
Logical Methods in Computer Science
Vol. 12(4:6)2016, pp. 1–51
www.lmcs-online.org

Submitted Aug. 31, 2015
Published Dec. 28, 2016

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRAC TS

DAVIDE BASILE, PIERPAOLO DEGANO, AND GIAN-LUIGI FERRARI

Dipartimento di Informatica, Università di Pisa, Italy
e-mail address: {basile, degano, giangi}@di.unipi.it

ABSTRACT. An approach to the formal description of service contractsis presented in terms of
automata. We focus on the basic property of guaranteeing that in the multi-party composition of
principals each of them gets his requests satisfied, so that the overall composition reaches its goal.
Depending on whether requests are satisfied synchronously or asynchronously, we construct an or-
chestrator that at static time either yields composed services enjoying the required properties or de-
tects the principals responsible for possible violations.To do that in the asynchronous case we resort
to Linear Programming techniques. We also relate our automata with two logically based methods
for specifying contracts.

1. INTRODUCTION

Modern software applications are notstand-aloneentities and are embedded in a dynamic dis-
tributed environment where new functionalities are added or deleted in a relatively short period of
time. Service Oriented Computing[44] is a paradigm for designing distributed applications where
applications are built by combining severalfine-grainedand loosely-coupleddistributed compo-
nents, calledservices. Services can be combined to accomplish a certain computational task or to
form a more complex service. A service exposes both the functionalities it provides and the param-
eters it requires. Clients exploit service public information to discover and bind the services that
better fit their requirements.

Service coordination is a fundamental mechanism of the service-oriented approach because it
dictates how the involved services are compositionally assembled together. Service coordination
policies differ on the interaction supports that are adopted to pass information among services. At
design time, a main task of software engineers is therefore to express the assumptions that shape
these policies and that will drive the construction of a correct service coordination.Orchestration
andchoreographyare the standard solutions to coordinate distributed services. In an orchestrated
approach, services coordinate with each other by interacting with a distinguished service, theor-
chestrator, which at run-time regulates how the computation evolves. In a choreographed approach,

2012 ACM CCS:[Theory of computation]: Models of computation; Semantics and reasoning; [Information sys-
tems]: World Wide Web—Web services—Service discovery and interfaces.

Key words and phrases:Web Services, Coordination and Orchestration, Contract Agreement, Control Theory, Linear
Programming, Intuitionistic Logic.

This work has been partially supported by the projectsSecurity Horizons, funded by MIUR, and PRA2016 64
Through the fog, funded by the University of Pisa.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-12(4:6)2016

c© D. Basile, P. Degano, and G.-L. Ferrari
CC© Creative Commons

http://creativecommons.org/about/licenses

2 D. BASILE, P. DEGANO, AND G.-L. FERRARI

the distributed services autonomously execute and interact with each other without a central coor-
dinator. Here, we concentrate on orchestration, whereas weinjected some aspects of our proposal
within the choreographed approach in [20, 16].

We argue that the design of correct service coordination policies is naturally supported by re-
lying on the notion ofservice contractwhich specifies what a service is going to guarantee and
offer (hereafter anoffer) and what in turn it expects and requires (hereafter arequest). The coordi-
nation policy has therefore to define the duties and responsibilities for each of the different services
involved in the coordination through theoverall contract agreement. Obviously, this arrangement
is based on the contracts of the involved services, and ensures that all requests are properly served
when all the duties are properly kept. The coordinator then organises the service coordination pol-
icy and proposes the resulting overall contract agreement to all the parties. This process is called
contract composition.

The main contribution of this paper is twofold. First, we propose a rigorous formal technique
for describing and composing contracts, suitable to be automated. Second, we develop techniques
capable of determining when a contract composition is correct and leads to the design of a correct
service orchestration. More in detail, we introduce an automata-based model for contracts called
contract automata, that are a special kind of finite state automata, endowed with two operations
for composing them. A contract automaton may represent a single service or a composition of
several services, hereafter calledprincipals. The traces accepted by a contract automaton show the
possible interactions among the principals, by recording which offers and requests are performed,
and by which principals in the composition. This provides the basis to define criteria that guarantee
a composed service to well behave with respect to the overallservice contract.

We equip our model with formal notions in language-theoretic terms aiming at characterising
when contracts are honoured within a service composition. We first consider properties of a single
trace. We say that a trace is inagreementwhen all the requests made are synchronously matched,
i.e. satisfied by corresponding offers. The second property, weak agreement, is more liberal, in that
requests can be asynchronously matched, and an offer can be delivered even before a corresponding
request, and vice-versa. Then we say that a contract automaton issafe(weakly safe, respectively)
whenall its traces are in agreement (weak agreement, respectively).

The notions of safety presented above may appear too strict since they require that all the words
belonging to the language recognised by a contract automaton must satisfy agreement or weak
agreement. We thus introduce a more flexible notion that characterises when a service composition
may be successful, i.e. at least one among all the possible traces enjoys one of the properties above.
We say that a contract automatonadmits(weak) agreement when such a trace exists.

When a contract automaton admits (weak) agreement, but it isnot (weakly) safe, we define
those principals in a contract that are (weakly)liable, i.e. those responsible for leading a contract
composition into a failure. Note that the orchestration of contracts imposes further constraints
on each principal: some of the interactions dictated by its service contract may break the overall
composition and thus the orchestrator will ban them.

For checking when a contract automaton enjoys the properties sketched above, we propose two
formal verification techniques that have been also implemented [15].1 The first one amounts to build
the so-called controllers in Control Theory [26]. We show that controllers are powerful enough to
synthesise a correct orchestrator enforcing agreement andto detect the liable principals. In order
to check weak agreement and detect weak liability we resort to Linear Programming techniques
borrowed from Operational Research [34], namely optimisation of network flows. The intuitive

1Available athttps://github.com/davidebasile/workspace

https://github.com/davidebasile/workspace

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 3

idea is that service coordination is rendered as an optimal flow itinerary of offers and requests in a
network, automatically constructed from the contract automaton.

Finally, we establish correspondence results between (weak) agreement and provability of for-
mulae in two fragments of different intuitionistic logics,that have been used for modelling contracts.
The first one, Propositional Contract Logic [14], has a special connective to deal with circularity be-
tween offers and requests, arising when a principal requires, saya, before offeringb to another
principal who in turn first requiresb and then offersa; note that weak agreement holds for this kind
of circularity. The second fragment, Intuitionist Linear Logic with Mix [21] is a linear logic capable
of modelling the exchange of resources with the possibilityof recording debts, that arise when the
request of a principal is satisfied and not yet paid back.

Plan of the paper. In Section 2 we introduce contract automata and two operators of composition.
Section 3 discusses the properties of agreement and safety.The techniques for checking and en-
forcing them are also presented here, along with the notion of liability. Weak agreement and weak
liability are defined in Section 4, along with a technique to check them. In Section 5 we present cor-
respondence results with fragments of Propositional Contract Logic and Intuitionistic Linear Logic
with Mix. A case study is proposed in Section 6. Finally, related work is in Section 7 and the con-
cluding remarks are in Section 8. All the proofs of our results, and a few auxiliary definitions can
be found in the appendix. Portions of Sections 2, 3, and 4 appeared in a preliminary form in [18].

2. THE MODEL

This section formally introduces the notion of contract automata, that are finite state automata with a
partitioned alphabet. A contract automaton represents thebehaviour of a set of principals (possibly
a singleton) capable of performing someactions; more precisely, the actions of contract automata
allow them to “make” requests, “advertise” offers or “matching” a pair of “complementary” re-
quest/offer. The number of principals in a contract automaton is calledrank, and we use a vectorial
representation to record the action performed by each principal in a transition of a contract automa-
ton, as well as its state as the vector of the states of its principals.

Let Σ = R∪O∪{�} be the alphabet ofbasic actions, made ofrequestsR = {a,b,c, . . .} and
offersO= {a,b,c, . . .} whereR∩O= /0, and� 6∈R∪O is a distinguished element representing the
idle move. We define the involutionco(•) : Σ 7→ Σ such thatco(R) =O, co(O) = R, co(�) = �.

Let~v= (a1, ...,an) be a vector ofrank n≥ 1, in symbolsrv, and let~v(i) denote the i-th element
with 1≤ i ≤ rv. We write~v1~v2 . . .~vm for the concatenation ofm vectors~vi , while |~v|= n is the rank
(length) of~v and~vn is the vector obtained byn concatenations of~v.

The alphabet of a contract automaton consists of vectors, each element of which intuitively
records the activity, i.e. the occurrence of a basic action of a single principal in the contract. In a
vector~v there is either a single offer or a single request, or a singlepair of request-offer that matches,
i.e. there exists exactlyi, j such that~v(i) is an offer and~v(j) is the complementary request or vice-
versa; all the other elements of the vector contain the symbol �, meaning that the corresponding
principals stay idle. In the following let�m denote a vector of rankm, all elements of which are�.
Formally:
Definition 2.1 (Actions). Given a vector~a∈ Σn, if

• ~a= �
n1α�

n2,n1,n2≥ 0, then~a is arequest (action) onα if α ∈ R, and is anoffer (action) onα if
α ∈O
• ~a= �

n1α�
n2co(α)�n3,n1,n2,n3≥ 0, then~a is amatch (action) onα, whereα ∈R∪O.

4 D. BASILE, P. DEGANO, AND G.-L. FERRARI

Two actions~a and~b arecomplementary, in symbols~a ⊲⊳~b if and only if the following con-
ditions hold: (i)∃α ∈ R∪O : ~a is either a request or an offer onα; (ii) ~a is an offer onα =⇒
~b is a request onco(α) and (iii)~a is a request onα =⇒ ~b is an offer onco(α).

We now extract from an action the request or offer made by a principal, and the matching of
a request and an offer, and then we lift this procedure to a sequence of actions, i.e. to a trace of a
contract automaton that intuitively corresponds to an execution of a service composition.

Definition 2.2 (Observable). Let w= ~a1 . . . ~an be a sequence of actions, and letε be the empty one,
then itsobservableis given by the partial functionObs(w) ∈ (R∪O∪{τ})∗ where:

Obs(ε) = ε

Obs(~aw′) =

{

~a(i) Obs(w′) if ~a is an offer/request and~a(i) 6= �

τObs(w′) if ~a is a match

We now define contract automata, the actions and the states ofwhich are actually vectors of
basic actions and of states of principals, respectively.

Definition 2.3 (Contract Automata). Assume as given a finite set of statesQ= {q1,q2, . . .}. Then
acontract automatonA , CA for short, of rankn is a tuple〈Q, ~q0,Ar ,Ao,T,F〉, where

• Q= Q1× . . .×Qn⊆Qn

• ~q0 ∈Q is the initial state
• Ar ⊆ R,Ao⊆O are finite sets (of requests and offers, respectively)
• F ⊆Q is the set of final states
• T ⊆Q×A×Q is the set of transitions, whereA⊆ (Ar ∪Ao∪{�})n and if
(~q,~a,~q′) ∈ T then both the following conditions hold:
– ~a is either a request or an offer or a match
– ∀i ∈ 1. . .n. if ~a(i) = � then it must be~q(i) = ~q′(i)

A principal contract automaton (or simplyprincipal) has rank 1 and it is such thatAr ∩co(Ao) = /0.
A step(w,~q)→ (w′,~q′) occurs if and only ifw=~aw′,w′ ∈ A∗ and(~q,~a,~q′) ∈ T.
The language ofA is L (A) = {w | (w, ~q0)→

∗ (ε,~q),~q ∈ F} where→∗ is the reflexive, transitive
closure of the transition relation→.

Note that for principals we have the restrictionAr ∩co(Ao) = /0. Indeed, a principal who offers
what he requires makes little sense.

Example 2.4. Figure 1 shows three contract automata. The automatonA1 may be understood as
producing a certain number of resources through one or more offers resand it terminates with the
request of receiving a signalsig. The contractA2 starts by sending the signalsigand then it collects
the resources produced byA1. The contractA3 represents the contract automaton whereA1 andA2

interact as discussed below. BothA1 andA2 have rank 1 whileA3 has rank 2.

