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Abstract

In the present paper we deal with an optimal control problem re-
lated to a model in population dynamics; more precisely, the goal is
to modify the behavior of a given density of individuals via another
population of agents interacting with the first. The cost functional
to be minimized to determine the dynamics of the second population
takes into account the desired target or configuration to be reached as
well as the quantity of control agents. Several applications may fall
into this framework, as for instance driving a mass of pedestrian in
(or out of) a certain location; influencing the stock market by acting
on a small quantity of key investors; controlling a swarm of unmanned
aerial vehicles by means of few piloted drones.

Keywords: Transport dynamics; optimal control problems; Wasser-
stein distance; functionals on measures.

AMS Subject Classification: 49J20, 49J45, 60K30, 35B37.

1 Introduction

In recent years several models of transport dynamics have been studied;
if ρ(t, x) represents the density of a given population at time t in a space
location x, the evolution of ρ, whenever the total mass of the population is
conserved, is described by means of the continuity equation

∂ρ

∂t
(t, x) = −divx

(
v(t, x)ρ(t, x)

)
,
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where v(t, x) is the velocity of the population motion. The vector field v(t, x)
may depend on ρ in a rather general way; here we are interested in the cases
where

v(t, x) = (K ∗ ρ)(t, x) + f(t, x),

being f(t, x) an external velocity field, K(t, x) a self-interaction kernel, and
∗ the convolution operator

(K ∗ ρ)(t, x) =

∫
Ω
K(t, x− y) dρ(t, y).

Our ambient space is a domain Ω of Rd, which we take bounded and regular
enough; the case of unbounded domains Ω can be treated in a similar way
with some technical modifications. Models of the kind above have been
widely considered in the literature; we refer for instance to [3, 7, 15, 25, 30]
and to the references therein.

In the present paper we deal with an optimal control problem related
to the dynamics above; more precisely, the goal is to modify the behavior
of the density ρ of the population by influencing the behavior of another
population of agents interacting with ρ, that we denote by ν. This means
that the function f above is of the form

f(t, x) = (H ∗ ν)(t, x) for every (t, x) ∈ [0, T ]× Ω,

for a given cross-interaction kernel H. The resulting state equation govern-
ing our optimal control problem is

∂ρ

∂t
(t, x) = −divx

((
(K ∗ ρ)(t, x) + (H ∗ ν)(t, x)

)
ρ(t, x)

)
, (1)

with initial condition

ρ(0, x) = ρ0(x) on Ω,

and boundary conditions

v(t, x) · n(x) = 0 on (0, T ]× ∂Ω,

where
v(t, x) = (K ∗ ρ)(t, x) + (H ∗ ν)(t, x),

with K,H suitable convolution kernels. Notice that, by setting f = H ∗ ν,
equation (1) has the form of a continuity equation, where f is an external
velocity field.
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The dynamics of ν is determined by the minimization of a given func-
tional J (ν, ρ) taking into account the desired behavior of ρ as well as the
cost of the control agents ν (whose mass is allowed to vary). It is introduced
in detail in Section 4 by using the general theory of functionals defined on
the space of measures, developed in [9, 10, 11]. Under rather mild assump-
tions on J we establish the existence of solutions for the optimal control
problem with cost functional J (ν, ρ) subject to the PDE constraint (1).

Notice that the formulation of our control problem differs significantly,
for instance, from that of mean-field games, introduced in [22], as rather than
embedding decentralized control rules inside the dynamics of ρ we introduce
an external control mass ν that interacts with the original population with
the goal to modify its behavior.

The reason to study such infinite dimensional optimal control problems
instead of their discrete counterparts lies in the so-called curse of dimension-
ality, term introduced by Richard Bellman in [4] to describe the difficulty
in solving optimization problems where the dimension of the state variable
(which depends on the number of agents, in this case) is large: the goal is
to compute a nearly optimal control strategy that does not depend anymore
on the number of agents.

Several applications may fall into our framework; for instance

• driving a mass of pedestrian to (or out of) a certain location using a
small number of stewards;

• trying to stabilize the stock market in order to avoid systemic failures,
by acting on few key investors with a relatively limited amount of
resources;

• computing the minimal amount of manually-controlled units such that
a swarm of drones performs a given task (as, for instance, wind har-
vesting or the recognition of a given area).

In the present paper we do not perform numerical simulations; we want
to stress that this issue presents several difficulties, mainly related to the
nonlocal behavior of the governing state equations and to the nonconvexity
of the cost functional. Some numerical simulations of problems of similar
type have been performed in [1, 2].

After introducing the model in Section 2 and the class of admissible
controls in Section 3, we state in Section 4 the optimal control problem
rigorously and we study its well-posedness; some variants are also considered.
Section 5 is devoted to a list of functionals falling into our framework, and
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Section 6 to the analysis of a natural control problem arising in pedestrian
dynamics.

2 Preliminaries

2.1 The Wasserstein space of probability measures

Let Ω ⊂ Rd; we denote by M(Ω) the set of finite positive measures on Ω,
and by MM (Ω) the set of positive measures with total mass less than or
equal to M > 0. It is well-known that the class MM (Ω) admits a metric d
topologically equivalent to the weak* convergence.

The space P(Ω) is the subset ofM(Ω) whose elements are the probability
measures on Ω, i.e., µ ∈M(Ω) for which µ(Ω) = 1. The space Pp(Ω) is the
subset of P(Ω) whose elements have finite p-th moment, i.e.,∫

Ω
|x|p dµ(x) < +∞.

Clearly Pp(Ω) = P(Ω) when Ω is bounded. Finally, we denote by Pc(Ω)
the subset of P(Ω) which consists of all probability measures with compact
support.

For any µ ∈ P(Rd1) and any Borel function f : Rd1 → Rd2 , we denote
by f#µ ∈ P(Rd2) the push-forward of µ through f , defined by

f#µ(B) := µ(f−1(B)) for every Borel set B of Rd2 .

In particular, if one considers the projection operators π1 and π2 defined
on the product space Rd1 × Rd2 , for every ρ ∈ P(Rd1 × Rd2) we call first
(resp., second) marginal of ρ the probability measure π1#ρ (resp., π2#ρ).
Given µ ∈ P(Rd1) and ν ∈ P(Rd2), we denote by Γ(µ, ν) the subset of
all probability measures in P(Rd1 × Rd2) with first marginal µ and second
marginal ν.

On the set Pp(Rd) we consider the Wasserstein or Monge-Kantorovich-
Rubinstein distance,

Wp(µ, ν) = inf

{∫
R2d

|x− y|p dρ(x, y) : ρ ∈ Γ(µ, ν)

}1/p

. (2)

If p = 1 we have the equivalent expression for the Wasserstein distance:

W1(µ, ν) = sup

{∫
Rd

ϕ(x) d(µ− ν)(x) : ϕ ∈ Lip(Rd), LipRd(ϕ) ≤ 1

}
,
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where LipRd(ϕ) stands for the Lipschitz constant of ϕ on Rd. We denote by
Γo(µ, ν) the set of optimal plans for which the minimum is attained, i.e.,

ρ ∈ Γo(µ, ν) ⇐⇒ ρ ∈ Γ(µ, ν) and

∫
R2d

|x− y|p dρ(x, y) =Wp(µ, ν)p.

