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Abstract— In this paper, we propose a two-stage strategy for
optimal control problems of robotic mechanical systems that
proves to be more robust, and yet more efficient, than straight-
forward solution strategies. Specifically, we focus on a simplified
humanoid model, represented as a two-dimensional articulated
serial chain of rigid bodies, in the tasks of getting up (sitting
down) from (to) the supine and prone postures. Interactions
with the environment are integral parts of these motions, and
a priori unscheduled contact sequences are discovered by the
solver itself, opportunistically making or breaking contacts with
the ground through feet, knees, hips, elbows, and hands. The
present investigation analyzes the effects on the computational
performance of: (i) the explicit introduction of contact forces
among the optimization variables, (ii) the substitution of un-
desired contact forces with geometric constraints that prevent
interpenetrations, and (iii) the splitting of the planning problem
into two consecutive phases of increasing complexity. To the best
of our knowledge, these tests represent the only quantitative
analysis of the performances achievable with different solution
strategies for optimization-based, whole-body dynamic motion
planning in the presence of contacts.

Index Terms— Humanoids, whole-body planning, multi-
contact planning, optimization.

I. INTRODUCTION

While successful approaches to dynamic legged locomo-
tion and whole-body motion planning exist, task-oriented
strategies that can handle the variety of situations where body
parts can come into contact with the environment through
a priori unscheduled contact sequences have appeared only
very recently in robotics [1] [2] [3].

Interestingly enough, most of the approaches that have
proved to be successful in this context are optimization-based
methods, often denoted as direct trajectory optimization or
direct transcription methods. Such methods are well estab-
lished in the numerical optimal control community [4], [5],
with the most efficient variants [6] being the direct multiple
shooting [7] and the direct collocation [8] methods, where
parameterized functions with local support are utilized for
both states and inputs.

These methods have been successfully applied in the
context of locomotion planning for 2D legged robots and 2D
grasp synthesis in [1], where a velocity-based time-stepping
scheme is adopted along with a Linear Complementarity
Problem (LCP) formulation of contact events. A similar
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Fig. 1. Humanoid model (all joints actuated).

approach has been adopted in [9] to synthesize optimal gaits
for a planar two-legged robot with series elastic actuators.
Here, the introduction of a higher-order integration scheme
for states that are continuous through collisions is the main
novelty. In the context of autonomous manipulation, in [10] a
framework is devised, based on two different contact models,
that allows to synthesize both dexterous and environment-
exploiting behaviors in a unified way with encouraging
performances.

Other contributions [2] have been directed towards ren-
dering such approaches amenable to whole-body motion
planning of 3D robot models by considering the full robot
kinematics and condensing the dynamics to the robot’s
centroidal linear and angular dynamics with impressive out-
comes. Along these lines, it is worth citing the contact-
invariant approach, originally proposed in [3] to discover
complex behaviors for humanoid figures and then extended
in [11] to the context of manipulation. Here, acceptable
simplifying assumptions (e.g., massless limbs) along with
a witty relaxation of the complementarity conditions (to
allow smooth gradient calculations for contact forces) are
paired to a massive use of inverse dynamics, which may,
however, lead to inconsistent results for underactuated and/or
defective systems. Such trajectory optimization method has
been recently employed to gradually train a neural network
by following an Alternating Direction Method of Multipliers
(ADMM) strategy, with interesting results [12].

To the best of our knowledge, [13] is the only work
we are aware of where a quantitative assessment of the
performances of direct transcription methods in the context
of robotic systems is conducted. The investigation therein
includes criteria such as computational time, quality of the



solutions, and sensitivity to open parameters. The feasibility
of applying direct transcription methods for online motion
planning of a real ballbot robot is evaluated as a benchmark.

