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Abstract

This paper analyzes the performance of an electric solar wind sail for generating and maintaining a heliocentric
circular displaced orbit. Previous research on this subject was based on a simplified mathematical model of the
spacecraft thrust. However, recent studies have proposed a more accurate algorithm for evaluating both the
modulus and the direction of the propulsive thrust as a function of some important parameters related to the
spacecraft attitude. Therefore, a reappraisal of the problem is motivated by the need of revising the past results
taking into account the new information available on the propulsion system. Within this context, the paper
focuses on circular displaced orbits that are characterized in terms of orbital period, heliocentric distance and
elevation angle. The attitude configuration and the value of the spacecraft characteristic acceleration required
for orbital maintenance are calculated. An in depth analysis of the linear stability of displaced orbits is given. It
is shown that displaced orbits are unstable when the elevation angle exceeds about 20 deg.

Keywords: Electric solar wind sail, displaced non-Keplerian orbits, mission analysis, deep space missions,
propellantless propulsion systems

Nomenclature

a = propulsive acceleration vector (with a , ‖a‖), [ mm/s2]
ac = spacecraft characteristic acceleration, [ mm/s2]

î, ĵ, k̂ = Cartesian heliocentric reference frame unit vectors
n̂ = unit vector normal to the E-sail mean plane
O = Sun’s center-of-mass
P = E-sail nominal plane

r = position vector (with r , ‖r‖), [ au]
r⊕ = reference distance (1 au)
rl = hovering distance, [ au]
R = local horizontal plane
S = spacecraft center-of-mass
T = orbital period [ years]
v = velocity vector, [ km/s]
α = cone angle [ deg]
αn = pitch angle [ deg]
γ = dimensionless propulsive acceleration
δ = clock angle [ deg]
δn = azimuthal angle [ deg]
µ� = Sun’s gravitational parameter, [ km3/s2]
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ρ̂ = radial unit vector
ρ = radius of displaced circular orbit [ au]
ψ = elevation angle [ deg]

ω = spacecraft angular velocity (with ω , ‖ω‖), [ days−1]
ω̃ = Keplerian orbit angular velocity, [ days−1]

Subscripts

max = maximum
min = minimum

Superscripts

• = time derivative
∧ = unit vector

1. Introduction

The concept of displaced non-Keplerian orbit (DNKO) can be traced back to Robert Forward [1] who,
more than thirty years ago, suggested it as a potential commercial application of an advanced photonic
solar sail-based spacecraft. The latter was assumed to be able to generate a geosynchronous orbit whose
orbital plane was either above (northward) or below (southward) the terrestrial equatorial plane. Since then,
displaced non-Keplerian orbits have been widely investigated in the field of solar sailing, as discussed in the
comprehensive survey by McKay et al. [2]. In particular, McInnes [3] presented an essential overview of some
mission applications by analyzing both the dynamics and the stability of DNKOs, Ceriotti et al. [4, 5, 6]
investigated the possibility of using these orbits to obtain a “pole-sitter” mission (which means that the
spacecraft is always placed above one of Earth’s poles), whereas Heiligers et al. [7] recently extended the
Forward’s analysis to geosynchronous DNKOs maintained by a hybrid propulsion system (solar sail and solar
electric thruster). In a heliocentric framework, MacDonald et al. [8] discussed the possibility of creating an
interplanetary communications relay as a support for future explorations of Mars. Gong and Li [9, 10]
analyzed the solar sail potentials of obtaining a heliocentric elliptic DNKO for planetary polar observation,
and investigated the possibility of spin-stabilizing a spacecraft equipped with a solar sail on such an orbit.
Recently, Song et al. [11] studied DNKOs for solar sails in the Hill’s restricted three-body problem. In
this context, Mengali and Quarta [12] presented a preliminary analysis of heliocentric circular DNKOs
using an Electric Solar Wind Sail (E-sail) as the primary propulsion system, while Qi et al.[13] studied the
optimization of transfer trajectories using a genetic algorithm.

