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1. INTRODUCTION

Let g be any simple Lie algebra over C. We fix a Borel subalgebra b and
a Cartan subalgebra t ⊂ b and let ρ be the half sum of positive roots, where
the roots of b are called the positive roots. For any dominant integral weight
λ ∈ t∗, let V(λ) be the corresponding irreducible representation of g. B.
Kostant initiated (and popularized) the study of the irreducible components
of the tensor product V(ρ) ⊗ V(ρ). In fact, he conjectured the following.

Conjecture 1. (Kostant) Let λ be a dominant integral weight. Then, V(λ)
is a component of V(ρ)⊗V(ρ) if and only if λ ≤ 2ρ under the usual Bruhat-
Chevalley order on the set of weights.

It is, of course, clear that if V(λ) is a component of V(ρ) ⊗ V(ρ), then
λ ≤ 2ρ.

One of the main motivations behind Kostant’s conjecture was his result
that the exterior algebra ∧g, as a g-module under the adjoint action, is iso-
morphic with 2r copies of V(ρ) ⊗ V(ρ), where r is the rank of g (cf. [Ko]).
Recall that ∧g is the underlying space of the standard chain complex com-
puting the homology of the Lie algebra g, which is, of course, an object of
immense interest.

Definition 2. An integer d ≥ 1 is called a saturation factor for g, if for
any (λ, µ, ν) ∈ D3 such that λ + µ + ν is in the root lattice and the space of
g-invariants:

[V(Nλ) ⊗ V(Nµ) ⊗ V(Nν)]g , 0
for some integer N > 0, then

[V(dλ) ⊗ V(dµ) ⊗ V(dν)]g , 0,

where D ⊂ t∗ is the set of dominant integral weights of g. Such a d always
exists (cf. [Ku; Corollary 44]).

Recall that 1 is a saturation factor for g = sln, as proved by Knutson-Tao
[KT]. By results of Belkale-Kumar [BK2] (also obtained by Sam [S] and
Hong-Shen [HS]), d can be taken to be 2 for g of types Br,Cr and d can be
taken to be 4 for g of type Dr by a result of Sam [S]. As proved by Kapovich-
Millson [KM1, KM2], the saturation factors d of g of types G2, F4, E6, E7, E8
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can be taken to be 2 (in fact any d ≥ 2), 144, 36, 144, 3600 respectively. (For
a discussion of saturation factors d, see [Ku, §10].)

Now, the following result (weaker than Conjecture (1)) is our main theo-
rem.

Theorem 3. Let λ be a dominant integral weight such that λ ≤ 2ρ. Then,
V(dλ) ⊂ V(dρ) ⊗ V(dρ), where d ≥ 1 is any saturation factor for g.

In particular, for g = sln, V(λ) ⊂ V(ρ) ⊗ V(ρ).

The proof uses a description of the eigencone of g in terms of certain
inequalities due to Berenstein-Sjamaar coming from the cohomology of the
flag varieties associated to g, a ‘non-negativity’ result due to Belkale-Kumar
and Proposition (9).

An interesting aspect of our work is that we make an essential use of a
solution of the eigenvalue problem and saturation results for any g.

Remark 4. As informed by Papi, Berenstein-Zelevinsky had proved Con-
jecture (1) (by a different method) for g = sln (cf. [BZ, Theorem 6]). They
also determine in this case when V(λ) appears in V(ρ) ⊗ V(ρ) with multi-
plicity one. To our knowledge, Conjecture 1 appears first time in this paper.

Acknowledgements. We thank Corrado DeConcini who brought to our at-
tention Conjecture (1). This note was written during the second author’s
visit to the University of Sydney, hospitality of which is gratefully acknol-
wledged. Also, the second author was partial supported by the NSF grant
number DMS- 1501094.

2. PROOF OF THEOREM (3)

We now prove Theorem (3).

Proof. Let Γ3(g) be the saturated tensor semigroup defined by

Γ3(g) = {(λ, µ, ν) ∈ D3 : [V(Nλ) ⊗ V(Nµ) ⊗ V(Nν)]g , 0 for some N > 0}.

