
1234

Fast Ranking with Additive Ensembles of Oblivious and
Non-Oblivious Regression Trees

Domenico Dato, Tiscali Italia S.p.A.
Claudio Lucchese, ISTI–CNR
Franco Maria Nardini, ISTI–CNR
Salvatore Orlando, Ca’ Foscari University of Venice
Raffaele Perego, ISTI–CNR
Nicola Tonellotto, ISTI–CNR
Rossano Venturini, University of Pisa

Learning-to-Rank models based on additive ensembles of regression trees have been proven to be very
effective for scoring query results returned by large-scale Web search engines. Unfortunately, the computa-
tional cost of scoring thousands of candidate documents by traversing large ensembles of trees is high. Thus,
several works have investigated solutions aimed at improving the efficiency of document scoring by exploit-
ing advanced features of modern CPUs and memory hierarchies. In this paper, we present QUICKSCORER,
a new algorithm that adopts a novel cache-efficient representation of a given tree ensemble, it performs an
interleaved traversal by means of fast bitwise operations, and also supports ensembles of oblivious trees.
An extensive and detailed test assessment is conducted on two standard Learning-to-Rank datasets and
on a novel very-large dataset we made publicly available for conducting significant efficiency tests. The ex-
periments show unprecedented speedups over the best state-of-the-art baselines ranging from 1.9x to 6.6x.
The analysis of low-level profiling traces shows that QUICKSCORER efficiency is due to its cache-aware ap-
proach both in terms of data layout and access patterns, and to a control flow that entails very low branch
mis-prediction rates.

CCS Concepts: •Information systems → Learning to rank; Retrieval efficiency;

Additional Key Words and Phrases: Learning to Rank, Additive Ensembles of Regression Trees, Document
Scoring, Efficiency, Cache-awareness

ACM Reference Format:
Domenico Dato, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Nicola Tonel-
lotto, Rossano Venturini. 2015. Fast Ranking with Additive Ensembles of Oblivious and Non-Oblivious Re-
gression Trees ACM Trans. Inf. Syst. 9, 4, Article 1234 (December 2016), 32 pages.
DOI: 0000001.0000001

Author’s addresses:
D. Dato, Tiscali Italia S.p.A. – loc. Sa Illetta SS 195, Km 2,300 - 09123 Cagliari (Italy). E-mail:
ddato@tiscali.com.
C. Lucchese, F. M. Nardini, R. Perego, N. Tonellotto, High Performance Computing Laboratory, ISTI–CNR –
Via G. Moruzzi, 1 - 56124, Pisa (Italy). E-mail: {c.lucchese, f.nardini, r.perego, n.tonellotto}@isti.cnr.it.
S. Orlando, Dept. of Env. Science, Informatics, and Statistics – Ca’ Foscari University of Venice – Via Torino,
155 – 30172, Venezia Mestre (Italy). E-mail: orlando@unive.it.
R. Venturini, Dept. of Computer Science, University of Pisa – Largo B. Pontecorvo, 3 - 56127 Pisa (Italy).
e-mail: rossano.venturini@unipi.it.
This paper is an extension of [Lucchese et al. 2015]; it adds an additional scoring algorithm for ensembles
of obvious trees, a blockwise version of the scoring algorithm, a new large-scale learning to rank dataset as
well as results from experiments on this new dataset.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM. 1046-8188/2016/12-
ART1234 $15.00
DOI: 0000001.0000001

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

1234:2 Dato D., Lucchese C., Nardini F.M., Orlando S., Perego R., Tonellotto N., and Venturini R.

1. INTRODUCTION
Learning-to-Rank (LtR) has emerged in the last years as the most effective solution to
the fundamental problem of ranking the query results returned by an Information Re-
trieval (IR) system [Liu 2009; Burges 2010]. A LtR algorithm learns a scoring function
from a ground-truth set of training examples, basically a collection of queries Q, where
each query q ∈ Q is associated with a set of assessed documents D = {d0, d1, . . .}. Each
query-document pair (q, di) is in turn represented by a set of numerical features, i.e.,
a set of heterogeneous, possibly highly discriminative, ranking signals. Moreover, each
pair is labeled by a relevance judgment yi, usually a positive integer in a fixed range,
stating the degree of relevance of the document for the query. These labels induce a par-
tial ordering over the assessed documents, thus defining their ideal ranking [Järvelin
and Kekäläinen 2002]. The learned scoring function aims to approximate such ideal
ranking.

The ranking process is particularly challenging for large-scale Web retrieval sys-
tems. Besides the demanding requirements for high quality results in response to
user queries, Web retrieval systems have also to deal with strict efficiency con-
straints, which are not so common in other ranking-based applications. Indeed, two
of the most effective LtR-based rankers are based on additive ensembles of regression
trees, namely GRADIENT-BOOSTED REGRESSION TREES (GBRT) [Friedman 2001]
and LAMBDA-MART (λ-MART) [Wu et al. 2010]. In the case of large-scale Web re-
trieval systems, where huge training sets are available and hundreds of features are
used to represent query-document pairs, the best ranking quality is achieved with en-
sembles of (tens of) thousands regression trees. All the trees in these ensembles have
to be traversed at scoring time for each candidate document, thus impacting on the
response time and throughput of query processing. In order to limit this impact, LtR-
based scorers are embedded in complex two-stage ranking architectures [Cambazoglu
et al. 2010; Wang et al. 2011], thus preventing such expensive scorers from being ap-
plied to all the candidate documents possibly matching a user query. The first stage
retrieves from the inverted index a relatively large set of possibly relevant documents
matching the user query. This phase is aimed at optimizing the recall and is usually
carried out by using a simple and fast ranking function, e.g., BM25 combined with
some document-level scores [Robertson and Zaragoza 2009]. The expensive LtR-based
scorers, optimized for high precision, are exploited in the second stage to re-rank the
relatively smaller set of candidate documents coming from the first stage. In this two-
stage architecture, the time budget available to re-rank the candidate documents is
limited, due to the incoming rate of queries and the users’ expectations in terms of re-
sponse time. Therefore, devising techniques and strategies to speed up document rank-
ing without losing in quality is definitely an urgent research topic in Web search [Viola
and Jones 2004; Cambazoglu et al. 2010; Segalovich 2010; Ganjisaffar et al. 2011; Xu
et al. 2012]. Moreover, also the ranking quality can benefit from speeding up the scor-
ing process since, within the same time budget, more candidates selected by the first
stage can be evaluated (i.e., higher recall) or more complex and ranking models ex-
ploited (i.e., higher precision).

Strongly motivated by similar considerations, the IR community has started to in-
vestigate low-level optimizations to reduce the scoring time of the most effective LtR
rankers based on ensembles of regression trees, by dealing with advanced features of
modern CPUs and memory hierarchies [Asadi et al. 2014; Tang et al. 2014]. Within
this research line, we recently proposed QUICKSCORER (QS), a new algorithm to score
documents with ensembles of regression trees [Lucchese et al. 2015]. The QS algorithm
remarkably outperforms previous proposals thanks to a novel representation of the re-
gression trees, allowing a fast interleaved traversal of the ensemble by using efficient

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

Fast Ranking with Additive Ensembles of Oblivious and Non-Oblivious Regression Trees 1234:3

logical bitwise operations. The performance benefits of QS are unprecedented, due to
a cache-aware approach, both in terms of data layout and access patterns, and to a
program control flow that entails very low branch mis-prediction rates. In this paper
we extend our previous work with the following novel and unpublished contributions:

— a variant of QUICKSCORER explicitly designed for ensembles of oblivious trees, i.e.,
balanced trees where, at each level, all the branching nodes test the same feature-
threshold pair [Langley and Sage 1994]. Oblivious trees significantly change the
scoring process, thus requiring deep adaptation of the QS algorithm. Neverthe-
less, ensemble of oblivious trees are a very effective and efficient ranking solution
adopted, for example, by the largest Russian Web search engine Yandex [Segalovich
2010; Gulin et al. 2011];

— an optimized block-wise version of QS for scoring large ensembles named
BLOCKWISE-QS (BWQS). BWQS splits the set of candidate documents and the
set of tree ensemble in disjoint groups that entirely fit in cache memory. A new op-
timization technique is introduced that allows BWQS to restructure some blocks of
trees in order to further reduce the number of operations performed at scoring time.

— a novel, very large, publicly available LtR dataset, that overcomes the limitations
of previously available datasets, thus allowing researchers to conduct significant
efficiency tests on both learning and scoring phases of LtR. The dataset contains
33,018 queries and 10,454,629 query-document pairs, while each query-document
pair is represented by 220 numerical features and is labeled with relevance judg-
ments ranging from 0 (irrelevant) to 4 (perfectly relevant). The dataset is made
available by TISCALI ITALIA S.p.A, an Italian company running the web search
engine ISTELLA (http://www.istella.it).

— an extensive experimental assessment conducted on the above and other publicly
available LtR datasets, with several tree-based ranking models, based on both obliv-
ious and non-oblivious trees. The tested models differ in the size of the ensembles
and the maximum number of tree leaves.

The results of the new extensive experimental assessment conducted show that QS
and BWQS achieve significant speedups over the best state-of-the-art competitors,
ranging from 1.9x to 6.6x. In order to explain the unprecedented performance of QS, we
evaluate and discuss in depth the results of low-level profiling that uses CPU counters
to measure important performance events, such as number of instructions executed,
cache-misses suffered, or branches mis-predicted.

The rest of the paper is structured as follows. Section 2 provides background infor-
mation and discusses the related work, while Section 3 details the QS algorithm and
its features. Section 4 discusses the implementation of a variant of the QS algorithm
supporting ensembles of oblivious regression trees. Then, Section 5 details the experi-
mental settings and reports on the results of our comprehensive evaluation. Section 6
proposes a cache-friedly block-wise variant of QS. Finally, we conclude our investiga-
tion in Section 7 by reporting some conclusions and suggestions for future research.

2. BACKGROUND AND RELATED WORK
GRADIENT-BOOSTED REGRESSION TREES (GBRT) [Friedman 2001] and LAMBDA-
MART (λ-MART) [Wu et al. 2010] are two of the most effective LtR algorithms. The
GBRT algorithm builds a model by approximating the root mean squared error on a
given training set. This loss function makes GBRT a point-wise LtR algorithm: query-
document pairs are exploited independently at learning time, and GBRT is trained to
guess the relevance label associated with each of these pairs. The λ-MART algorithm
improves over GBRT by optimizing list-wise IR measures like NDCG [Järvelin and
Kekäläinen 2002], involving the whole list of documents associated with each query.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

1234:4 Dato D., Lucchese C., Nardini F.M., Orlando S., Perego R., Tonellotto N., and Venturini R.

l5e()

n0

n1 n2

n3 n4l0 l1

l2 l3 l4

x[2] � �0

x[0] � �1 x[3] � �2

x[0] � �3 x[2] � �4

Fig. 1: A decision tree.

Thus, λ-MART aims at finding a scoring function that generates an ordering of doc-
uments as close as possible to the ideal ranking, even if the final guessed scores may
differ from the relevance labels of the query-document pairs in the ground truth. At
scoring times, there is no difference between λ-MART and GBRT, since they both gen-
erate a large ensemble of weighted regression trees. For both algorithms it is possible
to impose some constraints on the structure of the weak tree learners to include in the
ensemble. The most common one is to limit the maximum number of leaves of each
tree. We also investigate a specific restriction on the structure of such trees, according
to which these trees are called oblivious [Langley and Sage 1994], where all the nodes
at the same level of each (balanced) tree must perform an identical Boolean test.

In this paper, we discuss algorithms and optimizations for scoring efficiently doc-
uments by means of ensembles of regression trees, both non-oblivious and oblivious
one, such as those produced by λ-MART and GBRT. Indeed, the findings of this work
apply beyond LtR, and in any application where large ensembles of decision trees are
used for classification or regression tasks. In the following we introduce the adopted
notation and discuss related works.

Ensembles of non-oblivious regression trees for document scoring
Each query-document pair (q, di) is represented by a real-valued vector x of features,
namely x ∈ R|F| where F = {f0, f1, . . .} is the set of features characterising the doc-
ument di and the user query q, and x[i] stores feature fi. Let T be an ensemble of
trees representing the ranking model. Each tree T = (N,L) in T is a decision tree
composed of a set of internal or branching nodes N = {n0, n1, . . .}, and a set of leaves
L = {l0, l1, . . .}. Each n ∈ N is associated with a Boolean test over a specific feature
with id φ, i.e., fφ ∈ F , and a constant threshold γ ∈ R. This test is in the form x[φ] ≤ γ.
Each leaf l ∈ L stores the prediction l.val ∈ R, representing the potential contribution
of tree T to the final score of the document.

For a given document x, all the nodes whose Boolean conditions evaluate to FALSE
are called false nodes, and true nodes otherwise. The scoring of a document requires the
traversing of all the trees in the ensemble, starting from their root nodes. If a visited
node is a false one, then the right branch is taken, and the left branch otherwise.
The visit continues recursively until a leaf node is reached, where the value of the
prediction is returned. Such leaf node is named exit leaf and denoted by e(x) ∈ L.
Therefore, given a vector x, the contribution to the overall prediction by a tree T ∈ T

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

Fast Ranking with Additive Ensembles of Oblivious and Non-Oblivious Regression Trees 1234:5

is obtaining by tracing the unique path from the root of T to the exit leaf. We omit x
when it is clear from the context.