The study of [12] is, however, based on a simplified mathematical model of the E-sail performance, for
two main reasons. On one side the E-sail thrust modulus is assumed to vary with the Sun-spacecraft distance
r as 1/r7/6. Actually, obtaining an accurate model of the E-sail thrust for mission analysis purposes is a
complex task, due both to the variability of the solar wind properties, and to the difficulties in analyzing the
interactions between the charged particles and the spacecraft artificial electric field. Nonetheless, numerical
analyses based on accurate plasmadynamic simulations [14], which model the combined effect between the
virtual decreasing of the electric field frontal area (proportional to 1/r2) and the increasing of the plasma
Debye length (proportional to r), have shown that the thrust modulus scales as the inverse of the Sun-
spacecraft distance. The second simplification introduced in [12] is that the thrust modulus is independent
of the spacecraft attitude until the pitch angle αn (the angle between the Sun-spacecraft line and the normal
to the E-sail nominal plane in the direction opposite to the Sun) reaches a maximum value of about 60 deg–
70 deg, while the cone angle α (the angle between the Sun-spacecraft line and the thrust direction) is one
half of αn and is, therefore, constrained to a maximum value of about 30 deg–35 deg.

In a recent paper, Yamaguchi and Yamakawa [15] proposed a refined mathematical model, in which the
thrust modulus and the cone angle are both parameterized as functions of the E-sail attitude. This model
has been derived from the numerical calculations of the thrust vectors acting on each conducting tether. In
particular, the direction and the magnitude of the total thrust have been obtained as functions of the pitch
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angle with a step-size of about 0.1 deg, and the results have been expressed in terms of best-fit polynomial
equations.

The aim of this paper is to provide a reappraisal of circular heliocentric DNKOs and to improve the
results of [12] using the thrust model by Yamaguchi and Yamakawa [15]. Different mission opportunities
are discussed, obtained by changing the Sun-spacecraft distance, the orbital period and the spacecraft
characteristic acceleration. The paper also includes an in depth discussion about the linear stability of
DNKOs.

2. Mathematical Preliminaries

Consider a spacecraft S, propelled by an E-sail, at a distance r from the Sun. Let ac be the spacecraft
characteristic acceleration, which coincides with the maximum propulsive acceleration when r = r⊕ , 1 au.
Let P be the plane that ideally contains the E-sail tethers, n̂ the unit vector normal to P in the direction
opposite to the Sun. Also, let R be the local horizontal plane, that is, the plane containing S and orthogonal
to the Sun-spacecraft line (which approximately coincides with the solar wind direction), and ` be a fixed
reference line belonging to R. The E-sail attitude is characterized by means of two angles: the pitch angle
αn ∈ [0, π/2], and the azimuthal angle δn ∈ [0, 2π], defined as the angle between the line ` and the projection
of n̂ onto R, see Fig. 2. Let â , a/‖a‖ be the propulsive acceleration unit vector, whose direction is defined
through the cone angle α ∈ [0, π/2] (the angle between â and the Sun-spacecraft line), and the clock angle
δ ∈ [0, 2π] (the angle between the line ` and the projection of â onto R). Note that the direction of â
ranges between that of n̂ and r̂ (that is, α ≤ αn), where r̂ is the spacecraft position unit vector. Since â
belongs to the plane spanned by n̂ and r̂, it turns out that δ = δn and â can be written as

â =


sin (αn − α)

sinαn
r̂ +

sinα

sinαn
n̂ if αn ∈ (0, π/2]

r̂ if αn = 0

(1)

In the special case when plane P coincides with plane R (i.e. when α ≡ αn = 0), then n̂ ≡ r̂ = â and the
clock angle δ is undefined.