In this paper, we propose a two-stage strategy for optimal
control problems of robotic mechanical systems that proves
to be more robust, and at the same time more efficient,
than straightforward solution strategies. The goal consists of
performing various whole-body dynamic tasks (rising from
the ground from the supine and prone positions and laying
down from the standing position), opportunistically making
or breaking contacts with the ground through feet, knees,
hips, elbows, and hands. A priori unscheduled contact se-
quences and the dynamic nature of articulated-body systems
make trajectory optimization quite a challenging problem.
To the best of our knowledge, these tests represent the only
quantitative analysis of the performances achievable with
different solution strategies for optimization-based, whole-
body dynamic motion planning in the presence of contacts.

II. OPTIMAL CONTROL PROBLEM FORMULATION

A. Description of the Humanoid Robot Model

In order to evaluate the performances of planning with
different solution schemes, we employed as a benchmark
system the schematic humanoid robot whose model is de-
picted in Fig. 1. It consists of a 2D serial chain of rigid
links connected through revolute joints, whose kinematics
is constrained so that the foot link is constantly steady and
in contact with the ground (reducing the DoFs of the robot
from 8 to 5). This assumption, materialized by fixing the
position of the ankle joint center O0, is rendered consistent
by imposing static equilibrium conditions on the foot (in uni-
lateral frictional contact with the ground) through appropriate
bound constraints involving the input ankle torque and the
ground reactions (see Sec. II-E). This aspect partially restores
the difficulty of planning with a floating base since, in the
configurations where the vertical load on the foot is very low,
the upper bound on (the absolute value of) the ankle torque
is practically zero (in this sense, the system can be defined
underactuated). Especially in such situations, the fact that the
robot can make contact with the ground through its revolute
joints Oi becomes a crucial aspect, and (unscheduled) contact
sequences emerge as an essential feature of the planned
motion.

The lengths, masses, positions of the centers of mass, and
centroidal moments of inertia of the humanoid’s links are
reported in Table I. These are adapted from [14] to an adult
man of 73 kg of mass and 1.74 m of height.

B. The CasADi Framework and Expression Graphs

We implemented our problem in the CasADi frame-
work [15], which provides building blocks to efficiently for-
mulate and solve large-scale optimization problems, namely
sparsity handling, automatic differentiation (AD), and state-
of-the-art solvers for nonlinear programming (the interior-
point solver IPOPT [16] with the linear solver MA57 [17]
from the HSL library [18] was our final choice).

In the CasADi framework, symbolic expressions for the
objective function and the constraints are formed by applying
overloaded mathematical operators to symbolic primitives.

TABLE I
Humanoid Parameters

Link number i ai (m) ci (m) mi (kg) ii (kgm2)
1 (lower leg) 0.473 0.208 6.32 0.0855
2 (upper leg) 0.422 0.173 20.7 0.399
3 (trunk + head) 0.532 0.179 36.8 1.92
4 (upper arm) 0.282 0.119 3.96 0.0227
5 (forearm + hand) 0.355 0.174 3.26 0.0434

These expressions are represented in memory as computa-
tional graphs, in contrast to tree representations common
to computer algebra systems [19]. Forward and backward
source-code transforming AD can be performed at will,
such that derivatives of arbitrary order can be computed.
The sparsity pattern of the constraint Jacobian is computed
using hierarchical seeding [20], and its unidirectional graph
coloring is used to obtain the Jacobian with a reduced
number of AD sweeps [21].

In order to maximize efficiency of the code, the graph
representation of a given expression should be in its mini-
mal form. As an example, if one considers the expression
x + y + sin(x + y), the graph associated with its one-line
implementation is composed of 4 nodes: 3 sums and 1 sine.
On the other hand, by defining z = x + y one avoids the
unnecessary second evaluation of x + y, and the nodes of
z + sin(z) are reduced to 3. As expressions grow larger,
like those representing the dynamic equations of articulated-
body systems, optimizing the associated graph representation
can bear huge memory savings and a dramatic reduction in
evaluation time.