It is well-known that Γo(µ, ν) is non-empty for every (µ, ν) ∈ Pp(Rd) ×
Pp(Rd), hence the infimum in (2) is actually a minimum. For more details,
see e.g. [3, 30].

2.2 The model

Let T > 0 be a finite-time horizon and let Ω ⊂ Rd be a bounded open
regular set, admitting the possibility of not being convex, i.e., Ω may have
internal “obstacles” and “walls”.

The dynamics of a conserved quantity ρ under the effect of an external
vector field v : [0, T ] × Rd → Rd is described by means of the continuity
equation, given by

∂ρ

∂t
(t, x) = −divx

(
v(t, x)ρ(t, x)

)
. (3)

A detailed analysis of (3) in the case ρ ∈ P(Rd) can be found in [3]. To
model the interaction of ρ with the possible obstacles in Ω, we prescribe
reflecting boundary conditions of the form

v(t, x) · n(x) = 0 on [0, T ]× ∂Ω,

where n : ∂Ω→ Rd is the outer normal to the boundary of Ω.
The evolution of the measure-valued curve ρ : [0, T ] → P(Rd) is then

given by 
∂ρ

∂t
(t, x) = −divx

(
v(t, x)ρ(t, x)

)
in (0, T ]× Ω,

ρ(0, x) = ρ0(x) on Ω,

v(t, x) · n(x) = 0 on (0, T ]× ∂Ω,

(4)

where ρ0 is an initial probability distribution with support contained in the
interior of Ω.

Remark 2.1. Notice that, thanks to the boundary conditions and supp(ρ0) ⊆
Ω̊, then supp(ρ(t)) ⊆ Ω̊ for all t ∈ [0, T ].

We now proceed to clarify our notion of solution for (4).
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Definition 2.2. Given ρ : [0, T ] → P(Ω) and v : [0, T ] × Ω → Rd, we say
that (ρ, v) is a solution of (4) if

• ρ is continuous with respect to the Wasserstein distance W1;

• ρ satisfies ρ(0) = ρ0 and for every φ ∈ C∞0 ([0, T ]; C∞b (Ω)) it holds∫ T

0

∫
Ω

(
∂φ

∂t
(t, x) + v(t, x) · ∇φ(t, x)

)
dρ(t, x) dt = 0.

Notice that no continuity assumptions are made on the velocity field v,
the definition of solution above is given in the weak distributional sense.
Our main interest lies in the case that v has a specific dependency on ρ,
namely

v(t, x) := (K ∗ ρ)(t, x) + f(t, x), for all (t, x) ∈ [0, T ]× Rd. (5)

In the expression above, the function f : [0, T ] × Rd → Rd is an external
velocity field and ∗ denotes the convolution operator

(K ∗ ρ)(t, x) :=

∫
Rd

K(t, x− y) dρ(t, y).

Here K : [0, T ]×Rd → Rd is a self-interaction kernel which models the self-
interaction of ρ. Several instances of such interaction kernels can be found in
biology, chemistry and social sciences, see for instance [15, 16, 21, 23, 27, 29].

3 The class of admissible velocity fields

We now turn our attention to the solutions of system (4); we show that,
under mild conditions on the functions K and f appearing in (5), they
exist and are unique. The following results generalize those in [8], and are
reported to keep track of the explicit dependencies of the constants.

We start by introducing the class of `-admissible functions.

Definition 3.1. Fix T > 0 and ` ∈ L1(0, T ). The class Adm`([0, T ]×Rd;Rd)
is the set of all functions g : [0, T ]× Rd → Rd satisfying:

(i) g is a Carathéodory function;

(ii) |g(t, x)− g(t, y)| ≤ `(t)|x− y| for all (t, x), (t, y) ∈ [0, T ]× Rd;

(iii) |g(t, x)| ≤ `(t)(1 + |x|) for all (t, x) ∈ [0, T ]× Rd.
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The following result, which can be found in [20], shows that Adm`([0, T ]×
Rd;Rd) is compact with respect to a topology interacting with the W1 con-
vergence of measures.

Theorem 3.2. Let ` ∈ L1(0, T ) and 1 < p < ∞. For any (gn)n∈N ⊂
Adm`([0, T ]×Rd;Rd) there exists a subsequence (gnk

)k∈N and g ∈ Adm`([0, T ]×
Rd;Rd) such that

lim
k→∞

∫ T

0

〈
φ(t), gnk

(t, ·)− g(t, ·)
〉
dt = 0, (6)

for all φ ∈ L∞([0, T ],W−1,p′(Rd,Rd)) such that supp
(
φ(t)

)
⊂ B(0, r) for all

t ∈ [0, T ], for some r > 0. Here the symbol 〈·, ·〉 denotes the duality pairing
between W 1,p and its dual W−1,p′.

Moreover, given a compact set Ω ⊂ Rd, if (µn)n∈N is a sequence of func-
tions from [0, T ] to P(Ω) converging to µ : [0, T ]→ P(Ω) in the Wasserstein
distance, i.e.,

lim
n→∞

W1(µn(t), µ(t)) = 0 for all t ∈ [0, T ],

then for all ϕ ∈ C1
c (Rd,Rd) and for all t ∈ [0, T ] it holds

lim
n→∞

∫ t

0

〈
ϕ, gn(s, ·)µn(s)

〉
ds =

∫ t

0

〈
ϕ, g(s, ·)µ(s)

〉
ds. (7)

In addition, the inequality∫ T

0
〈ψ(g(t, ·)), µ(t)〉 dt ≤ lim inf

n→∞

∫ T

0
〈ψ(gn(t, ·)), µn(t)〉 dt, (8)

holds for any nonnegative convex globally Lipschitz function ψ : Rd → [0,+∞).

Proof. It is straightforward to show that Adm`([0, T ]×Rd;Rd) is contained
within the class of Carathéodory functions g : [0, T ]× Rd → Rd satisfying

(a) g(t, ·) ∈W 1,∞
loc (Rd,Rd) for almost every t ∈ [0, T ];

(b) |g(t, 0)| ≤ `(t) for almost every t ∈ [0, T ];

(c) LipRd(g(t, ·)) ≤ `(t) for almost every t ∈ [0, T ].

The result follows by Corollary 2.7, Theorem 2.10 and Theorem 2.12 of
[20].
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For the sake of brevity, from now on we set Adm` := Adm`([0, T ] ×
Rd;Rd). The following result, whose proof is reported in the Appendix,
shows that whenever K and f belong to the class Adm`, a solution ρ of
system (4) exists, is unique and is uniformly continuous in time: remarkably,
the modulus of continuity depends only on ρ0, T and `.

Theorem 3.3. Fix T > 0, ρ0 ∈ Pc(Rd) and ` ∈ L1(0, T ). If K, f ∈
Adm`, then there exists a unique solution ρ ∈ C([0, T ];P1(Rd)) of system
(4). Furthermore, there exist R,L > 0 depending only on ρ0, T and ` such
that

• supp(ρ(t)) ⊆ B(0, R) for every t ∈ [0, T ];

• ρ is uniformly continuous with modulus of continuity ω(t, s) = L

∫ t

s
`(θ)dθ.

