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ABSTRACT 26	
  

 27	
  

Fusarenon-X (FX) is a type B trichothecene mycotoxin that is frequently observed along with 28	
  

deoxynivalenol (DON) and nivalenol (NIV) in agricultural commodities. This review aims to 29	
  

give an overview of the literature concerning the toxicology and toxicokinetics of FX. FX is 30	
  

primarily found in cereals grown in temperate regions, but it can also be found worldwide 31	
  

because of the global transport of products. The major toxicity of FX occurs through 32	
  

inhibition of protein synthesis, followed by the disruption of DNA synthesis. Moreover, FX 33	
  

has also been shown to induce apoptosis in in vitro and in vivo studies. The targets of FX are 34	
  

organs containing actively proliferating cells, such as the thymus, spleen, skin, small 35	
  

intestine, testes, and bone marrow. FX causes immunosuppression, intestinal malabsorption, 36	
  

developmental toxicity, and genotoxicity. In addition, sufficient evidence of carcinogenicity 37	
  

in experimental animals is currently lacking and the International Agency for Research on 38	
  

Cancer (IARC) classifies it as a group 3 carcinogen.  39	
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Mycotoxins are secondary metabolites produced by molds that exert adverse effects 51	
  

on human and animal health. Mycotoxin contamination can occur during various steps in 52	
  

food production, including pre-harvest, harvest, and storage. The Food and Agriculture 53	
  

Organization of the United Nations (FAO) estimated that approximately 25% of cereals 54	
  

produced worldwide are contaminated by mycotoxins [33]. The primary genera of fungi that 55	
  

produce mycotoxins are those of the Aspergillus, Penicillium, Alternaria, Fusarium, and 56	
  

Claviceps species. Low-level contamination by Fusarium toxins is very common and co-57	
  

contamination is frequently observed in animal feed [57]. The most relevant groups of 58	
  

mycotoxins that contaminate agricultural crops are aflatoxins, ochratoxins, trichothecenes, 59	
  

zearalenones, fumonisins, and ergot alkaloids. 60	
  

Trichothecenes are a group of sesquiterpenoid mycotoxins that are commonly 61	
  

produced by Fusarium fungi. More than 180 derivatives of trichothecenes have been 62	
  

identified and divided into four types—A, B, C, and D—depending on their functional 63	
  

groups. Type A is characterized by a functional group other than a ketone at the C-8 position, 64	
  

whereas trichothecenes that have a carbonyl function at this position are identified as type B. 65	
  

The third group, type C, is characterized by a second epoxide ring at C-7,8 or C-9,10, 66	
  

whereas type D contains a macrocyclic ring system between C-4 and C-15 with ester 67	
  

linkages. Among trichothecene mycotoxins, types A and B are frequently found as 68	
  

contaminants in food for human and animal consumption [67]. A variety of adverse effects of 69	
  

trichothecenes, including emesis, growth retardation, immunotoxicity, neuroendocrine 70	
  

changes, and interference with reproductive and growth hormone signaling, have been 71	
  

reported in experimental animals [48].  72	
  

 Fusarenon-X (FX) is a member of the 8-ketotrichothecenes, or type B trichothecenes, 73	
  

and is produced by several Fusarium species. FX has been frequently observed, along with 74	
  

deoxynivalenol (DON) and nivalenol (NIV) [13, 22], as a contaminant in agricultural 75	
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commodities. Compared with that of other type B mycotoxins, oral administration of FX 76	
  

provoked a more profound anorexia in mice. In contrast, feed refusal induced in mice after 77	
  

intraperitoneal (i.p.) administration of FX was not as significant as that induced by NIV [70]. 78	
  

This was consistent with the results in the mink model, where FX produced emetic responses 79	
  

similar to DON, but of stronger potency than other DON congeners, following oral (p.o.) 80	
  

administration [68]. These findings indicated that, of the type B trichothecenes, FX is 81	
  

potentially toxic in experimental animals and humans after ingestion. 82	
  

 83	
  

OCCURRENCE AND MODE OF ACTION 84	
  

 Chemical structure: The molecular structure of FX (3,7,15-trihydroxy-4-acetoxy-85	
  