Hereinafter, we assume that nodes of T are numbered in breadth-first order and
leaves from left to right, and let φi and γi be the feature id and threshold associated
with the i-th internal node, respectively. It is worth noting that the same feature can be
involved in multiple nodes of the same tree. For example, in the tree shown in Figure 1,
the features f0 and f2 are used twice. Assuming that x is such that x[2] > γ0, x[3] ≤ γ2,
and x[0] ≤ γ3, the exit leaf e(x) of the tree in Figure 1 is l2.

The tree traversal process is repeated for all the trees of the ensemble T , denoted
by T = {T0, T1, . . .}. The score s(x) of the whole ensemble is finally computed as a
weighted sum over the contributions of each tree Th = (Nh, Lh) in T as:

s(x) =

|T |−1∑
h=0

wh · eh(x).val

where eh(x).val is the predicted value of tree Th, having weight wh ∈ R.

Efficient traversal of ensembles of non-oblivious regression trees.
A naı̈ve implementation of the tree traversal may exploit a node data structure that
stores the feature id, the threshold and the pointers to the left and right children nodes
data structures. This method is enhanced with an optimized data layout by Asadi et al.
[2014]. The resulting algorithm is named STRUCT+. This simple approach entails a
number of issues. First, the next node to be processed is known only after the test is
evaluated. As the next instruction to be executed is not known, this induces frequent
control hazards, i.e., instruction dependencies introduced by conditional branches. As
a consequence, the efficiency of a code strongly depends on the branch mis-prediction
rate [Patterson and Hennessy 2014]. Finally, due to the unpredictability of the tree
nodes visited for each scored document, the traversal has low temporal and spatial lo-
cality, generating low cache hit ratio. This is apparent when processing a large number
of documents with a large ensemble of trees, since neither the documents nor the trees
may fit in cache.

Another basic, but well performing approach is IF-THEN-ELSE. Each decision tree
is translated into a complex structure of nested if-then-else blocks (e.g., in C++). The
resulting code is compiled to generate an efficient document scorer. IF-THEN-ELSE
aims at taking advantage of compiler optimization strategies, which can potentially
re-arrange the tree ensemble traversal into a more efficient procedure. IF-THEN-ELSE
was proven to be efficient with small feature sets [Asadi et al. 2014]. However, the
algorithms suffers from control hazards, and the large size of the generated code may
lead to poor performance of the instruction cache.

Asadi et al. [2014] proposed to rearrange the computation to transform control haz-
ards into data hazards, i.e., data dependencies introduced when one instruction re-
quires the result of another. To this end, node ni of a tree stores, in addition to a
feature id φi and a threshold γi, an array idx of two positions holding the addresses of
the left and right children nodes data structures. Then, the output of the test x[φi] > γi
is directly used as an index of such array in order to retrieve the next node to be pro-
cessed. The visit of a tree of depth d is then statically un-rolled in d operations, starting

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

1234:6 Dato D., Lucchese C., Nardini F.M., Orlando S., Perego R., Tonellotto N., and Venturini R.

from the root node n0, as follows:

d steps


i← n0.idx [x[φ0] > γ0]

i← ni.idx [x[φi] > γi]
...

...
i← ni.idx [x[φi] > γi]

Leaf nodes are encoded so that the indexes in idx generate self loops, with dummy φi
and γi. At the end of the visit, the exit leaf is identified by variable i, and a look-up
table is used to retrieve the prediction of the tree.

This approach, named PRED, removes control hazards as the next instruction to be
executed is always known. On the other hand, data dependencies are not solved as
the output of one instruction is required to execute the subsequent. Memory access
patterns are not improved either, as they depend on the path along the tree traversed
by a document. Finally, PRED introduces a new source of overhead: for a tree of depth
d, even if a document reaches a leaf early, the above d steps are executed anyway.

To reduce data hazards the same authors proposed a vectorized version of the scoring
algorithm, named VPRED, by interleaving the evaluation of a small set of documents
(16 was the best setting). VPRED was shown to be 25% to 70% faster than PRED on
synthetic data, and to outperform other approaches. The same approach of PRED was
also adopted in some previous works exploiting GPUs [Sharp 2008], and a more recent
survey evaluates the trade-off among multi-core CPUs, GPUs and FPGA [Van Essen
et al. 2012].

In this work we compare against VPRED which can be considered the best perform-
ing algorithm at the state of the art. In the experimental section, we show that the
proposed QS algorithm has reduced control hazards, smaller branch mis-prediction
rates and better memory access patterns than VPRED.

Memory latency issues of scoring algorithms are tackled and analyzed by Tang et al.
[2014] and by Jin et al. [2016]. In most cases, the cache memory may be insufficient to
store the candidate documents to be scored or the set of regression trees. The authors
propose a cache-conscious optimization by splitting documents and regression trees
in blocks, such that one block of documents and one block of trees can both be stored
in cache at the same time. The scoring process thus requires to evaluate all the tree
blocks against all the document blocks. The authors applied this computational scheme
on top of both IF-THEN-ELSE and PRED, with an average improvement of about 28%
and 24% respectively. The blocking technique is indeed very general and can be used
by all algorithms. The same computational schema is applied in this work to QS in
order to improve the cache hit ratio when large ensembles are used.

Oblivious regression trees
In order to avoid overfitting, some constraints can be enforced on the structure of the
learned regression trees. For example, boosting approaches limit the depth of each tree
in the ensemble, or the number of tree leaves [Chen and Guestrin 2016]. Other meth-
ods enforce the read-once property [Kohavi 1994], according to which each feature can
be tested only once along each path from the root to a leaf. Another popular constraint
enforces the learned trees of an ensemble to be oblivious [Langley and Sage 1994], i.e.,
the trees must be balanced and all branching nodes at the same level of each tree have
to perform the same test.

In this paper, besides the ensembles of non-oblivious decision trees, we also inves-
tigate ensembles of oblivious trees. Ranking models based on such trees are used by
Yandex within their MATRIXNET LtR tool [Segalovich 2010], which was successfully

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

Fast Ranking with Additive Ensembles of Oblivious and Non-Oblivious Regression Trees 1234:7

|L| leaves

x[�0] � �0

x[�1] � �1

x[�2] � �2

x[�1] � �1

x[�2] � �2 x[�2] � �2 x[�2] � �2

Level 0

Level 1

Level 2

Fig. 2: An oblivious decision tree.

exploited during the Yahoo LtR Challenge [Gulin et al. 2011]. Formally, let T = (N,L)
be an oblivious tree of ensemble T , where T is balanced and has depth d = log2 |L|.
Given a generic level i of the tree, let x[φi] ≤ γi be the test performed by all the in-
ternal nodes at level i, where φi is the index of the feature and γi the corresponding
threshold. Therefore, the number of distinct tests occurring in the branching nodes N
in T are exactly d, and the tree can be traversed on the basis of the outcomes of these
d tests only.

Figure 2 illustrates an example of oblivious tree of depth 3 (d = log2 |L| = 3, and
thus |L| = 2d = 8). where the leaf identifiers are binary encoded from left to right, in
the range [000, 111].

We are interested in oblivious trees because the ensemble models based on these
trees can be evaluated very efficiently at scoring time. Indeed, we implemented a very
efficient algorithm as baseline for traversing such ensembles, called OBLIVIOUS. De-
spite the efficiency of OBLIVIOUS, however, we show that a variant of QS, namely QSΩ,
specifically tailored for these ensembles, outperforms OBLIVIOUS.

OBLIVIOUS takes advantage of the property that all the branching nodes at the same
depth of an oblivious tree perform the same test. Even if at scoring time we can tra-
verse an oblivious tree as a non-oblivious ones, i.e., by following for each input feature
vector x a unique path from the root to the exit leaf, OBLIVIOUS does not material-
ize and traverse the oblivious trees, thus avoiding conditional branches. Specifically,
the outcomes of the d tests are used to directly determine the binary encoding of the
identifier of the exit leaf.

For details on OBLIVIOUS and QSΩ, the reader is referred to Section 4.

Other approaches and optimizations
Unlike our QS and QSΩ algorithms that aim to devise an efficient strategy for evalu-
ating all the ensemble of trees, other approaches try to approximate the final ranking
to reduce the scoring time.

Indeed, Cambazoglu et al. [2010] proposed to early terminate the tree-based scoring
of documents that are unlikely to be ranked within the top-k results. Their work, which
applies to an ensemble of additive trees, saves scoring time by reducing the number
of tree traversals, and thus trades better efficiency for little loss in raking quality.
Although QS is thought for globally optimizing the traversal of thousands of trees, the

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

1234:8 Dato D., Lucchese C., Nardini F.M., Orlando S., Perego R., Tonellotto N., and Venturini R.

idea of early termination can be applied as well along with our method, by evaluating
some proper exit strategy after the evaluation of some subsets of the regression trees.

Wang et al. [Wang et al. 2010; Wang et al. 2010; Wang et al. 2011] deeply inves-
tigated different efficiency aspects of the ranking pipeline. In particular, Wang et al.
[2011] proposes a novel cascade ranking model, which unlike previous approaches, can
simultaneously improve both top-k ranked effectiveness and retrieval efficiency. Their
work is mainly related to the tuning of a two-stage ranking pipeline.

A different approach is to modify the learning process to build more efficient trees
by observing that hallow and balanced trees are likely to be evaluated faster [Asadi
and Lin 2013]. Asadi and Lin [2013] modify the training phase with different split
criterion and pruning strategy which provide up to a 40% reduction of the scoring cost.
Post-learning strategies aimed at simplifying a given tree ensemble were proposed by
Lucchese et al. [2016]. They show that it is possible to achieve a speed-up of a factor 2
at scoring time by removing some of the trees and tuning the weights of the remaining
trees. We note that all these approaches could be used in conjunction with QS and
QSΩ.

3. QUICKSCORER: EFFICIENT TRAVERSAL OF ENSEMBLES OF NON-OBLIVIOUS
DECISION TREES

The QUICKSCORER (QS) algorithm exploits a totally novel approach for the traversal
of a given tree ensemble. The bitvector-based representation (see Subsection 3.1) and
the data layout adopted (see Subsection 3.2) permit an efficient exploitation of mem-
ory hierarchies and a reduced branch mis-prediction rate. Given a document and a
tree, our traversal method evaluates the branching nodes of the tree, and produces a
bitvector which encodes the exit leaf. In isolation this traversal is not advantageous,
since in principle it requires to evaluate all the nodes of a tree. However, it has the
nice property of being insensitive to the order in which the nodes are processed. This
makes it possible to interleave the evaluation of the various trees in the ensemble in
a cache-aware fashion, and to save the computation of several test conditions. Rather
than traversing the ensemble by taking a tree at the time, QS performs a global visit
of the ensemble by traversing portions of all the trees together, feature by feature. For
each feature, we store all the associated thresholds occurring anywhere in the ensem-
ble in a sorted array, to easily compute the result of all the test conditions involved. A
bitvector for each tree is updated after each test, in such a way to encode, at the end
of the process, the exit leaves of each tree for the given document. These bitvectors
are eventually used to retrieve the contribution of each tree to the final score of the
document.

3.1. Tree traversal using bitvectors
We first present a simple version of the proposed tree traversal, and then we intro-
duce two crucial refinements for the performance of this algorithm when used in the
interleaved evaluation of the full ensemble as described in Subsection 3.2.

Given an input feature vector x and a tree Th = (Nh, Lh), the proposed tree traversal
algorithm processes the internal nodes of Th with the goal of identifying a set of candi-
date exit leaves, denoted by Ch, Ch ⊆ Lh. Initially Ch contains all the leaves in Lh, i.e.,
Ch = Lh. Then, the algorithm evaluates one after the other, in arbitrary order, the test
conditions of all the internal nodes of Th. When an internal node n ∈ Nh is considered,
the algorithm removes from Ch those leaves that cannot be anymore reached during
the evaluation of x according to the outcome of the node’s test. Indeed, if n is a false
node (i.e., its test condition is false), the leaves in the left subtree of n cannot be the
exit leaf and they can be safely removed from Ch. Similarly, if n is a true node, the

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

Fast Ranking with Additive Ensembles of Oblivious and Non-Oblivious Regression Trees 1234:9

Candidate exit leaf

l5

n3 n4l1

l3 l4eh

l0

n0

n1 n2

l2

001111

110011

leaf indexh = 111111^
001111^
011111^
111101 =

001101

Fig. 3: Tree traversal example.

leaves in the right subtree of n can be removed from Ch. Once all the nodes have been
processed, the only leaf left in Ch is the exit leaf eh.

The first important refinement turns the above algorithm into a lazy one. This lazy
algorithm processes only the tree’s false nodes, which we assume are provided by an
oracle called FindFalse. Thus, the algorithm removes from Ch the leaves in the left
subtrees of all the false nodes returned by the oracle. In the following, we focus on the
set Ch resulting from the processing of all the false nodes of a tree and we defer the
materialization of the above oracle to Subsection 3.2, where the interleaved evaluation
of all the trees makes its implementation feasible.