Remark 3.4. In what follows, for the sake of simplicity, we assume that the
function ` is in L∞(0, T ), so that Theorem 3.3 applies and ρ turns out to be
Lipschitz continuous with a constant L = (2 + 3R)‖`‖L∞(0,T ) (see equation
(18) in the Appendix). The more general case ` ∈ L1(0, T ) would provide
ρ ∈ W 1,1([0, T ];P1(B(0, R))) in the sense of [3], and all the results below
follow along the same lines. This assumption helps us to keep the notation
compact without any loss of generality.

4 The variational problem

We now pass to study how to control the behavior of ρ by means of another
mass of individuals ν – representing, for instance, the officers and stewards of
a building to be evacuated – whose evolution is obtained by the minimization
of a suitable given cost functional J . Formally, this means coupling the
dynamics of ρ with ν through an interaction kernel H ∈ Adm` as follows

∂ρ

∂t
(t) = −divx

((
(K ∗ ρ)(t) + (H ∗ ν)(t)

)
ρ(t)

)
for t ∈ (0, T ],

ρ(0) = ρ0.
(9)

Notice that system (9) is again of the form of system (4) with velocity field

v(t, x) := (K ∗ ρ)(t, x) + (H ∗ ν)(t, x),

hence of the same nature of (5). This implies, by Theorem 3.3 and Remark
3.4, that the solutions of (9) are Lipschitz curves with a Lipschitz constant
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L and values in P1(Rd), whose support is uniformly bounded in time inside
Ω, i.e., they belong to the class

LipL([0, T ];P1(Ω)) =
{
ρ ∈ C([0, T ];P1(Ω)) : W1(ρ(t), ρ(s)) ≤ L|t−s| ∀t, s ∈ [0, T ]

}
.

We now make the assumption that, similarly to ρ, also the control mass
ν has a characteristic limit speed (or acceleration) L′ > 0. We thus prescribe
ν to belong to the class

LipL′([0, T ];MM (Ω)) =
{
ν ∈ C([0, T ];MM (Ω)) :

d(ν(t), ν(s)) ≤ L′|t− s| ∀t, s ∈ [0, T ]
}
,

where d is a metric on MM (Ω) equivalent to the weak* topology. The
modeling reason for considering MM (Ω) as the space where the curve ν
takes its values is that we want to allow the mass of ν to change over the
time, up to a maximal mass M (in the interpretation of ν as the probability
distribution of stewards, we would like to change their number as the needs
come).

The dynamics of ν is given by the minimization of a cost functional J ,
encoding a certain goal that ρ and ν have to reach, subject to system (9),
which prescribes the evolution of ρ. We assume that the cost functional

J : LipL′([0, T ];MM (Ω))× LipL([0, T ];P1(Ω))→ R ∪ {+∞},

that we optimize in our control problem, satisfies the following assumptions:

(J1) J is bounded from below;

(J2) J is lower semicontinuous with respect to the pointwise (in time)
weak* convergence of measures, i.e., for any (νn, ρn)n∈N ⊂ LipL′([0, T ];MM (Ω))×
LipL([0, T ];P1(Ω)) such that (νn(t), ρn(t)) → (ν(t), ρ(t)) weakly* for
every t ∈ [0, T ], it holds

J (ν, ρ) ≤ lim inf
n→∞

J (νn, ρn).

Some examples of interesting cost functionals J satisfying (J1) and (J2)
are listed in Section 5. We can now state the optimal control problem we
study henceforth.

Problem 1. Given ρ0 ∈ Pc(Rd) and K,H ∈ Adm`, solve

min
{
J (ν, ρ) : (ν, ρ) ∈ LipL′([0, T ];MM (Ω))× LipL([0, T ];P1(Ω))

}
subject to the state equation (9).
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It is straightforward to see that Problem 1 can then be rewritten as

min
{
J (ν, ρ) + χA(ν, ρ) :

(ν, ρ) ∈ LipL′([0, T ];MM (Ω))× LipL([0, T ];P1(Ω))
} (10)

where χA is the characteristic function (with value 0 on A and +∞ else-
where) of the set

A =
{

(ν, ρ) : [0, T ]→MM (Ω)× P1(Ω) : ρ(0) = ρ0 and

∂ρ

∂t
(t) = − divx

((
(K ∗ ρ)(t) + (H ∗ ν)(t)

)
ρ(t)

)
for t ∈ (0, T ]

}
.

Lemma 4.1. The set A is closed under the topology of pointwise weak* con-
vergence of measures. Therefore, χA : LipL′([0, T ];MM (Ω))×LipL([0, T ];P1(Ω))→
R ∪ {+∞} also satisfies the assumption (J2).

Proof. Take (νn, ρn)n∈N ⊂ A such that (νn(t), ρn(t)) → (ν(t), ρ(t)) weakly*
for every t ∈ [0, T ]. By Definition 2.2, to prove that (ν, ρ) ∈ A we have to
show that ρ(0) = ρ0 and for every φ ∈ C∞0 ([0, T ]; C∞b (Ω))∫ T

0

∫
Ω

(∂φ
∂t

(t, x) +
(
(K ∗ ρ)(t, x) + (H ∗ ν)(t, x)

)
· ∇φ(t, x)

)
dρ(t, x) dt = 0.

The fact that ρ(0) = ρ0 simply follows from the assumption that ρn(0) = ρ0

for every n ∈ N and the uniqueness of the weak* limit. Since (νn, ρn) ∈ A
we have that for every φ ∈ C∞0 ([0, T ]; C∞b (Ω))∫ T

0

∫
Ω

(∂φ
∂t

(t, x)+
(
(K ∗ρn)(t, x)+(H ∗νn)(t, x)

)
·∇φ(t, x)

)
dρn(t, x) dt = 0.

Hence, by the weak* convergence, the regularity of the test functions and
the dominated convergence theorem, we obtain

lim
n→∞

∫ T

0

∫
Ω

∂φ

∂t
(t, x) dρn(t, x) dt =

∫ T

0

∫
Ω

∂φ

∂t
(t, x) dρ(t, x) dt.

For the same reasons, and the continuity of H(t, ·), we have

lim
n→∞

∇φ(t, x) ·
∫

Ω
H(t, x− y) dνn(t, y) = ∇φ(t, x) ·

∫
Ω
H(t, x− y) dν(t, y)
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for every (t, x) ∈ [0, T ]×Ω, while its admissibility and the uniform compact
support of the measures gives us the upper bound∣∣∣∣∇φ(t, x) ·

∫
Ω
H(t, x− y) dνn(t, y)

∣∣∣∣ ≤M`(t)
(
1+δ(Ω)

)
sup

(t,x)∈[0,T ]×Ω
|∇φ(t, x)|,

(11)
where we have set

δ(Ω) = sup
{
|x| : x ∈ Ω

}
. (12)

Notice that the bound (11) belongs to L1(0, T ) (notice that this also holds if
` simply belongs to L1(0, T )), and that the same holds true with K in place
of H, ρn in place of νn and ρ in place of ν. By the dominated convergence
theorem and the compact support of the measures, we obtain finally

lim
n→∞

∫ T

0

∫
Ω

(
(K ∗ ρn)(t, x) + (H ∗ νn)(t, x)

)
· ∇φ(t, x) dρn(t, x) dt

=

∫ T

0

∫
Ω

(
(K ∗ ρ)(t, x) + (H ∗ ν)(t, x)

)
· ∇φ(t, x) dρ(t, x) dt,

which concludes the proof.