In previous studies [16, 12] the simplified model of the E-sail performance was characterized by assuming
α = αn/2, with a maximum value of the cone angle αmax of about 35 deg. Recently, Yamaguchi and
Yamakawa [15] have shown that the function α = α(αn) is more complex than a simple linear law, and can
be accurately described by means of the following polynomial, which corresponds to a best-fit interpolation
of numerical results

α = b6 α
6
n + b5 α

5
n + b4 α

4
n + b3 α

3
n + b2 α

2
n + b1 αn + b0 (2)

where the coefficients bi, with i = 1, 2, . . . , 6, are summarized in Table 1. Note, in passing, that the coefficients
in the table emend a couple of typos in [15].

i 0 1 2 3 4 5 6
bi 0 4.853× 10−1 3.652× 10−3 −2.661× 10−4 6.322× 10−6 −8.295× 10−8 3.681× 10−10

ci 1.000 6.904× 10−5 −1.271× 10−4 7.027× 10−7 −1.261× 10−8 1.943× 10−10 −5.896× 10−13

Table 1: Best-fit interpolation coefficients of thrust parameters (α and αn in degrees). Data adapted from [15].

The variation of the cone angle α with the pitch angle αn is shown in Fig. 1, from which the linear law
turns out to be a good approximation of Eq. (2) until αn ≤ 20 deg (or α ≤ 10 deg). Figure 1 also shows
that the maximum attainable value of the cone angle is slightly less than 20 deg, and it is reached when the
pitch angle is about 55 deg. Such an extreme value of α, which quantifies the propulsion system capabilities
of generating a transverse thrust, is significantly different from the value of 35 deg that has been used thus
far for mission analysis purposes [16, 12].

The analysis of Yamaguchi and Yamakawa [15] also points out that, for a given Sun-spacecraft distance
r, the propulsive acceleration modulus ‖a‖ is strongly dependent on the E-sail attitude through the pitch
angle αn. In fact, according to the procedure described in [15], if γ is the ratio between the modulus of
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Figure 1: Cone angle α and dimensionless propulsive acceleration γ as a function of pitch angle αn. Data adapted from [15].

the propulsive acceleration at an angle αn to the maximum propulsive acceleration at a distance r from the
Sun, or

γ ,
‖a‖

ac (r⊕/r)
(3)

then
γ = c6 α

6
n + c5 α

5
n + c4 α

4
n + c3 α

3
n + c2 α

2
n + c1 αn + c0 (4)

where the coefficients ci, obtained again by numerical interpolation of simulation data, are summarized in
Table 1. The variation of the dimensionless propulsive acceleration γ with the pitch angle is represented in
Fig. 1 with dashed line. Note that γ varies between a maximum value of 1 when αn = 0 (i.e. when the
E-sail nominal plane P is normal to the Sun-spacecraft line, or n̂ ≡ r̂), and a minimum value of about 0.5
when αn = 90 deg (or n̂ · r̂ = 0). Finally, combining Eqs. (1) and (3), the propulsive acceleration vector a
can be written as

a =


ac
r⊕
r
γ

[
sin (αn − α)

sinαn
r̂ +

sinα

sinαn
n̂

]
if αn ∈ (0, π/2]

ac
r⊕
r
r̂ if αn = 0

(5)

where cosαn = n̂ · r̂.

2.1. Maintaining a circular DNKO

Consider an E-sail-based spacecraft moving along a heliocentric circular DNKO of radius ρ and center
C, see Fig. 2 where T�(O;x, y, z) is a heliocentric ecliptic Cartesian reference frame with origin O at the
Sun’s center-of-mass and unit vectors î, ĵ, and k̂.

Without loss of generality, assume that the spacecraft displaced orbital plane is parallel to the ecliptic
plane (x, y). Let ω be the (constant) spacecraft angular velocity modulus, T = 2π/ω the orbital period, ρ̂
the radial unit vector whose direction is aligned, at any time, with the C-S line. Taking into account that
the Sun-spacecraft distance r is constant (circular DNKO), the E-sail elevation angle ψ ∈ [0, π/2], defined
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Figure 2: Layout of a circular heliocentric DNKO.

as the angle between the Sun-spacecraft line and the ecliptic plane, is a constant of motion given by the
equation

ψ = arccos
(ρ
r

)
(6)

Note that the case ψ = 0 (or r = ρ) corresponds to an ecliptic orbit, and the limit case ψ = π/2 refers to a
spacecraft that levitates over the Sun’s north pole (fixed heliocentric position, or heliostationary condition)
along the z-axis of T�. For symmetry reasons, â and ρ̂ must belong to the plane containing k̂ and r̂ in order
to maintain a circular DNKO. In a general case in which the plane of the displaced orbit is not parallel to
the ecliptic plane, â and ρ̂ must belong, at any time, to the plane containing the unit vector r̂ and the O-C
line, which coincides with the direction of the angular velocity vector ω.