C. Formulation of the System Dynamics

The equations of motion (EoMs) of the system shown
in Fig. 1 are obtained by employing the Euler-Lagrange
equations for holonomic systems

B(q)q̈ +C(q,q̇)q̇ + G(q) = Q(q,q̇,u) (1)

where q ∈ Rn and u ∈ Rn collect, respectively, the config-
uration angles and the input torques at the revolute joints,
B(q) ∈ Rn×n is the inertia matrix, C(q,q̇) ∈ Rn×n is the
matrix of Colioris and centrifugal terms, G(q) ∈ Rn and
Q(q,q̇,u) are the vectors of gravitational and generalized
forces, respectively. In this case, the j-th component of Q
can be written as

Q j (q,q̇,u) =
∑
i∈F

Jvi (q)[:, j]> fci (q,q̇) +u j (2)

where fci = [ f ti fni ]
> are the tangential and normal ground

contact forces, Jvi is the linear velocity Jacobian of the i-th
contact point Oi , u j the input torque applied at the j-th joint,
and, in order to reduce the computational burden associated
with undesirable contacts, we define F ⊆ {1,2,. . . ,n} as the
(sub)set of the active contact forces.

The choice of the Euler-Lagrange formulation in (1)
is mainly motivated by the ability to find, in this form,
patterns that can be exploited to obtain (by hand) a graph-
compressing implementation of the dynamic model. As an
example, denoting with Bl [r,s] the (r,s)-th element of the
inertia matrix Bl (q) due to the l-th link, kinetic energy
additivity allows to write Bl [r,s] = Ml [r,s] + Il [r,s], where



Ml and Il represent the translational and rotational contribu-
tions, respectively, to the global inertia matrix. After some
algebraic manipulation, Ml can be profitably put in the form

Ml [r,s] =




ml

( l∑
i=ī

(al
i )

2 +

l∑
i=r
j=s
i, j

al
ia

l
j cos q̄

)
if r ≤ l ∧ s ≤ l

0 if r > l ∨ s > l

where ī = max(r,s), al
i = {ai if i < l, ai −ci if i = l}, and q̄ =∑k̄

k=k qk , with k = min(i, j) + 1 and k̄ = max(i, j). Similarly,
the contribution of the angular velocity of each link to the
global inertia matrix is trivially given by its moment of inertia
Il [r,s] = {il if max(r,s) ≤ l, 0 if max(r,s) > l}.

Pattern exploitation and code optimization enabled us to
dramatically increase the efficiency of the computational
pipeline.

D. Contact Force Model

A crucial aspect of planning with intermittent contacts is
contact force modeling. As recently proposed in [10], two
main approaches can be adopted: a penalty-based formula-
tion and a complementarity-based approach. In this paper,
we employ a penalty-based contact model due to its intrinsic
smoothness that fits in particularly well with the Newton-type
algorithms used to solve the resulting numerical optimization
problem.

With the aim of approximating a unilateral linear contact
model, we adopted the following differentiable constitutive
relation (depicted in Fig. 2) between the normal contact force
fn and the normal gap y (it is y = y(q))

fn (y) = f0 log2

(
1 + 2−

κ
f0
y
)

(3)

where f0 is the force value at y = 0, and −κ is the contact
stiffness as y → −∞. The rationale behind this choice is
evident if one starts from the definition of a contact stiff-
ness function ∂ fn/∂y = −κ/(1 + 2κy/ f0 ), which constitutes a
smooth approximation of a unilateral constant stiffness model
∂ fn/∂y = {−κ if y < 0, 0 if y ≥ 0}.

According to a regularization strategy of the stick-slip
behavior [22, p. 80], the relation between tangential contact
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Fig. 2. Constitutive law of the normal contact force (differentiable
approximation of a unilateral linear elastic model).
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Fig. 3. Differentiable approximation of the Coulomb friction model.

force f t and tangential velocity ẋ for a 2D problem can be
modeled by

f t (y, ẋ) = −µ fn (y)ϕ( ẋ), with ϕ( ẋ) = tanh
( ẋ

ˆ̇x

)
(4)

where µ is the static/dynamic coefficient of friction, ϕ is
a smooth function that approximates the Coulomb model
(Fig. 3), and ˆ̇x is a reference sliding velocity at which the
tangential force f t is 76% of its asymptotic value.