The compactness of the set LipL([0, T ];P1(Ω)), where P1(Ω) is endowed
with the W1 metric, was already discussed in the proof of Theorem 3.3.
The following result shows that also the set LipL′([0, T ];MM (Ω)), where
MM (Ω) is equipped with the metric of the weak* convergence, is compact.

Lemma 4.2. Consider MM (Ω) equipped with the metric of weak* conver-
gence. Then, the set LipL′([0, T ];MM (Ω)) is compact with respect to the
uniform convergence.

Proof. Without loss of generality, assume M = 1. Notice that for a positive
measure µ ∈ M(Ω) its total variation |µ| coincides with µ(Ω) itself; hence,
the set M1(Ω) coincides with the closed unit ball {µ ∈ M(Ω) : µ(Ω) ≤ 1},
which is compact in the weak* topology from the Banach-Alaoglu Theorem.
Therefore, consider a sequence (νn)n∈N ⊂ LipL′([0, T ];MM (Ω)). Similarly
to the proof of Theorem 3.3, we have that

• (νn)n∈N is equicontinuous and is contained in a closed subset of the
set C([0, T ];MM (Ω)), because of the uniform bound on the Lipschitz
constant;

• for every t ∈ [0, T ], the sequence (νn(t))n∈N is relatively compact in
MM (Ω) equipped with the weak* topology, since this metric space is
compact.
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Hence, an application of the Ascoli-Arzelà Theorem for functions with values
in a metric space concludes the proof.

We are now ready to address the well-posedness of Problem 1.

Theorem 4.3. Problem 1 admits a solution.

Proof. We prove the statement by means of the direct methods in the Cal-
culus of Variations. Rewrite Problem 1 in the form (10) and notice that
from the hypothesis (J1) the functional J +χA is bounded from below. We
can thus consider a minimizing sequence (νn, ρn) ∈ LipL′([0, T ];MM (Ω))×
LipL([0, T ];P1(Ω)), which by Lemma 4.2 admits a subsequence uniformly
(and thus pointwise) converging to some (ν, ρ) ∈ LipL([0, T ];MM (Ω)) ×
LipL′([0, T ];P1(Ω)). By Lemma 4.1 and hypothesis (J2), the functional
J +χA is lower semicontinuous with respect to the pointwise weak* conver-
gence, and this concludes the proof.

For use below, in particular in Section 6, we mention the following re-
mark.

Remark 4.4. In several applications, the cost functional J as well as the
PDE constraint (9) may depend on some extra term f ∈ X , where X is
a function space with topology τ . Whenever it is possible to rewrite the
problem as

min
{
F(ν, ρ, f) : (ν, ρ, f) ∈ LipL′([0, T ];MM (Ω))×LipL([0, T ];P1(Ω))×X

}
for a certain cost functional F , then Theorem 4.3 is still valid provided that

• X is compact with respect to the topology τ ;

• for every (ρ, ν), the functional F(ρ, ν, ·) is lower semicontinuous with
respect to the topology τ . Note that in this formulation the state
equation is included in the functional F as done in (10).

5 The cost functional J
In this section we show some examples of cost functionals J appearing
in Problem 1. Clearly, any linear combination of the following terms is
still a valid functional for which Theorem 4.3 applies. We start with a
preliminary result on lower semicontinuous functionals defined on MM (Ω)
(see for instance [12] or Lemma 1.6 of [28]).
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Proposition 5.1. Let X be a metric space and let f : X → R ∪ {+∞} be
a lower semicontinuous function bounded from below. Then the functional
J :MM (X)→ R ∪ {+∞} defined by

J (µ) =

∫
X
f(x) dµ(x) for every µ ∈MM (X)

is lower semicontinuous with respect to the weak* convergence of measures.

In several applications of optimal control in opinion dynamics and crowd
motion (see [8, 19]), the functional to be minimized consists of a Lagrangian
term of the form

J1(ν, ρ) =

∫ T

0
L
(
ν(t), ρ(t)

)
dt.

The Lagrangian L : MM (Ω) × P1(Ω) → R ∪ {+∞} may prescribe, for
instance, a certain mutual interaction between the measures ν and ρ, or
one can use L to model the distance to the basin of attraction of the target
configurations of the measure ρ, as in [14]. In this case, in order for J1 to be
lower semicontinuous with respect to the pointwise weak* convergence, the
lower semicontinuity of L with respect to the weak* convergence suffices.
Some interesting particular cases of the functional J1(ν, ρ) above are listed
below.

1. Our decision to let the mass of ν vary comes from the choice to allow
the optimization of the quantity of control agents, in accordance with
the goal to achieve. We can model the cost of employing a quantity ν
of agents at time t by considering the Lagrangian

L
(
ν(t), ρ(t)

)
=

∫
Ω
f(t, x) dν(t, x).

Here f : [0, T ] × Ω → [0,+∞] is a lower semicontinuous function, for
instance

f(t, x) = c(t)|x− x0|p,

where p ≥ 0, c(t) is a nonnegative integrable function, and x0 repre-
sents a sort of manpower storage room.

The addition of the term J1 with the above choice of L to the general
cost functional J can be used to penalize the mass of ν.

2. A common example is the one where we require the dynamics of the
measure ρ to satisfy a specific feature, like the collapse of one of its
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moments or marginals. An example is given by alignment models like
the Cucker-Smale one (see [14]), where one is interested in a population
of individuals ρ function of a spatial variable x ∈ Rd and a consensus or
velocity variable v ∈ Rd. The goal of a control strategy, in this case, is
to force the alignment of the group, which in term of the state variables
means that all the velocities v’s tend to coincide. This is ensured by
minimizing at every instant t and for any individual with velocity v
the square distance between v and the mean v(t) =

∫
R2d w dρ(t, x, w):∫

R2d

∣∣v − v(t)
∣∣2 dρ(t, x, v).

In more general terms, given a projection π : Rd → Rk (with k ≤ d),
then the Lagrangian L may be of the form

L
(
ν(t), ρ(t)

)
=

∫
Ω

∣∣∣∣x− ∫
Ω
y dπ#ρ(t, y)

∣∣∣∣2 dπ#ρ(t, x).

Indeed, denoting by x(t) =
∫

Ω y dπ#ρ(t, y) the center of mass of the
projection of ρ at time t, the minimization of the above Lagrangian
leads to the convergence of π#ρ(t) to the measure m(t) = δx(t). For
a similar problem in the context of the Hegselmann-Krause model for
opinion formation, see [31].