12,13 epoxytrichothec-9-en-8-one) includes a tetracyclic 12,13-epoxy-trichothec-9-ene 86	
  

skeleton with an epoxide ring at C-12,13 and a double bond at C-9,10. Its chemical structure 87	
  

is characterized by a hydroxyl (OH) group at the C-3,7,15 position and an acetyloxy (-88	
  

OCOCH3) group at the C-4 position (Fig. 1) [22, 63].   89	
  

 Occurrence of FX: The production of trichothecene metabolites depends on many 90	
  

factors, including the substrate, temperature, and humidity [8, 13, 22, 26, 47, 63, 66, 72]. FX 91	
  

was first isolated from the Fusarium nivale strain, Fn-2B, which primarily produced FX at a 92	
  

temperature between 25°C and 27°C, but was also found to produce FX at 15°C [63]. The 93	
  

closely related species, F. culmorum and F. crookwellence, also generated FX in both cool 94	
  

and warm areas [22]. Moreover, F. sulphureum, F. sambucinum, and F. solani have been 95	
  

reported as capable of either producing or accumulating FX [32]. FX was found to be 96	
  

generated during an early stage of fungal growth, then deacetylated during further growth 97	
  

[63]. Furthermore, room temperature storage (20°C) was more likely to encourage 98	
  

accumulation of FX and other trichothecenes (T-2, diacetoxyscirpenol (DAS), 3-99	
  

acetyldeoxynivalenol (3-ADON)) than storage at cooler temperatures [32]. FX was found 100	
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together with other Fusarium toxins produced by the same fungal species in cereals, 101	
  

including wheat, barley, corn, rye, oats, maize, and multigrain. It was also observed in maize 102	
  

silage and extracted oil seed [8, 13, 26, 47, 66, 72]. FX has been found most commonly in the 103	
  

temperate regions of Europe and Asia (Table 1) because these regions provide conditions 104	
  

suitable for Fusarium growth and FX production. However, FX can be found in agricultural 105	
  

commodities worldwide due to global product transport. Regarding health concerns, the 106	
  

European commission (EC) has established maximum levels of Fusarium toxins allowed in 107	
  

cereals and cereal products for human and animal consumption [15, 16]. The maximum level 108	
  

of DON in cereals intended for direct human consumption is 750 µg/kg [16]. The European 109	
  

Food Safety Authority (EFSA) has set the tolerable daily intake (TDI) of NIV at 1.2 µg/kg 110	
  

body weight (BW) [17]. In 2010, the Food Safety Commission in Japan (FSCJ) set a TDI for 111	
  

DON and NIV of 1 and 0.4 µg/kg BW, respectively [18]. However, guidance limits and TDI 112	
  

recommendations are currently not available for FX [12, 15, 16].  113	
  

Mechanism of action: Several mechanisms of action have been reported for FX. 114	
  

Generally, FX is known to evoke a ribotoxic stress response, which inhibits protein and DNA 115	
  

synthesis in eukaryotic cells. In detail, it caused the disaggregation of eukaryotic 116	
  

polyribosomes in vitro at high concentrations [45, 65]. FX bound to ribosomes and inhibited 117	
  

the second peptide bond formation, but not the polypeptide chain initiation [10, 11, 41]. 118	
  

Furthermore, FX dose-dependently encouraged DNA strand breakage of both dividing and 119	
  

differentiated Caco-2 cells. This action was stronger than that produced by its metabolite, 120	
  

NIV [7]. These proposed mechanisms of action suggest that FX is genotoxic to intestinal 121	
  

cells, although, in a previous study, FX exhibited a weak clastogenic effect on Chinese 122	
  

hamster V79-E cells [62]. The mechanisms of action of FX are yet to be fully understood. To 123	
  

elucidate this issue, further studies are needed. 124	
  

 125	
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TOXICOKINETICS 126	
  

Absorption and distribution: FX is a highly lipid-soluble compound that is rapidly 127	
  

absorbed from the gastrointestinal tract of mice [50], broilers, ducks [52], and piglets [54]. 128	
  