A circular DNKO requires that the three accelerations acting on the spacecraft, that is, the gravitational
(−µ� r̂/r2), the centrifugal (ω2 ρ ρ̂), and the propulsive (a), be balanced. Bearing in mind Eq. (3) and
Fig. 2, the two conditions necessary for maintaining a circular DNKO are

ac
r⊕
r
γ sinα = ω2 ρ sinψ (7)

ac
r⊕
r
γ cosα =

µ�
r2
− ω2 ρ cosψ (8)

According to [17, 12] and taking into account Eqs. (7)-(8), the required cone angle α and characteristic
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acceleration ac are

tanα =
(ω/ω̃)2 tanψ

1 + tan2 ψ − (ω/ω̃)2
(9)

ac
µ�/r2⊕

=
r⊕
r γ

f (10)

where

f = f
(
ψ, ω2/ω̃2

)
,

(
1− (ω/ω̃)2

1 + tan2 ψ

) √
1 +

tan2 ψ

[(1 + tan2 ψ)/(ω/ω̃)2 − 1]2
(11)

is an auxiliary function of
(
ψ, ω2/ω̃2

)
, and

ω̃ ,
√
µ�/r3 (12)

is the angular velocity of a reference Keplerian orbit with radius r. Recalling that α and γ are both function
of the E-sail attitude via αn, see Eqs. (2) and (4), Eqs. (9)-(10) relate the parameters describing the circular
DNKO and the spacecraft performance in terms of characteristic acceleration and pitch angle.

It is now possible to summarize the procedure necessary to obtain a circular DNKO, whose geometry
depends on parameters ψ, r and ω (the latter can be alternatively substituted by the period T ). The
required value of the cone angle α is obtained from Eq. (9), while the corresponding two admissible values
of E-sail pitch angle are obtained by inverting Eq. (2) and taking the acceptable roots (0 ≤ αn ≤ π/2) or,
equivalently, from Fig. 1. For each value of αn, the dimensionless propulsive acceleration γ is calculated
from Eq. (4), while the value of ac is given by Eq. (10). As is discussed in the next section, the selection of
αn between the two admissible values influences the mission performance in terms of required characteristic
acceleration.

3. Simulation results

A potential mission application is constituted by Type II DNKOs [17], that is, displaced orbits charac-
terized by a period T equal to that of a Keplerian (circular) orbit of radius r. A spacecraft tracking such
a trajectory could be able either to observe the polar regions of a celestial body with a small (heliocen-
tric) orbital eccentricity, or to easily communicate with another spacecraft that covers a circular Keplerian
(ecliptic) orbit. In this case ω = ω̃, and Eq. (9) simplifies to

tanα =
1

tanψ
(13)

which implies that α and ψ are complementary angles. Taking into account that αmax ' 20 deg, see Fig. 1,
the constraint of Eq. (13) makes Type II DNKOs feasible for large elevation angles only, i.e. approximately
for ψ > 70 deg, and for high characteristic accelerations, see Fig. 3. Note that, unlike [12], now there are two
graphs for a given ac since, according to the solid line of Fig. 1, a given value of the cone angle α ≤ αmax can
be obtained with two different values of the pitch angle, namely αn1

and αn2
≥ αn1

. These two admissible
values of αn correspond to two different values of γ and, hence, to two different values of ac, see Eq. (10).
In particular, for a given Sun-spacecraft distance r, the required values of the characteristic acceleration
are decreasing (or increasing) functions of angle ψ as long as the solution corresponding to αn1 (or αn2) is
considered.

