accurate results as long as eC < 0.1. Substituting

Eq. (31) into Eq. (17) and enforcing the conditions of Eqs. (30), after some

algebraic manipulations the result is

− λ1 sinLC cosKD + λ2 cosLC cosKD − λ3 sinLC sinKD

+ λ4 cosLC sinKD − (λ5 + pC fC) sinLC + (λ6 + pC gC) cosLC = 0 (32)

λ4 sinLC cosKD + λ3 cosLC cosKD − λ2 sinLC sinKD − λ1 cosLC sinKD = 0

(33)

Using the substitution

ι � tan
LC

2
and υ � tan

KD

2
(34)

Eqs. (32)-(33) can be transformed into a set of two algebraic equations, with
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ι and υ being the new variables, viz.

(λ2 − λ6) ι
2 υ2 + 2 (λ1 − λ5 − pC fC) ι υ

2 − 2λ4 ι
2 υ − (λ2 + λ6) ι

2 − (λ2 − λ6) υ
2

− 4λ3 ι υ − 2 (λ1 + λ5 + pC fC) ι+ 2λ4 υ + (λ2 + λ6) = 0 (35)

− λ3 ι
2 υ2 + 2λ4 ι υ

2 − 2λ1 ι
2 υ + λ3 ι

2 + λ3 υ
2 + 4λ2 ι υ − 2λ4 ι+ 2λ1 υ − λ3 = 0

(36)

The latter can be numerically solved as a function of ι and υ, and the critical

values L�
C and K�

D are eventually obtained from Eq. (34).

Note, however, that the mapping {LC , KD} 
→ {ι, υ} is not continuous at

points LC = k π and/or KD = k π (where k ∈ N), because ι → ±∞ as

LC → k π and υ → ±∞ as KD → k π. Therefore, it is necessary to further

check whether cosLC = ±1 and/or cosKD = ±1 correspond to extreme values

of ρx by substituting them into Eq. (17).

Consider now the along-track distance bounds. Bearing in mind Eq. (18), the

necessary conditions to be met are

λ2 sinLC cosKD + λ1 cosLC cosKD + λ4 sinLC sinKD + λ3 cosLC sinKD

+ λ6 sinLC + λ5 cosLC = 0 (37)

− λ3 sinLC cosKD + λ4 cosLC cosKD + λ1 sinLC sinKD − λ2 cosLC sinKD = 0

(38)
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Using again the substitution (34), Eqs. (37) and (38) become

(λ1 − λ5) ι
2 υ2 + 2 (λ6 − λ2) ι υ

2 − 2λ3 ι
2 υ − (λ1 + λ5) ι

2 − (λ1 − λ5) υ
2 + 4λ4 ι υ

+ 2 (λ2 + λ6) ι+ 2λ3 υ + (λ1 + λ5) = 0 (39)

λ4 ι
2 υ2 + 2λ3 ι υ

2 + 2λ2 ι
2 υ − λ4 ι

2 − λ4 υ
2 + 4λ1 ι υ − 2λ3 ι− 2λ2 υ + λ4 = 0

(40)

Likewise, the same approach used for calculating the radial distance bounds

must be adopted to check whether ι → ±∞ and/or υ → ±∞ actually corre-

spond to the extreme values enforcing cosLC = ±1 and/or cosKD = ±1 into

Eq. (18).

Finally, the extreme values of cross-track motion can be found by substituting

Eq. (29) into Eq. (19), thus obtaining

−λ7 sinKD + λ8 cosKD = 0 (41)

In this case, the critical values of the deputy’s eccentric longitude correspond-

ing to the cross-track bounds can be written in an explicit form as

K�
D =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
(k + 1/2) π if λ7 = 0

k π + arctan (λ8/λ7) if λ7 �= 0

(42)

where k ∈ N. The extreme values of the cross-track relative trajectory are

eventually obtained by substituting Eq. (42) into Eq. (19).

3.2 Periodic Motion

In this case, the period of the relative motion corresponds to the least common

multiple of the two orbital periods. In most cases, this time-interval turns out
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to be unacceptably long, with the exception of the 1:1 condition (i.e. the

case in which nC = nD = n) that will now be investigated. Recalling from

Eqs. (17)–(19) that the relative distances are time-implicit, it is useful to

relate the true longitude and the eccentric longitude with the time to obtain

a time-explicit solution. To this end, according to Battin [23], first introduce

the mean longitude

l � Ω + ω +M (43)

where M is the mean anomaly. Since l̇ = Ṁ = n, the mean longitude can be

written as

l = l0 + n (t− t0) (44)

where l0 is the mean longitude at the initial (reference) time t0.