Observe that the set Ch may in principle contain several leaves. As an extreme ex-
ample, in absence of false nodes in Th, Ch will contain all the leaves in Lh. Interestingly,
we can prove (see Theorem 3.1 below) that the exit leaf eh is always the one associated
with the smallest identifier in Ch, i.e., the leftmost leaf in the tree. A running example
is reported in Figure 3 which shows the actual traversal (bold arrows) for a vector x,
and the true and false nodes. The figure shows also the set Ch after the removal of the
leaves of the left subtrees of false nodes: Ch is {l2, l3, l5} and, indeed, the exit leaf is the
leftmost leaf in Ch, i.e., eh = l2.

The second refinement implements the operations on Ch with fast bit-wise opera-
tions. The idea is to represent Ch with a bitvector leaf indexh, where each bit corre-
sponds to a distinct leaf in Lh, i.e., leaf indexh is the characteristic vector of Ch. More-
over, every internal node n is associated with a bit mask of the same length encoding
(with 0’s) the set of leaves to be removed from Ch whenever n turns to be a false node.
In this way, the bitwise logical AND between leaf indexh and the bit mask of a false
node n corresponds to the removal of the leaves in the left subtree of n from Ch. We
finally observe that, once identified all the false nodes in a tree and performed the as-
sociated AND operations over leaf indexh, the exit leaf of the tree corresponds to the
leftmost bit set to 1 in leaf indexh. Figure 3 shows how the initial bitvector leaf indexh
is updated by using bitwise logical AND operations.

The full approach is described in Algorithm 1. Given a binary tree Th = (Nh, Lh)
and an input feature vector x, let n.mask be the precomputed bit mask associated with
a generic n ∈ Nh. First the result bitvector leaf indexh is initialized with all bits set
to 1. Then, FindFalse(x, Th) returns all the false nodes in Nh. For each of such nodes,

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

1234:10 Dato D., Lucchese C., Nardini F.M., Orlando S., Perego R., Tonellotto N., and Venturini R.

leaf indexh is masked with the corresponding node mask. Finally, the position of the
leftmost bit of leaf indexh identifies the exit leaf eh, whose output value is returned.
The correctness of this approach is stated by the following theorem.

THEOREM 3.1. Algorithm 1 identifies the correct exit leaf eh for every binary deci-
sion tree Th and input feature vector x.

PROOF. First, we prove that the bit corresponding to the exit leaf eh in leaf indexh
is always set to 1. Consider the internal nodes along the path from the root to eh, and
observe that only the bit masks applied for those nodes may change the eh’s bit to 0.
Since eh is the exit leaf, it belongs to the left subtree of any true node and to the right
subtree of any false node in this path. Thus, since the masks are used to set to 0 leaves
in the left subtrees of false nodes, the bit corresponding to eh remains unmodified, and,
thus, will be set to 1 at the end of Algorithm 1.

Second, we prove that the leftmost bit equal to 1 in vh corresponds to the exit leaf
eh. Let l← be the leaf corresponding to the leftmost bit set to 1 in leaf indexh. Assume
by contradiction that eh is not the leftmost bit set to 1 in leaf indexh, namely, l← 6= eh.
Let u be their lowest common ancestor node in the tree. Since l← is smaller than eh,
the leaf l← belongs to u’s left subtree while the leaf eh belongs to u’s right subtree.
This leads to a contradiction. Indeed, on one hand, the node u should be a true node
otherwise its bit mask would have been applied setting l←’s bit to 0. On the other hand,
the node u should be a false node since eh is in its right subtree. Thus, we conclude that
l← = eh proving the correctness of Algorithm 1.

Algorithm 1 represents a general technique to compute the output value of a single
binary decision tree stored as a set of precomputed bit masks. Given an additive en-
semble of binary decision trees, to score a document x we have to loop over all the trees
Th ∈ T by repeatedly applying Algorithm 1. Unfortunately, this naı̈ve algorithm is too
expensive unless FindFalse(x, Th) can be implemented efficiently. In the following sec-
tion we present QS, which overcomes this issue and is able to identify efficiently the
false nodes in the tree ensemble by exploiting an interleaved evaluation of all its trees.

ALGORITHM 1: Scoring a feature vector x using a binary decision tree Th

Input :
— x: input feature vector
— Th = (Nh, Lh): binary decision tree, with

- Nh = {n0, n1, . . .}: internal nodes of Th

- Lh = {l0, l1, . . .}: leaves of Th

- n.mask: node bit mask associated with n ∈ Nh

- lj .val: score contribution associated with leaf lj ∈ Lh

Output:
— tree traversal output value

Score(x,Th):
1 leaf indexh ← 11 . . . 11
2 U ← FindFalse(x, Th)
3 foreach node n ∈ U do
4 leaf indexh ← leaf indexh ∧ n.mask
5 j ← index of leftmost bit set to 1 of leaf indexh

6 return lj .val

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

Fast Ranking with Additive Ensembles of Oblivious and Non-Oblivious Regression Trees 1234:11

3.2. The QS Algorithm
Our QS algorithm scores a feature vector x with an interleaved execution of several
tree traversals. The algorithm does not loop over all the trees in T one at a time, as
one would expect, but loops instead over all the features in F , hence incrementally
discovering for each fk ∈ F the false nodes involving fk in any tree of the ensemble.
This is a very convenient strategy for two reasons: i) we are able to simply identify all
the false nodes for all the trees, thus effectively implementing the oracle introduced in
the previous section; ii) we are able to operate in a cache-aware fashion with a small
number of Boolean comparisons and branch mis-predictions.

During its execution, QS has to maintain the bitvectors leaf indexh’s, encoding the
set Ch’s for all the tree Th in the ensemble. The content of leaf indexh of a certain tree is
updated each time that a false node for that tree is identified. Once the algorithm has
processed all the features in F , each of these leaf indexh is guaranteed to encode the
exit leaf of the corresponding tree. Finally, the algorithm computes the overall score of
x by summing up (and, possibly, weighting) the scores associated with all these exit
leaves.

Let us focus on the processing of a feature fk and describe the portion of the data
structure of interest for this feature. The overall algorithm simply iterates this process
over all features in F . Each node involving fk in any tree Th ∈ T is represented by a
triple containing: (i) the feature threshold involved in the Boolean test; (ii) the id of the
tree that contains the node, where the id is used to identify the bitvector leaf indexh to
update; (iii) the node mask used to possibly update leaf indexh. We sort these triples
in ascending order of the feature thresholds.

This sorting is crucial for obtaining a fast implementation of the FindFalse(x, Th)
oracle. Recall that all the test conditions occurring at the internal nodes of the trees
are all of the form x[k] ≤ γhs . Hence, given the sorted list of all the thresholds involving
fk ∈ F , the feature value x[k] splits the list in two, possibly empty, sublists. The first
sublist contains all the thresholds γhs for which the test condition x[k] ≤ γhs evaluates
to FALSE, while the second sublists contains all thresholds for which the test condition
evaluates to TRUE. Thus, if we sequentially scan the sorted list of the thresholds as-
sociated with fk, all the values in the first sublist will cause negative tests. Associated
with these thresholds entailing false tests, we have false nodes belonging to the trees
in T . Therefore, for all these false nodes we can take in sequence the corresponding bit
masks, and perform a bitwise logical AND with the appropriate bitvector leaf indexh.
This large sequence of tests that evaluates to FALSE corresponds to the repeated ex-
ecution of conditional branch instructions, whose behavior is indeed very predictable.
This is confirmed by our experimental results, showing that our code incurs in very
few branch mis-predictions.

We now present the layout in memory of the required data structure since it is cru-
cial for the efficiency of our algorithm. The triples of each feature are stored in three
separate arrays, one for each component: thresholds, treeids, and nodemasks. The use
of three distinct arrays solves some data alignment issues arising when tuples of het-
erogeneous data types are stored contiguously in memory. The arrays of the different
features are then juxtaposed one after the other as illustrated in Figure 4. Since arrays
of different features may have different lengths, we use an auxiliary array offsets
which marks the starting position of each array in the global array. We also juxtapose
the bitvectors leaf indexh into a global array leafindexes. Finally, we use an array
leafvalues which stores the output values of the leaves of each tree (ordered from left
to right) grouped by their tree id.

Algorithm 2 reports the steps of QS as informally described above. After the initial-
ization of the result bitvectors of each tree (loop starting at line 1), the algorithm iter-

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

1234:12 Dato D., Lucchese C., Nardini F.M., Orlando S., Perego R., Tonellotto N., and Venturini R.

ates over all features (loop starting at line 3), and inspects the sorted lists of thresholds
to identify the false nodes in the ensemble (line 6) and to update the result bitvectors
(line 8). The second step of the algorithm (loop starting at line 13) consists in inspect-
ing all the result bitvectors. For each of them QS identifies the position of the leftmost
bit set to 1, and uses this position to retrieve the score contribution associated with
the corresponding leaf stored in array leafvalues. This value is finally used to update
the final score.

An example of an ensemble of regression trees, with the associated data structures
as used by the QS algorithm, are shown and discussed at the end of this section.

Implementation details. In the following we discuss some details about our data
structures, their size and access modes.

A few important remarks concern the bitvectors stored in leafindexes and
nodemasks. The learning algorithm controls the accuracy of each single tree with a
parameter Λ, which determines the maximal number of leaves for each Th = (Nh, Lh)
in T , namely |Lh| ≤ Λ. Usually, the value of Λ is kept small (≤ 64). Thus, the length of
bitvectors, which have to encode tree leaves, is equal to (or less than) a typical machine
word of modern CPUs (64 bits). As a consequence, the bitwise operations performed by

ALGORITHM 2: The QUICKSCORER Algorithm
Input :

— x: input feature vector
— T : ensemble of binary decision trees, with

- w0, . . . , w|T |−1: weights, one per tree
- thresholds: sorted sublists of thresholds, one sublist per feature
- treeids: tree’s ids, one per node/threshold
- nodemasks: node bit masks, one per node/threshold
- offsets: offsets of the blocks of triples
- leafindexes: result bitvectors, one per each tree
- leafvalues: score contributions, one per each tree leaf

Output:
— Final score of x

QUICKSCORER(x,T):
1 foreach h ∈ 0, 1, . . . , |T | − 1 do
2 leafindexes[h]← 11 . . . 11

3 foreach k ∈ 0, 1, . . . , |F| − 1 do // Step À
4 i← offsets[k]
5 end← offsets[k + 1]
6 while x[k] > thresholds[i] do
7 h← treeids[i]
8 leafindexes[h]← leafindexes[h] ∧ nodemasks[i]
9 i← i+ 1

10 if i ≥ end then
11 break

12 score← 0
13 foreach h ∈ 0, 1, . . . , |T | − 1 do // Step Á
14 j ← index of leftmost bit set to 1 of leafindexes[h]
15 l← h · |Lh|+ j
16 score← score+ wh · leafvalues[l]
17 return score

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

Fast Ranking with Additive Ensembles of Oblivious and Non-Oblivious Regression Trees 1234:13

f1f0

increasing values

offsets

f|F|�1

k

num. leaves

num. leaves

leafvalues

num. leaves num. leaves num. leaves

num.leaves � num. trees

nodemasks

leafindexes

treeids

Fig. 4: QUICKSCORER data structure layout.

Algorithm 2 on them can be realized very efficiently, because they involve machine
words (or halfwords, etc).

We avoid any possible performance overhead due to shifting operations to align the
operands of bitwise logical ANDs by forcing the bitvectors to have uniform length of
B bytes. To this end, we pad each bitvector on its right side with a string of 0 bits, if
necessary. We always select the minimum number of bytes B ∈ {1, 2, 4, 8} fitting Λ.

Let us now consider Table I, which shows an upper bound for the size of each linear
array used by our algorithm. The array offsets has |F| entries, one entry for each
distinct feature. The array leafindexes, instead, has an entry for each tree in T , thus,
|T | entries overall. The sizes of the other data structures depends on the number of
total internal nodes or leaves in the ensemble T , besides the datatype sizes. Any in-
ternal node of some tree of T contributes with an entry in each array thresholds,
nodemasks and treeids. Therefore the total number of entries of each of these arrays,
i.e.,

∑|T |−1
0 |Nh|, can be upper bounded by |T | · Λ, because for every tree Th we have

|Nh| < |Nh|+ 1 = |Lh| ≤ Λ. Finally, the array leafvalues has an entry for each leaf in
a tree of T , hence, no more than |T | · Λ in total.

Table I: QUICKSCORER data structures size and access mode.

Data structure Maximum Size (bytes) Access pattern
thresholds |T | · Λ · sizeof(float)

1. Sequential (R)treeids |T | · Λ · sizeof(uint)
nodemasks |T | · Λ ·B
offsets |F| · sizeof(uint)

leafindexes |T | ·B 1. Random (R/W)
2. Sequential (R)

leafvalues |T | · Λ · sizeof(double) 2. Seq. Sparse (R)

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

1234:14 Dato D., Lucchese C., Nardini F.M., Orlando S., Perego R., Tonellotto N., and Venturini R.