The only form of dissipation introduced in this model
comes from sliding actions. The choice of not including
damping in the normal contact model is motivated by the
following considerations:
• a “standard” normal damping force (proportional to the

relative normal velocity) creates an unrealistic pulling
force when the robot’s joints break contacts rapidly;

• a physically consistent elimination of the previous
phenomenon (as suggested in [23], Ch. 9, p. 238,
Eq. (11.75)) would require two additional configurations
per contact interface in order to model the damped
spring back of the boundary surface when the applied
contact force is rapidly removed, with a significant
increase in the computational burden (also due to the
non differentiable if function);

• the introduction of a smooth damping force requires
at least the setting of two new coefficients, whose
values would be quite arbitrary without further hypothe-
ses/investigation;

• for the sake of testing the advantages of a two-stage
strategy over a one-stage strategy, a full-fledged contact
model would not bear special insight or greater advan-
tages.

As a fair compromise between realistic modeling of
contact actions and non-excessive numerical stiffness, we
adopted κ = 1 ·105 N/m and f0 = 2 ·102 N. With these values,
the normal contact force required to support the total weight
of the humanoid (696 N) corresponds to y ≈ −7 mm (pene-
tration), whereas its value at y = 10 mm is approximately 9 N
and rapidly vanishes as y increases. With similar physical
considerations we selected ˆ̇x = 2 · 10−2 m/s. The friction
coefficient µ was set to 1.

E. Steady-Foot Requirements
As pointed out in Sec. II-A, the steady-foot assumption

involves a set of bounds to the actions applied to the foot.
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Fig. 4. Free-body diagram of the foot.

Referring to Fig. 4, these constraints can be stated as

fn0 ≥ 0 (unilateral contact) (5a)

−µ ≤
f t0

fn0

≤ µ (contact force ∈ friction cone) (5b)

−a0 f ≤
u1

fn0

≤ a0b (l.o.a. ∈ contact segment) (5c)

where a0 f = 0.200 m, a0b = 0.058 m, and the moment arm
of the tangential force is neglected. Relation (5c) requires
that the line of action (l.o.a.) of the normal contact force fn0

be inside the contact segment of the foot. Note that, since
the EoMs were derived from the Virtual Work Principle,
the contact reaction fc0 (q,q̇,q̈) is not directly available, and
its expression has to be obtained from inverse translational
dynamics of the entire system. As fairly clear, constraints (5)
are computationally very expensive.

F. Discretization

Direct trajectory optimization schemes require a discrete
time (DT) version of system dynamics (1), contact force
models (3)–(4), and foot constraints (5). With the goal of
minimizing the computational burden of the DT EoMs, a
straightforward discretization of the implicit form of (1)
is performed: deriving a state-space representation, which
would call for a repeated use of the computationally expen-
sive (symbolic) inverse of B(q), is therefore not necessary.

Using a direct transcription scheme based on a single
collocation point selected as the midpoint of the generic
interval [tk ,tk+1] for k ∈ {0,1,. . . ,N − 1}, and denoting h =

T/N = tk+1 − tk (T is the time horizon), q̄k = (qk + qk+1)/2,
¯̇qk = (q̇k + q̇k+1)/2, we write B̄k = B(q̄k ), C̄k = C(q̄k , ¯̇qk ),
Ḡk = G(q̄k ), and Q̄k = Q(q̄k , ¯̇qk ,uk ). According to this
scheme, kinematic reconstruction and EoMs are expressed
by

qk+1− qk − h ¯̇qk = 0 (6a)
B̄k (q̇k+1− q̇k ) + h(C̄k ¯̇qk + Ḡk − Q̄k ) = 0 (6b)

where states (q,q̇) are linear and controls u are constant
over each discretization interval. The integration scheme
expressed by (6), known as implicit midpoint rule, is a
symplectic integrator: it can cope with stiff differential equa-
tions while ensuring that no artificial numerical damping is
introduced.