The maximum plasma concentration of FX occurred after approximately 5 min in piglets 129	
  

[54], 12 min in ducks [52], and 30 min in mice [50]. Its oral bioavailability was higher in 130	
  

piglets (74%) [54], than in ducks (19.5%) and broilers (9.8%) [52]. Furthermore, the oral 131	
  

bioavailability of FX was reported to be higher than that of NIV in mice [9, 50].  132	
  

Metabolism: The maximum concentration of FX was detected in the liver, kidney, and 133	
  

spleen of piglets 3 hr after oral exposure [54]. Its metabolite, NIV, was found in plasma as 134	
  

soon as 10 min after p.o. administration of FX in broilers and ducks [52]. These results 135	
  

concur with an in vitro study of microsomal nonspecific carboxyesterase in rats and rabbits 136	
  

that demonstrated that the C-4 acetyl residues of FX were hydrolyzed by microsomal 137	
  

carboxyesterase to yield NIV [44]. Altogether, these findings suggested that FX was rapidly 138	
  

metabolized to NIV (Fig. 2) after being absorbed from the gastrointestinal tract. In addition, 139	
  

in vitro studies concerning FX metabolism indicated that FX to NIV conversion occurred in 140	
  

the liver and kidney [44, 50, 52, 54]. Indeed, in in vivo studies in mice, piglets, broilers, and 141	
  

ducks [50, 52, 54], the liver and kidney were observed to be the primary organs for FX to 142	
  

NIV conversion. The highest conversion percentage was observed in the liver rather than the 143	
  

kidney in mice (93.99% vs 27.91%). The conversion percentage was similar in the liver and 144	
  

kidney of ducks (98.95% vs 94.32%) and piglets (90.91% vs 89.72%), whereas the pattern 145	
  

was reversed in broilers (94.39% in the kidney vs 70.12% in the liver) [50, 52, 54]. It is 146	
  

noteworthy that NIV was found in fetal and suckling mice via the placenta and the mother’s 147	
  

milk, respectively, after being metabolized to NIV in the maternal body [51]. In addition, 148	
  

NIV was reported to be metabolized to a de-epoxidated form by microorganisms in the 149	
  

gastrointestinal tract [69]. The intestinal microflora is important for the biotransformation of 150	
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trichothecenes. The presence or absence of particular intestinal microflora species can 151	
  

influence the extent to which an animal is sensitive to NIV because the de-epoxidated 152	
  

products were shown to be less toxic than the parental molecules [28]. 153	
  

Elimination: After intravenous (i.v.) and p.o. administration of FX in piglets, both FX 154	
  

and NIV were observed in the urine and feces for up to 24 and 48 hr, respectively. Large 155	
  

amounts of NIV were detected in the urine after FX exposure [54]. FX and NIV were also 156	
  

detected in excreta of broilers and ducks after i.v. and p.o. administration of FX [52]. An 157	
  

early study [50] that administered 3H-FX to mice reported high and low radioactivity of NIV 158	
  

and FX in urine, respectively. Similarly, the feces of mice administered 3H-FX revealed a 159	
  

similar radioactivity pattern (high for NIV and low for FX). These findings suggested that FX 160	
  

was rapidly excreted (before 24 hr) or almost totally transformed into NIV [28, 69] and 161	
  

excreted in urine. FX tissue concentrations were found to be similar among the tissues tested 162	
  

in mice (heart, lung, liver, stomach, kidney, spleen, thymus, mesenteric lymph nodes, bone 163	
  

marrow, small and large intestine, cecum, muscle, brain, and skin) [50]. This led researchers 164	
  

to speculate that the toxicity of FX on thymus, spleen, bone marrow, and mesenteric lymph 165	
  

nodes was not strictly related to FX accumulation, but also to that of its metabolites.  166	
  

  167	
  

TOXICITY 168	
  

 Table 2 summarizes the 50% lethal doses of FX to animals. In mice, signs of acute 169	
  

toxicity were similar following administration of a single dose of FX via a variety of routes 170	
  