Bearing in mind Eqs. (6), (9) and (43)-(44), it is now sufficient to perform

nonlinear mappings LC 
→ t and KD 
→ t using Fourier series expansions and

to retain only the first terms [23]

cosL 	 −f + cos (l0 + n t) +
√
f 2 + g2 cos (l0 +M0 + 2n t) (45)

sinL 	 −g + sin (l0 + n t) +
√
f 2 + g2 sin (l0 +M0 + 2n t) (46)

cosK 	 −f

2
+ cos (l0 + n t) +

√
f 2 + g2

2
cos (l0 +M0 + 2n t) (47)

sinK 	 −g

2
+ sin (l0 + n t) +

√
f 2 + g2

2
sin (l0 +M0 + 2n t) (48)

Substituting Eqs. (45)–(48) into Eqs. (17)–(19), after some algebraic manip-

ulations the approximate form of the relative distances can be written, as a
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function of time, as

ρx ≈ σ0 + σ1 cos(n t) + σ2 sin(n t) + σ3 cos(2n t) + σ4 sin(2n t) + σ5 cos(3n t)

+ σ6 sin(3n t) (49)

ρy ≈ τ0 + τ1 cos(n t) + τ2 sin(n t) + τ3 cos(2n t) + τ4 sin(2n t) + τ5 cos(3n t)

+ τ6 sin(3n t) (50)

ρz ≈ ξ0 + ξ1 cos(n t) + ξ2 sin(n t) + ξ3 cos(2n t) + ξ4 sin(2n t) (51)

where the relevant coefficients are given in the Appendix. Equations (49)–(51)

provide a first-order approximate closed-form solution that is meaningful for

describing the relative motion of two spacecraft tracking two different displaced

orbits and, therefore, can be used to look for the extreme values of the relative

distances by enforcing the necessary condition

∂ρi
∂t

= 0 with i = {x, y, z} (52)

As far as the radial distance bounds are concerned, the necessary condition

of Eq. (52) can be transformed from a trigonometric form into a parametric

algebraic form by replacing s with t as

ζ6 s
6 + ζ5 s

5 + ζ4 s
4 + ζ3 s

3 + ζ2 s
2 + ζ1 s+ ζ0 = 0 (53)

where

s � tan
n t

2
(54)
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and ζ0, ζ1, . . . , ζ6 are constant coefficients, given by

ζ0 = −σ2 + 2 σ4 − 3 σ6 (55)

ζ1 = 2 σ1 + 8 σ3 + 18 σ5 (56)

ζ2 = −σ2 − 10 σ4 + 45 σ6 (57)

ζ3 = 4 σ1 − 60 σ5 (58)

ζ4 = σ2 − 10 σ4 − 45 σ6 (59)

ζ5 = 2 σ1 − 8 σ3 + 18 σ5 (60)

ζ6 = σ2 + 2 σ4 + 3 σ6 (61)

where σ0, σ1, . . . , σ6 are listed in the Appendix. Note that Eq. (53) is a

sixth order polynomial equation whose real roots can be easily found using

a numerical method. Accordingly, the critical times at which the radial mo-

tion reaches its boundaries are calculated from Eq. (54). Since the change of

variable in Eq. (54) can only be operated provided n t �= (2 k + 1) π (with

k ∈ N), it is necessary to substitute n t = (2 k + 1) π into Eq. (49) to further

check whether n t = (2 k + 1) π correspond to extreme values, that is, to check

whether Eq. (52) holds. A similar procedure should also be performed for the

other two cases of along-track and cross track distance bounds to be discussed

now.

The necessary condition for calculating the distance bounds of the along-track

motion provides the following sixth order polynomial equation to be met

η6 s
6 + η5 s

5 + η4 s
4 + η3 s

3 + η2 s
2 + η1 s+ η0 = 0 (62)
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where

η0 = −τ2 + 2 τ4 − 3 τ6 (63)

η1 = 2 τ1 + 8 τ3 + 18 τ5 (64)

η2 = −τ2 − 10 τ4 + 45 τ6 (65)

η3 = 4 τ1 − 60 τ5 (66)

η4 = τ2 − 10 τ4 − 45 τ6 (67)

η5 = 2 τ1 − 8 τ3 + 18 τ5 (68)

η6 = τ2 + 2 τ4 + 3 τ6 (69)

The expressions of τ0, τ1, . . . , τ6 are, again, given in the Appendix.