In the previous analysis [12], the characteristic acceleration was an increasing function of ψ, and this
behaviour was explained by the fact that an increasing elevation angle generates a greater component of
gravitational force perpendicular to the (displaced) orbital plane, which must be balanced by the propulsive
thrust. In this study, Fig. 3(a) shows a more complex behavior that can be explained by recalling that α and
ψ are complementary angles for Type II DNKOs, see Eq. (13). Accordingly, an increasing value of ψ implies
a decreasing value of α and, as long as the solution corresponding to αn2

is considered, a greater value of
the pitch angle. This, in its turn, leads to a smaller value of γ, see Fig. 1, and a higher value of required
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Figure 3: Characteristic acceleration required to maintain a Type II DNKO as a function of ψ and r/r⊕.
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characteristic acceleration, see Fig. 3(b). On the other hand, when the solution αn1 is selected, a decreasing
value of α implies a decreasing value of pitch angle and a corresponding greater value of γ. The latter has a
significative influence with respect to an increase of the gravitational force component perpendicular to the
orbital plane and, therefore, the required characteristic acceleration for orbital maintenance with a larger
elevation angle is smaller, as is shown in Fig. 3(a). Note that γ(αn1

), i.e. the value of γ obtained with αn1
,

is always greater than γ(αn2): therefore the solution corresponding to αn1 is the most convenient in terms
of propulsive requirements. However, even in the most favourable case (αn = αn1), a Type II DNKO at a
Sun distance of about r⊕, requires a characteristic acceleration greater than 6 mm/s2, a value well beyond
the current capabilities of an E-sail.

Figure 4 shows a comparison between the results of [12] and those obtained using the thrust model of
[15], when αn = αn1

. Note that for r < 1 au the thrust model of [15] provides a greater value of characteristic
acceleration required for orbital maintenance. For r > 1 au, instead, the model of [15] may produce lower
propulsive requirements with respect to the previous ones, because of the exponent of 1/r in the thrust
formula (especially when large values of elevation angle are considered).
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Figure 4: Characteristic acceleration required to maintain a Type II DNKO as a function of ψ and r/r⊕. Thrust model of [15]
(continuous line) vs. original (dashed line).

An interesting case is obtained when the elevation angle ψ is zero, that is, when the orbits belong to
the ecliptic plane. In fact, the condition ψ = 0 implies α = 0 from Eq. (7) and, therefore, Eq. (8) can be
rearranged as

ac
µ�/r2⊕

=
1

γ

(r⊕
r

) [
1−

(ω
ω̃

)2]
(14)

where the admissible values of the dimensionless propulsive acceleration are γmax = 1 and γmin ' 0.5. In
this scenario, for a given pair {r, ω}, Eq. (14) gives two values of characteristic acceleration that guarantee
orbital maintenance. The solution corresponding to a lower αn (and therefore to a greater γ) is the most
convenient, whereas the two values of ac coalesce in a double solution (ac = 0) when ω = ω̃ =

√
µ�/r3, i.e.

for a circular Keplerian orbit. In this case the differences, in terms of performance, between original [12] and
recent [15] thrust models are due only to the change in the exponent of 1/r (which varies from 7/6 to 1) in
the propulsive acceleration formula. In the model of [15], the required value of characteristic acceleration is
smaller (greater) for r > 1 au (r < 1 au) with respect to the original results, see Fig. 5.
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The last potential mission application refers to the case in which ψ = 90 deg, that is, when the circular
orbit degenerates in a single point placed on the z-axis of T�. In this scenario the spacecraft inertial position
is fixed, and the E-sail levitates over the Sun’s pole at a distance rl that can be found by enforcing the
equilibrium between the gravitational force and the propulsive thrust, viz.

rl =
µ�

ac r⊕ γ
(15)

Note that Eq. (15) is a special case of Eq. (8) when ψ = 90 deg, and that the heliostationary condition can
be obtained only with a radial propulsive acceleration in which α = 0 and γ = {γmin, γmax}, see Fig. 1. For a
given value of heliostationary distance rl, the minimum required value of ac is obtained when γ = γmax = 1.
The performance variation compared to the model used in [12] is, again, due to the different propulsive
variation law with the distance r. In particular, the model of [15] shows that, the characteristic acceleration
being the same, the heliostationary condition can be attained at a smaller distance if r > 1 au, see Fig. 6.