[63]. Oral exposure of FX exerted equipotent toxicity in newborn mice and rats [63]. FX 171	
  

primarily affected organs containing rapidly proliferating cells, including the thymus, spleen, 172	
  

small intestine, testes, skin, and hematopoietic tissues [22]. It led to a variety of adverse 173	
  

effects reported below.  174	
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 Cytotoxicity: FX alone showed greater toxicity than NIV and other type B 175	
  

trichothecenes in various cell lines, including U-937 macrophages [27], HL-60 cells [39], 176	
  

RAW 264.7 murine macrophages [43], 3T3 fibroblast cells [14], SF-9 insect cells [19], and 177	
  

Caco-2 cells [2, 7]. Binary combinations of DON-FX and NIV-FX administered at low 178	
  

concentrations exhibited synergistic toxicity on Caco-2 cells, but a tertiary combination 179	
  

(DON-NIV-FX) exhibited antagonistic effects [2]. 180	
  

 Immunotoxicity: FX is toxic to organs containing actively proliferating cells. 181	
  

Lymphocyte apoptosis was induced in lymphoid tissues, including Peyer's patches, thymus, 182	
  

and spleen, after 14 repeated ingestions of low doses of FX (0.1, 0.3, and 0.5 mg/kg BW) in 183	
  

mice [4]. Accordingly, after i.p. injection of FX (3 mg/kg BW), the thymus showed severe 184	
  

atrophy with loss of thymocytes and the thymic cortex [40]. Recently, Sutjarit and 185	
  

Poapolathep [59] demonstrated that orally administered FX (4 mg/kg BW) induced apoptosis 186	
  

in hematopoietic cells in the red pulp area of the spleen, hepatocytes around the central 187	
  

lobular zone of the liver, and proximal tubular cells of the kidney in mice. FX also caused 188	
  

apoptosis in Jurkat cell lines [49]. In human promyelocytic leukemia (HL60) cells, FX 189	
  

stimulated cytochrome c release, followed by activation of multiple caspases [39], which 190	
  

induced apoptosis. Significantly, FX evoked immunosuppressive effects similar to those of 191	
  

NIV, T-2 toxin, and 3-ADON in human peripheral blood mononuclear cells by depressing T 192	
  

or B lymphocyte activity in a dose-dependent manner [5]. FX exposure suppressed T-cell 193	
  

mitogen and macrophage responses in the spleens of mice [34, 35]. Forsell and Pestka [20] 194	
  

demonstrated that FX was more potent than other type B trichothecenes to human 195	
  

lymphocyte blastogenesis; this effect was associated with their C-4 substituent order (acetyl > 196	
  

hydroxyl > hydrogen). At a molecular level, FX increased the relative mRNA expression of 197	
  

tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-8 in clonal human macrophages 198	
  

[27]. Wu et al. [71] found that FX was a potent and persistent inducer of IL-1ß and TNF-α 199	
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mRNA expression in splenic mice. Furthermore, FX was found to be an effective inducer of 200	
  

cyclooxygenase (COX)-2 mRNA expression through a selective increase in transcription and 201	
  

stabilization of COX-2 genes in murine macrophages [43]. 202	
  

Gastrointestinal toxicity: The gastrointestinal tract is a common target for p.o. 203	
  

administration of FX. In mice, FX ingestion caused a remarkably persistent feed refusal to a 204	
  

greater extent than that caused by DON, NIV, 3-ADON, and 15-acetyldeoxynivalenol (15-205	
  

ADON) [70]. FX exerted an emetic potency greater than other tested mycotoxins (DON, 206	
  