Contract automata can be composed, by making the cartesian product of their states and of the
labels of the joined transitions, with the additional possibility of labels recording matching request-
offer. This is the case for the action(sig,sig) of the contract automatonA3 in Figure 1.

Below, we introduce two different operators for composing contract automata. Both products
interleave all the transitions of their operands. We only force a synchronisation to happen when two
contract automata are ready on their respective request/offer action. These operators represent two
different policies of orchestration. The first operator is called simplyproductand it considers the
case when a serviceS joins a group of services already clustered as a single orchestrated serviceS′.
In the product ofSandS′, the first can only accept the still available offers (requests, respectively)

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 5

q01start q11
sig

res

q02start q12
sig

res

q01,q02start q11,q12
(sig,sig)

(res,�) (�, res)

FIGURE 1. Three contract automata: from leftA1,A2, andA3 (composition ofA1 andA2)

of S′ and vice-versa. In other words,S cannot interact with the principals of the orchestrationS′,
but only with it as a whole component. This is obtained in Definition 2.5 through the relation⊲⊳
(see Definition 2.1), which is only defined for actions that are not matches. This is not the case
with the second operation of composition, calleda-product: it puts instead all the principals ofSat
the same level of those ofS′. Any matching request-offer of either contracts can be split, and the
offers and requests, that become available again, can be re-combined with complementary actions
of S, and vice-versa. The a-product turns out to satisfactorilymodel coordination policies in dynam-
ically changing environments, because the a-product supports a form ofdynamic orchestration, that
adjusts the workflow of messages when new principals join thecontract.

We now introduce our first operation of composition; recall that we implicitly assume the al-
phabet of a contract automaton of rankm to beA⊆ (Ar ∪Ao∪{�})m. Note that the first case of
the definition ofT below is for the matching of actions of two component automata, while the other
considers the action of a single component.

Definition 2.5 (Product). Let Ai = 〈Qi, ~q0i,A
r
i ,A

o
i ,Ti,Fi〉, i ∈ 1. . .n be contract automata of rankr i .

Theproduct
⊗

i∈1...nAi is the contract automaton〈Q, ~q0,Ar ,Ao,T,F〉 of rankm= ∑i∈1...n r i , where:

• Q= Q1× ...×Qn, where~q0 = ~q01 . . . ~q0n
• Ar =

⋃
i∈1···n Ar

i , Ao =
⋃

i∈1···nAo
i

• F = {~q1 . . .~qn |~q1 . . .~qn ∈Q,~qi ∈ Fi, i ∈ 1. . .n}
• T is the least subset ofQ×A×Q s.t. (~q,~c,~q′) ∈ T iff, when~q=~q1 . . .~qn ∈Q,

– either there are 1≤ i < j ≤ n s.t. (~qi ,~ai ,~q′i) ∈ Ti, (~q j ,~a j ,~q′j) ∈ Tj ,~ai ⊲⊳~a j and






~c= �
u~ai�

v~a j �
z with u= r1+ . . .+ r i−1, v= r i+1+ . . .+ r j−1, |~c|= m

and
~q′ =~q1 . . .~qi−1 ~q′i ~qi+1 . . . ~q j−1 ~q′j ~q j+1 . . .~qn

– or there is 1≤ i ≤ n s.t. (~qi ,~ai ,~q′i) ∈ Ti and
~c= �

u~ai�
v with u= r1+ . . .+ r i−1, v= r i+1+ . . .+ rn, and

~q′ =~q1 . . .~qi−1 ~q′i ~qi+1 . . .~qn and
∀ j 6= i,1≤ j ≤ n,(~q j ,~a j ,~q′j) ∈ Tj it does not hold that~ai ⊲⊳~a j .

There is a simple way of retrieving the principals involved in a composition of contract automata
obtained through the product introduced above: just introduce projections∏i as done below. For
example, for the contract automata in Figure 1, we haveA1 = ∏1(A3) andA2 = ∏2(A3).

Definition 2.6 (Projection). Let A = 〈Q, ~q0,Ar ,Ao,T,F〉 be a contract automaton of rankn, then
theprojectionon the i-th principal is∏i(A) = 〈∏i(Q), ~q0(i),∏i(Ar),∏i(Ao),∏i(T),∏i(F)〉 where
i ∈ 1. . .n and:

∏i(Q) = {~q(i) |~q∈Q} ∏i(F) = {~q(i) |~q∈ F} ∏i(Ar) = {a | a∈ Ar ,(q,a,q′) ∈∏i(T)}

∏i(T) = {(~q(i),~a(i),~q′(i)) | (~q,~a,~q′) ∈ T ∧~a(i) 6= �} ∏i(Ao) = {a | a∈ Ao,(q,a,q′) ∈∏i(T)}

6 D. BASILE, P. DEGANO, AND G.-L. FERRARI

q01start q11
toy

q02start q12
toy

q03start q13
toy

q01,q02,q03start q11,q12,q03

q01,q02,q13 q11,q12,q13

(toy, toy,�)

(�,�, toy) (�,�, toy)

(toy, toy,�)

q01,q02,q03start q01,q12,q13

q11,q02,q03 q11,q12,q13

(�, toy, toy)

(toy,�,�) (toy,�,�)

(�, toy, toy)

q01,q02,q03start q11,q12,q03

q01,q12,q13 q11,q12,q13

(toy, toy,�)

(�, toy, toy) (�,�, toy)

(toy,�,�)

FIGURE 2. From left to right and top-down: the principal contract automata of Bill,
Mary and John, the contract automata(Bill ⊗Mary)⊗John, Bill ⊗ (Mary⊗John)
andBill ⊠Mary⊠John.

The following proposition states that decomposition is theinverse of product, and its proof is
immediate.

Proposition 2.7(Product Decomposition). Let A1, . . . ,An be a set of principal contract automata,
then∏i(

⊗
j∈1...nA j) = Ai .

Our second operation of composition first extracts from its operands the principals they are
composed of, and then reassembles them.

Definition 2.8 (a-Product). Let A1,A2 be two contract automata of rankn and m, respectively,
and letI = {∏i(A1) | 0 < i ≤ n} ∪ {∏ j(A2) | 0 < j ≤ m}. Then thea-productof A1 and A2 is
A1⊠A2 =

⊗
Ai∈I Ai .

Note that ifA ,A ′ are principal contract automata, thenA⊗A ′=A⊠A ′. From now onwards we
assume that every contract automatonA of rankrA > 1 is composed by principal contract automata
using the operations of product and a-product. E.g. in Figure 1, we have thatA3 = A1⊗A2 =
A1 ⊠ A2. Finally, both compositions are commutative, up to the expected rearrangement of the
vectors of actions, and⊠ is also associative, while⊗ is not, as shown by the following example.

Example 2.9. In Figure 2 Mary (the automaton in the central position) offers a toy that both Bill (at
left) and John (at right) request. In the product(Bill ⊗Mary)⊗Johnthe toy is assigned to Bill who
first enters into the composition with Mary, no matter if Johnperforms the same move. Instead, in
the productBill ⊗ (Mary⊗John) the toy is assigned to John. In the last row we have the a-product
of the three automata that represents a dynamic re-orchestration: no matter of who is first composed
with Mary, the toy will be non-deterministically assigned to either principal.

Proposition 2.10. The following properties hold:
– ∃A1,A2,A3.(A1⊗A2)⊗A3 6= A1⊗ (A2⊗A3)
– ∀A1,A2,A3.(A1⊠A2)⊠A3 = A1⊠ (A2⊠A3)

3. ENFORCING AGREEMENT

It is common to say that some contracts are in agreement when all the requests they make have been
fulfilled by corresponding offers [27, 28, 24, 37, 2, 3, 41, 23, 6, 12]. In terms of contract automata,
this is rendered in two different ways, the first of which is introduced below and resembles the
notion of compliance introduced in [27, 28]. We say that two or more contract automata are in
agreementwhen the final states of their product are reachable from the initial state by traces only

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 7

made of matches and offer actions. Our goal is to enforce the behaviour of principals so that they
only follow the traces of the automaton which lead to agreement. Additionally, it is easy to track
every action performed by each principal, because we use vectors of actions as the elements of the
alphabet of contract automata. It is equally easy finding whois liable in a bad interaction, i.e. the
principals who perform a transition leaving a state from which agreement is possible, reaching a
state where instead agreement is no longer possible.

We now introduce the notion ofagreementas a property of the language recognised by a con-
tract automaton.

Definition 3.1 (Agreement). A trace accepted by a contract automaton is inagreementif it belongs
to the set

A= {w∈ (Σn)∗ |Obs(w) ∈ (O∪{τ})∗,n> 1}

Note that, if an action observable inw is a request, i.e. it belongs toR, thenw is not in agreement.
Intuitively, a trace is in agreement if it only contains offer and match actions, i.e. if no requests are
left unsatisfied.

Example 3.2. The automatonA3 in Figure 1 has a trace in agreement:Obs((res,�)(sig,sig)) =
resτ ∈ A, and one not in agreement:Obs((sig,sig)(�, res)) = τ res 6∈A.

A contract automaton is safe when all the traces of its language are in agreement, and admits
agreement when at least one of its traces is in agreement. Formally:

Definition 3.3 (Safety). A contract automatonA is safeif L (A)⊆ A, otherwise it isunsafe.
Additionally, if L (A)∩A 6= /0 thenA admits agreement.

Example 3.4. The contract automatonA3 of Figure 1 is unsafe, but it admits agreement since
L (A3)∩A = (res,�)∗(sig,sig). Consider now the contract automataBill andMary in Figure 2;
their productBill ⊗Mary is safe becauseL (Bill ⊗Mary) = (toy, toy)⊂ A.

Note that the setA can be seen as a safety property in the default-accept approach [48], where
the set of bad prefixes ofA contains those traces ending with a trailing request, i.e.{w~a | w ∈
A,Obs(~a) ∈ R}. One could then consider a definition of product that disallows the occurrence of
transitions labelled by requests only. However, this choice would not prevent a product of contracts
to reach a deadlock. In addition, compositionality would have been compromised, as shown in the
following example.

Example 3.5. In what follows, we feel free to present contract automata through a sort of extended
regular expressions. Consider a simple selling scenario involving two partiesAnnandBart.

Bart starts by notifying Ann that he is ready to start the negotiation, and waits from Ann to
select a pen or a book. In case Ann selects the pen, he may decide to withdraw and restart the
negotiation again, or to accept the payment. As soon as Ann selects the book, then Bart cannot
withdraw any longer, and waits for the payment. The contractof Bart is:

Bart = (init .pen.cancel)∗.(init .book.pay+ init .pen.pay)

The contract of Ann is dual to Bart’s. Ann waits to receive a notification from Bart when ready to
negotiate. Then Ann decides what to buy. If she chooses the pen, she may proceed with the payment
unless a withdrawal from Bart is received. In this case, Ann can repeatedly try to get the pen, until
she succeeds and pays for it, or buys the book but omits to pay it (violating the contractAnn⊗Bart
resulting from the orchestration, see below).

The contract ofAnn is:

Ann= (init .pen.cancel)∗.(init .pen.pay+ init .book)

8 D. BASILE, P. DEGANO, AND G.-L. FERRARI

The contractA =Ann⊗Bart is in Figure 3 top. Assume now to change the product⊗ so to disallow
transitions labelled by requests. The composition ofAnnandBart is in Figure 3, bottom right part,
and contains the malformed trace in whichBart does not reach a final state:

(init , init)(book,book)

In addition, if a third principalCarol = paywere involved, willing to pay for everybody, the follow-
ing trace in agreement would not be accepted

(init , init ,�)(book,book,�)(�, pay, pay)

because Bart’s request was discarded by the wrongly amendedcomposition operator. So, composi-
tionality would be lost.

To avoid the two unpleasant situations of deadlock and lack of compositionality, we introduce
below a technique for driving a safe composition of contracts, in the style of the Supervisory Control
for Discrete Event Systems [26].