4. Linear stability analysis

Having discussed the E-sail performance necessary to maintain a Type II DNKO, an important point
involves the question of whether those orbits are stable or not. This problem will now be addressed by
confining the discussion to the linear stability case. To clarify the discussion, it is useful to first investigate
the particular cases of ψ = 90 deg and ψ = 0 deg. The simplest situation corresponds to the heliostationary
condition (ψ = 90 deg), when the E-sail motion around the equilibrium (heliostationary) point is described
by the differential equation

r̈ = −µ�
r2

+
r⊕
r
ac γ (16)

where the dot symbol represents a derivative taken with respect to the time. Note that, according to Eq. (15),
the equilibrium distance r0 ≡ rl is found by setting r̈ = 0 in the preceding equation.
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The linearized dynamics of perturbation motion is obtained by using the transformation r = r0(1 + δ),
where δ � 1 is the dimensionless distance variation along the radial direction, and the result is

δ̈ − µ�
r30
δ = 0 (17)

that shows the (linear) instability of the perturbation motion. Note that Eq. (17) can be rewritten in a
dimensionless form by introducing the dimensionless time τ , ω̃ t, where ω̃ is given by Eq. (12) with r = r0,
as

δ′′ − δ = 0 (18)

where the prime symbol denotes a derivative with respect to τ .
Consider now the case of a circular orbit belonging to the ecliptic plane (ψ = 0). From Eq. (7), the

cone angle is zero and, therefore, the propulsive thrust is purely along the radial direction. Accordingly, the
spacecraft motion is described by the differential equation

r̈ = −µ�
r2

+
r⊕
r
acγ +

h2

r3
(19)

where the last term is the centrifugal acceleration along the circular orbit of (given) angular velocity ω =
h/r2, with h being the (constant) orbital angular momentum. The equilibrium condition, obtained when
r̈ = 0, provides

ac0 =
µ�

r0 r⊕ γ
− h2

r20 r⊕ γ
(20)

which is in agreement with Eq. (8) when α = ψ = 0. Substituting r = r0(1 + δ) into Eq. (19), the
corresponding linearized dynamics of perturbation motion is

δ̈ +

(
2
h2

r40
− µ�
r30

)
δ + p = 0 (21)
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where p is a constant, depending on the initial conditions on the perturbed ecliptic orbit, which does not
affect the stability analysis. Equation (21) is more conveniently rewritten in dimensionless terms as

δ′′ +

(
2
ω2

ω̃2
− 1

)
δ +

p

ω̃2
= 0 (22)

The motion is therefore stable when
ω2

ω̃2
>

1

2
(23)

According to Eq. (23), a Type II orbit belonging to the ecliptic plane is therefore stable.
The linear stability of DNKOs for a generic value of ψ is more involved, and is now discussed under the

assumption that the cone angle α remains constant. The spacecraft equations of motion along the directions
of ρ̂ and k̂ are

ρ̈ = −µ�
r3

ρ+
r⊕
r
ac γ cos(α+ ψ) +

h2

r2 ρ
(24)

z̈ = −µ�
r3

z +
r⊕
r
ac γ sin(α+ ψ) (25)

Note that the two equilibrium conditions, obtained by setting ρ̈ = 0 and z̈ = 0, are equivalent to those given
by Eqs. (7) and (8). Paralleling the previously discussed approach, the linearized dynamics of perturbation
motion is obtained with the substitution r = r0 + dr, with dr = r0[δρ, 0, δz]