NIV, 3-ADON, and 15-ADON) in mink [68]. FX (1.5 mg/kg BW) induced apoptosis in basal 207	
  

chief and parietal cells of rat gastric mucosa 1 hr after i.p. administration [31] and 1.5 hr after 208	
  

ingestion [30]. FX disrupted glycolysis and induced intestinal malabsorption by causing 209	
  

hypoglycemia and inhibiting mitosis of intestinal crypt cells [56]. Furthermore, FX damaged 210	
  

the active transport system of monosaccharides and impaired diffusional movements between 211	
  

the intestinal epithelial layer and mesenteric vein [29]. FX caused diarrhea by increasing the 212	
  

permeability of either blood vessel walls or intestinal epithelium [36] or by altering sugar 213	
  

translocation mechanisms [37], but did not modify the cyclic nucleotide system [38].   214	
  

 Genotoxicity: FX caused cell cycle delay, chromosomal aberrations, and sister 215	
  

chromatid exchanges in Chinese hamster V79-E cell lines through the inhibition of protein 216	
  

synthesis [62]. In addition, FX produced DNA strand breaks in dividing and differentiating 217	
  

human intestinal (Caco-2) cells in a dose-dependent manner [7]. 218	
  

Carcinogenicity: Many studies have evaluated the carcinogenicity of FX, as its 219	
  

carcinogenic properties have long been suspected. Among the tested toxins (aflatoxin B1 and 220	
  

G1, sterigmatocystin, and O-acetylsterigmatocystin), FX failed to induce mutagenesis by the 221	
  

Ames test assay [64]. In male Donryu rats, daily ingestion of FX (7 or 3.5 mg/kg FX in the 222	
  

diet) for 1 or 2 years showed slight incidences of tumorigenicity [55]. These facts might 223	
  

indicate that FX lacks mutagenic and tumorigenic abilities. Furthermore, treatment with FX 224	
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in medakas (Oryzias latipes) demonstrated no evidence of carcinogenetic effects, whereas 225	
  

other toxins (aflatoxin B1 and G1, sterigmatocystin, ortho-aminoazotoluene, 226	
  

methylazoxymethanol acetate, and N-nitrosodiethylamine) induced hepatic carcinomas [21]. 227	
  

Despite these findings, there is insufficient evidence to show that FX is carcinogenic in 228	
  

experimental animals. In addition, FX has been classified as a group 3 carcinogen by the 229	
  

International Agency for Research on Cancer (IARC), which indicates it is not carcinogenic 230	
  

to humans [22].     231	
  

Developmental toxicity: FX can transfer its toxicity to fetuses via the placenta after 232	
  

being metabolized to NIV in the maternal body [51]. A single subcutaneous injection of FX 233	
  

(0.63-2.6 mg/kg BW) caused abortion in pregnant mice in a dose dependence manner, 234	
  

whereas FX ingestion (5, 10, and 20 mg/kg BW) inhibited embryonic implantation during the 235	
  

early phase and throughout the pregnancy period [25]. Oral administration of FX (3.5 mg/kg 236	
  

BW) to pregnant mice induced apoptosis in fetal brains, especially in the telencephalon [58].  237	
  

Other toxicities: Other toxicities of FX have been also reported. Application of FX (5 238	
  

µg/site) alone on the shaved skin of guinea pigs induced erythema and hardening due to 239	
  

degenerating fibrocytes and infiltrating cells in the corium [6]. Furthermore, when mycotoxin 240	
  

mixtures were tested, a synergism appeared after DAS-FX treatment, whereas T-2 toxin-FX 241	
  

mixtures provoked an antagonistic effect [6].  242	
  

 The antiviral activity of FX was demonstrated against herpes simplex virus type 1 243	
  

(HSV-1) (50 ng/ml) and HSV type-2 (HSV-2) (26 ng/ml). This occurred at the viral 244	
  

replication stage after virus adsorption in the host cells [61]. 245	
  

 246	
  

CONCLUSION 247	
  

 FX is a type B trichothecene and is produced by several Fusarium species. This toxin 248	
  

is predominantly found in temperate regions, but is likely present worldwide because of the 249	
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global movement of products. FX is usually found as a co-contaminant with DON and NIV in 250	
  

agricultural commodities. Although FX is detected at low levels as a contaminant, its toxicity 251	
  

in experimental animals has been found to be stronger than that reported for other members 252	
  

of the same trichothecenes type B family. However, no regulations or guidelines currently 253	
  