Two concluding remarks have to be made:
• in order to be consistent with the proposed integration

scheme, all differential constraints (such as (5)) must be
evaluated at the collocation points;

• the discretization time h must be an appropriate trade-
off between the need to keep the number of optimization
variables reasonably low and the need to synthesize
dynamically plausible trajectories (note that poor dis-
cretizations can produce “good-looking” trajectories that
are useless in practice, since controllers would not be
able to stabilize the robot around them).

G. Optimization

Within the direct transcription framework, equations (6)
and the DT version of (5) constitute a set of nonlinear
constraints for the optimal control problem we formulate.
Additional constraints are: the initial states and input torques
of static equilibrium; the goal configuration, slightly relaxed
by bound constraints (also, we direct the solver to obtain
a terminal configuration of static equilibrium by imposing
q̇N = q̇N−1 = 0); the upper and lower bounds for the con-
figuration vector. As will be explained in Sec. III-C, two
additional sets of constraints may be imposed in some cases:
the constitutive models of contact forces (when they enter ex-
plicitly as optimization variables), and geometric constraints
that prevent undesired contact at selected locations.

The vector of optimization variables v ∈ Rm is defined by
vertically stacking the sequence

{q0, q̇0, u0, fc0 , . . . , qN−1, q̇N−1, uN−1, fcN−1 , qN , q̇N }

where fck may be absent (see scheme E in Sec. III-A). The
total number of optimization variables is given by

m = 2n(N + 1)︸      ︷︷      ︸
states

+ nN︸︷︷︸
inputs

+ 2|F |N︸  ︷︷  ︸
contact forces

(optional)

− 3n︸︷︷︸
initial

conditions

− 2n︸︷︷︸
goal

conditions

The nonlinear program (NLP) to be solved to obtain
optimal trajectories can be cast in the following compact
form

minimize
v

f (v) = v>Wv

subject to gmin ≤ g(v) ≤ gmax

vmin ≤ v ≤ vmax

(7)

where the quadratic form f (v) :Rm→R is the DT objective
function and W ∈ Rm×m is a block diagonal weight matrix
whose elements penalize the sums of the squares of input
torques, angular velocities, and their variations between
consecutive steps. Eight scalar weights w are defined to
populate W : five for the input torques (wu1 ,wu2 ,. . . ,wu5 ),
and three for velocities (wq̇), accelerations (w∆q̇), and input
torque variations (w∆u). Their numeric values are adjusted
from task to task, with the goal of obtaining human-like
behaviors and well-balanced contributions by each cost term
on the final objective function value.

Concerning initial guesses, we initialize configuration an-
gles using a linear interpolation between initial and goal
configurations, and thus velocities are initially set to constant
values over the discretization intervals. Input torques and
contact forces (if included among the optimization variables)
are all initialized to zero.



TABLE II
Performances of different strategies in solving the NLP (7).

E A A A

F F F+C F+C

1S 1S 1S 2S

T1
iterations failed 417 287 272+31
time (s) 1239 488 11+40=51

T2
iterations failed 242 193 93+51
time (s) 735 382 4+81=85

T3
iterations 331 208 694 47+129
time (s) 691 742 1262 2+210=212

T4
iterations 311 340 360 175+27
time (s) 520 1056 696 8+37=45

III. SOLUTION STRATEGIES, BENCHMARK TASKS,
AND NUMERICAL RESULTS

A. Solution Strategies

The main objective of this study is to propose a two-stage
strategy for optimal trajectory planning of articulated-body
systems interacting with the environment via unscheduled
contact sequences. In the numerical tests that follow, a fixed
time horizon T = 5 s and N = 100 (hence h = 50 ms) were
used. Let us first outline the different formulations that
eventually led us to such strategy. They will be motivated
and assessed in the sections below.