T. A perturbation in the
transverse direction would simply imply a different angular coordinate on the nominal orbit, but does not
affect its stability. Accordingly, the second component of dr is set equal to zero. After some calculations,
which are omitted for the sake of conciseness, the linearized dynamics of perturbation motion can be shown
to be described by the following dimensionless equations

δ′′ρ = a11δρ + a12δz + q (26)

δ′′z = a21δρ + a22δz (27)

where q is a constant depending on the initial conditions. The coefficients aij are defined as

a11 = 3 cos2 ψ − 1−
(
ω2/ω̃2

) (
2 cos2 ψ + 1

)
− cos(α+ 2ψ) f (28)

a12 = 3 cosψ sinψ − (ω2/ω̃2) sin(2ψ)− sin(α+ 2ψ) f (29)

a21 = 3 cosψ sinψ − sin(α+ 2ψ) f (30)

a22 = 3 sin2 ψ − 1 + cos(α+ 2ψ) f (31)

where f is given by Eq. (11) and α is obtained from Eq. (9). Note that all of the four coefficients aij depend
on the pair (ψ, ω2/ω̃2), and so the linear stability of the perturbation motion. The previously discussed
special cases of ψ = 90 deg and ψ = 0 deg can both be recovered from Eqs. (26)-(27). In fact, ψ = 90 deg
(and α = 0) corresponds to ω = 0 and f = 1, which implies a21 = 0 and a22 = 1. Therefore Eq. (27) reduces
to Eq. (18). Likewise, if ψ = 0 (and, again, α = 0), then f = 1 − ω2/ω̃2, which implies a11 = 1 − 2ω2/ω̃2

and a12 = 0. Accordingly, Eq. (26) reduces to Eq. (22).
Using the Laplace transformation, the characteristic equation associated to the system of differential

equations (26)-(27) is
s4 + b s2 + c = 0 (32)

where

b , − (a11 + a22) (33)

c , a11 a22 − a12 a21 (34)

Since the characteristic equation is biquadratic, if s̄ is a root of Eq. (32), so is −s̄. Therefore, the linear
stability of the perturbation motion requires that all roots of Eq. (32) be imaginary. Equivalently, the three
conditions that guarantee a stable motion are b > 0, c > 0, and b2 − 4 c > 0 (the latter is always met
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Figure 7: Map of stability/feasibility conditions (grey regions are unfeasible and/or unstable).

according to the simulations). Figure 7 shows the regions of the plane (ψ, ω2/ω̃2) where the two remaining
stability conditions, b > 0 and c > 0, are met. It also shows the region of unfeasible points due to either
a negative value of the characteristic acceleration (ac < 0) or to a cone angle that exceeds the maximum
admissible value (α > αmax). These data are collected in a single plot, see Fig. 8, which shows the admissible
region as a function of the elevation angle. In particular, note that a Type II DNKO is stable only when it
belongs to the equatorial plane.

5. Conclusions

Electric solar wind sails are theoretically capable of maintaining a number of displaced non-Keplerian
orbits by orienting the thrust vector in such a way that gravitational and centrifugal forces are balanced.
The analysis of this paper confirms that, even using a refined mathematical model that takes into accounts
the variations of thrust modulus and direction with the spacecraft attitude, the achievement of displaced
circular orbits with a high elevation angle and a small heliocentric distance is still beyond the capabil-
ities of the current technology. This problem could probably be mitigated by considering an oscillating
cylindrically-constrained non-Keplerian orbit, thus extending to an electric sail a similar analysis available,
in the literature, for a photonic solar sail. Moreover, displaced orbits are unstable when the elevation angle
exceeds about 20 deg and, in that case, an active control strategy is necessary to maintain the trajectory.

Although the new thrust model is suitable for a preliminary mission analysis, it neglects the variability of
the solar wind characteristics assuming the presence of a closed loop control system capable of continuously
adjusting the tether voltage, in order to properly modulate the thrust intensity. Further improvements are
therefore advisable and could be obtained by taking into account the effects of a space-temporal variation
of the physical characteristics of the solar wind.
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