3. Another relevant particular case of the functional J1 is given by

J2(ν, ρ) =

∫ T

0

∫
C
dρ(t, x)dt (13)

where C is a given subset of Ω. By Proposition 5.1, the functional
J2 above is pointwise weakly* lower semicontinuous as soon as C is
an open set. This also happens when C is closed (which is the most
common case in optimal evacuation problems), with ∂C Lebesgue neg-
ligible, and ρ0 is in L1(Ω). Minimizing this functional corresponds to
the evacuation of ρ from the set C.

4. In the cases where a desired final configuration ρ of ρ is given, we may
use one of the following functionals

J3(ν, ρ) =

∫ T

0
W1(ρ(t), ρ) dt or J4(ν, ρ) =W1(ρ(T ), ρ)
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to force ρ(T ) to adhere to ρ. As already noticed, the W1 distance
is continuous with respect to the weak* convergence whenever the
measures have uniformly compact support.

There is a slight difference between the two functionals above. The
first one prescribes a somewhat greedy approach for the optimization
procedure, by asking that the distanceW1(ρ(t), ρ) cannot be too large
on average (in time). The second one, instead, allows a greater freedom
in the behavior of ν which is only prescribed to have a final distribution
ρ(T ) as close as possible to ρ. However, one should always be aware
that a greater liberty may translate into a more difficult numerical
implementation (since the number of degrees of freedom may grow
out of control), which is an ingredient that should play a relevant role
in the design of any control problem.

We remark here the connection with the Benamou-Brenier formulation
of transport problems [6] where the initial and the final configurations
ρ(0) and ρ(T ) are both prescribed and the kinetic energy of the system
has to be minimized.

5. The adoption of the space LipL′([0, T ];MM (Ω)) is made for the sake
of generality. However, it is often the case that the dynamics of ν
possesses some extra structure which let ν belong to a narrower subset
of LipL′([0, T ];MM (Ω)). For instance, when ν represents a conserved
quantity in time, we already noticed that its evolution can be described
by means of a continuity equation like

∂ν

∂t
(t, x) = −divx

((
v(t, x) + u(t, x)

)
ν(t, x)

)
,

where only the component u of the external velocity field is optimized
(specifically, v could be the drift depending on the interaction with
the other agents, like in (5), hence u stands for the optimal strategy
subject to the underlying dynamics). We come back to this case in
Section 6. Several families of PDEs (Fokker-Planck, Vlasov, etc. . .)
determine subsets B ⊆ LipL′([0, T ];MM (Ω)) which are closed under
the pointwise weak* convergence of measures: in all those cases, the
functional

J5(ν, ρ) = χB(ν, ρ)

is lower semicontinuous with respect to this topology, and can be used
in the context of Problem 1.
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6. Problem 1 does not prescribe any constraint on the dynamics of the
control agents ν, except for its maximal speed. One way to impose
extra conditions on the curve ν can be by means of the restriction to
a closed subset of LipL′([0, T ];MM (Ω)), like the set of solutions of a
particular PDE, as argued above. This is a very powerful tool from
the modeling point of view, but it may create extra difficulties if we
want to identify the minimizers of J , unless optimality conditions are
available, as for instance in [8]. Another way to give more structure
to the dynamics of ν is to embed the desired features of it inside the
functional J , like

J6(ν, ρ) =

∫ T

0

∫
Ω2

Q(x, y) dν(t, x) dν(t, y) dt,

where Q : Rd × Rd → R is a lower semicontinuous function. The
functional J6 is clearly lower semicontinuous with respect to pointwise
weak* convergence by Proposition 5.1, and forces ν to self-interact via
the kernel Q. For instance, if we want to avoid high concentrations of
ν, we could opt for kernels like

Q(x, y) = −|x− y|p, or Q(x, y) = |x− y|−p,

while if, on the contrary, we want ν to remain as concentrated as
possible, we may consider

Q(x, y) = |x− y|p.

7. Another interesting class of functionals to model the cost of ν is given
by ∫ T

0

[∫
Ω
h
(
t, νa(t, x)

)
dx+

∑
x∈Ω

k
(
ν#(t, x)

)]
dt ,

where νa and ν# are respectively the absolutely continuous and atomic
parts of ν (hence, the sum over all x ∈ Ω reduces to the atoms x of
ν), while the function h (resp. k) is nonnegative and convex (resp.
concave), with the properties h(0) = k(0) = 0 and such that the slopes
of h at infinity and of k at 0 are +∞. This class of functionals over the
measures has been studied in [9], where it is proved their weak* lower
semicontinuity. To this class belongs for instance the Mumford-Shah
functional (see [24]), that can be obtained by taking

h(s) = s2, k(s) = 1R\{0}(s) =

{
0 if s = 0

1 otherwise.
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Another interesting choice of the functions h and k is

h(s) = χ{0}(s) =

{
0 if s = 0

+∞ otherwise,
k(s) = 1R\{0}(s),

which gives

J7(ν, ρ) =

∫ T

0
H0
(
ν(t)

)
dt,

being H0 the counting measure. This functional has a drastic effect:
it forces the measure ν to be discrete at every instant, i.e.,

ν(t) =
N∑
i=1

δxi(t), for some xi(t) ∈ Ω,

and minimizes the number N of atoms it is supported on. However,
the points xi(t) cannot vary “too wildly” on Ω in time since ν ∈
LipL′([0, T ];MM (Ω)): indeed, belonging to this class implies that, for
any t, s ∈ [0, T ], the atoms xi(t) of ν(t, ·) and yj(s) of ν(s, ·) must
satisfy

d

 N∑
i=1

δxi(t),
N ′∑
j=1

δyj(s)

 ≤ L′|t− s|.
6 A control problem in pedestrian dynamics

In this section, we consider a rather natural control problem arising in pedes-
trian dynamics, that can be reformulated as Problem 1 with a specific choice
of the cost functional J .

Problem 2. Given ρ0, ν0 ∈ Pc(Ω), C ⊂ Ω, and K1,K2, H1, H2 ∈ Adm`,
solve

min
u∈Adm`

∫ T

0

(∫
C
dρ(t, x) +

∫
Ω
|u(t, x)|p dx

)
dt

subject to

∂ρ

∂t
(t) = −divx

((
(K1 ∗ ρ)(t) + (H1 ∗ ν)(t)

)
ρ(t)

)
for t ∈ (0, T ],

∂ν

∂t
(t) = −divx

((
(K2 ∗ ρ)(t) + (H2 ∗ ν)(t) + u(t)

)
ν(t)

)
for t ∈ (0, T ],

ρ(0) = ρ0,

ν(0) = ν0.

(14)
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In Problem 2, the two populations ρ and ν are interacting via the ker-
nels K1,K2, H1, H2. In addition, the population ν is trying to optimize
its trajectory (the function u) in order to reach the goal encoded in the
cost functional. As already discussed in the previous section, the goal is
to evacuate the measure ρ from the set C, while at the same time penal-
izing too high values of the optimized velocity field u. This problem has
been treated extensively, especially under the further constraint for ν to be
atomic, in [1, 5, 19, 20]. Notice that, since the control mass ν is subjected to
a continuity equation, its mass remains constant, and hence we may assume
ν ∈ P1(Ω), instead of the more general ν ∈MM (Ω).
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Figure 1: An instance of Problem 2 where ν is the empirical measure cen-
tered on 3 atoms. The area to be evacuated is R2 except one point, repre-
senting the exit. (Courtesy of the authors of [1]).