1) Schemes E andA: Contact forces were treated accord-
ing to two different schemes, denoted E (embedded) and
A (augmented). In E, the constitutive relations of contact
forces are embedded into the generalized force term of the
EoMs (term Q(q,q̇,u) in (1)). Conversely, in scheme A, all
contact forces appear explicitly as optimization variables, and
their constitutive relations become equality constraints: some
advantages of using contact forces as primary optimization
variables are listed in [11].

2) Schemes F and F+C: In order to favor/allow inter-
action with the ground only at specific body parts while
avoiding contact at others, two additional schemes, denoted
F and F+C, were considered. In F , the (potential) contact
forces between all the joints (and hand) and the ground
are modeled, while in F+C the undesired contact forces at
specific joints are replaced with geometric constraints that
prevent collision of such joints with the ground (as a result,
F ⊂ {1,2,. . . ,n} and yOi (q) > 0, with i ∈ {1,2,. . . ,n}\F ).

3) One- and Two-Stage Schemes: The two-stage strategy
that we propose is based on the formulation (A,F+C). Con-
tinuation is applied in two steps, with the first optimization
streamlined by the following simplifications:

• EoMs (1) are deprived of dynamic, Coriolis, and cen-
trifugal terms, so that G(q) = Q(q,q̇,u) (pseudo-static
model);

• the number of nodes N is reduced from 100 to 30;
• the contact parameters are relaxed: κ = 5 ·104 N/m, f0 =

3 ·102 N, ˆ̇x = 1 ·10−1 m/s.

The results of this first optimization are (interpolated to the
finer grid and) used to warm-start the subsequent original,
unsimplified optimization problem. This two-stage approach
is denoted as 2S, while the symbol 1S is used for all other
single-run optimizations.

B. Benchmark Tasks
Three reference configurations for the humanoid were

defined: standing, prone, and supine. Based on them, four
benchmark tasks were devised: trajectories had to be planned
for the humanoid to have it transition from prone to standing
(T1), standing to prone (T2), supine to standing (T3), and
standing to supine (T4). Such tasks are certainly not trivial,
and they challenge the NLP solver in different ways.

In the following tests, the total number of optimization
variables ranges between 1485 and 2485 for the cases E and
A, respectively.

C. Comparative Analysis of Solution Strategies and Numer-
ical Results

Table II shows the performances (in terms of number of
IPOPT iterations and CPU time to convergence) recorded
for the four benchmark tasks (rows) as a function of the
optimization strategy (columns). They were obtained on a
notebook computer with a 2.70 GHz Intel(R) Core(TM) i7-
4800MQ CPU and 32 GB of RAM.

Our investigation started by comparing the results obtained
using strategy E with those provided by strategy A, first
two columns of Table II. In both cases, all contact forces
were active (scheme F ) and optimizations were single-run
(scheme 1S). The term ‘failed’ indicates that the solver was
stuck at a point of local infeasibility. Unlike in E, scheme A
allows the solver to manage contact forces (extra optimiza-
tion variables) and the Lagrange multipliers associated with
their constitutive relations (equality constraints) in a more
direct and effective way. This results in increased robustness
(i.e., capability of obtaining a feasible solution), albeit at
the expense of an increased time per iteration. When both
E and A succeeded in obtaining feasible solutions (tasks
T3 and T4), the resulting trajectories were identical. Due to
its intrinsic robustness, we settled upon scheme A for the
subsequent evaluation tests.

The next test was a comparative analysis of formulations
F and F+C. The latter is aimed at minimizing the computa-
tional intricacy arising from the presence of multiple contact
sources (see Sec. III-D for details). Columns two and three
of Table II show a general improvement of F+C over F in
terms of both number of iterations and CPU time, except for
task T3. The obtained trajectories are slightly different from
those obtained with scheme F .