exist for FX. This toxin primarily impacts organs containing actively dividing cells. Common 254	
  

adverse effects include immunosuppression and intestinal malabsorption. The major 255	
  

mechanism of action of FX is inhibition of protein synthesis, but FX can induce apoptosis 256	
  

and alter genetic material causing cell cycle delays, chromosomal aberrations, and sister 257	
  

chromatid exchanges. Moreover, FX exhibits a developmental toxicity by inducing abortion 258	
  

and inhibiting embryonic implantation. Carcinogenicity in experimental animals and humans 259	
  

is yet to be completely clarified. For this reason, additional research in this field is warranted.260	
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Fig. 1.  Chemical structure of FX 492	
  

 493	
  

   494	
  

  FX       NIV 495	
  

    496	
  

  NIV      De-epoxy-NIV 497	
  

 498	
  

Fig. 2.  Metabolic pathways of FX and NIV in animals [69] 499	
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Table 1. Natural occurrence of FX 500	
  

 501	
  

Country Sample Year Positive samples/ 
Total numbers 

Mean content 
(µg/kg) 

References 

Belgium Barley  2014 1/65 NQ [66] 
Belgium Wheat 2014 1/93 508 [66] 
Belgium Bread 2014 2/25 505 [66] 
Belgium Breakfast cereals 2014 3/20 796 [66] 
Czech&UK Extracted oil seed 2008-

2012 
 114 [72] 

Czech&UK Maize silage 2008-
2012 

 77 [72] 

Czech&UK Complex feed for 
daily cows 

2008-
2012 

 80 [72] 

Italy Maize 2005 5/31 137 [8] 
Italy Oat 2013 3/7 23 ± 30 

(26-75) 
[26] 

Italy Splet 2013 2/3 91.8 ±54 
(53.7-130) 

[26] 

Italy Wheat 2013 14/57 18.44 ± 27 
(12.5-102) 

[26] 

Italy Barley 2013 4/9 18.43 ± 20 
(27.5-47.3) 

[26] 

Italy Rye 2013 5/11 28.52 ± 31 
(42.4-70.2) 

[26] 

Italy Whole cereals 2013 5/6 40 ± 38.4 
(23.4-102) 

[26] 

Korea Conventional 
cereals 

2009 9/99 10.7 
(6.8-18.7) 

[46] 

Korea Organic cereals 2009 16/88 7.3 
(0.9-18.7) 

[46] 

Korea Rice 2009 10/65 9.1 [47] 
Korea Glutinous rice 2009 2/11 5.4 [47] 
Korea Brown rice 2009 1/48 18.7 [47] 
Korea Barley 2009 6/39 6.8 [47] 
Korea Mixed grains 2009 13/40 11.0 [47] 
Korea Corn 2009 6/25 8.7 [47] 
Korea Wheat 2009 4/54 7.9 [47] 
Korea Wheat flour 2009 2/38 9.0 [47] 
Korea Breakfast cereals 2009 7/18 7.1 [47] 
Japan Rice 2005  1900 [60] 
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Poland Corn 2014  7.9-36.47 [3] 
Saudi 
Arabia 

Commercial 
animal feed 

1997-
2000 

 3.13-600 [1] 

Spain Barley 2007 2/100 17.45 [23] 
Spain Barley 2008 1.5/100 3.6 [24] 
Spain Multigrain 2009 2/46 27.2 

(15.2-42.4) 
[42] 

Spain Wheat-based 
cereals 

2012 1/119 10.8 [53] 

 502	
  

NQ: not quantifiable 503	
  

  504	
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 505	
  

Table 2. Comparative LD50 values (mg/kg) of FX by various routes of administration in 506	
  

different animal species [63] 507	
  

 

Animal species 

FX LD50 (mg/kg) 

IV IP SC PO IM 

Mouse 3.4 3.4 4.2   

Newborn mouse   0.2 4.5  

Rat   0.5 4.4  

Guinea pig  0.5 0.1   

Cat   < 5.0   

Duckling   2.0   

Chick    33.79  

 508	
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