To help the reader visualize the setting of Problem 2, in Figure 1 we
report the control strategy adopted by a measure ν with three atoms (in
green) to let a continuous mass ρ (in red) evacuate the area via the exit
located at the center of the circle. The exit is only visible to the agents
ρ inside the circle, while ν knows the entire environment, instead. In this
situation, the interaction kernels are all repulsive at short-range, since ρ
and ν model pedestrians which cannot overlap in space. Therefore, if all the
mass ρ accumulates around the exit, a big queue would be formed due to
self-repulsion. The mass ν avoids this by letting one of its atom wait before
helping the portion of ρ surrounding him: only after part of ρ is already
evacuated this atom moves and leads its portion of ρ to the exit. In this
way the congestion is much lower and the evacuation faster.

In order to establish the well-posedness of Problem 2, we rewrite it as

min
{
J (ν, ρ, u) + χA(ν, ρ, u) :

(ν, ρ, u) ∈ LipL′([0, T ];P1(Ω))× LipL([0, T ];P1(Ω))×Adm`

}
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where

J (ν, ρ, u) =

∫ T

0

(∫
C
dρ(t, x) +

∫
Ω
|u(t, x)|p dx

)
dt,

and

A =
{

(ν, ρ, u) ∈ LipL′([0, T ];P1(Ω))× LipL([0, T ];P1(Ω))×Adm` :

(ν, ρ, u) satisfies (14)
}
.

Notice that Adm` is compact with respect to convergence in the sense of
(6) (see Theorem 3.2). Therefore, if we define τ to be the topology on the
product space

Y := LipL′([0, T ];P1(Ω))× LipL([0, T ];P1(Ω))×Adm`

associated with the pointwise weak* topology on (ρ, ν) and with the conver-
gence (6) on u, then, by Theorem 3.2 and Lemma 4.2 it follows that 〈Y, τ〉
is a compact topological space. By Remark 4.4, the next two Lemmas are
sufficient to conclude that Problem 2 admits a solution.

Lemma 6.1. The set A is a closed subset of Y with respect to the topology
τ .

Proof. Take (νn, ρn, un)n∈N ⊂ A such that (νn(t), ρn(t))→ (ν(t), ρ(t)) weakly*
for every t ∈ [0, T ] and un → u in the sense of (6). Very much likely as in the
proof of Lemma 4.1, we need to show that for every φ ∈ C∞0 ([0, T ]; C∞b (Ω))
it holds ρ(0) = ρ0 and∫ T

0

∫
Ω

(
∂φ

∂t
(t, x) +

(
(K1 ∗ ρ)(t, x) + (H1 ∗ ν)(t, x)

)
· ∇φ(t, x)

)
dρ(t, x) dt = 0,

as well as ν(0) = ν0 and∫ T

0

∫
Ω

(
∂φ

∂t
(t, x)+

(
(K2 ∗ ρ)(t, x)+(H2 ∗ ν)(t, x)+u(t, x)

)
·∇φ(t, x)

)
dν(t, x)dt = 0.

Using the same argument as in the proof of Lemma 4.1, we can prove that
the integrals above are limit as n→∞ of the same integrals with νn, ρn, un
in place of ν, ρ, u, the only exception being the limit

lim
n→∞

∫ T

0

∫
Ω
un(t, x)·∇φ(t, x) dνn(t, x) dt =

∫ T

0

∫
Ω
u(t, x)·∇φ(t, x) dν(t, x) dt.

However, this limit is a consequence of (7), since the sequence (un)n∈N
belongs to Adm`.
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Lemma 6.2. The functional J is lower semicontinuous with respect to the
product topology τ .

Proof. From (13), we know that the functional J (·, ·, u) is semicontinuous in
the space LipL′([0, T ];P1(Ω))×LipL([0, T ];P1(Ω)) for all u ∈ Adm`. Hence,
if we show that the term ∫ T

0

∫
Ω
|u(t, x)|p dx dt, (15)

is lower semicontinuous in Adm` with respect to the convergence (6), the
statement is proved. However, it suffices to observe that, by Theorem 3.2,
inequality (8) holds for any Lipschitz function ψ. Therefore, if R > 0 is such
that Ω ⊆ B(0, R) and we denote by Ld the Lebesgue measure on Rd, then
by setting

ψ(x) =

{
|x|p if x ∈ B(0, R),

Rp otherwise,

and

µn(t) =
1

Ld(Ω)
Ld, for every n ∈ N and t ∈ [0, T ],

the lower semicontinuity of (15) is a direct consequence of (8).

7 Concluding remarks

In this paper we addressed the well-posedness of several optimal control
problems with Vlasov-type PDE constraints. We first highlighted several
crucial features of such PDEs, like the uniform compactness of the support of
the trajectories and their smoothness, properties which were then exploited
to show the existence of solutions to Problem 1. Several applications of this
result were shown by a list of cost functionals falling into our framework,
which eventually led us to establish the well-posedness of an evacuation
problem encountered in pedestrian dynamics.

A future research direction would be to try to weaken the regularity of
the PDE constraints in order to see if our strategy still works. In partic-
ular, it could be of interest to try to weaken the regularity assumptions of
the class of admissible kernels Adm`, allowing for the possibility of nons-
moothness in space given by singularities, see for instance [17]. It is indeed
clear that the closedness properties of our PDE constraints are likely way
stronger than necessary. In fact, while the dynamics underlying the control
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problem is closed under uniform convergence of the trajectories with respect
to the Wasserstein distance (see Lemma 4.1), what is needed in the proof of
Theorem 4.3 is simply the pointwise weak* convergence.

Concerning the possibility of enlarging the list of functionals presented
in Section 5, an interesting cost functional that was not included in our
analysis is given by

J (ν, ρ) =

∫ T

0

∣∣∣∣ ∂∂t
∫

Ω
dν(t, x)

∣∣∣∣ dt.
This functional penalizes the change of the mass of ν in time, and appears
in contexts where hiring control agents after the dynamics has started is
costlier than doing it before. Another functional of interest is

J (ν, ρ) =

∫ T

0
|ν ′(t)| dt,

where |ν ′(t)| stands for the d-metric derivative of ν at time t. The rela-
tionship between the above functional and the `p–cost (15) whenever ν is
subjected to a continuity equation like in (14) is still unclear.