Finally, for the cross-track distance bounds, the necessary condition of Eq. (52)

with ρi = ρz becomes

κ4 s
4 + κ3 s

3 + κ2 s
2 + κ1 s+ κ0 = 0 (70)

where the constant coefficients κ0, κ1, . . . , κ4 are given by

κ0 = −ξ2 − 2 ξ4 (71)

κ1 = 2 ξ1 + 8 ξ3 (72)

κ2 = 12 ξ4 (73)

κ3 = 2 ξ1 − 8 ξ3 (74)

κ4 = ξ2 − 2 ξ4 (75)
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4 Numerical simulations

To verify the effectiveness of the mathematical model exploiting the equinoc-

tial parameters and the proposed methodology for determining the relative

distances bounds, two simulation examples are now illustrated, in which both

the periodic and quasi-periodic case are considered.

For convenience, introduce a distance unit DU � 1 au, and a time unit TU �√
(1 au)3/μ� 	 58.132 days (1 terrestrial year is 2πTU), where μ� is the

Sun’s gravitational parameter. Assume that the chief is the Earth and the

deputy is a spacecraft tracking a circular displaced orbit whose orbital plane

is parallel to the (x̂I , ŷI) plane with a constant displacement HD = 0.02 au 	

3×106 km. Note that in this case (x̂RC
, ŷRC

) coincides with the ecliptic plane.

This scenario is consistent, for example with an advanced scientific mission

whose target is to achieve a broader observable region for the Earth’s north

pole [24]. The orbital radius of the deputy is set to be pD = 0.9998 au and

the initial true longitude of the deputy is assumed slightly different with that

of the chief as L0 = 100.0297. The equinoctial elements of the spacecraft and

the Earth, calculated at 1 January 2016 using the JPL Planetary and Lunar

Ephemerides DE406 model, are summarized in Tab. 1.

4.1 Quasi-periodic case

As far as the quasi-periodic case is concerned, the mean motion of the deputy

is assumed to be nD =
√
2nC . The extreme values of the generic component ρi

when the radial, along-track and cross-track motions arrive at their boundaries

are summarized in Tab. 2, as well as the critical values of the Earth’s true
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longitude and the deputy’s eccentric longitude. Due to the ergodicity of the

quasi-periodic relative motion, there exist multiple extreme values, but only

the maximum and the minimum values correspond to the real upper and lower

bounds. For the radial motion, it is found that ι� = −0.8127 and υ� = −0.8127

from Eqs. (35) and (36), whereas for the along-track motion, ι� = 0.4047 and

υ� = 2.3596 from Eqs. (39)-(40).

Figure 3 shows that the three-dimensional relative trajectory is open, but

bounded, since the relative motion is quasi-periodic. Fig. 4 shows the corre-

sponding values of the upper and lower bounds of the relative distances as

a function of time. Even though it seems that the relative motion arrives

at its boundaries at some times, however the actual critical times approach

infinity, and the extreme points shown in Fig. 4 are close to (but not coinci-

dent with) the boundaries. It has been pointed out in Ref. [25] that for the

quasi-periodic motion, each orbit comes arbitrarily close to any given point

on the invariant manifold. This does not imply that the relative orbit passes

through each point: it just comes arbitrarily close, since the relative motion

is ergodic. Therefore, only the critical values of chief’s true longitude L�
C and

the deputy’s eccentric longitude K�
D are shown in Fig. 4. Clearly, the extreme

values (dashed lines) calculated using the semi-analytical model successfully

predict the actual relative distances bounds.

Note that the distance ρz of the deputy from the ecliptic plane is nearly co-

incident with the displacement HD, which coincides with the distance of the

deputy’s orbital plane from the Sun’s barycenter O. In fact, the oscillations

in the function ρz = ρz(t) are due to the fact that the orbital elements of the

Earth’s orbit in Tab. 1 correspond to a ICRF/J2000.0 reference frame and,

for this reason, the ecliptic plane is not exactly coincident with plane (x̂I , ŷI),
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whereas, by construction (recall that iD = 0), the deputy’s orbital plane is

parallel to plane (x̂I , ŷI).

4.2 1:1 periodic case

In this case we concentrate on the 1:1 periodic relative motion, that is, a

situation in which the chief (the Earth) and the deputy (the spacecraft) have

the same orbital period (nD = nC). Using the equinoctial elements given in

Tab. 1, it is possible to calculate the critical times when the relative motion

arrives at its boundaries and the corresponding extreme values. The results

are summarized in Tab. 3.