Finally, we compared the performance of the (A,F+C,1S)
scheme with that of the two-stage strategy (A,F+C,2S),
reported in columns three and four of Table II. As introduced
in Sec. III-A, the first optimization problem of the two-
stage approach is based on a pseudo-static model (in the
sense that generalized forces still depend on velocities due
to the smoothed Coulomb model we adopt), motivated by
the fact that general stand-up and sit-down movements are
realized relying more on contact forces with the ground
than on inertial forces originated by very dynamic behaviors.
Replacing (1) with its pseudo-static version G(q) = Q(q,q̇,u)
has the direct consequence of reducing the graph nodes asso-
ciated with the EoMs by approximately 90%, with significant
savings in terms of both memory usage and computational
effort. In addition, the reduction of collocation nodes carries a
proportional decrease in the number of optimization variables
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Fig. 6. Solutions of the standing-to-prone task (T2). Set of active contacts (knee, elbow, hand): F = {1, 4, 5}.

(leading to a substantial reduction in CPU time), while
relaxation of the contact parameters mitigates numerical
stiffness. Once the solution of such first optimization problem
has been obtained, it is first mapped to the original (finer)
integration grid through linear interpolation, and it is then
used to warm-start the second, unsimplified optimization
problem. Since the first optimization is intrinsically different
from the second, we decided to warm-start only the primary
optimization variables (not the dual variables nor the barrier
parameter). The last column of Table II shows the level of
performance achieved by the two-stage strategy: the reduc-
tion in the number of iterations with dynamic constraints
varies between 74% and 93%, while CPU time was reduced
by 78% to 94%. The computed trajectories are identical to
those obtained by the (A,F+C,1S) strategy.

D. Graphical Results

The results obtained with the two-stage strategy are shown
in Figs. 5–8 for the four benchmark tasks. For each task, a
sequence of frames are displayed where the final solution
(light blue) is superimposed on the (interpolated) warm-
start solution (red). In addition, configurations angles, input
torques, and contact forces between the hand and the ground
are represented as functions of time. Note that, since the

friction coefficient is µ = 1, the graphs of the normal and
tangential contact forces (their absolute values) coincide
when sliding occurs, while this is not the case in the presence
of static friction.

We stress the fact that these results represent animations of
the optimal trajectories synthesized by the NLP solver, and
not forward integrations of the humanoid EoMs using the cal-
culated, optimal input torques. In fact, unless the trajectories
obtained from the optimization phase are uniformly stable,
open-loop integrations cannot give acceptable results. This
was confirmed as we tried different feed-forward simulations
(with a finer discretization grid, a higher-order integration
scheme, and a “sharper” contact model): in all cases, after
a temporary coincidence with the ideal trajectories, the
system’s trajectories diverged, attesting that application of
optimal control policies to unstable systems requires the
presence of stabilizing controllers.

For all tasks, the solutions of the first optimization problem
are very similar to the final ones, indicating that such
simplified model does capture the essence of the various
behaviors and related trajectories. The only exception is task
T3 (Fig. 7): because of a relatively low value of the weight
coefficient w∆q̇ , the final solution includes a second phase
of the hand pushing on the ground that does not appear in
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Fig. 7. Solutions of the supine-to-standing task (T3). Top: frames of the final trajectory (light blue) and of the warm-start trajectory (red). Bottom, left to
right: configuration angles, input torques, and absolute value of the hand-ground contact force (green or red depending on its sign) as functions of time.
Set of active contacts (hip, hand): F = {2, 5}.
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Fig. 8. Solutions of the standing-to-supine task (T4). Set of active contacts (hip, hand): F = {2, 5}.

the warm-start solution. This different behavior affects the
CPU time of the second optimization, which is significantly
higher than the average.