A discrete event system is a finite state automaton, whereacceptingstates represent the success-
ful termination of a task, whileforbiddenstates should never be traversed in “good” computations.
Generally, the purpose of supervisory control theory is to synthesise a controller that enforces good
computations. To do so, this theory distinguishes betweencontrollableevents (those the controller
can disable) anduncontrollableevents (those always enabled), besides partitioning events intoob-
servableand unobservable(obviously uncontrollable). If all events are observable then a most
permissive controller exists that never blocks a good computation [26].

The purpose of contracts is to declare all the activities of aprincipal in terms of requests and
offers. Therefore all the actions of a (composed) contract are controllable and observable. Clearly,
the behaviours that we want to enforce upon a given contract automatonA are exactly the traces in
agreement, and so we assume that a request leads to a forbidden state. A most permissive controller
exists for contract automata and is defined below.

Definition 3.6 (Controller). Let A andK be contract automata, we callK controller of A if and
only if L (K)⊆ A∩L (A).
A controllerK of A is themost permissive controller (mpc)if and only if for all K ′ controller ofA
it is L (K ′)⊆L (K).

Since the most permissive controller eliminates the tracesnot in agreement, the following holds.

Proposition 3.7. LetK be the mpc of the contract automatonA , thenL (K) =A∩L (A).

In order to effectively build the most permissive controller, we introduce below the notion of
hanged state, i.e. a state from which no final state can be reached.

Definition 3.8 (Hanged state). Let A = 〈Q, ~q0,Ar ,Ao,T,F〉 be a contract automaton, then~q∈ Q is
hanged, and belongs to the setHanged(A), if for all ~qf ∈ F,∄w.(w,~q)→∗ (ε, ~qf).

Definition 3.9 (Mpc construction). Let A = 〈Q, ~q0,Ar ,Ao,T,F〉 be a contract automaton,
K1 = 〈Q, ~q0,Ar ,Ao,T \ ({t ∈ T | t is a request transition},F〉 and define

KA = 〈Q\Hanged(K1), ~q0,A
r ,Ao,TK1 \{(~q,a,~q′) | {~q,~q′}∩Hanged(K1) 6= /0},F〉

Proposition 3.10(Mpc). The controllerKA of Definition 3.9 is the most permissive controller of
the contract automatonA .

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 9

q01,q02start q11,q12 q21,q22

q41,q42 q51,q52

q21,q32
(init , init) (book,book)

(pen, pen)

(�, pay)

(cancel,cancel)

(pay, pay)

q01,q02start q11,q12

q41,q42 q51,q52

(init , init)

(pen, pen)
(cancel,cancel)

(pay, pay)

q01,q02start q11,q12 q21,q22

q41,q42 q51,q52

(init , init) (book,book)

(pen, pen)
(cancel,cancel)

(pay, pay)

FIGURE 3. The contract automata of Example 3.5: top the contract automatonA ;
bottom left its most permissive controllerKA , bottom right an automaton obtained
with an inaccurate filtering composition.

Example 3.11. Consider again Example 3.5. For obtaining the most permissive controller we first
compute the auxiliary setK1 that does not contain the transition((q21,q22),(�, pay),(q21,q32))
because it represents a request from Bart which is not fulfilled by Ann. As a consequence, some
states are hanged:

Hanged(K1) = {(q21,q22)}

By removing them, we eventually obtainKA , the most permissive controller ofA depicted in Fig-
ure 3, bottom left part.

The following proposition rephrases the notions of safe, unsafe and admits agreement on au-
tomata in terms of their most permissive controllers.

Proposition 3.12. Let A be a contract automaton and letKA be its mpc, the following hold:

• if L (KA) = L (A) thenA is safe, otherwise ifL (KA)⊂L (A) thenA is unsafe;
• if L (KA) 6= /0, thenA admits agreement.

We introduce now an original notion ofliability , that characterises those principals potentially
responsible of the divergence from the behaviour in agreement. The liable principals are those who
perform the first transition in a run, that is not possible in the most permissive controller. As noticed
above, after this step is done, a successful state cannot be reached any longer, and so the principals
who performed it will be blamed. Note in passing that hanged states play a crucial role here: just
removing the request transitions fromA would result in a contract automaton language equivalent
to the mpc, but detecting liable principals would be much more intricate.

Definition 3.13 (Liability) . Let A be a contract automaton andKA be its mpc of Definition 3.9; let
(v~aw, ~q0)→

∗ (~aw,~q) be a run of both automata and let~q be such that(~aw,~q)→ (w,~q′) is possible in
A but not inKA . The principalsΠi(A) such that~a(i) 6= �, i ∈ 1. . . rA areliable for~a and belong to
Liable(A ,v~aw). Then, the set ofliable principals inA is Liable(A) = {i | ∃w.i ∈ Liable(A ,w)}.

Example 3.14. In Figure 3, bottom left, we haveLiable(A) = {1,2}, hence both Ann and Bart are
possibly liable, because the match transition with label(book,book) can be performed, that leads to
a violation of the agreement.

The following proposition is immediate.

10 D. BASILE, P. DEGANO, AND G.-L. FERRARI

q02,q03start q12,q03

q02,q13 q12,q13

(toy,�)

(�, toy) (�, toy)

(toy,�)

FIGURE 4. The contract automatonBill ⊗Johnof Example 3.16
.

Proposition 3.15. A contract automatonA is safe if and only if Liable(A) = /0.

Note that the setLiable(A) can be rewritten as follows

{i | (~q,~a,~q′) ∈ TA ,~a(i) 6= �,~q∈QKA
,~q′ 6∈QKA

}

so making its calculation straightforward, as well as checking the safety ofA .
Some properties of⊗ and⊠ follow, that enable us to predict under which conditions a compo-

sition is safe without actually computing it.
We first introduce the notions of collaborative and competitive contracts. Intuitively, two con-

tracts arecollaborativeif some requests of one meet the offers of the other, and arecompetitiveif
both can satisfy the same request. An example follows.

Example 3.16.Consider the contract automataBill ,Mary,Johnin Figure 2. In Figure 4 the contract
automatonBill ⊗ John is displayed. The two contract automataMary andBill ⊗ Johnare collab-
orative and not competitive, indeed the offertoy of Mary is matched inBill ⊗ John, and no other
principals interfere with this offer. Moreover, letA1 = apple+cake⊗apple+cakeandA2 = apple.
The pairA1,A2 is competitive sinceA2 interferes withA1 on theappleoffer.

Definition 3.17 (Competitive, Collaborative). The pair of CAA1 = 〈Q1, ~q01,A
r
1,A

o
1,T1,F1〉 and

A2 = 〈Q2, ~q02,A
r
2,A

o
2,T2,F2〉 are

• competitiveif Ao
1∩Ao

2∩co(Ar
1∪Ar

2) 6= /0
• collaborativeif (Ao

1∩co(Ar
2))∪ (co(Ar

1)∩Ao
2) 6= /0.

Note thatcompetitiveandcollaborativeare not mutually exclusive, as stated in the first and
second item of Theorem 3.18 below. Moreover if two contract automata arenon-competitivethen
all their match actions are preserved in their composition,indeed we haveA1⊠A2 = A1⊗A2.

The next theorem says that the composition of safe and non-competitive contracts prevents all
principals from harmful interactions, unlike the case of safe competitive contracts. In other words,
whenA1 andA2 are safe, no principals will be found liable inA1⊗A2 (i.e. Liable(A1⊗A2) = /0),
and the same happens forA1⊠A2 if the two are also non-competitive (i.e.Liable(A1⊠A2) = /0).

Theorem 3.18. If two contract automataA1 andA2 are

(1) competitive then they are collaborative,
(2) collaborative and safe, then they are competitive,
(3) safe thenA1⊗A2 is safe,A1⊠A2 admits agreement,
(4) non-collaborative, and one or both unsafe, thenA1⊗A2,A1⊠A2 are unsafe,
(5) safe and non-competitive, thenA1⊠A2 is safe.

Note that in item 3 of Theorem 3.18 it can be thatA1⊠A2 is notsafe. Moreover consider the
contract automataA1 andA2 of Example 3.16. We have thatA1⊠A2 is unsafe because the trace
(�,apple,apple)(cake,�,�) belongs toL (A1⊠A2).

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 11

4. WEAK AGREEMENT

As said in the introduction, we will now consider a more liberal notion of agreement, where an offer
can be asynchronously fulfilled by a matching request, even though either of them occur beforehand.
In other words, some actions can be taken on credit, assumingthat in the future the obligations will
be honoured. According to this notion, called hereweak agreement, computations well behave
when all the requests are matched by offers, in spite of lack of synchronous agreement, in the sense
of Section 3. This may lead to a circularity, as shown by the example below, because, e.g. one
principal first requires something from the other and then iswilling to fulfil the request of the other
principal, who in turn behaves in the same way. This is a common scenario in contract composition,
and variants of weak agreement have been studied using many different formal techniques, among
which Process Algebras, Petri Nets, non-classical Logics,Event Structures [13, 8, 5, 12].

Example 4.1. Suppose Alice and Bob want to share a bike and an airplane, butneither trusts the
other. Before providing their offers they first ask for the complementary requests. As regular ex-
pressions:Alice= bike.airplaneandBob= airplane.bike. The language of their composition is:

L (Alice⊗Bob) = {(�,airplane)(bike,bike)(airplane,�),(bike,�)(airplane,airplane)(�,bike)} .

In both possible traces the contracts fail in exchanging thebike or the airplane synchronously, hence
L (Alice⊗Bob)∩A= /0 and the composition does not admit agreement.

The circularity in the requests/offers is solved by weakening the notion of agreement, allowing
a request to be performed on credit and making sure that in thefuture a complementary offer will
occur, giving rise to a trace in weak agreement. We now formally define weak agreement.

Definition 4.2 (Weak Agreement). A trace accepted by a contract automaton of rankn> 1 is inweak
agreementif it belongs toW= {w∈ (Σn)∗ |w=~a1 . . .~am,∃ a function f : [1..m]→ [1..m] total and
injective on the (indexes of the) request actions ofw, and such thatf (i) = j only if ~ai ⊲⊳~a j}.

Needless to say, a trace in agreement is also in weak agreement, soA is a proper subset ofW,
as shown below.

Example 4.3. ConsiderA3 in Figure 1, whose trace(res,�)(sig,sig)(�, res) is in W but not inA
(all f such thatf (3) = 1 certify the membership) , while(res,�)(sig,sig)(�, res)(�, res) 6∈W.

Definition 4.4 (Weak Safety). Let A be a contract automaton. Then

• if L (A)⊆W thenA is weakly safe, otherwise isweakly unsafe;
• if L (A)∩W 6= /0 thenA admits weak agreement.

Example 4.5. In Example 4.1 we haveL (Alice⊗Bob) ⊂W, hence the composition ofAlice and
Bob is weakly safe. Indeed everyf such thatf (1) = 3 certifies the membership for both traces.

The following theorem states the conditions under which weak agreement is preserved by our
operations of contract composition.

Theorem 4.6. Let A1,A2 be two contract automata, then ifA1,A2 are

(1) weakly safe thenA1⊗A2 is weakly safe,A1⊠A2 admits weak agreement
(2) non-collaborative and one or both unsafe, thenA1⊗A2,A1⊠A2 are weakly unsafe
(3) safe and non-competitive, thenA1⊠A2 is weakly safe.

The example below shows that weak agreement is not a context-free notion, in language theoret-
ical sense; rather we will prove it context-sensitive. Therefore, we cannot define a most permissive
controller for weak agreement in terms of contract automata, because they are finite state automata.

12 D. BASILE, P. DEGANO, AND G.-L. FERRARI

q1start q2

a/b

sig
q′1start q′2

sig

a/b

q1,q′1start q2,q′2
(sig,sig)

(a,�)/(b,�) (�,a)/(�,b)

FIGURE 5. From left to right the contract automata of Example 4.7:A4,A5, andA4⊗A5.