Figure 5 shows the extreme values (dashed lines) of relative distances (along

a time span of 1 year) calculated via the first-order approximate solution

(circles), whereas the exact solution (solid lines) is also reported for compar-

ative purposes. The three dimensional periodic relative motion is illustrated

in Fig. 6, where the approximate solution is in excellent agreement with the

exact one, thus confirming the usefulness of the proposed method.

Figure 6 shows that the relative trajectory of the deputy allows it to perma-

nently stay above the ecliptic plane and, as such, to be able to observe the

Earth region around the geographical north pole. In case the mission requires

also an observation of the region around the south pole, the deputy’s displaced

orbit should have an orbital inclination iD different from zero. For example,

assuming iD ∈ [2, 12] deg, the corresponding relative trajectories are summa-

rized in Fig. 7. It can be concluded that, when the inclination is sufficiently

different from zero, the deputy is actually able to reach, within one orbit rev-
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olution, regions placed both above and below the ecliptic plane. The extreme

(maximum and minimum) values of the spacecraft-ecliptic distance ρz dur-

ing the motion are reported in Fig. 8 as a function of iD. The figure shows

a substantially linear variation of ρz extremals with the orbital inclination of

the deputy. This is due to the near circularity of Earth’s orbit and to the (as-

sumed) circularity of deputy’s orbit. Note that, when iD = 0, the maximum

and minimum distances of the spacecraft from the ecliptic plane are about

coincident with the orbital displacement HD = 0.02 au, see Tab. 1.

The possibility of varying ρz during the motion (when iD �= 0) allows also

the deputy to reach different values of elevation angle θ with respect to the

ecliptic plane. In this context θ is the angle between the direction of the relative

position vector ρ and the plane (x̂RC
, ŷRC

), viz.

tan θ =
ρz√

ρ2x + ρ2y
(76)

As is shown in the figure, an elevation angle in the range θ ∈ [−28, 34] deg

(which allows the two Earth’s poles to be observed even in the more un-

favourable position of the Earth’s rotational axis) is obtained with an inclina-

tion angle iD = 5deg. Note that the relative motion gradually becomes twisted

as iD increases. However, since only a small orbital eccentricity assumption is

required to obtain an approximate analytical solution, the accuracy remains

acceptable as it is independent on the other (displaced) orbital elements.

5 Conclusions

The relative motion between two spacecraft tracking heliocentric displaced or-

bits has been described by means of a set of modified equinoctial elements,
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thus providing a parametric representation of the relative distances in the ra-

dial, along-track and cross-track directions. The modified equinoctial elements

have a geometrical interpretation and serve as a powerful tool for modeling

the relative motion between two displaced orbits. At the same time they are

useful for removing the singularities in the definition of the line-of-nodes and

the argument of perigee in some special cases in which the classic displaced

orbital elements fail.

Based on a closed-form solution, the extreme values of relative distance bounds

have been calculated analytically for both the quasi-periodic and the periodic

case. In particular, for the periodic case, a time-explicit approximate solution

has been used to calculate the extreme values of the relative distances.

Some illustrative examples have shown that the semi-analytical methodology

is capable of determining the relative distance bounds with little errors. On

the other hand, compared with the pure numerical technique, the approach

presented in this paper is more efficient in computation, since the lower and

upper bounds can be estimated directly with a given set of elements, without

the need of integrating the relative equations. A natural extension of this work

is to find a concise (approximate) form of the modulus of the relative distance

for spacecraft collision avoidance design.
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7 Appendix: Coefficients in Eqs. (49)–(51)

The relative distances given by Eqs. (49)–(51) depend on coefficients σ0, . . . , σ6,

τ0, . . . , τ6 and ξ0, . . . , ξ4, whose expressions are given below

σ0 = [(λ1 + λ4) cos (lC0 − lD0) + (λ2 − λ3) sin (lC0 − lD0)] /2− fC λ5 − gC λ6 − pC

(77)

σ1 = [λ5 + pC fC − λ1 fD/2− λ3 gD/2 + (λ1 + λ4)
√
f 2
D + g2D cos (lD0 +MD0) /4

+ (λ3 − λ2)
√
f 2
D + g2D sin (lD0 +MD0) /4] cos (lC0) + [λ6 + pC gC − λ2 fD/2

− λ4 gD/2 + (λ2 − λ3)
√
f 2
D + g2D cos (lD0 +MD0) /4

+ (λ1 + λ4)
√
f 2
D + g2D sin (lD0 +MD0) /4] sin (lC0)