The last column of Table I reports the access patterns to the arrays, where the lead-
ing number, either 1 or 2, corresponds to the step of the algorithm during which the
data structures are read/written. We first note that leafindexes is the only array used
in both phases. During the first step leafindexes is accessed randomly in reading/writ-
ing to update bitvectors leaf indexh. During the second step the same array is accessed
sequentially in reading mode to identify the exit leafs lh of each tree Th, and then to
access the array leafvalues to read the contribution of tree Th to the document score.
Even if the trees and their leaves are accessed sequentially during the second step of
QS, the reading access to array leafvalues is sequential, but very sparse: only one
leaf of each block of |Lh| elements is actually read.

Finally, note that the arrays storing the triples, i.e., thresholds, treeids, and
nodemasks, are all sequentially read during the first step, though not completely, since
for each feature we stop their inspection at the first test condition that evaluates to
TRUE. The cache usage can greatly benefit from the layout and access modes of our
data structures, thanks to the increased references locality.

We finally describe an optimization which aims at reducing the number of com-
parisons performed at line 6 of Algorithm 2. This inner loop iterates over the list of
threshold values associated with a certain feature fk ∈ F until the first index j such
that x[k] ≤ thresholds[j] is found. Instead of testing each threshold, our optimized
implementation tests only one every ∆ thresholds, where ∆ is a parameter. Since the
thresholds vector is sorted in ascending order, if the ith thresholds corresponds to a
false node, the same holds for any k < i. Therefore, we can save ∆−1 comparisons and
directly updating the ∆ bitvectors leaf indexh. Instead, if the test fails, the preceding
∆ − 1 thresholds are processed as usual and the algorithm completes. We found em-
pirically that ∆ = 4 provides the best results. We remark that even if it is possible to
find the first true node via binary search, we have experienced that this is less efficient
because the array thresholds is not sufficiently large to counterbalance the poor cache
locality.

Scoring Example. An example of a tree ensemble T , with the associated data struc-
tures as used by the QS algorithm, are shown and discussed in the following. The
ensemble T , which is illustrated in Figure 5, only includes the two trees T0 and T1. We
assume that the ranking model of T was learned from a training dataset where each
query-document pair is represented by a feature vector x with only three features,
namely f0, f1, and f2.

1812

9.1 : f0

1.4 : f1 13.4 : f0

0.3 : f2 1 : f2

9.5 : f0 11.2 : f0

1 �3

4

74

�2

tree T0 tree T1

0.3 : f2

1.1 : f1 9.9 : f0

0 : f2 �0.2 : f2 9.3 : f0 10.1 : f0

0 11 3 21 �7 4 12 �12

Fig. 5: An example of an ensemble of regression trees.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

Fast Ranking with Additive Ensembles of Oblivious and Non-Oblivious Regression Trees 1234:15

All the internal nodes of the two regression trees are labeled (see Figure 5) with
a pair (fφ, γ), with fφ ∈ {f0, f1, f2} and γ ∈ R, specifying the pair of parameters of
the Boolean test x[φ] ≤ γ. The leaves of the two trees store a value representing the
potential contribution of the tree to the final score of the document.

1.1 1.4 -0.2 0 0.3 0.3 1

0 1 0 1 1 0 0 1 0 1 1 0 1 0

00
11

11
11

11
11

01
11

11
01

11
11

11
11

00
11

11
11

11
01

11
11

01
11

11
00

00
11

00
11

11
11

01
11

11
11

11
01

11
11

01
11

11
11

11
00

11
11

00
00

11
11

11
11

11
01

9.1 9.3 9.4 9.9 10.1 11.2 13.4

0 7 9 14

treeids

offsets

nodemasks

f1f0 f2

Fig. 6: QS representation of the toy ranking model.

Given this simple ranking model, QS compactly represents the ensamble T with the
array data structures shown in Figure 6. We highlight that:

— array thresholds has 14 elements storing the values of 7, 2, and 5 thresholds γ
associated, respectively, with the occurrences of the features f0, f1, and f2 in the
internal nodes of T . We note that each block of thresholds is sorted in increasing
order. Moreover, the first position of the ordered sequence of thresholds associated
with a given feature fφ can be accessed directly by using the corresponding offset
value stored in array offsets[φ].

— array treeids is aligned to array thresholds. Specifically, given the φth block
of each array corresponding to feature fφ, let i be an index used to iden-
tify the current element of the block. Thus, i ranges in the integer interval
[offsets[φ], offsets[φ+1]-1], and for each value of i the entry treeids[i] stores
the ID of the tree, in turn containing a specific internal node with threshold
thresholds[i]. For example, from Figure 6 we can see that a value 9.9 is stored
in the 4-th position (i.e., element thresholds[3]) to indicate that this value is a
threshold used for feature f0 in the tree with ID treeids[3]= 1.

— the array nodemasks is also aligned to thresholds (and treeids). Specifically, it
stores in each position a bitvector of size equal to the (maximum) number of leaves
of the trees in T (8 in this case). The bits in these bitvectors are set to 0 in cor-
respondence to the leaves of the tree that are not reachable if the associated test
fails. For example, nodemasks[3] stores 11110011, stating that the 5-th and the 6-th
leaves of tree T1 (treeids[3]= 1) cannot be reached by documents for which the test
x[0] ≤ 9.9 (thresholds[3]= 9.9) is FALSE.

Finally, Figure 7 shows how the bitvectors selected by the QS algorithm are used
to devise the correct exit leaf of each tree. The Figure shows the feature vector x of
a document to be scored. The bitvectors leafindexes[0] and leafindexes[1] are ini-
tialized with a string of 1’s, whose length corresponds to the number of tree leaves
(8 in this example). By visiting the ensemble T feature by feature, QS starts from

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

1234:16 Dato D., Lucchese C., Nardini F.M., Orlando S., Perego R., Tonellotto N., and Venturini R.

11111111

00111111

00111111

∧

=

leafindexes[0]

11111111

11110111

11011111

11010111

∧

∧

=

9.4 0.9 -0.1
f1f0 f2

Document x tree T0 tree T1

leafindexes[1]

Fig. 7: Scoring of a document.

the first feature f0, by inspecting x[0]. The algorithm thus accesses the list of thresh-
olds of the feature starting from thresholds[offsets[0]], where offsets[0]= 0. QS
first detects that the first two tests involving feature x[0] = 9.4 fail, since 9.4 > 9.1
(thresholds[0]= 9.1) and 9.4 > 9.3 (thresholds[1]= 9.3) hold. Thus, the two bitvectors
00111111 and 11110111, associated with the trees having respectively IDs treeids[0]=
0 and treeids[1]= 1, are retrieved. Then, a bitwise AND operation (∧) is performed
between these bitvectors and the ones stored in leafvalues[0] and leafvalues[1].
Afterwards, since 9.4 ≤ 9.4 succeeds, feature f0 is considered totally processed, and QS
continues with the next feature f1, by inspecting x[1] = 0.9. The lists of thresholds for
feature f1 is accessed starting from thresholds[offsets[1]], where offsets[1]= 7.
Since 0.9 ≤ 1.1 (thresholds[7]= 1.1), the test succeeds, and thus the remaining el-
ements of the threshold list associated with feature f1 are skipped. Finally, the last
feature f2, namely x[2], is considered and compared with the first threshold stored in
thresholds[offsets[2]], where offsets[2]= 9. The first test involving x[2] = −0.1,
namely −0.1 ≤ −0.2 (thresholds[9]= −0.2) fails. Since treeids[9]= 1, a bitwise AND
operation is thus performed between nodemasks[9] and leafindexes[1]. At this point,
the next test over x[2] succeeds, and thus QS finishes the ensemble traversal. The con-
tent of the bitvectors leafindexes[0] and leafindexes[1] is finally used to directly
read from array leafvalues the contribution of trees T0 and T1 to the final score of the
document.

4. FAST TRAVERSAL OF ENSEMBLES OF OBLIVIOUS TREES
In this section, we investigate the feasibility of QUICKSCORER for also scoring with
ensembles of oblivious decision trees. These trees are balanced, and all the branching
nodes at depth i of the tree implement the same Boolean test, which uses the same
feature φi and the same threshold γi. Large ensembles of oblivious trees are used
for ranking in the largest Russian Web search engine Yandex [Segalovich 2010; Gulin
et al. 2011]. In addition, since ensembles of oblivious trees are less prone to overfitting,
they perform very well in terms of effectiveness, sometimes outperforming GBRT and
λ-MART [Capannini et al. 2016]. Moreover, they are very relevant from our point of
view, as their regular structure makes it possible to implement a very efficient algo-
rithm, named OBLIVIOUS, which traverses each tree without conditional branches.
The OBLIVIOUS algorithm is used as baseline for our QSΩ version of QUICKSCORER,
specifically tailored for scoring with ensembles of oblivious trees.

Figure 8 illustrates an example of oblivious tree, namely a tree Th in the ensemble T ,
and the simple binary vector leafID (on the left side), used by OBLIVIOUS to identity

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

Fast Ranking with Additive Ensembles of Oblivious and Non-Oblivious Regression Trees 1234:17

|L| leaves

x[�0] � �0

x[�1] � �1

x[�2] � �2

log |L| bits

e(x)

leafID

Fig. 8: Optimized traversal of an oblivious tree performed by OBLIVIOUS.

the exit leaf of the tree. Note the binary encoding of the leaves identifiers, which are
numbered from left to right, corresponding to the binary indices from 000 to 111. This
encoding trivially reflects the path from the root to the exit leaf traversed during the
evaluation of a document, where 0 stands for a true node and 1 for a false node. For
example, supposing that the exit leaf for a given feature vector x, namely e(x), is the
one identified by 101, and thus the traversal path is the one illustrated by bold arrows.
This means that the two tests a levels 0 and 2 turn out to be false, while the test at
level 1 is true. As a consequence of these test, the OBLIVIOUS algorithm sets/unsets
the corresponding bits of leafID, which eventually is used to identify the exit leaf of
the tree.

This traversal process can be easily generalized to any oblivious tree with |L| leaves
and depth log(|L|). Given a tree and a feature vector x to be scored, the sequence of
log(|L|) steps, needed to compute the value of leafID that identifies the exit leaf, is
illustrated in the following:

d = log(|L|) steps


leafID← 0 ∨ ¬ (x[φ0] ≤ γ0)� (d− 1)

leafID← leafID ∨ ¬ (x[φ1] ≤ γ1)� (d− 2)
...

...
leafID← leafID ∨ ¬ (x[φd−1] ≤ γd−1)

(1)

where ¬, ∨ and � are the bitwise logical negation, or, and left shift operations, and
leafID eventually contains the index of the exit leaf for vector x.

The code of the OBLIVIOUS algorithms can be easily derived from the previous se-
quence of steps. To complete the traversal of a single tree, we use leafID to lookup a
table of |L| elements, storing the values of the tree leaves, and add the value of the
selected exit leaf to an accumulator. In addition, the same code must be repeated for
all the trees in the ensemble, by accumulating the partial scores derived from each
oblivious tree.

It is worth noting that OBLIVIOUS is a very efficient algorithm in terms of time and
space complexity, thus being a challenging competitor for our scorer QSΩ, derived from
QS and discussed in the following. Indeed, OBLIVIOUS does not need any branches for
traversing a single tree, while it only uses a pair of arrays to store each tree. The first
array is exploited to store log(|L|) pairs, namely feature ids and thresholds, used for

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

1234:18 Dato D., Lucchese C., Nardini F.M., Orlando S., Perego R., Tonellotto N., and Venturini R.

f1f0

increasing values

offsets

f|F|�1

k

leafvalues

num. leaves num. leaves num. leaves

num.leaves � num. trees

nodemasks log2(num. leaves)

leafindexes log2(num. leaves)

treeids

Fig. 9: QUICKSCORER-Ω data structure layout.

the tests at each level of the tree. The second array stores the values of the |L| leaves
of the tree. Therefore, the memory footprint of OBLIVIOUS is very small, since, unlike
algorithms for non-oblivious trees, OBLIVIOUS does need to store information regard-
ing the |L| − 1 branching nodes, but only the d = log(|L|) Boolean tests corresponding
to the levels of the balanced tree. Such limited memory footprint allows OBLIVIOUS to
make a more effective use of the first levels of the cache.

Note that in the sequence of operations (see Equation 1) performed by OBLIVIOUS,
the true nodes do not contribute to the identification of the exit leaf, as they result in
a logical or operation of leafID with a string of 0 bits. Therefore, in principle we can
save many logical operations if we can devise an efficient method to identify the false
nodes only in a given tree, thus saving many logical operations. To this end, we can
resort to the technique used by QUICKSCORER to efficiently identify all the false nodes
only, by using a data structure similar to that of the non-oblivious version of QS, as
illustrated in Figure 9. Unlike QS, for oblivious trees we need a single bitvector mask
for each level of each tree in the ensemble, rather than one for each node. Similarly,
the exit leaf can be encoded with log(|L|) bits rather than |L|. This reduces the size of
the nodemasks and leafindexes data structures by a logarithmic factor.

Figure 10 illustrates the same tree Th ∈ T as Figure 8, for which QSΩ stores three
bitvector masks, namely 100, 010, and 001, associated with levels 0, 1, and 2 of the tree,
respectively. These masks are used by QSΩ to update leafindexes[h], which, at the
end of the interleaved visit of the ensemble, will store the binary identifier of the exit
leaf e(x) = l5. The figure shows that two logical or operations are enough to identify
this exit leaf, once leafindexes[h] is initialized to 000. For these two operations, we
use the bitvector masks associates with levels 0 and 2, which include the only false
nodes occurring the tree.