Example 4.7. Let A4, A5 and A4⊗A5 be the contract automata in Figure 5, then we have that
L =W∩L (A4⊗A5) 6= /0 is not context-free. Consider the following regular language

L′ = {(a,�)∗(b,�)∗(sig,sig)(�,a)∗(�,b)∗}

We have that

L∩L′ = {(a,�)n1(b,�)m1(sig,sig)(�,a)n2(�,b)m2 | n1≥ n2≥ 0,m1≥m2≥ 0}

is not context-free (by pumping lemma), and sinceL′ is regular,L is not context-free.

Theorem 4.8. W is a context-sensitive language, but not context-free. Word decision can be done
in O(n2) time and O(n) space.

In general, it is undecidable checking whether a regular languageL is included in a context-
sensitive one, as well as checking emptiness of the intersection of a regular language with a context-
sensitive one. However in our case these two problems are decidable: we will introduce an effective
procedure to check whether a contract automatonA is weakly safe, or whether it admits weak agree-
ment. The technique we propose amounts to find optimal solutions to network flow problems [34],
and will be used also for detecting weak liability.

As an additional comment, note that the membership problem is polynomial in time for mildly
context-sensitive languages [35], but it is PSPACE-complete for arbitrary ones. In the first case,
checking membership can be done in polynomial time throughtwo way deterministic pushdown
automata[33], that have a read-only input tape readable backwards and forwards. It turns out that
W is mildly context-sensitive, and checking whetherw ∈W can be intuitively done by repeating
what follows for all the actions occurring inw. Select an actionα; scroll the input; and push all the
requests onα on the stack; scroll again the input and pop a request, if any,when a corresponding
offer is found. If at the end the stack is empty the tracew is inW.

Before presenting our decision procedure we fix some useful notation. Assume as given a
contract automatonA , with a single final state~qf 6= ~q0. If this is not the case, one simply adds
artificial dummy transitions from all the original final states to the new single final state. Clearly, if
the modified contract automaton admits weak agreement, alsothe original one does — and the two
will have the same liable principals. We assume that all states are reachable from~q0 and so is~qf

from each of them. In addition, we enumerate the requests ofA , i.e.Ar = {ai | i ∈ Il = {1,2, . . . , l}},
as well as its transitionsT = {t1, . . . , tn}. Also, letFS(~q) = {(~q,~a,~q′) | (~q,~a,~q′) ∈ T} be theforward
star of a state~q, and let BS(~q) = {(~q′,~a,~q) | (~q′,~a,~q) ∈ T} be itsbackward star. For each transition
ti we introduce theflow variables xti ∈N, andz~qti ∈R where~q∈Q,~q 6=~q0.

We are ready to define the setF~s,~d of flow constraints, an element of which~x= (xt1, . . . ,xtn) ∈

F~s,~d defines traces from the source state~s to the target state~d. The intuition is that each variablexti

represents how many times the transitionti is traversed in the traces defined by~x. Hereafter, we will
abbreviateF~q0,~qf asFx, and we identify a transition through its source and target states.

An example follows.

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 13

~q0start ~q1 ~q2 ~q3

~q4 ~q5

(b,b)

(a,a)
(b,b)

(a,a) (�,c)

(c,�)

(b,b)

(�,a)

~q0start

~q1

~q2 ~q3 ~q4

~q5 ~q6

~q7

~q9

~q8

~q10

(r , r)
(�,b)

(t,�)

(t, t)

(�,c)

(b,�) (e,e)

(t,�) (b,�)

(b,b)

(�,c)

(�, t)

(e,e)

q0start q1 q2
a b

c

d

FIGURE 6. Top left: the product of two contract automata of Examples4.9
and 4.11; top right the booking service of Example 4.9; bottom: the principal con-
tract automaton whose flow constraints generate many traces, as discussed at the
end of Example 4.9.

Example 4.9. Figure 6 (top right) shows a simple service of booking, whichis the composition of
a client and a hotel contracts.

The contract of the client requires to book a room (r), including breakfast (b) and a transport
service, by car (c) or taxi (t); finally it sends a signal of termination (e). The contract of the client is
then:

C= r.b.(c+ t).e

The hotel offers a room, breakfast and taxi. Its contract is:

H = r.t.b.e

Four traces accepted by the automatonH⊗C are:

w1 = (r , r)(�,b)(t, t)(b,�)(e,e)

w2 = (r, r)(�,b)(�,c)(t,�)(b,�)(e,e)

w3 = (r , r)(t,�)(b,b)(�, t)(e,e)

w4 = (r , r)(t ,�)(b,b)(�,c)(e,e)

We now detail the flows associated with each trace giving the set of variables with value 1, all the
others having value 0, because there are no loops. The associated flows are:

w1 : {x~q0,~q1,x~q1,~q2,x~q2,~q3,x~q3,~q4,x~q4,~q10}

w2 : {x~q0,~q1,x~q1,~q2,x~q2,~q5,x~q5,~q6,x~q6,~q9,x~q9,~q10}

w3 : {x~q0,~q1,x~q1,~q7,x~q7,~q8,x~q8,~q4,x~q4,~q10}

w4 : {x~q0,~q1,x~q1,~q7,x~q7,~q8,x~q8,~q9,x~q9,~q10}

Note that a flow~x may represent many traces that have the same balance of requests/offers for each
action occurring therein. For example, in the contract automaton at the bottom of Figure 6, the same
flow xq0,q1 = 3,xq1,q2 = 2,xq2,q0 = xq1,q0 = 1 represents bothw1 = acabdabandw2 = abdacab.

The following auxiliary definition introduces a notation for flow constraints. It is beneficial in
the statements of Theorems 4.12, 4.14 and 4.17 below.

14 D. BASILE, P. DEGANO, AND G.-L. FERRARI

Definition 4.10. Given a source state~sand a destination state~d, the set offlow constraints F~s,~d from

~s to ~d is defined as:

F~s,~d = {(xt1, . . . ,xtn) | ∀~q : (∑
ti∈BS(~q)

xti − ∑
ti∈FS(~q)

xti) =







−1 if ~q=~s
0 if ~q 6=~s, ~d
1 if ~q= ~d

∀~q 6=~s, ti . 0≤ z~qti ≤ xti ,

∀~q 6=~s, ∀~q′ : (∑
ti∈BS(~q′)

z~qti − ∑
ti∈FS(~q′)

z~qti) =







−p~q if ~q′ =~s
0 if ~q′ 6=~s,~q
p~q if ~q′ =~q

where p~q =

{

1 if ∑ti∈FS(~q) xti > 0
0 otherwise

}

In the definition above, the variablesz~qti represent|Q|−1 auxiliary flows and make sure that a
flow ~x represents valid runs only, i.e. they guarantee that there are no disconnected cycles with a
positive flow. A more detailed discussion is in Example 4.11 below. Note that the values ofz~qti are
not integers, and so we are defining Mixed Integer Linear Programming problems that have efficient
solutions [34].

We eventually define a set of variablesai
t j

for each action and each transition, that take the value
-1 for requests, 1 for offers, and 0 otherwise; they help counting the difference between offers and
requests of an action in a flow (recall thatIl contains the indexes of the requests).

∀t j = (~q,~a,~q′) ∈ T,∀i ∈ Il : ai
t j
=







1 if Obs(~a) = ai

−1 if Obs(~a) = ai

0 otherwise

Example 4.11. Figure 6 (top left) depicts the contractA⊗B, where

A= a.c∗.b+b.(b.c∗.b+a) B= a.b.a+b.(b.b.a+a.c)

To check whether there exists a run recognising a tracew with less or equal requests than offers (for
each action) we solve∑t j

ai
t j
xt j ≥ 0, for~x∈ Fx.

We illustrate how the auxiliary variablesz~qti ensure that the considered solutions represent valid
runs. Consider the following assignment to~x: x~q0,~q1 = x~q1,~q2 = x~q2,~q3 = 1,x~q4,~q4 ≥ 1, and null ev-
erywhere else. It does not represent valid runs, because thetransition(~q4,(c,�),~q4) cannot be fired
in a run that only takes transitions with non-null values in~x. However, the constraints on the flow
~x are satisfied (e.g. we have∑t j∈FS(~q4) xt j = ∑t j∈BS(~q4) xt j). Now the constraints on the auxiliaryz~qti
play their role, checking if a node is reachable from the initial state on a run defined by~x. The
assignment above is not valid since forz~q4 we have :

0≤ z~q4
(~q0,~q4)

≤ x(~q0,~q4) = 0

0≤ z~q4
(~q1,~q4)

≤ x(~q1,~q4) = 0

0≤ z~q4
(~q4,~q5)

≤ x(~q4,~q5) = 0

Hence∑t j∈BS(~q4) z~q4
t j
= z~q4

(~q4,~q4)
,∑t j∈FS(~q4) z~q4

t j
= z~q4

(~q4,~q4)
and we have:

∑
t j∈BS(~q4)

z~q4
t j
− ∑

t j∈FS(~q4)

z~q4
t j
= 0 6= 1= p~q4

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 15

Finally, note in passing that there are no valid flows~x∈ Fx for this problem.
More importantly, note that the auxiliary variablesz~qti are not required to have integer values,

which is immaterial for checking that those solutions represent valid runs, but makes finding them
much easier.

The main results of this section follow.

Theorem 4.12. Let~v be a binary vector. Then a contract automatonA is weakly safeif and only
if min γ≥ 0 where:

∑
i∈Il

vi ∑
t j∈T

ai
t j
xt j ≤ γ ∑

i∈Il

vi = 1 ∀i ∈ Il . vi ∈ {0,1} (xt1 . . .xtn) ∈ Fx γ ∈R

The minimum value ofγ selects the trace and the actiona for which the difference between the
number of offers and requests is the minimal achievable fromA . If this difference is non-negative,
there will always be enough offers matching the requests, and soA will never generate a trace not
in W. In other words,A is weakly safe, otherwise it is not.

Example 4.13. Consider again Example 4.9 and leta1 = r, a2 = b, a3 = t, a4 = c, a5 = e.
If v1 = 1, for each flow~x∈ Fx, we have that∑t j

a1
t j
xt j = 0 (for i 6= 1, we havevi = 0). This means

that the request of a room is always satisfied. Similarly for breakfast and the termination signal
e. If v3 = 1, for the flow representing the tracesw1,w3 we have∑t j

a3
t j
xt j = 0, while for the flow

representing the tracesw2,w4 the result is 1. The requests are satisfied also in this case. Instead,
when v4 = 1, for the flow representing the tracesw1,w4 we have∑t j

a4
t j
xt j = 0, but for the flow

representingw2,w3, the result is−1. Hencemin γ = −1, and the contract automatonH⊗C is not
weakly safe, indeed we havew2,w3 6∈W.

In a similar way, we can check if a contract automaton offers atrace in weak agreement.

Theorem 4.14.The contract automatonA admits weak agreement if and only ifmax γ≥ 0 where

∀i ∈ Il . ∑
t j∈T

ai
t j

xt j ≥ γ (xt1 . . .xtn) ∈ Fx γ ∈R

The maximum value ofγ in Theorem 4.14 selects the tracew that maximises the least difference
between offers and requests of an action inw. If this value is non-negative, then there exists a trace
w such that for all the actions in it, the number of requests is less or equal than the number of offers.
In this case,A admits weak agreement; otherwise it does not.

Example 4.15. In Example 4.9,max γ = −1 for the flows representing the tracesw2,w3 and
max γ = 0 for those of the tracesw1,w4, that will be part of the solution and are indeed in weak
agreement. Consequently,H⊗C admits weak agreement.

We now define theweakly liableprincipals: those who perform the first transitiont of a run such
that aftert it is not possible any more to obtain a trace inW, i.e. leading to tracesw∈L (A) \W
that cannot be extended toww′ ∈L (A)∩W.

Definition 4.16. Let A be a contract automaton and letw = w1~aw2 such thatw ∈ L (A) \W,
∀w′.ww′ 6∈L (A)∩W,∀w3.w1~aw3 6∈L (A)∩W and∃w4.w1w4 ∈L (A)∩W.