+ [(λ1 + λ4)
√
f 2
C + g2C cos (lC0 +MC0) /2 + (λ2 − λ3)

√
f 2
C + g2C sin (lC0 +MC0) /2

− λ1 fC − λ2 gC ] cos (lD0) + [(λ3 − λ2)
√
f 2
C + g2C cos (lC0 +MC0) /2

+ (λ1 + λ4)
√
f 2
C + g2C sin (lC0 +MC0) /2− λ3 fC − λ4 gC ] sin (lD0) (78)

σ2 = [λ6 + pC gC − λ2 fD/2− λ4 gD/2− (λ1 + λ4)
√
f 2
D + g2D sin (lD0 +MD0) /4

+ (λ3 − λ2)
√
f 2
D + g2D cos (lD0 +MD0) /4] cos (lC0) + [−λ5 − pC fC + λ1 fD/2

+ λ3 gD/2− (λ2 − λ3)
√
f 2
D + g2D sin (lD0 +MD0) /4

+ (λ1 + λ4)
√
f 2
D + g2D cos (lD0 +MD0) /4] sin (lC0)

+ [(λ2 − λ3)
√
f 2
C + g2C cos (lC0 +MC0) /2− (λ1 + λ4)

√
f 2
C + g2C sin (lC0 +MC0) /2

− λ3 fC − λ4 gC ] cos (lD0) + [(λ1 + λ4)
√
f 2
C + g2C cos (lC0 +MC0) /2

+ (λ2 − λ3)
√
f 2
C + g2C sin (lC0 +MC0) /2 + λ1 fC + λ2 gC ] sin (lD0) (79)

σ3 = [(λ1 − λ4) cos (lC0 + lD0) + (λ2 + λ3) sin (lC0 + lD0)]/2

+ [(λ5 + pC fC) cos (lC0 +MC0) + (λ6 + pC gC) sin (lC0 +MC0)]
√
f 2
C + g2C

(80)
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σ4 = [(λ2 + λ3) cos (lC0 + lD0) + (λ4 − λ1) sin (lC0 + lD0)]/2

+ [(λ6 + pC gC) cos (lC0 +MC0)− (λ5 + pC fC) sin (lC0 +MC0)]
√
f 2
C + g2C

(81)

σ5 = [(λ1 − λ4) cos (lD0 +MD0) + (λ2 + λ3) sin (lD0 +MD0)]
√
f 2
D + g2D cos (lC0) /4

+ [(λ2 + λ3) cos (lD0 +MD0) + (λ4 − λ1) sin (lD0 +MD0)]
√
f 2
D + g2D sin (lC0) /4

+ [(λ1 − λ4) cos (lC0 +MC0) + (λ2 + λ3) sin (lC0 +MC0)]
√
f 2
C + g2C cos (lD0) /2

+ [(λ2 + λ3) cos (lC0 +MC0) + (λ4 − λ1) sin (lC0 +MC0)]
√
f 2
C + g2C sin (lD0) /2

(82)

σ6 = [(λ4 − λ1) sin (lD0 +MD0) + (λ2 + λ3) cos (lD0 +MD0)]
√
f 2
D + g2D cos (lC0) /4

+ [− (λ2 + λ3) sin (lD0 +MD0) + (λ4 − λ1) cos (lD0 +MD0)]
√
f 2
D + g2D sin (lC0) /4

+ [(λ4 − λ1) sin (lC0 +MC0) + (λ2 + λ3) cos (lC0 +MC0)]
√
f 2
C + g2C cos (lD0) /2

+ [− (λ2 + λ3) sin (lC0 +MC0) + (λ4 − λ1) cos (lC0 +MC0)]
√
f 2
C + g2C sin (lD0) /2

(83)

τ0 = [(λ2 − λ3) cos (lC0 − lD0)− (λ1 + λ4) sin (lC0 − lD0)] /2− fC λ6 + gC λ5

(84)

τ1 = [λ6 − λ2 fD/2− λ4 gD/2 + (λ2 − λ3)
√
f 2
D + g2D cos (lD0 +MD0) /4

+ (λ1 + λ4)
√
f 2
D + g2D sin (lD0 +MD0) /4] cos (lC0) + [−λ5 + λ1 fD/2

+ λ3 gD/2− (λ1 + λ4)
√
f 2
D + g2D cos (lD0 +MD0) /4

+ (λ2 − λ3)
√
f 2
D + g2D sin (lD0 +MD0) /4] sin (lC0)