Algorithm 3 shows the modified QS algorithm, named QUICKSCORER-Ω (QSΩ), that
scores documents with an ensemble of oblivious trees. Beyond the smaller size of the
data structures used, the main differences are in the initialization of leafindexes[h]
(line 2) to all 0’s, the logical or bitwise operation used to set a single bit of the result
index leafindexes[h] (line 8), and the direct use of the value eventually stored in

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

Fast Ranking with Additive Ensembles of Oblivious and Non-Oblivious Regression Trees 1234:19

ALGORITHM 3: The QUICKSCORER- Ω algorithm for oblivious trees
Input :

— x: input feature vector
— T : ensemble of binary decision trees, with

- w0, . . . , w|T |−1: weights, one per tree
- thresholds: sorted sublists of thresholds, one sublist per feature
- treeids: tree’s ids, one per threshold/level
- nodemasks: node masks, one per threshold/level
- offsets: offsets of the blocks of triples
- leafindexes: result index, one per each tree
- leafvalues: output values, one per each tree leaf

Output:
— Final score of x

QUICKSCORER-Ω(x,T):
1 foreach h ∈ 0, 1, . . . , |T | − 1 do
2 leafindexes[h]← 00 . . . 00

3 foreach k ∈ 0, 1, . . . , |F| − 1 do // Step À
4 i← offsets[k]
5 end← offsets[k + 1]
6 while x[k] > thresholds[i] do
7 h← treeids[i]
8 leafindexes[h]← leafindexes[h] ∨ nodemasks[i]
9 i← i+ 1

10 if i ≥ end then
11 break

12 score← 0
13 foreach h ∈ 0, 1, . . . , |T | − 1 do // Step Á
14 score← score+ wh · leavalues[leafindexes[h]]
15 return score

l5l1 l3 l4l0 l2 l6 l7

100

010

001

leafindexes[h] = 000_
100_
001 =

101

Fig. 10: Optimized traversal of an oblivious tree performed by QSΩ.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

1234:20 Dato D., Lucchese C., Nardini F.M., Orlando S., Perego R., Tonellotto N., and Venturini R.

leafindexes[h] as an index to lookup the array leafvalues to obtain the contribution
of each tree to the final score (line 14).

5. EXPERIMENTS
In this section we discuss the results of the extensive experiments conducted to assess
the performance of QS and QSΩ with respect to competitors.

5.1. Datasets and experimental settings
For the experiments, we use three, publicly available, datasets. The first two datasets
are the MSN and the Yahoo LETOR challenge datasets, commonly used in the scientific
community for LtR experiments. The third one, which we make publicly available along
with the publication of this paper, is a very large LtR dataset provided by TISCALI
ITALIA S.p.A., an Italian company running the web search engine ISTELLA (http://
www.istella.it). The characteristics of the three datasets are listed in Table II. For all
of them the vectors associated with query-document pairs are labeled with relevance
judgments ranging from 0 (irrelevant) to 4 (perfectly relevant).

— The MSN dataset is available at http://research.microsoft.com/en-us/projects/

mslr/. It comes splitted into five folds. In this work, we used only the first MSN
fold, named MSN-1.

— The Yahoo dataset is available at http://learningtorankchallenge.yahoo.com. It con-
sists of two distinct datasets (Y!S1 and Y!S2). In this paper we used the Y!S1
dataset.

— The Istella (Full) dataset is available at http://blog.istella.it/

istella-learning-to-rank-dataset/. To the best of our knowledge, this dataset
is the largest publicly available LtR dataset, particularly useful for large-scale
experiments on the efficiency and scalability of LtR solutions. Moreover, it is the
first public dataset being representative of a real-world ranking pipeline, with long
lists of results including large numbers of irrelevant documents for each query, as
also discussed by Yin et al. [2016].

Table II. Main properties of the three dataset used: i) # of features, ii) # of
queries in train/validation/test sets, iii) total # of documents in train/test sets,
and iv) average # of document per query in test set.

Property Dataset
MSN-1 Y!S1 Istella

features 136 700 220
queries in training 6, 000 19, 944 23, 319
queries in validation 2, 000 2, 994 -
queries in test 2, 000 6, 983 9, 799
Total # documents in train 723, 412 473, 134 7, 325, 625
Total # documents in test 241, 521 165, 660 3, 129, 004
Average # documents per query in test 120.7 23.72 319.31

The experimental methodology adopted is the following. We use training data from
MSN-1, Y!S1, and Istella to train λ-MART [Wu et al. 2010], and OBLIVIOUS-λ-MART
models (thus, both optimizing NDCG@10). The various generated models are ensem-
bles of trees, whose maximum number of leaves is equal to 8, 16, 32, or 64. To train
these models we use QuickRank1, an open-source LtR C++11 framework providing

1http://quickrank.isti.cnr.it

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

Fast Ranking with Additive Ensembles of Oblivious and Non-Oblivious Regression Trees 1234:21

efficient implementations of LtR algorithms [Capannini et al. 2016; Capannini et al.
2015]. It is worth noting that the results reported in the paper, concerning the effi-
ciency at testing time of tree-based scorers, are however independent of the specific
LtR algorithm used to train the specific ensembles of trees.

Effectiveness of the learned models. Although studying the ranking effectiveness of
tree ensembles is out of the scope of this paper, in the following we assess the benefits
deriving from using more complex ensembles, such as those used in our efficiency tests,
obtained by increasing the number of additive trees.

Figure 11 shows the variations of NDCG@10 measured on the test sets of MSN-1,
Y!S1, and Istella datasets as a function of the number of trees of a λ-MART ensemble,
whose trees have 16-leaves. The baseline is a simple λ-MART model with only 1, 000
trees. As we vary the number of trees in the range from 5, 000 to 20, 000, we observe
that NDCG@10 measured on Y!S1 increases only slightly, while it even decreases with
MSN-1. This behavior is due to overfitting that prevents the ranking models learned on
small training datasets to take advantage of so large number of trees. This instead does
not happen with the Istella dataset: due to its large size, the learned models exhibit
an opposite behavior, with an absolute NDCG@10 improvement of about 4% over the
baseline model with 1,000 trees when an ensemble of 20, 000 trees is exploited. As a
consequence, the Istella dataset may lead to the creation of larger and more expensive
ranking models. For this reason, we limit part of the analysis to the models trained on
the ISTELLA dataset.

5000 10000 15000 20000

Number of Trees

−6

−4

−2

0

2

4

6

N
D

C
G

@
10

Im
pr

ov
em

en
t

w
.r

.t
.

10
00

tr
ee

s
(%

)

Istella

Y!S1

MSN-1

Fig. 11: Variations of NDCG@10 measured on the MSN-1, Y!S1, and Istella datasets as
a function of the number of trees in a 16-leaves λ-MART ensemble, with respect to a
baseline ranking model of 1, 000 trees.

Experimental setting for efficiency tests. The goal of all the tests, whose results are
discussed in the following, is to measure the scoring efficiency of QS and QSΩ, and

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

1234:22 Dato D., Lucchese C., Nardini F.M., Orlando S., Perego R., Tonellotto N., and Venturini R.

to compare their performance with other algorithms. The competitors of QS are the
following:

— IF-THEN, the baseline that translates each tree of the forest into a nested structure
of if-then-else blocks;

— CONDOP, the baseline exploiting C conditional operators (?:). It works by translat-
ing each tree of the forest into a nested block of conditional operators;

— VPRED and STRUCT+ [Asadi et al. 2014] kindly made available by the authors2.

IF-THEN and CONDOP are analogous, since in both case each tree of the ensemble
is compiled as a nested structure. The latter, however, produces very long expressions
of nested conditional operators from which, according to our experiments, the compiler
is able to generate a more efficient code than from the former.

The competitors of QSΩ are all the previous algorithms, which are not aware, how-
ever, of the characteristics of the oblivious trees, and thus deal with them as non-
oblivious ones. In addition, we compare the execution time of QSΩ with the following
very optimized competitor:

— OBLIVIOUS, a challenging baseline for scoring with ensembles of oblivious trees, as
discussed in Section 4. OBLIVIOUS has a very small memory footprint due to the
succinct data structures, and does not need to execute branches to traverse each
tree.

All the algorithms are compiled with GCC 5.1.0 with the highest optimization set-
tings. The tests are performed by using a single core on a machine equipped with an
Intel Core i7-4770K clocked at 3.50Ghz, with 32GB RAM, running Ubuntu Linux with
kernel 3.13.0-65-generic. The Intel Core i7-4770K CPU has three levels of cache. Each
of the four cores has a dedicated L1 cache of 32 KB, and a dedicated L2 cache of 256
KB, while the L3 cache is shared and has a size of 8 MB.

To measure the efficiency of each of the above methods, we run 10 times the scoring
code on the test sets of the MSN-1, Y!S1, and Istella datasets. We then compute the
average per-document scoring cost. Moreover, to profile the behavior of each method
above we employ perf3, a performance analysis tool available under Ubuntu Linux
distributions. We analyse each method by monitoring several CPU counters that mea-
sure the total number of instructions executed, number of branches, number of branch
mis-predictions, cache references, and cache misses.

5.2. Scoring time analysis
The average time (in µs) needed by the different algorithms to score a document of
MSN-1, Y!S1, and Istella is reported in Table III. In particular, the table reports the
per-document scoring time by varying the number of trees and the maximum number
of leaves of each tree ensemble, in turn obtained by training λ-MART [Wu et al. 2010]
over MSN-1, Y!S1, and Istella. For each test, the table also reports (between parenthe-
ses) the speedup of QS over its competitors. At a first glance, the speedups are impres-
sive, in many cases above one order of magnitude. Depending on the number of trees
and of leaves, QS outperforms the state-of-the-art solution VPRED, of factors ranging
from 1.9x up to 6.6x. For example, the average time required by QS and VPRED to
score a document in the MSN-1 test set with a model composed of 1, 000 trees and 64
leaves, are 9.4 and 62.2 µs, respectively. The comparison between QS and IF-THEN is
even more one-sided, with improvements of up to 24.4x for the model with 10, 000 trees

2http://nasadi.github.io/OptTrees/
3https://perf.wiki.kernel.org

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

Fast Ranking with Additive Ensembles of Oblivious and Non-Oblivious Regression Trees 1234:23

and 32 leaves trained on the MSN-1 dataset. In this case the QS average per-document
scoring time is 59.6 µs with respect to the 1, 453.8 µs of IF-THEN. CONDOP behaves
slightly better than IF-THEN in all the tests, thus showing that the compiler is able to
produce more optimized code for CONDOP than for IF-THEN. However, the compiler
used (GCC 5.1.0) crashes when CONDOP models larger than a given size are compiled.
We reported these crash conditions in Tables III and IV as “Not Available” (NA) result.
The last baseline reported, i.e., STRUCT+, behaves the worst in all the tests conducted.
Its performance is very low when compared not only to QS (up to 40.7x times faster),
but even to the other four algorithms. There are multiple reasons that cause the supe-
rior performance of QS over competitors. We analyse the most relevant of them in the
next section.

Table III. Per-document scoring time in µs of QS, VPRED, CONDOP, IF-THEN, and
STRUCT+ on MSN-1, Y!S1, and Istella datasets with λ-MART models. Speedups are
reported in parentheses.