The principalsΠi(A) such that~a(i) 6= � areweakly liableand form the setWLiable(A ,w1~a).
Let WLiable(A) = {i | ∃w such thati ∈WLiable(A ,w)} be the set of allpotentially weakly

liable principals inA .

16 D. BASILE, P. DEGANO, AND G.-L. FERRARI

~q0start ~qs

~qd

~qf
~x ~y

t ~u

FIGURE 7. The three flows computed by Theorem 4.17

For computing the setWLiable(A) we optimise a network flow problem for a transitiont to
check if there exists a tracew in which t reveals some weakly liable principals. By solving this
problem for all transitions we obtain the setWLiable(A).

Theorem 4.17.The principalΠi(A) of a contract automatonA is weakly liableif and only if there
exists a transitiont = (~qs,~a, ~qd) ∈ TA ,~a(i) 6= � such thatγt < 0, where

γt = min {g(~x) |~x∈ F~q0,~qs, ~y∈ F~qs,~qf , ∀i ∈ Il . ∑
t j∈T

ai
t j
(xt j +yt j)≥ 0}

g(~x) = max {γ |~u∈ F~qd,~qf , ∀i ∈ Il . ∑
t j∈T

ai
t j
(xt j +ut j)+ai

t ≥ γ,γ ∈R}

Figure 7 might help to understand how the flows~x,~y (and~u) and the transitiont are composed
to obtain a path from the initial to the final state. Intuitively, the flow defined above can be seen as
split into three parts: the flow~x from ~q0 to~qs, the flow~y from ~qs to ~qf , and the flow~u from ~qd to ~qf ,
computed through the functiong.

This function takes as input the flow~x and selects a flow~u such that, by concatenating~x and~u
throught, we obtain a tracew where the least difference between offers and requests is maximised
for an action inw. Using the same argument of Theorem 4.14, if the value computed is negative,
then there exists no flow~u that composed with~x selects traces in weak agreement.

Finally γt yields the minimal result ofg(~x), provided that there exists a flow~y, that combined
with~x represents only traces in weak agreement. Ifγt < 0 then the transitiont identifies someweakly
liable principals. Indeed the flow~x represents the tracesw such that (1)∃w1, represented by~y, with
ww1 ∈L (A)∩W and (2)∀w2, represented by~u, with w~aw2 ∈L (A) \W. Note that if a flow~x
reveals some weakly liable principals, the minimisation carried on byγt guarantees that the relevant
transitiont is found. Finding the weakly liable principals is a hard task, and belongs to the family of
bilevel problems [4]. Basically, these problems contain two optimisation problems, one embedded
in the other, and finding optimal solutions to them is still a hot research topic.

Example 4.18. In Figure 6 (top right), the transitions(~q2,(�,c), ~q5) and(~q8,(�,c),~q9) reveal the
second principal (i.e.C) weakly liable. Indeed the trace(r , r)(�,b) ending in~q2 can be extended
to one in weak agreement, while(r , r)(�,b)(�,c) cannot. Also the trace(r, r)(t ,�)(b,b) can be
extended to one in weak agreement while(r , r)(t,�)(b,b)(�,c) cannot.

For the transition(~q2,(�,c), ~q5) we have the trace(r , r)(�,b) for the flow~x and(t, t)(b,�)(e,e)
for the flow~y, and we have∀i ∈ Il .∑t j∈T ai

t j
(xt j + yt j) ≥ 0. Note that if we select as flow~y the

trace(�,c)(t,�)(b,�)(e,e) then the constraints∀i ∈ Il .∑t j∈T ai
t j
(xt j + yt j) ≥ 0 are not satisfied for

the actiona4 = c (recall Example 4.13). For the flow~u the only possible trace is(t,�)(b,�)(e,e),
andmax γ =−1= γ(~q2,(�,c),~q5) since∑t j∈T a4

t j
(xt j +ut j)+ (−1) =−1.

For the transition(~q8,(�,c),~q9) the flow~x selects the trace(r , r)(t,�)(b,b), the flow~y selects
the trace(�, t)(e,e), since the other possible trace, that is(�,c)(e,e), does not respect the constraints
for the actiona4 (i.e. c). Finally, for the flow~u we have the trace(e,e), and as the previous case
max γ =−1= γ(~q8,(�,c),~q9).

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 17

5. AUTOMATA AND LOGICS FORCONTRACTS

Recently, the problem of expressing contracts and of controlling that the principals in a composition
fulfil their duties has been studied in Intuitionistic Logic, where a clause is interpreted as a principal
in a contract, in turn rendered as the conjunction of severalclauses. Actually, the literature only con-
siders fragments of Horn logics because they have an immediate interpretation in terms of contracts.
More in detail, these Horn fragments avoid contradiction clauses, as well as formulae with a single
Horn clause. These two cases are not relevant because their interpretation as contracts makes little
sense, e.g. a contract requires at least two parties. It turns out that these theories can be interpreted
as contract automata, without much effort.

The first logic we consider is Propositional Contract Logic (PCL) [14] able to deal with circular
obligations. Its distinguishing feature is a new implication, calledcontractual implication, that
permits to assume as true the conclusions even before the premises have been proved, provided that
they will be in the future. Roughly, a contract is rendered asa Horn clause, and a composition is a
conjunction of contracts. When a composition is provable, then all the contracts are fulfilled, i.e. all
the requests (represented as premises of implications) areentailed.

In the next sub-sections, we translate a fragment of the Hornformulae of Propositional Contract
Logic into contract automata, and we prove that a formula is provable if and only if the correspond-
ing contract automaton admits agreement.

We then study the connection between contract automata and the Intuitionistic Linear Logic
with Mix (ILLmix)[21]. This logic is used for modelling exchange of resources between partners
with the possibility of recording debts (requests satisfiedby a principal offer but not yet paid back
by honouring one of its requests), and has been recently given a model in terms of Petri Nets [11].
In this logic one can represent the depletion of resources, in our case of offers, that also here can be
put forward before a request occurs. Again, we translate a fragment of Horn formulae as contract
automata, and we prove that a theorem there corresponds to anautomaton that admits agreement.

Our constructions have been inspired by analogous ones [11]; ours however offer a more flexi-
ble form of compositionality. Indeed, for checking if two separate formulas are provable, it suffices
to check if the composition of the two corresponding automata is still in agreement. If the two au-
tomata are separately shown to be safe, then their composition is in agreement due to Theorem 3.18.
With Debit Petri Nets [11] instead, one needs to recompute the whole translation for the composed
formulas, while here we propose a modular approach.

5.1. Propositional Contract Logic. The usual example for showing the need of circular obliga-
tions is Example 4.1. In the Horn fragment of PCL we use, called H-PCL, the contracts of Alice
and Bob make use of the new contractual implicationF ։ F ′, whose intuition is that the formula
F ′ is deducible, provided that later on in the proof alsoF will be deduced.

According to this intuition and elaborating over Example 4.1, Alice’s contract (I offer you
my aeroplane provided that in the future you will lend me yourbike) and Bob’s (I offer you my
bike provided that in the future you will lend me your aeroplane) are rendered asbike։ airplane,
airplane։ bike, respectively. Their composition is obtained by joining the two, and one represents
that both Alice and Bob are proved to obtain the toy they request by

((bike։ airplane)∧ (airplane։ bike)) ⊢ (bike∧airplane)

In words, the composition of the two contracts entailsall the requests (bikeby Alice andairplane
by Bob). We now formally introduce the fragment of H-PCL [5, 7] that has a neat interpretation in
contract automata, under the assumption that a principal cannot offer and require the same.

18 D. BASILE, P. DEGANO, AND G.-L. FERRARI

Γ ⊢ q

Γ ⊢ p։ q
Zero

Γ, p։ q, r ⊢ p Γ, p։ q, p⊢ q

Γ, p։ q⊢ r
Fix

Γ, p։ q,a⊢ p Γ, p։ q,q⊢ b

Γ, p։ q⊢ a։ b
PrePost

FIGURE 8. The three rules of PCL for the contractual implication.

Definition 5.1 (H-PCL). Assume a denumerable set of atomic formulaeAtoms= {a,b,c, . . .} in-
dexed byi ∈ I , j ∈ J whereI andJ are finite set of indexes; then theH-PCL formulae p, p′, . . . and
the clausesα,αi , ... are generated by the following BNF grammar

p ::=
∧

i∈I αi α ::=
∧

j∈J a j | (
∧

j∈J a j)→ b | (
∧

j∈J a j)։ b
where|I | ≥ 2, |J| ≥ 1, i 6= j impliesai 6= a j , and∀ j ∈ J.a j 6= b

Also, letλ(p) be the conjunction of all atoms inp.

In Figure 8 we recall the three rules of the sequent calculus for the contractual implication [14,
13]; the others are the standard ones of the Intuitionistic Logic and are in the appendix, Figure 13.

As anticipated, in H-PCL all requests of principals are satisfied if and only if the conjunctionp
of the contracts of all principals entails all the atoms mentioned.

Definition 5.2. The formulap represents a composition whose principals respect all their obliga-
tions if and only ifp⊢ λ(p).

Below, we define the translation from H-PCL formulae to contract automata. A simple inspec-
tion of the rules below suffices to verify that the obtained automata are deterministic.

Definition 5.3 (From H-PCL to CA). A H-PCL formula, with sets of indexesI andJ as in Defini-
tion 5.1, is translated into a contract automaton by the following rules, whereP = {q∪{∗} | q∈ 2J}:

J
∧

i∈I αiK =⊠i∈I JαiK

J
∧

j∈J a jK = 〈{{∗}},{∗}, /0,{a j | j ∈ J},{({∗},a j ,{∗}) | a j ∈ Ao},{{∗}}〉

J(
∧

j∈J

a j)→ bK =〈P ,J∪{∗},{a j | j ∈ J},{b},

{(J′∪{ j},a j ,J
′) | J′∪{ j} ∈ P , j ∈ J}∪{({∗},b,{∗})},{{∗}}〉

J(
∧

j∈J

a j)։ bK =〈P ,J∪{∗},{a j | j ∈ J},{b},

{(J′∪{ j},a j ,J
′) | J′∪{ j} ∈ P , j ∈ J}∪{(q,b,q) | q∈ P},{{∗}}〉

As expected, a Horn formula is translated as the product of the automata raising from its com-
ponentsαi . In turn, a conjunction of atoms yields an automaton with a single state and loops driven
by offers in bijection with the atoms. Each state stores the number of requests that are waiting to
fire, and{∗} stands for no requests. A (standard) implication shuffles all the requests corresponding
to the premisesa j and then has the single offer corresponding to the conclusion b. A contractual im-
plication is similar, except that the offer (b in the definition) can occur atanyposition in the shuffle,

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 19

q11start q21
b

a

q12start q22

q32 q42

a

c

b

b

c

a
b b q13start

c

~q1start ~q2 ~q3

~q4 ~q5 ~q6

(b,b,�)

(�,c,c)

(�,b,�)

(a,a,�)

(�,c,c) (�,c,c)

(a,�,�),(�,b,�)

(�,�,c)
(b,b,�)

(�,b,�),(�,�,c)

(a,a,�)
(a,�,�),(�,b,�),(�,�,c)

FIGURE 9. The contract automata of Examples 5.4 and 9.11, top from left to right:
JAliceK,JBobK,JCharlieK; bottom:KJAliceK⊗JBobK⊗JCharlieK .

and from there onwards it will be always available. Note thatthere is no control on the number of
times an offer can be taken, as H-PCL is not a linear logic.

Example 5.4.Consider again Example 4.1, and let us modify it to better illustrate some peculiarities
of H-PCL. Assume then that there are three kids: Alice, Bob and Charlie, who want to share some
toys of theirs: a bikeb, an aeroplanea and a carc. The contract of Alice says “I will lend you my
aeroplane provided that you lend me your bike”. The contractof Bob says “I will lend you my bike
provided that in the future you will lend me your aeroplane and your car”. The contract of Charlie
says “I will lend you my car”. The contract of Alice is expressed by the classical implicationb→ a.
The contract of Bob is(a∧ c) ։ b, while the contract of Charlie is simplyc. The three contracts
reach an agreement: the conjunction of the formulae representing the contracts entails all its atoms,
that is(b→ a)∧ ((a∧c)։ b)∧c⊢ a∧c∧b.