To prove the theorem, it suffices to prove that (ρ, ρ, λ∗) ∈ Γ3(G), where λ∗

is the dual weight −woλ, wo being the longest element of the Weyl group of
g. Let G be the connected, simply-connected complex algebraic group with
Lie algebra g. Let B (resp. T ) be the Borel subgroup (resp. maximal torus)
of G with Lie algebra b (resp. t). Let W be the Weyl group of G. For any
standard parabolic subgroup P ⊃ B with Levi subgroup L containing T , let
WP be the set of smallest length coset representatives in W/WL, WL being
the Weyl group of L. Then, we have the Bruhat decomposition:

G/P = tw∈WP ΛP
w, where ΛP

w := BwP/P.
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Let Λ̄P
w denote the closure of ΛP

w in G/P. We denote by [Λ̄P
w] the Poincaré

dual of its fundamental class. Thus, [Λ̄P
w] belongs to the singular cohomol-

ogy:
[Λ̄P

w] ∈ H2(dim G/P−`(w))(G/P,Z),
where `(w) is the length of w.

Let {x j}1≤ j≤r ⊂ t be the dual to the simple roots {αi}1≤i≤r, i.e.,

αi(x j) = δi, j.

In view of [BS] (or [Ku; Theorem 10]), it suffices to prove that for any
standard maximal parabolic subgroup P of G and triple (u, v,w) ∈ (WP)3

such that the cup product of the corresponding Schubert classes in G/P :

(1) [Λ̄P
u ] · [Λ̄P

v ] · [Λ̄P
w] = k[Λ̄P

e ] ∈ H∗(G/P,Z), for some k , 0,

the following inequality is satisfied:

(2) ρ(uxP) + ρ(vxP) + λ∗(wxP) ≤ 0.

Here, xP := xiP , where αiP is the unique simple root not in the Levi of P.
Now, by [BK1; Proposition 17(a)] (or [Ku; Corollary 22 and Identity

(9)]), for any u, v,w ∈ (WP)3 such that the equation (1) is satisfied,

(3) (χwowwP
o
− χu − χv)(xP) ≥ 0,

where wP
o is the longest element in the Weyl group of L and

χw := ρ − 2ρL + w−1ρ

(ρL being the half sum of positive roots in the Levi of P).
Now,

(χwowwP
o
− χu − χv)(xP)

= (ρ − wP
o w−1ρ − ρ − u−1ρ − ρ − v−1ρ)(xP), since ρL(xP) = 0

= (−ρ − u−1ρ − v−1ρ − w−1ρ)(xP), since wP
o (xP) = xP.(4)

Combining (3) and (4), we get

(5) (ρ + u−1ρ + v−1ρ + w−1ρ)(xP) ≤ 0 , if (1) is satisfied.

We next claim that for any dominant integral weight λ ≤ 2ρ and any
u, v,w ∈ (WP)3,

(6) ρ(uxP) + ρ(vxP) + λ∗(wxP) ≤ (ρ + u−1ρ + v−1ρ + w−1ρ)(xP),

which is equivalent to

(7) λ∗(wxP) ≤ (ρ + w−1ρ)(xP).

Of course (5) and (6) together give (2). So, to prove the theorem, it suf-
fices to prove (7). Since the assumption on λ in the theorem is invariant
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under the transformation λ 7→ λ∗, we can replace λ∗ by λ in (7). By Propo-
sition (9), λ = ρ + β, where β is a weight of V(ρ) (i.e., the weight space of
V(ρ) corresponding to the weight β is nonzero). Thus,

λ(wxP) = ρ(wxP) + β(xP), for some weight β of V(ρ).

Hence,

λ(wxP) = ρ(wxP) + β(xP) ≤ (w−1ρ + ρ)(xP), since β ≤ ρ.

This establishes (7) and hence the theorem is proved. �

We recall the following conjecture due to Kapovich-Millson [KM1] (or
[Ku; Conjecture 47]).

Conjecture 5. Let g be a simple, simply-laced Lie algebra over C. Then,
d = 1 is a saturation factor for g.

The following theorem follows immediately by combining Theorem (3)
and Conjecture (5).

Theorem 6. For any simple, simply-laced Lie algebra g over C, assuming
the validity of Conjecture (5), Conjecture (1) is valid for g, i.e., for any
dominant integral weight λ ≤ 2ρ, V(λ) is a component of V(ρ) ⊗ V(ρ).