Method Λ
Number of trees/dataset

1, 000 5, 000
MSN-1 Y!S1 Istella MSN-1 Y!S1 Istella

QS

8

2.2 (–) 4.4 (–) 2.8 (–) 10.1 (–) 14.5 (–) 12.0 (–)
VPRED 7.8 (3.5x) 8.4 (1.9x) 7.6 (2.7x) 39.8 (3.9x) 41.1 (2.8x) 39.3 (3.3x)
CONDOP 6.7 (3.0x) 10.3 (2.3x) 8.0 (2.9x) 67.8 (6.7x) 75.9 (5.2x) 77.0 (6.4x)
IF-THEN 7.3 (3.3x) 10.1 (2.3x) 9.0 (3.2x) 78.2 (7.7x) 84.6 (5.8x) 84.1 (7.0x)
STRUCT+ 21.0 (9.5x) 23.1 (5.3x) 24.9 (8.9x) 98.7 (9.8x) 119.5 (8.2x) 117.9 (9.8x)
QS

16

3.1 (–) 6.4 (–) 4.5 (–) 15.9 (–) 21.6 (–) 17.9 (–)
VPRED 16.0 (5.2x) 16.4 (2.6x) 14.9 (3.3x) 82.0 (5.2x) 82.4 (3.8x) 79.3 (4.4x)
CONDOP 14.1 (4.5x) 17.2 (2.7x) 16.1 (3.6x) 100.0 (6.3x) 110.0 (5.0x) 155.0 (8.7x)
IF-THEN 18.1 (5.8x) 20.7 (3.2x) 19.6 (4.4x) 128.0 (8.0x) 128.8 (6.0x) 135.5 (7.6x)
STRUCT+ 40.9 (13.2x) 41.6 (6.5x) 44.4 (9.9x) 411.2 (25.9x) 418.6 (19.4x) 407.8 (22.8x)
QS

32

5.2 (–) 9.7 (–) 6.8 (–) 26.8 (–) 34.5 (–) 26.9 (–)
VPRED 31.8 (6.1x) 31.5 (3.2x) 28.1 (4.1x) 164.5 (6.1x) 16 1.6 (4.7x) 157.7 (5.9x)
CONDOP 27.0 (5.2x) 30.3 (3.1x) 30.4 (4.5x) NA (x) NA (x) NA (x)
IF-THEN 32.2 (6.2x) 34.0 (3.5x) 33.3 (4.9x) 270.5 (10.1x) 256.6 (7.4x) 240.6 (8.9x)
STRUCT+ 69.4 (13.3x) 66.5 (6.9x) 67.8 (10.0x) 861.0 (32.1x) 833.2 (24.2x) 807.9 (x)
QS

64

9.4 (–) 15.1 (–) 11.2 (–) 57.6 (–) 70.2 (–) 57.8 (–)
VPRED 62.2 (6.6x) 57.3 (3.8x) 54.3 (4.8x) 347.2 (6.0x) 333.6 (4.8x) 326.8 (5.7x)
CONDOP 48.6 (5.2x) 48.4 (3.2x) 51.2 (4.6x) NA (x) NA (x) NA (x)
IF-THEN 54.0 (5.8x) 53.2 (3.5x) 55.0 (4.9x) 901.1 (15.6x) 801.9 (11.4x) 911.2 (15.8x)
STRUCT+ 132.3 (14.1x) 109.5 (7.3x) 112.6 (10.5x) 1485.5 (25.8x) 1498.2 (21.3x) 1487.3 (25.7x)

Method Λ
Number of trees/dataset

10, 000 20, 000
MSN-1 Y!S1 Istella MSN-1 Y!S1 Istella

QS

8

20.2 (–) 26.6 (–) 33.2 (–) 40.85 (–) 47.4 (–) 41.7 (–)
VPRED 79.8 (4.0x) 81.9 (3.0x) 78.9 (2.4x) 159.8 (3.9x) 163.1 (3.4x) 158.3 (3.8x)
CONDOP 161.0 (8.0x) 173.0 (6.5x) 181.1 (5.5x) NA (x) NA (x) NA (x)
IF-THEN 182.6 (9.0x) 186.8 (7.0x) 196.1 (5.9x) 590.0 (14.4x) 622.1 (13.1x) 585.7 (14.0x)
STRUCT+ 369.3 (18.3x) 398.8 (15.0x) 393.9 (11.9x) 1082.8 (26.5x) 1140.4 (24.0x) 1122.3 (26.9x)
QS

16

32.7 (–) 40.5 (–) 33.8 (–) 67.3 (–) 81.1 (–) 69.3 (–)
VPRED 164.9 (5.0x) 164.5 (4.0x) 160.5 (4.7x) 334.8 (5.0x) 332.6 (4.1x) 326.9 (4.7x)
CONDOP NA (x) NA (x) NA (x) NA (x) NA (x) NA (x)
IF-THEN 334.1 (10.2x) 353.8 (8.7x) 401.5 (11.9x) 1815.4 (27.0x) 1695.9 (20.9x) 1696.2 (24.5x)
STRUCT+ 1037.1 (31.7x) 1063.1 (26.2x) 1025.4 (30.3x) 2359.2 (35.0x) 2377.1 (29.3x) 2276.5 (32.8x)
QS

32

59.6 (–) 70.3 (–) 56.0 (–) 155.0 (–) 158.9 (–) 132.7 (–)
VPRED 341.8 (5.7x) 335.3 (4.8x) 325.7 (5.8x) 708.1 (4.6x) 693.1 (4.4x) 678.2 (5.1x)
CONDOP NA (x) NA (x) NA (x) NA (x) NA (x) NA (x)
IF-THEN 1453.0 (24.4x) 1245.8 (17.8x) 1357.1 (24.3x) 3018.8 (19.5x) 2984.5 (18.8x) 2702.8 (20.4x)
STRUCT+ 2424.3 (40.7x) 2346.5 (33.4x) 2279.1 (40.7x) 4002.2 (25.8x) 3824.4 (24.1x) 3648.3 (27.5x)
QS

64

158.2 (–) 156.3 (–) 146.7 (–) 428.1 (–) 335.0 (–) 289.6 (–)
VPRED 733.2 (4.6x) 704.7 (4.5x) 696.3 (4.7x) 1307.6 (3.0x) 1412.9 (4.2x) 1413.1 (4.9x)
CONDOP NA (x) NA (x) NA (x) NA (x) NA (x) NA (x)
IF-THEN 2364.3 (14.9x) 2350.5 (15.0x) 2334.8 (15.9x) 4397.1 (10.3x) 4647.2 (13.9x) 4678.8 (16.2x)
STRUCT+ 3014.8 (19.0x) 2894.4 (18.5x) 2942.8 (20.1x) 6794.5 (15.9x) 6923.9 (20.7x) 7586.4 (26.2x)

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

1234:24 Dato D., Lucchese C., Nardini F.M., Orlando S., Perego R., Tonellotto N., and Venturini R.

Table IV. Per-document scoring time in µs of QSΩ, OBLIVIOUS, VPRED, CONDOP, IF-
THEN, and STRUCT+ on MSN-1, Y!S1, and Istella datasets with OBLIVIOUS-λ-MART
models. Speedups are reported in parentheses.

Method Λ
Number of trees/dataset

1, 000 5, 000
MSN-1 Y!S1 Istella MSN-1 Y!S1 Istella

QSΩ

8

2.1 (–) 3.9 (1.4x) 2.2 (–) 9.3 (–) 12.9 (–) 10.4 (–)
OBLIVIOUS 2.5 (1.2x) 2.7 (–) 2.6 (1.2x) 12.8 (1.4x) 12.9 (–) 12.9 (1.2x)
VPRED 3.7 (1.8x) 4.0 (1.5x) 3.9 (1.8x) 18.6 (2.0x) 19.3 (1.5x) 18.8 (1.8x)
CONDOP 5.5 (2.6x) 5.6 (2.0x) 8.1 (3.7x) 54.2 (5.8x) 54.7 (4.2x) 71.9 (6.9x)
IF-THEN 5.4 (2.6x) 6.2 (2.3x) 8.2 (3.7x) 65.6 (7.0x) 64.4 (5.0x) 74.5 (7.2x)
STRUCT+ 13.6 (6.5x) 13.7 (5.0x) 16.8 (7.6x) 66.3 (7.1x) 67.1 (5.2x) 78.5 (7.5x)
QSΩ

16

2.5 (–) 4.2 (1.1x) 2.5 (–) 12.2 (–) 14.3 (–) 12.7 (–)
OBLIVIOUS 3.0 (1.2x) 3.7 (–) 3.8 (1.5x) 18.2 (1.5x) 17.9 (1.3x) 18.7 (1.5x)
VPRED 4.5 (1.8x) 4.7 (1.3x) 4.7 (1.9x) 22.8 (1.9x) 22.0 (1.5x) 23.4 (1.8x)
CONDOP 7.4 (3.0x) 7.1 (1.9x) 12.2 (4.9x) 75.9 (6.2x) 67.9 (4.7x 180.0 (14.2x)
IF-THEN 10.4 (4.2x) 8.7 (2.4x) 13.9 (5.6x) 91.7 (7.5x) 80.4 (5.6x) 101.9 (8.0x)
STRUCT+ 19.6 (7.8x) 19.0 (5.1x) 21.8 (8.7x) 96.9 (7.9x) 91.1 (6.4x) 110.3 (8.7x)
QSΩ

32

2.9 (–) 4.3 (1.1x) 3.0 (–) 12.8 (–) 14.7 (–) 13.1 (–)
OBLIVIOUS 4.1 (1.4x) 3.9 (–) 4.7 (1.6x) 21.7 (1.7x) 21.1 (1.4x) 22.5 (1.7x)
VPRED 4.9 (1.7x) 4.9 (1.3x) 5.5 (1.8x) 24.7 (1.9x) 22.9 (1.6x) 25.9 (2.0x)
CONDOP 9.1 (3.1x) 8.0 (2.0x) 16.6 (5.5x) 88.9 (6.9x) 75.6 (5.1x) 125.0 (9.5x)
IF-THEN 11.2 (3.9x) 9.0 (2.3x) 17.6 (5.9x) 102.7 (8.0x) 85.2 (5.8x) 118.5 (9.0x)
STRUCT+ 21.9 (7.6x) 20.6 (5.3x) 27.4 (9.1x) 115.0 (9.0x) 98.8 (6.7x) 137.6 (10.5x)
QSΩ

64

3.0 (–) 5 (1.1x) 3.2 (–) 11.5 (–) 13.8 (–) 12.3 (–)
OBLIVIOUS 4.4 (1.5x) 4.5 (–) 4.9 (1.5x) 22.0 (1.9x) 21.0 (1.5x) 28.2 (2.3x)
VPRED 5.1 (1.7x) 4.9 (1.1x) 5.9 (1.8x) 25.0 (2.2x) 23.2 (1.7x) 27.2 (2.2x)
CONDOP 10.0 (3.3x) 8.2 (1.8x) 20.0 (6.3x) 91.7 (8.0x) 75.6 (5.4x) 135.0 (11.0x)
IF-THEN 12.6 (4.2x) 9.7 (2.2x) 19.8 (6.2x) 105.2 (9.1x) 87.6 (6.3x) 132.0 (10.7x)
STRUCT+ 24.1 (8.0x) 20.9 (4.6x) 33.1 (10.3x) 123.7 (10.8x) 101.9 (7.4x) 147.8 (12.0x)

Method Λ
Number of trees/dataset

10, 000 20, 000
MSN-1 Y!S1 Istella MSN-1 Y!S1 Istella

QSΩ

8

19.1 (–) 20.6 (–) 19.8 (–) 37.2 (–) 40.3 (–) 36.2 (–)
OBLIVIOUS 26.0 (1.4x) 25.7 (1.2x) 25.2 (1.3x) 52.4 (1.4x) 51.8 (1.4x) 46.0 (1.3x)
VPRED 37.3 (2.0x) 38.5 (1.9x) 35.6 (1.8x) 74.8 (2.0x) 77.2 (1.9x) 62.4 (1.7x)
CONDOP 132.0 (6.9x) 134.0 (4.7x) 140.0 (7.1x) NA (x) NA (x) 234.0 (6.5x)
IF-THEN 144.8 (7.6x) 143.2 (7.0x) 142.2 (7.2x) 345.8 (9.3x) 338.3 (8.4x) 207.9 (5.7x)
STRUCT+ 132.4 (6.9x) 134.3 (6.5x) 144.2 (7.3x) 432.7 (11.6x) 442.2 (11.0x) 332.0 (9.2x)
QSΩ

16

22.7 (–) 25.0 (–) 23.9 (–) 44.4 (–) 46.4 (–) 45.8 (–)
OBLIVIOUS 37.2 (1.6x) 35.9 (1.4x) 37.6 (1.6x) 74.6 (1.7x) 71.9 (1.5x) 90.3 (2.0x)
VPRED 45.9 (2.0x) 44.5 (1.8x) 46.8 (2.0x) 93.9 (2.1x) 90.7 (2.0x) 95.3 (2.0x)
CONDOP 188.0 (8.3x) 168.0 (6.7x) NA (x) NA (x) NA (x) NA (x)
IF-THEN 206.1 (9.1x) 203.4 (8.1x) 235.0 (9.8x) 978.4 (22.0x) 778.5 (16.8x) 1117.7 (24.4x)
STRUCT+ 198.9 (8.8x) 186.6 (7.5x) 229.3 (9.6x) 686.4 (15.5x) 627.8 (13.5x) 821.4 (17.9x)
QSΩ

32

23.8 (–) 25.9 (–) 25.4 (–) 46.7 (–) 48.4 (–) 57.6 (–)
OBLIVIOUS 55.8 (2.3x) 41.6 (1.6x) 48.0 (1.9x) 95.6 (2.0x) 87.4 (1.8x) 205.0 (3.6x)
VPRED 49.5 (2.1x) 45.9 (1.8x) 51.9 (2.0x) 110.3 (2.4x) 96.2 (2.0x) 117.3 (2.0x)
CONDOP NA (x) NA (x) NA (x) NA (x) NA (x) NA (x)
IF-THEN 233.0 (9.8x) 196.0 (7.6x) 333.3 (13.2x) 1396.2 (29.9x) 929.2 (19.2x) 1567.7 (27.2x)
STRUCT+ 246.7 (10.4x) 203.9 (7.9x) 284.7 (11.2x) 744.6 (15.9x) 609.2 (12.6x) 885.4 (15.4x)
QSΩ