Figure 9 shows the translation ofAlice∧Bob∧Charlie, according to Definition 5.3. It is
immediate verifying that the automaton is safe, since all its traces are in agreement.

The following proposition helps to understand the main result of this section.

Proposition 5.5. Given a H-PCL formula p and the automatonJpK = 〈Q,q0,Ar ,Ao,T,F〉:

(1) F = {~q= 〈{∗}, . . . ,{∗}〉}, and all (~q,~a,~q′) are such that~q′ =~q and~a is an offer;
(2) every state~q = 〈J1, . . . ,Jn〉 has as many request or match outgoing transitions as the request

actions prescribed by
⋃

i∈1...nJi ;
(3) JpK is deterministic.

As said above, when seen in terms of composed contracts, the formulap⊢ λ(p) expresses that
all the requests made by principals inp must be fulfilled sooner or later. We now show that the
contract automatonJpK admits agreement if and only ifp⊢ λ(p) is provable.

Theorem 5.6. Given a H-PCL formula p we have p⊢ λ(p) if and only ifJpK admits agreement.

We have constructively proved that a formulap fulfils all its obligations if and only if the
corresponding automatonJpK admits agreement. Interestingly, a contractual implication a ։ b

20 D. BASILE, P. DEGANO, AND G.-L. FERRARI

corresponds to a contract automaton that is enabled to fire the conclusionb at each state; while for
the standard implicationc→ d the conclusion is available only after the premisec has been satisfied.

Example 5.7. Consider Example 5.4. The conjunction of all the formulas entails its atoms, indeed
the corresponding translation into contract automata displayed in Figure 9 admits agreement.

Needless to say, the provability ofp⊢ λ(p) implies thatJpK admits weak agreement. However,
the implication is in one direction only, as shown by the following example.

Example 5.8.Consider the H-PCL formulap= (b→ a)∧(a→ b). We have thatJpK does not admit
agreement andp 6⊢ λ(p). NeverthelessJpK admits weak agreement. For example,(b,−)(a,a)(−,b)∈
L (JpK) is a trace in weak agreement.

As a matter of fact, weak agreement implies provability whena formulap contains no (stan-
dard) implications, as stated below.

Theorem 5.9. Let p be a H-PCL formula with no occurrence of standard implications→, then
p⊢ λ(p) if and only ifJpK admits weak agreement.

This result helps to gain insights on the relation between the contractual implication։ and
the property of weak agreement. Indeed, checking weak agreement on a contract automatonJpK is
equivalent to prove that the formulap fulfils all its obligations (i.e.p⊢ λ(p)) only if p contains no
standard implication→.

5.2. Intuitional Linear Logic with Mix. In this sub-section, we will interpret a fragment of the
Intuitionistic Linear Logic with Mix (ILLmix) [21] in terms of contract automata. Originally, this
logic has been used for modelling exchange of resources between partners with the possibility of
recording debts, through the so-callednegative atoms. Below, we slightly modify Example 5.4 to
better illustrate some features ofILLmix.

Example 5.10.Alice, Bob and Charlie want to share their bike, aeroplane and car, according to the
same contracts declared in Example 5.4. InILLmix the contract of Alice is expressed by the linear
implication b ⊸ a; the contract of Bob isa⊥⊗ c⊥⊗ b (⊗ is the tensor product of Linear Logic);
the contract of Charlie is the offerc. The intuition is that a positive atom, e.g.c in the contract of
Charlie, represents a resource that can be used; similarly for theb of Bob. Instead, the negative
atoms (a⊥ andc⊥ of Bob) represent missing resources that however can be taken on credit to be
honoured later on. The implication of Alice says that the resourcea is produced by consumingb,
providedb is available. (There are some restrictions on the occurrences of negative atoms made
precise below). The composition (via tensor product) of thethree contracts is successful, in that all
resources are exchanged and all debts honoured. Indeed, it is possible to prove that all the negative
atoms, i.e. all the requests, will be eventually satisfied. In this case we have that all the resources
are consumed, and that the following sequent is provable:Alice⊗Bob⊗Charlie⊢.

We now recall the basics ofILLmix. Let A,A⊥ be respectively the set ofpositiveandnegative
atoms, ranged over bya,b,c, . . . ∈ A and bya⊥,b⊥,c⊥, · · · ∈ A⊥. Let L = A ∪A⊥ be the set of
literals, and assumeY ⊆ A,X ⊆ L , whereX does not contain any atoma and its negationa⊥,
according to Definition 2.3 (recall that a principal automaton is such thatAr ∩ co(Ao) = /0). A
positivetensor product is a tensor product of positive atoms.

As said, we only consider a fragment of HornILLmix called H-ILLmix, defined below. It only
has tensor products andHorn implications:

⊗
b∈Y b⊸

⊗
a∈X a. Note that the premises of the Horn

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 21

q11start q21 q31
b a

q12start q22

q32 q42

q52 q62

q72 q82

a

c

b

b

c

a

b b

a

c c

a

q13start q23
c

~q1start ~q2 ~q3

~q4 ~q5 ~q6

(b,b,�)

(�,c,c)

(a,a,�)

(�,c,c) (�,c,c)

(b,b,�) (a,a,�)

FIGURE 10. The contract automata of Example 5.10. Top from left to right:
JAliceK,JBobK. Bottom from left to right:JCharlieK,KJAliceK⊠JBobK⊠JCharlieK .

A⊢ A
Ax

Γ ⊢ Γ′ ⊢ γ

Γ,Γ′ ⊢ γ
Mix

Γ ⊢ A

Γ,A⊥ ⊢
NegL

Γ,A,B⊢ γ

Γ,A⊗B⊢ γ
⊗L

Γ ⊢ A Γ′ ⊢ B

Γ,Γ′ ⊢ A⊗B
⊗R

Γ ⊢ A Γ′,B⊢ γ

Γ,Γ′,A⊸ B⊢ γ
⊸ L

Γ,A⊢ B

Γ ⊢ A⊸ B
⊸ R

FIGURE 11. A subset of the rules of the sequent calculus ofILLmix.

implications are always positive tensor products, and the conclusions are tensor products of literals,
possibly negative.

Since the treatment for non-linear implications ofILLmix is similar to that presented in Sec-
tion 5.1, we feel free to only deal below with linear implications and tensor products of literals.

Definition 5.11 (H-ILLmix). The Horn formulaep, pi , ... and the clausesα,αi , ... of H-ILLmix are
defined by

p ::=
⊗

i∈I

αi α ::=
⊗

a∈X

a |
⊗

b∈Y

b⊸

⊗

a∈X

a

where|I | ≥ 2; |X|, |Y| ≥ 1; {a,a⊥} 6⊆ X; andb∈Y impliesb 6∈ X.

The subset of the rules of the sequent calculus ofILLmix relevant to our treatment is in Figure 11,
whereA,B stand for a Horn formulap or clauseα, while γ may also be empty (note that in rule
(NegL), A= a and soA⊥ = a⊥); Γ andΓ′ stand for multi-sets containing Horn formulae or clauses;
andΓ,Γ′ is the multi-set union ofΓ andΓ′, assumingΓ, /0 = Γ. The complete set of rules forILLmix

is in [21], and can be found in the appendix.
The following auxiliary definition of the concatenation of two automata helps to translate a

H-ILLmix formula.

22 D. BASILE, P. DEGANO, AND G.-L. FERRARI

Definition 5.12 (Concatenation of CA). Given two principal contract automata
A1 = 〈Q1,q1

0,A
r1
,Ao1

,T1,F1〉 andA2 = 〈Q2,q2
0,A

r2
,Ao2

,T2,F2〉, theirconcatenationis

A1 ·A2 = 〈Q1∪Q2,q1
0,A

r1∪Ar2,Ao1∪Ao2,
(T1\{(q,a,q′) ∈ T1 | q′ ∈ F1})∪T2

∪{(q,a,q2
0) | (q,a,q

′) ∈ T1,q′ ∈ F1},F2〉

Concatenation is almost standard, with the proviso that we replace every transition ofA1 lead-
ing to a final state with a transition with the same label leading to the initial state ofA2. Note also
that loops can be ignored, because the automata obtained by the translation in Definition 5.13 below
have no cycles.

Similarly to what has been done in the previous sub-section,a tensor product is rendered as
all the possible orders in which the automaton can fire (the actions corresponding to) its literals. If
the literal is a positive atom, then it becomes an offer, while it originates a request if the atom is
negative. A linear implication is rendered as the concatenation of the automaton coming from the
premise, and that of the conclusion, with the following proviso. In the premise all the atoms are
positive, but they areall rendered asrequests(i.e. as negative atoms), and shuffled. The states are
in correspondence with the atoms still to be fired and{∗} stands for the (final) state where all atoms
have been fired.

Definition 5.13 (Translation of H-ILLmix). Given a set of atomsX, let P= {q∪{∗} | q∈ 2X} with
typical elementZ. The translation of a H-ILLmix formula p into a contract automataJpK is induc-
tively defined by the following rules:

J
⊗

i∈I αiK =⊠i∈I JαiK

J
⊗

a∈X

aK =〈P,X∪{∗},{a | a⊥ ∈ X∩A⊥},{a | a∈ X∩A},

{(Z∪{a⊥},a,Z) | Z∪{a⊥} ∈ P,a⊥ ∈ X}∪

{(Z∪{a},a,Z) | Z∪{a} ∈ P,a∈ X},

{{∗}}〉

J
⊗

b∈Y b⊸
⊗

a∈X aK = J
⊗

b∈Y b⊥K · J
⊗

a∈X aK

Moreover, we homomorphically translate multi-sets of Hornformulae and clauses as follows:

Jp,ΓK = JpK⊠ JΓK Jα,ΓK = JαK⊠ JΓK

The automata obtained by translating the formulae representing the contracts of Alice, Bob and
Charlie in Example 5.10 are in Figure 10.

Definition 5.14. A sequentΓ ⊢ Z is honouredif and only if it is provable andZ is a positive tensor
product or empty.

Intuitively, honoured sequents can be proved and additionally they have no negative atoms,
i.e. no debts. The main result of this section is that a sequent Γ ⊢ Z is honoured if and only if the
corresponding contract automatonJΓK admits agreement. An important outcome is the possibility of
expressing each H-ILLmix formula as a contract automatonA , so to use our verification techniques.
It is then possible to compose several H-ILLmix formulae through the composition operators of

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 23

contract automata, exploiting compositionality and the related results (for example Theorem 3.18)
for efficiently checking the provability of formulae in H-ILLmix. In the statement below and in the
proofs in the appendix, we say thatJΓK admits agreement onZ whenever there exists a trace in
L (JΓK) only made of match actions and offers in correspondence withthe literals inZ.

Theorem 5.15.Given a multi-set of Horn formulaeΓ, we have that

Γ ⊢ Z is an honoured sequent if and only ifJΓK admits agreement on Z

Through this result we have linked the problem of verifying the correctness of a composition
of services to the generation of a deduction tree that provesa H-ILLmix formula. Moreover, we have
shown that the possibility of recording debts in H-ILLmix solves circularity issues arising from a
composition of services.

6. AN EXAMPLE

In this section we consider a well-known case study taken from [45]. This is a purchasing system
scenario, where a manufacturer (the buyer) wants to build a product. To configure it, the buyer
lists in an inventory the needed components and contacts a purchasing agent. The agent looks for
suppliers of these components, and eventually sends back tothe buyer its proposal, if any. A supplier
is assumed to signal whether it can fulfil a request or not; if neither may happen, the interactions
between it and the purchasing agent are rolled back, so as to guarantee the transactional integrity of
the overall process. A description of the WSDL of the services, as well as the BPEL process from
the purchasing agent’s perspective are in [45], where the transactional integrity is maintained using
the tags<faultHandlers> and<scope> of BPEL.