The development of numerical methods for multi-population optimal
control problems is a topic that originated a large literature in the last
years. Besides the well-established methodology of the discretization of PDE
constrained optimal control problems by means of finite element methods,
mainly applied for elliptic and parabolic type of equations (see for instance
[26]), a particularly promising approach is based on their kinetic description
using Boltzmann models, see [2]. In [1], the implementation of such meth-
ods to solve a control problem similar to Problem 2 successfully produced
nontrivial optimal strategies, one of which was shown in Figure 1. It would
be of interest to address in future works the feasibility of these numerical
methods for different cost functionals, like those appearing in Section 5.
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A Well-posedness and regularity estimates for (4)

The existence of solutions of system (4) is deeply interwined with that of its
discretized counterpart

ẋi(t) =
1

N

N∑
j=1

K
(
t, xi(t)− xj(t)

)
+ f

(
t, xi(t)

)
xi(0) = xN0,i

i = 1, . . . , N, (16)

as the following preliminary result shows.

Proposition A.1. Fix N ∈ N and T > 0. Let (xN1 , . . . , x
N
N ) : [0, T ]→ RdN

be a solution of system (16) with initial datum (xN0,1, . . . , x
N
0,N ) ∈ RdN . Then

the empirical measure-valued curve ρN : [0, T ]→ P1(Rd) defined as

ρN (t) =
1

N

N∑
i=1

δxNi (t), for all t ∈ [0, T ],

is a solution of (4) with initial datum

ρN0 =
1

N

N∑
i=1

δxN0,i
.

Proof. Notice that, for all t ∈ [0, T ] and for all φ ∈ C∞0 ([0, T ]; C∞b (Ω)), it
holds

d

dt
〈φ(t, ·), ρN (t)〉 =

1

N

N∑
i=1

d

dt
φ(t, xNi (t))

=
1

N

N∑
i=1

(
∂φ

∂t
(t, xNi (t)) + ẋNi (t) · ∇φ(t, xNi (t))

)
,

where 〈·, ·〉 denotes the duality pairing between measures and continuous
functions. By directly applying the expression of ẋNi (t) in (16) and integrat-
ing between 0 and t, we obtain

〈φ(t, ·), ρN (t)〉 − 〈φ(0, ·), ρN0 〉 =

∫ t

0

d

ds
〈φ(s, ·), ρN (s)〉ds

=

∫ t

0

∫
Rd

(
∂φ

∂s
(s, x)+

(
(K ∗ ρN )(s, x)+f(s, x)

)
·∇φ(s, x)

)
dρN (s, x)ds.

Since by assumption φ(T, ·) = φ(0, ·) ≡ 0, this shows that ρN is a solution
of (4) with initial datum ρN0 .
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The following result shows that whenever K and f are admissible, solu-
tions of system (16) exist and are unique. Its proof is standard, but we report
it to show the independence of the result with respect to the discretization
parameter N ∈ N, which plays a crucial role in Theorem 3.3.

Lemma A.2. Fix T > 0, ` ∈ L1(0, T ), and K, f ∈ Adm`([0, T ] × Rd;Rd).
Suppose that, for every N ∈ N, xN0,1, . . . , x

N
0,N ∈ B, for some bounded

set B. Then the system (16) has a unique absolutely continuous solution
(xN1 , . . . , x

N
N ) : [0, T ]→ RdN in the Carathéodory sense, see [18]. Moreover,

there exist R,L > 0 depending only on T,B, ` (and thus independent of N)
such that, for every N ∈ N and i = 1, . . . , N , it holds

• |xNi (t)| ≤ R for every t ∈ [0, T ];

• |xNi (t)− xNj (s)| ≤ L
∫ t

s
`(θ) dθ for every t, s ∈ [0, T ].

Proof. We begin the proof by showing that, if K, f ∈ Adm`([0, T ]×Rd;Rd)
then for any N ∈ N the function

FN (t, x1, . . . , xN )=

(
1

N

N∑
j=1

K(t, x1−xj)+f(t, x1), . . . ,
1

N

N∑
j=1

K(t, xN−xj)+f(t, xN )

)

belongs to Admγ([0, T ] × RdN ;RdN ) for some γ ∈ L1(0, T ). Indeed, the
function FN is Carathéodory by definition. Now, fix x = (x1, . . . , xN ) and
y = (y1, . . . , yN ) ∈ RdN . It holds

|FN (t, x)− FN (t, y)| ≤
N∑
i=1

1

N

N∑
j=1

∣∣K(t, xi−xj)−K(t, yi−yj)
∣∣+∣∣f(t, xi)−f(t, yi)

∣∣
≤ `(t)

N

N∑
i=1

N∑
j=1

∣∣xi − xj − yi + yj
∣∣+ `(t)

N∑
i=1

∣∣xi − yi∣∣
≤ 3`(t)

N∑
i=1

∣∣xi − yi∣∣
≤ 3
√
N`(t)|x− y|,

where in the first inequality we estimated the `2-norm from above by the
`1-norm, and in the last one we estimated the `1-norm from above by the
`2-norm times

√
N . A similar computation shows that

|FN (t, x)| ≤ 3N`(t)(1 + |x|).
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Therefore FN ∈ Admγ([0, T ] × RdN ;RdN ) for γ = 3N` ∈ L1(0, T ), and a
usual Cauchy-Lipschitz argument let us conclude that, for every N ∈ N,
system (16) has a unique Carathéodory solution (xN1 , . . . , x

N
N ) : [0, T ] →

RdN .
Let us now fix N ∈ N and estimate the growth of |xNi (t)| for i = 1, . . . , N .

Integrating xNi (t) in time and taking the norm we obtain

|xNi (t)| ≤ |xN0,i|+
∫ t

0
|ẋNi (s)| ds

≤ |xN0,i|+
∫ t

0

 1

N

N∑
j=1

∣∣K(t, xNi (t)− xNj (t)
)∣∣+

∣∣f(t, xNi (t)
)∣∣ ds

≤ |xN0,i|+
∫ t

0
`(s)

2 + 2|xNi (s)|+ 1

N

N∑
j=1

|xNj (s)|

 ds.

Set qN (t) := maxj=1,...,N |xNj (t)|. Then, the inequalities above imply

qN (t) ≤ qN (0) +

∫ t

0
`(s)

(
2 + 3qN (s)

)
ds.

Since xN0,i ∈ B, from Gronwall’s lemma we obtain

qN (t) ≤

(
δ(B) + 2

∫ t

0
`(s) ds

)
exp

(
3

∫ t

0
`(s) ds

)
,

where δ(B) is defined as in (12). Therefore, |xNj (t)| ≤ R where

R =

(
δ(B) + 2

∫ T

0
`(s) ds

)
exp

(
3

∫ T

0
`(s) ds

)
. (17)

This implies that, for all N ∈ N and i = 1, . . . , N , we have

|ẋNi (t)| ≤ 1

N

N∑
j=1

∣∣K(t, xNi (t)− xNj (t)
)∣∣+

∣∣f(t, xNi (t)
)∣∣

≤ `(t)

2 + 2|xNi (t)|+ 1

N

N∑
j=1

|xNj (t)|


≤ (2 + 3R)`(t),
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which, integrating between s and t implies

|xNi (t)− xNi (s)| ≤ (2 + 3R)

∫ t

s
`(θ) dθ.

Setting L := 2 + 3R, the above inequality gives us the uniform continuity of
xN with modulus of continuity uniform in N given by

ω(t, s) = L

∫ t

s
`(θ) dθ, (18)

which concludes the proof.