64

22.0 (–) 23.7 (–) 22.2 (–) 66.4 (–) 74.0 (–) 67.9 (–)
OBLIVIOUS 71.7 (3.2x) 44.7 (1.9x) 69.2 (3.1x) 195.0 (2.9x) 169.0 (2.3x) 206.0 (3.0x)
VPRED 50.7 (2.3x) 46.4 (2.0x) 42.7 (1.9) 118.1 (1.8x) 99.0 (1.3x) 69.3 (1.0x)
CONDOP NA (x) NA (x) NA (x) NA (x) NA (x) NA (x)
IF-THEN 251.7 (11.4x) 200.9 (8.5x) 187.7 (8.5x) 1561.4 (23.5x) 1018.5 (13.8x) 254.6 (3.7x)
STRUCT+ 264.1 (12.0x) 211.6 (8.9x) 211.4 (9.5x) 805.1 (12.1x) 645.0 (8.7x) 380.3 (5.6x)

The same experiments have been conducted with oblivious models generated by
OBLIVIOUS-λ-MART. The results obtained are reported in Table IV. As a general
consideration we observe that the running time of all the scoring algorithms is sig-
nificantly reduced. For example, for the same number of trees and leaves, STRUCT+
results to be up to 10 time faster on oblivious models than on non-oblivious ones. This
is mainly due to the imposed balancing of the oblivious trees, which upper bounds the
depth of the visit to log(|Λ|). Even in this case QSΩ, the oblivious version of QS, is

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

Fast Ranking with Additive Ensembles of Oblivious and Non-Oblivious Regression Trees 1234:25

faster than the state-of-the-art algorithm VPRED, but with a smaller gap, providing
improvements in the range 1.1x up to 2.4x. The CONDOP, IF-THEN, and STRUCT+
algorithms exhibit a similar behavior as in previous experiments. A different behav-
ior can instead be observed for OBLIVIOUS. The experiments conducted show in fact
that OBLIVIOUS slightly outperforms QSΩ in the tests involving Y!S1 and ensembles
of 1, 000 trees. The relatively lower performance of QSΩ in these specific cases is mo-
tivated by the very small memory footprint of OBLIVIOUS with respect to QSΩ and
all the other competitors. For example, QSΩ needs to materialize the array nodemasks.
Therefore, even if OBLIVIOUS performs a relatively larger number of tests than QSΩ,
since QSΩ only needs to detect the false nodes of each tree, for small number of trees
OBLIVIOUS can better exploit the first levels of the cache. On larger ensembles this
does not hold, and all the other experiments conducted show a superior performance
of QSΩ, with speedups reaching a factor 3.6x over OBLIVIOUS.

5.3. Instruction level analysis
We used the perf tool to measure the total number of instructions, number of branches,
number of branch mis-predictions, L3 cache references, and L3 cache misses for the
different scorers. For these tests we limit ourselves to non-oblivious tree ensembles,
and compare QS, VPRED, IF-THEN, and STRUCT+ on a λ-MART model trained on
the largest and most challenging ISTELLA dataset. Experiments on the other datasets
are not reported here as they exhibit a similar behavior. Table V reports the results
obtained by varying the number of trees of the λ-MART model, for a fixed number of 64
leaves. The performance measures of CONDOP are not reported because, as discussed
in the previous section, we experienced segmentation faults of the GCC compiler when
compiling so complex models with 64 leaves.

As a clarification, L3 cache references accounts for those references which are not
found in any of the previous levels of cache, while L3 cache misses are the ones among
them which miss in L3 as well. Table V also reports the number of visited nodes. All
measurements are normalized per-document and per-tree.

We first observe that number of instructions executed by VPRED is the largest one.
This is because VPRED always runs d steps, if d is the depth of a tree, even if a doc-
ument might reach an exit leaf earlier. IF-THEN executes much less instructions, as
trees are traversed from the root to the exit leaf in a traditional way. STRUCT+ in-
troduces some data structures overhead with respect to IF-THEN. QS executes the
smallest number instructions. This is due to the different traversal strategy of the
ensemble, as QS needs to process the false nodes only. Indeed, QS always visits an av-
erage percentage of branching nodes per tree between 20% and 25%. This is much less
that IF-THEN, whose average percentage of visited nodes is between 51% and 81%,
and the same trivially holds for STRUCT+. VPRED visits the largest number of nodes,
namely an average percentage between 72% and 93%. This means that the interleaved
traversal strategy of QS needs to process less nodes than in a traditional root-to-leaf
visit. This mostly explains the results achieved by QS.

In terms of number of branches, we note that, not surprisingly, QS and VPRED are
much more efficient than IF-THEN, CONDOP, and STRUCT+. QS has a larger total
number of branches than VPRED, which uses scoring functions that are branch-free.
However, those branches are highly predictable, so that the mis-prediction rate is very
low, thus, confirming our claims in Section 3.

Observing again the timings in Table III, we notice that, by fixing the number of
leaves, we have a super-linear growth of QS’s timings when increasing the number of
trees. For example, considering the ISTELLA dataset and a tree ensemble with Λ = 64
and 1, 000 trees, we have that QS scores a document in 11.2 µs. Therefore, when the
ensemble size increases to 20, 000 trees, one would expect to score a document 20 times

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

1234:26 Dato D., Lucchese C., Nardini F.M., Orlando S., Perego R., Tonellotto N., and Venturini R.

slower, i.e., 224 µs, since the complexity is linear in the number of trees. However, the
reported timing of QS in this setting is larger, i.e., 289.6 µs, which is roughly 26 times
slower than the time obtained with 1, 000 trees. This super-linear effect is observable
only for large number of leaves (Λ = {32, 64}) and large number of trees (greater than
5, 000). A similar behavior is reported also in Table IV. Table V relates this super-linear
growth to the number of L3 cache misses.

Considering the sizes of the arrays as reported in Table I in Section 3, we can es-
timate the minimum number of trees that let the size of the QS’s data structure to
exceed the cache capacity, and, thus, the algorithm starts to have more cache misses.
This number is estimated in 6, 000 trees when the number of leaves is 64. Thus, we ex-
pect that the number of L3 cache miss starts increasing around this number of trees.
Possibly, this number is slightly larger, because portions of the data structure may be
infrequently accessed at scoring time, due the small fraction of false nodes and associ-
ated bitvector masks accessed by QS.

These considerations are further confirmed by Figure 12, which shows the average
per-tree per-document scoring time (µs) and the percentage of cache misses of QS,
when scoring the Istella with a λ-MART model with Λ = 64 by varying the number
of trees. First, there exists a strong correlation between QS’s timings and its number
of L3 cache misses. Second, the number of L3 cache misses starts increasing when
dealing with 8, 000 trees and it becomes significant beyond 12, 000.

6. BWQS: A BLOCK-WISE VARIANT OF QS
The results of the experiments discussed in the previous section suggest that improv-
ing the cache efficiency of QS may result in significant benefits. To this purpose, we
can modify QS in order to score δ documents simultaneously as done by VPRED. Ad-
ditionally, we can exploit a 2D blocking strategy such the one proposed by Tang et al.
[2014], and split the tree ensemble in disjoint blocks of τ trees to be evaluated sepa-
rately for each bunch of δ documents. Besides partitioning the ensemble in blocks of
trees, in the following we also discuss a novel optimization that reduces the overall
number of instructions executed by QS for traversing blocks of trees. Although analo-
gous block-wise strategies can also be adopted for QSΩ, we do not report and discuss
experimental results for ensembles of oblivious trees.

By tuning parameters τ and δ it is possible to let the corresponding QS’s data struc-
tures fit into the faster levels of the memory hierarchy, still inheriting the efficiency
of QS. Indeed, the size of the arrays required to score the documents over a block of
trees depends on the number τ of trees per block instead of |T | (see Table I in Section
3). This strategy can enhance spatial locality by fitting into the cache, one at a time,
sub-blocks of large models that in the previous experiments exceeded the cache ca-
pacity. The temporal locality can be instead improved by tuning the parameter δ thus
allowing the algorithm to score blocks of documents together over the same block of
trees before moving to the next block of documents. To allow QS to score a block of
δ documents in a single run we have however to use δ different arrays leafindexes
to store the partial scores accumulated so far by each document. This increases the
space occupancy and therefore, we need to find the best balance between the number
of documents δ and the number of trees τ to process in the body of a nested loop that
first runs over the blocks of trees (outer loop) and then over the blocks of documents to
score (inner loop).

Tree reversing to reduce the number of false nodes. The processing of the given en-
semble in independent blocks of trees allows us to devise a novel optimization of QS,
made possible by the specific QS’s traversal of the tree ensemble. We have already seen
that the cost of QS primarily depends on the number of (false) tree nodes actually vis-

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

Fast Ranking with Additive Ensembles of Oblivious and Non-Oblivious Regression Trees 1234:27

Table V. Per-tree per-document low-level statistics on Istella
with 64-leaves λ-MART models.

Method Number of Trees
1,000 5,000 10,000 15,000 20,000

Instruction Count
QS 73 76 87 90 80
VPRED 495 584 619 636 637
IF-THEN 110 144 162 173 177
STRUCT+ 273 350 391 418 428

Num. branch mis-predictions (above)
Num. branches (below)

QS 0.19 0.04 0.02 0.01 0.01
7.90 7.41 8.34 8.61 7.63

VPRED
0.02 0.04 0.03 0.03 0.03
0.20 0.20 0.20 0.20 0.20

IF-THEN
1.96 2.56 2.01 1.75 1.53

34.08 43.35 48.11 51.0 35.71

STRUCT+ 5.31 5.05 5.40 7.04 7.37
72.69 94.44 107.11 114.87 116.26

L3 cache misses (above)
L3 cache references (below)

QS 0.005 0.001 0.016 0.119 0.235
2.02 1.44 1.49 1.73 1.89

VPRED
0.005 0.093 0.160 0.158 0.162
14.87 12.37 9.37 7.37 6.06

IF-THEN
0.001 15.098 28.006 28.527 28.008
25.41 37.19 38.83 37.44 35.71

STRUCT+ 0.242 13.879 12.935 13.845 20.768
11.80 17.39 17.659 21.88 26.14

Num. Visited Nodes (above)
Visited Nodes/Total Nodes (below)

QS 12.52 13.76 15.88 16.52 14.60
20% 22% 25% 26% 23%

VPRED
45.60 53.84 57.17 58.77 58.87
72% 85% 91% 93% 93%

STRUCT+ 32.18 41.41 46.14 49.35 50.77
IF-THEN 51% 66% 73% 78% 81%

ited. Let us consider a limit case, that is a tree for which every node contains a test
condition evaluating to false for a given document x. This situation would be the worst
one for our solution, since all the associated tests should be executed. The cost of such
a tree could be however zeroed out by exploiting a simple transformation of the tree.
Our transformation that reduces the number of visited nodes consists in reversing the
test condition in each node of the block, from x[φ] ≤ γ to x[φ] > γ, and in swapping
the left and right subtrees of the node. In this way we would obtain an equivalent tree
for which every node’s test condition evaluates to true for the same document x. Such
reversed tree only requires a dual data structure for storing the feature thresholds,
which must be sorted in descending order.

Tree reversing should be profitable for all the trees that contain more false than
true nodes on average over a collection of training documents. Let us call these trees
false trees. We can easily estimate the probability of a tree being a false tree on the
validation set during the learning phase. If the number of false trees in the ensemble is
significant, we can reverse all of them as described before. The tree block-wise strategy

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

1234:28 Dato D., Lucchese C., Nardini F.M., Orlando S., Perego R., Tonellotto N., and Venturini R.

is then applied so as to achieve homogeneous blocks containing either only false trees
or without false trees at all.

This resulting algorithm is called BLOCKWISE-QS (BWQS) and its efficiency is dis-
cussed in the remaining part of this section.

Table VI. Per-document scoring time in µs of
BWQS, QS and VPRED algorithms on ISTELLA.

ISTELLA
Λ Method Block size Time

δ τ

8
BWQS 8 10,000 31.1 (–)
QS 1 20,000 41.7 (1.3x)
VPRED 16 20,000 158.3 (5.1x)

16
BWQS 8 5,000 52.3 (–)
QS 1 20,000 69.3 (1.3x)
VPRED 16 20,000 326.9 (6.3x)

32
BWQS 2 5,000 105.1 (–)
QS 1 20,000 132.7 (1.3x)
VPRED 16 20,000 678.2 (6.5x)

64
BWQS 1 3,000 216.8 (–)
QS 1 20,000 289.6 (1.3x)
VPRED 16 20,000 1413.1 (6.5x)

Evaluating the performance of BWQS. Table VI reports the average per-document
scoring time in µs of algorithms QS, VPRED, and BWQS. The experiments were con-
ducted on the largest Istella dataset by fixing the number of trees to 20, 000 and varying
Λ. Experiments on the other datasets are not reported here, but they exhibit similar
behavior. It is worth noting that our QS algorithm can be thought as a limit case of
BWQS, where the blocks are trivially composed of 1 document and the whole ensem-
ble of trees. VPRED instead vectorizes the process and scores 16 documents at the time
over the entire ensemble. With BWQS the sizes of document and tree blocks can be
instead flexibly optimized according to the cache parameters. Table VI reports the best
execution times, along with the values of δ ∈ {1, 2, 4, 8, 16} and τ ∈ {1, 000, 2, 000, 3, 000,
4, 000, 5, 000, 10, 000, 20, 000} for which BWQS obtained such results.

The speedup of BWQS with respect to QS is 1.3x on every experiment. The compar-
ison against VPRED shows now a larger improvement in the speedup, up to 6.5x. As
expected, we see that smaller blocks should be used with a large number of leaves, due
to the larger footprint of the BWQS data structure.