We slightly modify the original protocol, where the purchasing agent guarantees its identity to
the buyer through a public-key certificate. For brevity, here we assume to have two sellersS1 and
S2, and two purchasing agentsA1 andA2, that behave differently. A service instance involves the
buyer, an agent and both sellers. The buyerB requires the certificate of an agent (actioncert), then it
offers the inventory requirements (inv). Finally, it terminates by receiving either a proposal (pro) or
a negative message (nop), if no proposal can be formulated. The sellerS1 waits for a request (pen)
of a component from an agent. It then replies by offering a quote for that part (pquo), or a negative
message (nope) if it is unavailable, and restarts. The second sellerS2 always accepts a request, but
never replies. The first agentA1 offers its certificate (cert), then requires the inventory list (inv). It
then sends a request to and waits for a reply from the sellers.The agent must communicate at least
with one supplier before replying to the buyer, and it can span over all the available suppliers in the
network, unknown a priori, before compiling its proposal. Finally, it sends to the buyer a proposal
(prop), or the negative message (nop). The second agentA2 behaves similarly toA1, except the first
two actions are exchanged: before sending its certificate toB, it first requires the inventory list.

In Figure 12 from top to bottom, we display, from left to right, the automataB,S1 and S2;
the automataA1 and A2; then the most permissive controllerK of B⊗S1⊗S2⊗A1 (the whole
composition is omitted to save space); finally a portion ofB⊗S1⊗S2⊗A2 in weak agreement.
This example shows that through contract automata one can identify which traces reach success,
and which a failure, together with those principals responsible for diverging from the behaviour
in agreement, as well as to single out which failures depend on the order of actions, and which
not. Indeed, by inspectingK , that of course is safe, one can notice thatA1 never interacts withS2

because it never replies and so it is recognised liable. As a matter of fact, the composed automaton
B⊗S1⊗S2⊗A1 admits agreement, but it is not safe. Note thatK blocks every communication
with S2, so enforcing transactional integrity, becauseK removes all possibilities of rollbacks from

24 D. BASILE, P. DEGANO, AND G.-L. FERRARI

qB1 qB2 qB3

qB4

qB5

cert inv

pro

nop

the buyerB

qS11 qS12
pen

nope

pquo

the sellerS1

qS21

pen

the sellerS2

qA1 qA2 qA3 qA4

qA5

qA6

qA7
cert inv pen

pquo

nope

nop

pro

pen

pquo

nope

pen

the purchasing agentA1

qA1 qA2 qA3 qA4

qA5

qA6

qA7
inv cert pen

pquo

nope

nop

pro

pen

pquo

nope

pen

the purchasing agentA2

~q1 ~q2 ~q3 ~q4

~q5

~q6

~q7

~q8

~q9
(cert,�,�,cert) (inv,�,�, inv) (�, pen,�, pen)

(�, pquo,�, p
quo)

(�,nope,�,nope)

(nop,�,�,nop)

(pro,�,�, pro)

(�, pen,�, pen)

(�, pen,�, pen)

(�, pquo,�, pquo)

(�,nope,�,nope)

the mpcK of B⊗S1⊗S2⊗A1

~q1

~q2

~q3

~q4

~q5

~q6 ~q7

~q8

~q9

~q10

~q11

~q12

(�,�,
�, inv)

(cert,�,�,�)

(cert,�,�,cert) (inv,�,�,�)

(inv,�,�, inv)

(�,�,
�,cert)

(�, pen,�, pen)

(�, pquo,�, p
quo)

(�,nope,�,nope)

(nop,�,�,nop)

(pro,�,�, pro)

(�, pen,�, pen)

(�, pen,�, pen)

(�, pquo,�, pquo)

(�,nope,�,nope)

a portion ofB⊗S1⊗S2⊗A2 in weak agreement

FIGURE 12. The contract automata for the example

a trace not in agreement. The composed automatonB⊗S1⊗S2⊗A2 admits weak agreement but
not agreement (and its most permissive controller is empty), becauseB andA2 fail in exchanging
the certificate and the inventory requirements, as both are stuck waiting for the fulfilment of their
requests. However, by abstracting away the order in which actions are performed, circularity is no
longer a problem, and these requests satisfied. Note thatS2 is detected to be also weakly liable.

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 25

7. RELATED WORK

Contract automata are similar to I/O [40] and Interface Automata [1], introduced in the field of Com-
ponent Based Software Engineering. A first difference is that principal contract automata have no
internal transitions, and that our operators of composition track each principal, to find the possible
liable ones. Also we do not allow input enabled operations and non-linear behaviour (i.e. broadcast-
ing offers to every possible request), and our notion of agreement is dual to that of compatibility
in [1], that requires all theoffersto be matched.

We now relate our approach to the growing body of work in the literature introduced to describe
and analyse service contracts.

Behavioural contracts. In [24] the behaviour of web-services is described through automata, equiv-
alent to our principal contract automata. However, only bi-party interactions are considered, i.e.
interactions between a single client and a single server, while our model deals with multi-party in-
teractions through orchestration. Different notions of compliance are introduced, and one of them
is close to our notion of agreement. In [27] behavioural contracts are expressed in CCS and the
interactions between services are modelled via I/O actions. The main focus of this work is on for-
malising the notion of progress of interactions. Two different choice operators, namely internal and
external, describe how two services interact. The internalchoice requires the other party to be able
to synchronise with all the possible branches of the first, while for the external choice it suffices to
synchronise with at least one branch. A client and a server are compliant if their interactions never
get stuck. This approach is extended to a multi-party version by extending theπ-calculus in [28]
with the above notions of non-deterministic choice. Our model represents internal/external choice
as a branching of requests/offers, and it is intrinsically multi-party. Also, we consider stronger prop-
erties than theirs: progress guarantees that a subset of contracts meets their requests, while (weak)
agreement requires that all of them do, i.e. that each principal reaches a successful state. We also
consider (weak) liability of principals, and conditions under which (weak) safety is preserved by
composition (collaborative and competitive). A CCS-like process calculus, called BPELabstract
activitiesis used in [37] to represent BPEL activities [42], for connecting BPEL processes with con-
tracts in [27]. The calculus is endowed with a notion of compliance and sub-contract relation (see
below). Contract automata and this formalism are very close, e.g. both are finite state, so it would
not be difficult to formally relate them.

In [43] the approach of [27] is extended by exploiting an orchestrator for managing thesub-
contract relation. A contractσ1 is sub-contract ofσ2 if σ1 is more deterministic or allows more
interactions or is a permutation of the same channels ofσ2. However, it is not always the case that a
contractσ, compliant withσ1, is also compliant withσ2. A technique for synthesising an orchestra-
tor is presented to enforce compliance of contracts under the sub-contract relation. This approach is
further extended in [2], where an orchestrator is synthesised fromsession contracts, where actions
in a branching can only be all inputs or outputs. Only bi-party contracts are considered, and synthe-
sis is decidable even in the presence of messages never delivered to the receiver (orphan messages).
Two notions of compliance are studied: respectful and disrespectful. In the first, orphan messages
and circularities are ruled out by the orchestrator, while in the second they are allowed. Our notion
of weak agreement is close to the orchestrator of [43, 2] in the case ofdisrespectful compliance.

In [3] the contracts of [27] are enriched with a mechanism forrecovering from a stuck compu-
tation. The external choices are calledretractable, and a client contracta+b is compliant with a
servera since, in case the client decides to sendb, it can retract the choice and perform the correct
operationa. In our work, the controller for the case of agreement cuts all the paths which may lead

26 D. BASILE, P. DEGANO, AND G.-L. FERRARI

one principal to perform a retract. Hence, a controlled interaction of services needs not to roll back,
as the orchestratorpreventsfiring of liable transitions. This means that, if a composition of contracts
is safe then the contracts are compliant according to [3]. The converse does not hold. Indeed, our
notion of agreement is stronger, as we force an interaction of services to reach a successful state.

The compliance relations studied in [27, 28, 37, 43, 2, 3] aremainly inspired by testing equiva-
lence [41]: a CCS process (in our case the service) is tested against an observer (the client), in two
different ways. A servicemay-satisfya client if there exists a computation that ends in a successful
state, and a servicemust-satisfya client if in every maximal trace (an infinite trace or a tracethat can
not be prolonged) the client can terminate successfully. Weconjecture that may-test corresponds to
the notion ofstrong agreementof [20, 16] (there exists a trace only composed of matches), while
must-test impliesstrong safety(all traces are in strong agreement), but not vice-versa. For example
the servicea∗.b does not must-satisfy the clienta∗.b, but their product is strongly safe (if unfair, the
service may never offerb to its client). Actually, strong safety is alikeshould testingof [47], where
the divergent computations are ruled out.

Session types and choreographies.Session types have been introduced to reason over the be-
haviour of communicating processes, and are used for typingchannel names by structured sequences
of types [31]. Session types can be global or local. Aglobal typerepresents a formal specification
of a choreography of services in terms of their interactions. The projection of a safe global type
to its components yields a safelocal type, which is a term of a process algebra similar to those
of [27]. Conversely, from safe local types it is possible to synthesise a choreography as a safe global
type [38, 39]. In [22] the contracts of [27] are shown to be a model of first-order session types [32].
This approach is then extended in [23] by introducing a notion of higher-order contracts and relating
them to higher-order session types, that also handle session delegation.

Although the above approaches and ours seem unrelated, one can compare them by resorting
to communicating finite states machines [25], that are finitestate automata similar to ours, to which
local types are proved to correspond [30]. These automata interact through FIFO buffers, hence a
principal can receive an input only if it was previously enqueued, and in this they differ from contract
automata, where offers and requests can match or even fire unmatched in any order. However, under
mild conditions, the two classes of automata are equivalent[20, 16], so establishing a first bridge
between the choreography model based on session types and our automata model of orchestration.

Many properties of communicating finite state machines, as compliance in the asynchronous
case, are not decidable in general [25], but some become suchby using FIFO queues and bags [29].
Moreover in [39] compliance between communicating finite state machines is guaranteed whenever
it is possible to synthesise a global choreography from them. It would be interesting to describe
compliance of [25] in terms of flow control, as done for weak agreement, and to study a relaxation
of the linear problem which makes the problem decidable.

In [37] the compliance and sub-contract relations are extended to deal with choreographies.
Compliance is obtained by seeing a choreography as a compound service, similarly to our com-
posed contract automata. Since a client cannot interact with the choreography on actions already
used while synchronising by other services, in order to obtain compliance the client must benon-
competitivewith the other services.

λ-calculus, logics, event-structures.Services are represented in [10, 9] byλ-expressions, and
safety policies are imposed over their interactions. A typeand effect system is used to compute
the types of the services and their abstract behaviours, that are then model checked at static time to

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 27

guarantee that the required policies are always satisfied. Amain result shows how to construct a
plan that associates requests with offers so to guarantee that no executions will violate the security
requirements. In [17, 19] these techniques have been applied to an automata based representation
of the contracts of [27], recovering the same notion of progress.

Propositional Contract Logic [14] and Intuitionistic Linear Logic with Mix [21] have been
already discussed in Section 5.

Processes and contracts are two separate entities in [12], unlike ours. In this formalism contracts
are represented as formulae or as process algebras. A process can fulfil its duty by obeying its
contract or it behaves dishonestly and becomesculpable— and redeems by performing later on the
prescribed actions. Also our principals can be at fault, butour notion of liability slightly differs
from culpability, mainly because we do not admit the possibility of redeeming.

Contracts are represented in [6] through Event Structures endowed with certain notions from
Game Theory. An agreement property is proposed, ensuring safe interactions among participants,
that is similar to ours under an eager strategy. A principal is culpable if it has not yet fired an enabled
event, it is otherwise innocent. In particular a principal agrees to a contract if it has a positive pay-
off in case all the principals are innocent, or if someone else is found culpable. Additionally the
authors study protection: a protected principal has a non-losing strategy in every possible context,
but this is not always possible. Finally two encodings from session types to Event Structures are
proposed, and compliance between bi-party session types isshown to correspond to agreement of
the corresponding event structures via an eager strategy.