Remark 7. By an explicit calculation using the program LIE, it is easy to
see that Conjecture (1) has an affirmative answer for simple g of types G2

and F4. Further, Paolo Papi has informed us that he has verified the validity
of Conjecture (1) (by an explicit computer calculation using LIE again) for
any simple g of type E6; E7; and E8 as well.

3. DETERMINATION OF DOMINANT WEIGHTS ≤ 2ρ

We follow the notation and assumptions from the previous sections. In
particular, g is a simple Lie algebra over C where we have fixed a Cartan
subalgebra t and a Borel subalgebra b ⊃ t . Let {ωi}i∈I be the fundamental
weights, {αi}i∈I the simple roots, and {si}i∈I the simple reflections, where
I := {1 ≤ i ≤ r}. For any J ⊂ I, let WJ be the parabolic subgroup of the
Weyl group W generated by s j with j ∈ J, wJ

o be the longest element in
WJ, ΦJ be the root system generated by the simple roots α j with j ∈ J, and
Φ+

J ⊂ ΦJ the subset of positive roots.
Let A ⊂ t∗ be the dominant cone, B ⊂ t∗ the cone generated by {αi : i ∈ I}

and C := 2ρ − B. We want to describe the vertices of the polytope A ∩ C.
For J ⊂ I, define

AJ := R≥0[ω j : j ∈ J], BJ := R≥0[α j : j ∈ J] and CJ := 2ρ − BJ.

The sets AJ and BJ are the faces of A and B. The vertices of the polytope
A∩C are given by the zero dimensional nonempty intersections of the form
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AJ ∩ CH. To describe these intersections, we introduce some notation. For
any J ⊂ I, let

ρJ :=
∑
j∈J

ω j, bJ :=
∑
α∈Φ+

J

α and cJ := 2ρ − bJ;

in particular, cI = 0 and c∅ = 2ρ.

Lemma 8. For each J ⊂ I, we have

AIrJ ∩CJ = {cJ}.

Moreover, none of the other intersections AH ∩CK give a single point.
In particular, the intersection A ∩ C is the convex hull of the points {cJ :

J ⊂ I}.

Proof. The lattice generated by AIrJ and the one generated by BJ are or-
thogonal to each other so the intersection AIrJ ∩ CJ contains at most one
point. Observe now that

bJ = 2ρJ +
∑
`<J

a`ω`, where a` ≤ 0.

Hence, cJ ∈ AIrJ ∩CJ.
Consider an intersection of the form AIrH ∩ CK . Assume it is not empty

and that y = 2ρ − x ∈ AIrH ∩ CK . Since y ∈ AIrH, we have x = 2ρH +∑
`<H a′`ω`. Since x ∈ BK , if h < K, the coefficient of ωh in x can not be

positive. So, we must have H ⊂ K. If H ⊂ K and H , K, then

AIrH ∩CK ⊃
(
AIrH ∩CH

)
∪

(
AIrK ∩CK

)
⊃ {cH, cK}.

Hence, it is not a single point. �

We apply this Lemma to obtain the following result about the weights
below 2ρ.

Proposition 9. Let λ ≤ 2ρ be a dominant integral weight. Then,

λ = ρ + β,

for some weight β of V(ρ).

Proof. Let Q ⊂ t∗ be the root lattice and let Hρ be the convex hull of the
weights {w(ρ) : w ∈ W}. Recall that the weights of the module V(ρ) are
precisely the elements of the intersection

(ρ + Q) ∩ Hρ.

If λ is as in the Proposition, then it is clear that λ − ρ ∈ ρ + Q. So, we
need to prove that it belongs to Hρ. To check this, it is enough to check that
(A ∩C) − ρ ⊂ Hρ or equivalently, by the previous Lemma, that

cJ − ρ ∈ Hρ, for all J ⊂ I.
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Notice that wJ
o(Φ+

J ) = −Φ+
J and that, if α is a positive root, w0

J(α) is a
negative root if and only if α ∈ Φ+

J . Hence,

wJ
0(ρ) =

∑
α∈Φ+

I rΦ+
J

α −
∑
α∈Φ+

J

α = ρ − bJ,

and cJ − ρ = ρ − bJ ∈ Hρ. �
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