We now establish the existence and uniqueness of solutions of system (4).
Informally, to do so we consider the solutions (xN1 , . . . , x

N
N ) of the discrete

convolution-type ODE systems (16), write them in the form of empirical
measures

ρN (t) =
1

N

N∑
i=1

δxNi (t), for all t ∈ [0, T ],

and finally take the limit asN →∞ in the Wasserstein space of probabilities.
This procedure, also known as mean-field limit, allows us to extend the
results obtained in Lemma A.2 to solutions of (4).

We first need a preliminary estimate, a variant of which is Lemma 4.7
of [13].

Lemma A.3. Fix T > 0 and K ∈ Adm`([0, T ] × Rd;Rd), and let µ1, µ2 :
[0, T ] → Pc(Rd) be two continuous maps with respect to W1 satisfying for
some R > 0

supp(µi(t)) ⊆ B(0, R), for every t ∈ [0, T ], i = 1, 2. (19)

Then

‖(K∗µ1)(t, ·)−(K∗µ2)(t, ·)‖L∞(Rd) ≤ `(t)W1(µ1(t), µ2(t)) for every t ∈ [0, T ].

Proof. Fix t ∈ [0, T ] and take π ∈ Γo(µ1(t), µ2(t)). Since the marginals of π
are by definition µ1(t) and µ2(t), it follows

(K ∗ µ1)(t, x)−(K ∗ µ2)(t, x)

=

∫
B(0,R)

K(t, x− y) dµ1(t, y)−
∫
B(0,R)

K(t, x− z) dµ2(t, z)
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=

∫
B(0,R)2

(
K(t, x− y)−K(t, x− z)

)
dπ(y, z).

By hypothesis (19) and the `-admissibility of K, we have∣∣(K ∗ µ1)(t, x)− (K ∗ µ2)(t, x)
∣∣ ≤ ∫

B(0,R)2

∣∣K(t, x− y)−K(t, x− z)
∣∣ dπ(y, z)

≤ `(t)
∫
B(0,R)2

|y − z| dπ(y, z)

= `(t)W1(µ1(t), µ2(t)),

which concludes the proof.

We are finally ready to prove Theorem 3.3.

Proof of Theorem 3.3. For every N ∈ N, let xN0,1, . . . , x
N
0,N be such that the

empirical measure

ρN0 =
1

N

N∑
i=1

δxN0,i

tends to ρ0 weakly*, hence W1(ρ0, ρ
N
0 ) → 0 as N → ∞. For every N ∈ N,

consider now the unique solution xN = (xN1 , . . . , x
N
N ) of system (16) with

initial datum (xN0,1, . . . , x
N
0,N ), and denote by

ρN (t) =
1

N

N∑
i=1

δxNi (t), for every t ∈ [0, T ],

the empirical measure curve supported on the trajectories of xN . From
Proposition A.1 follows that ρN is the solution of (4) with initial datum ρN0 .

By Lemma A.2, the elements of the sequence (ρN )N∈N ⊂ C([0, T ];P1(B(0, R)))
have support uniformly contained in the ball B(0, R), where R is given by
(17), and they are uniformly continuous with modulus of continuity ω given
by (18) uniform in N .

Hence the following holds:

• (ρN )N∈N is equicontinuous and is contained in a closed subset of C([0, T ];P1(B(0, R))),
because of the uniform modulus of continuity;

• for every t ∈ [0, T ], the sequence (ρN (t))N∈N is relatively compact
in P1(B(0, R)) equipped with the W1 metric. This holds because
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(ρN (t))N∈N is a tight sequence, sinceB(0, R) is compact, and hence rel-
atively compact with respect to the weak* convergence due to Prokhorov’s
Theorem. By Proposition 7.1.5 of [3] and the uniform integrability of
the first moments of the family (ρN (t))N∈N follows the relative com-
pactness also in the metric space (P1(B(0, R)),W1).

Therefore, we can apply the Ascoli-Arzelá Theorem for functions with values
in a metric space to infer the existence of a subsequence (ρNk)k∈N of (ρN )N∈N
such that

lim
k→∞

W1(ρNk(t), ρ(t)) = 0 uniformly for a.e. t ∈ [0, T ],

for some uniformly continuous curve ρ ∈ C([0, T ];P1(B(0, R))), again with
ω as modulus of continuity. The property that W1(ρN0 , ρ0)→ 0 as N →∞
now obviously implies ρ(0) = ρ0.

We are now left with verifying that ρ is a solution of (4). From the
computations in Proposition A.1 follows that for all t ∈ [0, T ] and for all
φ ∈ C∞0 ([0, T ]; C∞b (Ω)) it holds

〈φ(t, ·), ρN (t)〉 − 〈φ(0, ·), ρN0 〉 =

∫ t

0

d

ds
〈φ(s, ·), ρN (s)〉ds

=

∫ t

0

∫
Rd

(
∂φ

∂s
(s, x)+

(
(K ∗ ρN )(s, x)+f(s, x)

)
·∇φ(s, x)

)
dρN (s, x)ds.

We now want to prove that

lim
N→∞

∫ t

0

∫
Rd

(
∂φ

∂s
(s, x) +

(
(K ∗ ρN )(s, x) + f(s, x)

)
· ∇φ(s, x)

)
dρN (s, x)ds

=

∫ t

0

∫
Rd

(
∂φ

∂s
(s, x) + ((K ∗ ρ)(s, x) + f(s, x)) · ∇φ(s, x)

)
dρ(s, x)ds.

To do so, notice that by Lemma A.3 and the uniformW1 convergence of the
ρN to ρ, it holds∫ t

0

∫
Rd

∣∣((K ∗ ρN )(s, x)− (K ∗ ρ)(s, x)
)
· ∇φ(s, x)

∣∣ dρ(s, x)ds

≤
∫ t

0
`(s)W1(ρN (s), ρ(s))

[∫
Rd

|∇φ(s, x)|dρ(s, x)

]
ds

≤ sup
t∈[0,T ]

W1(ρN (t), ρ(t))

∫ t

0
`(s)

[∫
Rd

|∇φ(s, x)|dρ(s, x)

]
ds

→ 0 as N →∞,
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since ` ∈ L1(0, T ), ∇φ is bounded and ρ has compact support.
Therefore, since by assumption φ(T, ·) = φ(0, ·) ≡ 0, we obtain from the

dominated convergence theorem∫ T

0

∫
Rd

(
∂φ

∂s
(s, x) + ((K ∗ ρ)(s, x) + f(s, x)) · ∇φ(s, x)

)
dρ(s, x)ds = 0,

which proves that ρ is a solution of (4) with initial datum ρ0.
The uniqueness of ρ is a consequence of Theorem 3.10 of [13].

References

[1] G. Albi, M. Bongini, E. Cristiani and D. Kalise, Invisible control of self-
organizing agents leaving unknown environments, to appear in SIAM
J. Appl. Math. (2016).

[2] G. Albi, M. Herty and L. Pareschi, Kinetic description of optimal con-
trol problems and applications to opinion consensus, Commun. Math.
Sci. 13 (2015) 1407–1429.

[3] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces
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