The reason of the speedups highlighted in the table are clearly visible from the plot
in Figure 12, where the per-document per-tree average scoring time of BWQS and its
cache misses ratio is reported. For these tests, the best setting reported in Table VI
was used, i.e., δ = 1 and τ = 3, 000. As already mentioned, the scoring time of QS is
strongly correlated to its cache misses. The more the cache misses are, the more time
the algorithm takes to score documents. On the other hand, the curve of the BWQS
cache misses shows that the block-wise implementation incurs in a negligible num-
ber of cache misses. This cache-friendliness is directly reflected in the per-document
per-tree scoring time, which is only slightly influenced by the number of trees of the
ensemble. A back-of-the-envelope analysis of QS based on Table I shows that its mem-
ory footprint is approximatively 1, 096 · |T | bytes for models with 64 leaves, versus
2, 040 · |T | needed by VPRED. Recall that the hardware used in the experiments in-
cludes a 8 MB L3 cache, which means that QS may fit between 7, 000 and 8, 000 trees
in cache memory. Indeed, Figure 12 shows that the number of cache misses for QS

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

Fast Ranking with Additive Ensembles of Oblivious and Non-Oblivious Regression Trees 1234:29

starts increasing at 8, 000 trees. Regarding VPRED, Table V clearly reports that the
number of cache misses is already significant with 5, 000 trees.

The impact of the reversal strategy is less significant for BWQS than the cache
optimizations, because the number of false trees in the ensemble is between 5% and
10% in our experiments. On the other hand, the reversal strategy makes BWQS less
sensitive to the data distribution. It guarantees that the number of visited nodes is at
most half the number of nodes in the ensemble for any given dataset.

1000 5000 10000 15000 20000

Number of Trees (64 leaves)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

S
co

ri
ng

ti
m

e
p

er
do

cu
m

en
t

p
er

tr
ee

(µ
s)

QS Scoring Time

BWQS Scoring Time

QS Cache Misses

BWQS Cache Misses

0

5

10

15

20

C
ac

he
M

is
se

s
(%

)

Fig. 12: Per-tree per-document scoring time in µs and percentage of cache misses of QS
and BWQS on Istella with 64-leaves λ-MART models.

7. CONCLUSION
We presented a novel algorithmic framework aimed to efficiently score query results
returned by large-scale Web search engines. In particular, the framework scores doc-
uments by exploiting machine-learned ranking functions modeled by state-of-the-art
additive ensemble of oblivious and non-oblivious regression trees. While non-oblivious
trees are binary decision tress without any constraints on the tests performed by each
branching node, oblivious ones are balanced decision trees that performs the same test
at each level of a tree. The last characteristic enables a more efficient tree traversal
and is aimed at reducing overfitting. Specifically, we proposed two algorithms, QS and
QSΩ, for scoring with large ensemble of non-oblivious and oblivious trees, respectively.

The main contribution of QS and QSΩ is a new representation of the tree ensemble
based on bitvectors, where the tree traversal, aimed to detect the leaves that contribute
to the final scoring of a document, is performed through efficient logical bitwise opera-
tions. In addition, the traversal is not performed one tree after another, as one would
expect, but it is interleaved, feature by feature, over the whole tree ensemble.

Our tests conducted on publicly available LtR datasets confirm unprecedented
speedups of QS (up to 6.6x) over the best state-of-the-art competitor. The motivations

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

1234:30 Dato D., Lucchese C., Nardini F.M., Orlando S., Perego R., Tonellotto N., and Venturini R.

of the very good performance figures of our QS algorithm are diverse. First, linear ar-
rays are used to store the tree ensemble, while the algorithm exploits cache-friendly
access patterns (mainly sequential patterns) to these data structures. Second, the in-
terleaved tree traversal counts on an effective oracle that, with a few branch mis-
predictions, is able to detect and return only the branching node in a tree whose condi-
tions evaluate to FALSE. Third, the number of internal nodes visited by QS is in most
cases consistently lower than in traditional methods, which recursively visits the small
and unbalanced trees of the ensemble from the root to the exit leaf. All these remarks
are confirmed by the deep performance assessment conducted by also analyzing low-
level CPU hardware counters. This analysis shows that QS exhibits very low cache
misses and branch mis-prediction rates, while the instruction count is consistently
smaller than the counterparts. When the size of the data structures implementing the
tree ensemble becomes larger than the last level of the cache (L3 in our experimental
setting), we observed a slight degradation of performance.

Concerning oblivious trees, we also compared QSΩ with a very efficient algorithm,
OBLIVIOUS, specifically designed to take advantage of the features of oblivious trees.
The last algorithm traverses trees without performing any branches, shares with QSΩ

the exploitation of fast logical bitwise operations, and has a very small memory foot-
print that advantages OBLIVIOUS when small tree ensembles are employed to score
documents. On larger ensembles, QSΩ outperform also OBLIVIOUS besides the other
competitors, with speedups up to 3.6x.

To show that QS can be made scalable, we also presented BWQS, a block-wise ver-
sion of QS that splits the sets of feature vectors and trees in disjoint blocks that en-
tirely fit in the cache and can be processed separately. A novel optimization technique
was introduced in BWQS that allows to further reduce the number of operations per-
formed at scoring time by reversing the test condition in each node of the trees that
contain more false than true nodes on average over a collection of training documents.
Our experiments show that BWQS performs up to 1.3 times better than the original
QS on large tree ensembles.

As future work, we plan to apply the same devised algorithm to other contexts, when
a tree-based machine learned model must be applied to big data for classification/pre-
diction purposes. Moreover, we aim at investigating whether we can introduce further
optimizations in the algorithms, considering that the same tree-based model is ap-
plied to a multitude of feature vectors, and thus we could have the chance of partially
reusing some work. Finally, we plan to investigate the parallelization of our method,
which can involve various dimensions, i.e., the parallelization of the scoring task of
each single feature vector, or the parallelization of the simultaneous scoring of many
feature vectors. Some interesting results were achieved in [Lucchese et al. 2016] by
exploiting the SIMD capabilities of modern microprocessors, while opportunities pro-
vided by general-purpose computing on graphics processing units (GPGPU) are still
unexplored.

QUICKSCORER is currently patent pending [Dato et al. 2015] and its source code is
available for research purposes under Non Disclosure Agreement with TISCALI ITALIA
S.p.A.

REFERENCES
Nima Asadi, Jimmy Lin, and Arjen P. de Vries. 2014. Runtime Optimizations for Tree-Based Machine Learn-

ing Models. IEEE Transactions on Knowledge and Data Engineering 26, 9 (2014), 2281–2292.
Nima Asadi and Jimmy J. Lin. 2013. Training Efficient Tree-Based Models for Document Ranking. In Pro-

ceedings of the 35th European Conference on Information Retrieval (ECIR). Springer, 146–157.
Christopher J.C. Burges. 2010. From RankNet to LambdaRank to LambdaMART: An Overview. Technical

Report MSR-TR-2010-82.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

Fast Ranking with Additive Ensembles of Oblivious and Non-Oblivious Regression Trees 1234:31

Berkant Barla Cambazoglu, Hugo Zaragoza, Olivier Chapelle, Jiang Chen, Ciya Liao, Zhaohui Zheng, and
Jon Degenhardt. 2010. Early Exit Optimizations for Additive Machine Learned Ranking Systems. In
Proceedings of the 3rd International Conference on Web Search and Data Mining (WSDM). ACM, 411–
420.

Gabriele Capannini, Domenico Dato, Claudio Lucchese, Monica Mori, Franco Maria Nardini, Salvatore Or-
lando, Raffaele Perego, and Nicola Tonellotto. 2015. QuickRank: a C++ Suite of Learning to Rank Algo-
rithms. In Proceedings of the 6th Italian Information Retrieval Workshop (IIR).

Gabriele Capannini, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, and
Nicola Tonellotto. 2016. Quality versus efficiency in document scoring with learning-to-rank models.
Information Processing & Management (2016). In press.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In Proceedings of the
22nd ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD). ACM. In press.

Domenico Dato, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Nicola Tonel-
lotto, and Rossano Venturini. 2015. A method to rank documents by a computer, using additive ensem-
bles of regression trees and cache optimization, and search engine using such a method. Tiscali S.p.A.
PCT29914, (pending) (2015).

Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting machine. Annals of Statistics
(2001), 1189–1232.

Yasser Ganjisaffar, Rich Caruana, and Cristina Videira Lopes. 2011. Bagging Gradient-boosted Trees for
High Precision, Low Variance Ranking Models. In Proceeding of the 34th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR). ACM, 85–94.

Andrey Gulin, Igor Kuralenok, and Dmitry Pavlov. 2011. Winning the transfer learning track of Yahoo!’s
learning to rank challenge with yetirank. In Workshop and Conference Proceedings, JMLR. 63–76.

Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated Gain-based Evaluation of IR Techniques. ACM
Transactions on Information Systems 20, 4 (2002), 422–446.

Xin Jin, Tao Yang, and Xun Tang. 2016. A Comparison of Cache Blocking Methods for Fast Execution of
Ensemble-based Score Computation. In Proceedings of the 39th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR). ACM, 629–638.

Ron Kohavi. 1994. Bottom-Up Induction of Oblivious Read-Once Decision Graphs: Strengths and Limita-
tions. In Proceedings of the 12th National Conference on Artificial Intelligence, (AAAI). AAAI Press,
613–618.

Pat Langley and Stephanie Sage. 1994. Oblivious decision trees and abstract cases. In Working Notes of the
AAAI-94 Workshop on Case-Based Reasoning. AAAI Press, 113–117.

Tie-Yan Liu. 2009. Learning to rank for information retrieval. Foundations and Trends in Information Re-
trieval 3, 3 (2009), 225–331.

Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Fabrizio Silvestri, and Salva-
tore Trani. 2016. Post-Learning Optimization of Tree Ensembles for Efficient Ranking. In Proceedings
of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR). ACM, 949–952.

Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Nicola Tonellotto, and
Rossano Venturini. 2015. QuickScorer: A Fast Algorithm to Rank Documents with Additive Ensem-
bles of Regression Trees. In Proceedings of the 38th International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR). ACM, 73–82.

Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Nicola Tonellotto, and
Rossano Venturini. 2016. Exploiting CPU SIMD Extensions to Speed-up Document Scoring with Tree
Ensembles. In Proceedings of the 39th International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (SIGIR). ACM, 833–836.

David Patterson and John Hennessy. 2014. Computer Organization and Design (5th ed.). Morgan Kaufmann.
Stephen Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance Framework: BM25 and Beyond.

Foundations and Trends in Information Retrieval 3, 4 (2009), 333–389.
Ilya Segalovich. 2010. Machine learning in search quality at Yandex. Presentation at the industry track of

the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR). http://download.yandex.ru/company/presentation/yandex-sigir.ppt. (2010).

Toby Sharp. 2008. Implementing decision trees and forests on a GPU. In Proc. Computer Vision 2008.
Springer, 595–608.

Xun Tang, Xin Jin, and Tao Yang. 2014. Cache-conscious runtime optimization for ranking ensembles.. In
Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval (SIGIR). ACM, 1123–1126.

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

1234:32 Dato D., Lucchese C., Nardini F.M., Orlando S., Perego R., Tonellotto N., and Venturini R.

Brian Van Essen, Chris Macaraeg, Maya Gokhale, and Ryan Prenger. 2012. Accelerating a random forest
classifier: Multi-core, GP-GPU, or FPGA?. In Proceedings of the 20th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). IEEE, 232–239.

Paul Viola and Michael J. Jones. 2004. Robust Real-Time Face Detection. International Journal of Computer
Vision 57, 2 (2004), 137–154.

Lidan Wang, Jimmy J. Lin, and Donald Metzler. 2010. Learning to efficiently rank. In Proceeding of the 33rd
International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR).
ACM, 138–145.

Lidan Wang, Jimmy J. Lin, and Donald Metzler. 2011. A cascade ranking model for efficient ranked re-
trieval. In Proceeding of the 34th International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR). ACM, 105–114.

Lidan Wang, Donald Metzler, and Jimmy J. Lin. 2010. Ranking under temporal constraints. In Proceedings
of the 19th ACM Conference on Information and Knowledge Management (CIKM). ACM, 79–88.

Qiang Wu, Christopher J.C. Burges, Krysta M. Svore, and Jianfeng Gao. 2010. Adapting boosting for infor-
mation retrieval measures. Information Retrieval (2010).

Zhixiang Xu, Kilian Weinberger, and Olivier Chapelle. 2012. The Greedy Miser: Learning under Test-time
Budgets. In Proceedings of the 29th International Conference on Machine Learning (ICML). ACM, 1175–
1182.

Dawei Yin, Yuening Hu, Jiliang Tang, Tim Daly Jr., Mianwei Zhou, Hua Ouyang, Jianhui Chen, Changsung
Kang, Hongbo Deng, Chikashi Nobata, Jean-Marc Langlois, and Yi Chang. 2016. Ranking Relevance
in Yahoo Search. In Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery & Data
Mining (KDD). ACM. In press.

Received -; revised -; accepted -

ACM Transactions on Information Systems, Vol. 9, No. 4, Article 1234, Publication date: December 2016.