+ [(λ2 − λ3)
√
f 2
C + g2C cos (lC0 +MC0) /2− (λ1 + λ4)

√
f 2
C + g2C sin (lC0 +MC0) /2

− λ2 fC + λ1 gC ] cos (lD0) + [(λ1 + λ4)
√
f 2
C + g2C cos (lC0 +MC0) /2

+ (λ2 − λ3)
√
f 2
C + g2C sin (lC0 +MC0) /2 + λ4 fC + λ3 gC ] sin (lD0) (85)
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τ2 = [−λ5 + λ1 fD/2 + λ3 gD/2 + (λ3 − λ2)
√
f 2
D + g2D sin (lD0 +MD0) /4

+ (λ1 + λ4)
√
f 2
D + g2D cos (lD0 +MD0) /4] cos (lC0) + [−λ6 + λ2 fD/2

+ λ4 gD/2 + (λ1 + λ4)
√
f 2
D + g2D sin (lD0 +MD0) /4

+ (λ2 − λ3)
√
f 2
D + g2D cos (lD0 +MD0) /4] sin (lC0)

+ [(λ3 − λ2) sin (lC0 +MC0)− (λ1 + λ4) cos (lC0 +MC0)]
√
f 2
C + g2C cos (lD0) /2

+ [− (λ1 + λ4) sin (lC0 +MC0) + (λ2 − λ3) cos (lC0 +MC0)]
√
f 2
C + g2C sin (lD0) /2

(86)

τ3 = [(λ4 − λ1) sin (lC0 + lD0) + (λ2 + λ3) cos (lC0 + lD0)]/2

− [λ6 sin (lC0 +MC0) + λ5 cos (lC0 +MC0)]
√
f 2
C + g2C (87)

τ4 = [− (λ2 + λ3) sin (lC0 + lD0) + (λ4 − λ1) cos (lC0 + lD0)]/2

− [λ6 sin (lC0 +MC0) + λ5 cos (lC0 +MC0)]
√
f 2
C + g2C (88)

τ5 = [(λ2 + λ3) cos (lD0 +MD0) + (λ4 − λ1) sin (lD0 +MD0)]
√
f 2
D + g2D cos (lC0) /4

+ [(λ4 − λ1) cos (lD0 +MD0)− (λ2 + λ3) sin (lD0 +MD0)]
√
f 2
D + g2D sin (lC0) /4

+ [(λ2 + λ3) cos (lC0 +MC0) + (λ4 − λ1) sin (lC0 +MC0)]
√
f 2
C + g2C cos (lD0) /2

+ [(λ4 − λ1) cos (lC0 +MC0)− (λ2 + λ3) sin (lC0 +MC0)]
√
f 2
C + g2C sin (lD0) /2

(89)

τ6 = [− (λ2 + λ3) sin (lD0 +MD0) + (λ4 − λ1) cos (lD0 +MD0)]
√
f 2
D + g2D cos (lC0) /4

+ [(λ1 − λ4) sin (lD0 +MD0)− (λ2 + λ3) cos (lD0 +MD0)]
√
f 2
D + g2D sin (lC0) /4

+ [− (λ2 + λ3) sin (lC0 +MC0) + (λ4 − λ1) cos (lC0 +MC0)]
√
f 2
C + g2C cos (lD0) /2

+ [(λ1 − λ4) sin (lC0 +MC0)− (λ2 + λ3) cos (lC0 +MC0)]
√
f 2
C + g2C sin (lD0) /2

(90)

31



ξ0 = λ9 − fD λ7/2− gD λ8/2 (91)

ξ1 = λ7 cos (lD0) + λ8 sin (lD0) (92)

ξ2 = λ8 cos (lD0)− λ7 sin (lD0) (93)

ξ3 = [λ7 cos (lD0 +MD0) + λ8 sin (lD0 +MD0)]
√
f 2
D + g2D/2 (94)

ξ4 = [λ8 cos (lD0 +MD0)− λ7 sin (lD0 +MD0)]
√
f 2
D + g2D/2 (95)
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Figure 7. Relative trajectory in 1:1 periodic case as a function of the deputy’s orbital
inclination: approximate (circles) vs. exact (solid line) solution.
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