Animations of the frame sequences in Figs. 5–8 can be
found in Section III-D of the video [24] accompanying this
paper.

E. Remarks on the Pseudo-Static Model
Using the implicit midpoint rule, the DT first-order

pseudo-static model appears as

G(q̄k ) = Q
(
q̄k ,

qk+1− qk
h

,uk
)

(8)

It is evident that this formulation does not relate the velocity
values at two consecutive nodes in any way, making the
acceleration cost term in the objective function indispens-
able to prevent wild velocity variations. Furthermore, also
differences in configuration angles are not practically limited:
whenever the relaxed Coulomb model in Fig. 3 is saturated
(kinetic friction) or contacts are broken, (8) appears as an
algebraic path constraint, and it requires that velocities be
penalized. In light of these aspects, the pseudo-static model
does not suffer coarse discretization grids that would cause,
in the case of a dynamic model, poor approximations of
the derivative functions. As a matter of fact, different tests

carried out with the two-stage strategy confirmed that the
CPU times required by the second optimization were larger
if warm-started with a solution obtained with the complete
dynamic model (6). The truncation errors accumulated in
the computation of the coarse dynamic warm-start solution
misled the second optimization more than the approximate
pseudo-static model did.

It is interesting to notice that the reduction of collocation
nodes pertaining to the first optimization goes in the direction
of limiting: the complexity of the discovered behaviors and,
as a consequence, the negative effects of the exploitation of a
different dynamic model in the first phase. Finally, it should
be noted that, using such a dynamic model, friction forces
are the only horizontal actions and they need to balance
one another. In light of this, the extension of this model
to all the cases where a horizontal ambulation of the robot
is sought requires the introduction of a horizontal resistance
force (such as, for example, an overall inertial force).

IV. CONCLUSIONS

In this paper we have described and numerically assessed
different formulations for direct trajectory optimization, ap-
plied here to a 2D humanoid robot that interacts with the
environment through contacts. In particular, a two-stage



strategy for the solution of the resulting NLP proved to
be particularly efficient from a computational standpoint.
Thanks to a smooth contact model (suitable for gradient-
based numerical optimization algorithms) and to the use
of a discretization scheme that can handle stiff dynamics,
the entire process exhibited a high level of robustness. Sev-
eral tests were performed with different contact parameters,
weighting schemes, discretization grids: in none of them was
the solver trapped into local infeasibility, and satisfactory
solutions were obtained in all cases.
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haviors through contact-invariant optimization,” in ACM Transactions
on Graphics, 2012.

[4] J. T. Betts, Practical Methods for Optimal Control Using Nonlinear
Programming. SIAM, 2001.

[5] M. Diehl. (2014) Lecture notes on optimal control and
estimation. [Online]. Available: http://syscop.de/wp-content/uploads/
2015/03/oce_script.pdf

[6] M. Diehl, H. Bock, H. Diedam, and P.-B. Wieber, Fast Motions
in Biomechanics and Robotics: Optimization and Feedback Control.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, ch. Fast Direct
Multiple Shooting Algorithms for Optimal Robot Control, pp. 65–93.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-36119-0_4

[7] H. Bock and K. Plitt, “A multiple shooting algorithm for direct solution
of optimal control problems,” in 9th IFAC World Congress, 1984.

[8] T. Tsang, D. Himmelblau, and T. Edgar, “Optimal control via col-
location and non-linear programming,” Int. Journal of Control (IJC),
vol. 21, pp. 763–768, 1975.

[9] W. Xi and C. Remy, “Optimal gaits and motions for legged robots,”
in IEEE Int. Conf. on Intelligent Robots and Systems (IROS), 2014,
pp. 3259–3265.

[10] M. Gabiccini, A. Artoni, G. Pannocchia, and J. Gillis, “A com-
putational framework for environment-aware robotic manipulation
planning,” in International Symposium on Robotics Research (ISRR),
2015.
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