8. CONCLUDING REMARKS

We have studied contract composition for services, focussing on orchestration. Services are for-
mally represented by a novel class of finite state automata, called contract automata. They have two
operators that compose services according to two differentnotions of orchestrations: one when a
principal joins an existing orchestration with no need of a global reconfiguration, and the other when
a global adaptive re-orchestration is required. We have defined notions that illustrate when a compo-
sition of contracts behaves well, roughly when all the requests are fulfilled. These properties have
been formalised as agreement and safety, and have been studied both in the case when requests are
satisfied synchronously and asynchronously. Furthermore,a notion of liability has been put forward.
A liable principal is a service leading the contract composition into a fail state. Key results of the pa-
per are ways to enforce good behaviour of services. For the synchronous versions of agreement and
safety, we have applied techniques from Control Theory, while for the asynchronous versions we
have taken advantage of Linear Programming techniques borrowed from Operational Research. Us-
ing them, we efficiently find the optimal solutions of the flow in the network automatically derived
from contract automata.

We have also investigated the relationships between our contract automata and two intuitionis-
tic logics, particularly relevant for their ability in describing the potential, but harmless and often
essential circularity occurring in services. We have considered a fragment of the Propositional Con-
tract Logic [14, 13] particularly suited to describe contracts, and we relate it through a translation
of its formulas into contract automata. Similarly, we have examined certain sequents of the Intu-
itionistic Linear Logic with Mix that naturally represent contracts in which all requests are satisfied.
Then we have proved that these sequents are provable if and only if a suitable translation of them as
contract automata admits agreement.

A main advantage of our framework is that it supports the development of automatic verifica-
tion tools for checking and verifying properties of contract composition. In particular, the formal

28 D. BASILE, P. DEGANO, AND G.-L. FERRARI

treatment of contract composition in terms of optimal solutions of network flows paves the way of
exploiting efficient optimisation algorithms. We have developed a prototypical verification tool [15],
available athttps://github.com/davidebasile/workspace.

ACKNOWLEDGEMENTS

We are deeply indebted with Giancarlo Bigi for many discussions and suggestions on the usage of
optimisation techniques, with Massimo Bartoletti for manyinsights on the logical aspects of our
proposal, and with the anonymous referees for their valuable comments and remarks.

REFERENCES

[1] de Alfaro, L., Henzinger, T.A.: Interface automata. In:ESEC / SIGSOFT FSE. pp. 109–120. ACM (2001)
[2] van Bakel, S., Barbanera, F., de’Liguoro, U.: Orchestrated compliance for session-based client/server interactions.

In: Proceedings 8th Interaction and Concurrency Experience. EPTCS, vol. 189, pp. 21–36 (2015)
[3] Barbanera, F., Dezani-Ciancaglini, M., Lanese, I., de’Liguoro, U.: Retractable contracts. In: Proceedings Eighth

International Workshop on Programming Language Approaches to Concurrency- and Communication-cEntric Soft-
ware. EPTCS, vol. 203 (2016)

[4] Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications (Nonconvex Optimization and Its Applica-
tions). Springer-Verlag New York, Inc., Secaucus, NJ, USA (2006)

[5] Bartoletti, M., Cimoli, T., Pinna, G.M.: Lending Petri nets and contracts. In: Arbab, F., Sirjani, M. (eds.) FSEN.
LNCS, vol. 8161, pp. 66–82. Springer (2013)

[6] Bartoletti, M., Cimoli, T., Pinna, G.M., Zunino, R.: Contracts as games on event struc-
tures. Journal of Logical and Algebraic Methods in Programming 85(3), 399–424 (2016),
http://www.sciencedirect.com/science/article/pii/S235222081500036X

[7] Bartoletti, M., Cimoli, T., Pinna, G., Zunino, R.: Models of circular causality. In: Natarajan, R., Barua, G., Patra,
M. (eds.) Distributed Computing and Internet Technology, Lecture Notes in Computer Science, vol. 8956, pp. 1–20.
Springer International Publishing (2015),http://dx.doi.org/10.1007/978-3-319-14977-6_1

[8] Bartoletti, M., Cimoli, T., Zunino, R.: A theory of agreements and protection. In: Basin, D.A., Mitchell, J.C. (eds.)
POST. LNCS, vol. 7796, pp. 186–205. Springer (2013)

[9] Bartoletti, M., Degano, P., Ferrari, G.L.: Planning andverifying service composition. Journal of Computer Security
17(5), 799–837 (2009)

[10] Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.:Call-by-contract for service discovery, orchestration and
recovery. In: Wirsing, M., Hölzl, M.M. (eds.) Results of the SENSORIA Project, LNCS, vol. 6582, pp. 232–261.
Springer (2011)

[11] Bartoletti, M., Degano, P., Di Giamberardino, P., Zunino, R.: Debits and credits in Petri Nets and Linear Logic. In:
Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 135–159. Springer (2015)

[12] Bartoletti, M., Tuosto, E., Zunino, R.: Contract-oriented computing in co2. Sci. Ann. Comp. Sci. 22(1), 5–60 (2012)
[13] Bartoletti, M., Zunino, R.: A logic for contracts. In: Cherubini, A., Coppo, M., Persiano, G. (eds.) ICTCS. pp.

34–37 (2009)
[14] Bartoletti, M., Zunino, R.: A calculus of contracting processes. In: Proceedings of the 25th Annual IEEE Sympo-

sium on Logic in Computer Science, LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom. pp. 332–341. IEEE
Computer Society (2010),http://dx.doi.org/10.1109/LICS.2010.25

[15] Basile, D., Degano, P., Ferrari, G., Tuosto, E.: Playing with our cat and communication-centric applications. In:
Prooceedings of the 36th IFIP International Conference on Formal Techniques for Distributed Objects, Components
and Systems (FORTE). LNCS, vol. 9688. Springer (2016), to appear

[16] Basile, D., Degano, P., Ferrari, G., Tuosto, E.: Relating two automata-based models of orchestration
and choreography. Journal of Logical and Algebraic Methodsin Programming 85(3), 425–446 (2016),
http://www.sciencedirect.com/science/article/pii/S2352220815000930

[17] Basile, D., Degano, P., Ferrari, G.L.: Secure and unfailing services. In: Malyshkin, V. (ed.) PaCT. LNCS, vol. 7979,
pp. 167–181. Springer (2013)

https://github.com/davidebasile/workspace
http://www.sciencedirect.com/science/article/pii/S235222081500036X
http://dx.doi.org/10.1007/978-3-319-14977-6_1
http://dx.doi.org/10.1109/LICS.2010.25
http://www.sciencedirect.com/science/article/pii/S2352220815000930

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 29

[18] Basile, D., Degano, P., Ferrari, G.L.: Automata for analysing service contracts. In: Trustworthy Global Computing
- 9th International Symposium, TGC 2014, Rome, Italy, September 5-6, 2014. Revised Selected Papers, Lecture
Notes in Computer Science, vol. 8902, pp. 34–50. Springer (2014)

[19] Basile, D., Degano, P., Ferrari, G.L.: A formal framework for secure and complying services. The Journal of
Supercomputing 69(1), 43–52 (2014)

[20] Basile, D., Degano, P., Ferrari, G.L., Tuosto, E.: Fromorchestration to choreography through contract au-
tomata. In: Lanese, I., Lluch-Lafuente, A., Sokolova, A., Vieira, H.T. (eds.) Proceedings 7th Interaction and
Concurrency Experience, ICE 2014, Berlin, Germany, 6th June 2014. EPTCS, vol. 166, pp. 67–85 (2014),
http://dx.doi.org/10.4204/EPTCS.166.8

[21] Benton, P.N.: A mixed linear and non-linear logic: Proofs, terms and models. In: Computer Science Logic. pp.
121–135. Springer (1995)

[22] Bernardi, G., Hennessy, M.: Modelling session types using contracts. In: SAC’12. pp. 1941–1946 (2012)
[23] Bernardi, G., Hennessy, M.: Using higher-order contracts to model session types (extended abstract). In: Baldan,P.,

Gorla, D. (eds.) CONCUR 2014 - Concurrency Theory, Lecture Notes in Computer Science, vol. 8704, pp. 387–401.
Springer Berlin Heidelberg (2014),http://dx.doi.org/10.1007/978-3-662-44584-6_27

[24] Bordeaux, L., Salaün, G., Berardi, D., Mecella, M.: When are two web services compatible? In: Shan, M.C., Dayal,
U., Hsu, M. (eds.) Technologies for E-Services, Lecture Notes in Computer Science, vol. 3324, pp. 15–28. Springer
Berlin Heidelberg (2005)

[25] Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342 (1983)
[26] Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer-Verlag New York, Inc., Secaucus,

NJ, USA (2006)
[27] Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services. ACM Trans. Program. Lang. Syst.

31(5) (2009)
[28] Castagna, G., Padovani, L.: Contracts for mobile processes. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR. LNCS,

vol. 5710, pp. 211–228. Springer (2009)
[29] Clemente, L., Herbreteau, F., Sutre, G.: Decidable topologies for communicating automata with FIFO and bag

channels. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014 - Concurrency Theory - 25th International Conference,
CONCUR 2014, Rome, Italy, September 2-5, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8704,
pp. 281–296. Springer (2014)

[30] Deniélou, P.M., Yoshida, N.: Multiparty compatibility in communicating automata: Characterisation and synthesis
of global session types. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M.Z., Peleg, D. (eds.) ICALP (2). LNCS, vol.
7966, pp. 174–186. Springer (2013)

[31] Dezani-Ciancaglini, M., De’Liguoro, U.: Sessions andsession types: An overview. In: Proceedings of the 6th
International Conference on Web Services and Formal Methods. pp. 1–28. WS-FM’09, Springer-Verlag, Berlin,
Heidelberg (2010),http://dl.acm.org/citation.cfm?id=1880906.1880907

[32] Gay, S., Hole, M.: Subtyping for session types in the pi calculus. Acta Informatica 42(2-3), 191–225 (2005),
http://dx.doi.org/10.1007/s00236-005-0177-z

[33] Gray, J., Harrison, M.A., Ibarra, O.H.: Two-way pushdown automata. Information and Control 11(1/2), 30–70
(1967)

[34] Hemmecke, R., Koppe, M., Lee, J., Weismantel, R.: Nonlinear integer programming. In: Junger, M., Liebling, T.M.,
Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.) 50 Years of Integer
Programming 1958-2008, pp. 561–618. Springer Berlin Heidelberg (2010)

[35] Joshi, A.K., Shanker, K.V., Weir, D.: The convergence of mildly context-sensitive grammar formalisms (1990)
[36] Kuroda, S.Y.: Classes of languages and linear-boundedautomata. Information and Control 7(2), 207–223 (1964)
[37] Laneve, C., Padovani, L.: An algebraic theory for web service contracts. Formal Aspects of Computing pp. 1–28

(2015)
[38] Lange, J., Tuosto, E.: Synthesising choreographies from local session types. In: Koutny, M., Ulidowski, I. (eds.)

CONCUR. LNCS, vol. 7454, pp. 225–239. Springer (2012)
[39] Lange, J., Tuosto, E., Yoshida, N.: From communicatingmachines to graphical choreographies. In: Rajamani,

S.K., Walker, D. (eds.) Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015. pp. 221–232. ACM (2015)

[40] Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Quarterly 2, 219–246 (1989)
[41] de Nicola, R., Hennessy, M.: Testing equivalences for processes. In: Diaz, J. (ed.) Automata, Languages and

Programming, Lecture Notes in Computer Science, vol. 154, pp. 548–560. Springer Berlin Heidelberg (1983)

http://dx.doi.org/10.4204/EPTCS.166.8
http://dx.doi.org/10.1007/978-3-662-44584-6_27
http://dl.acm.org/citation.cfm?id=1880906.1880907
http://dx.doi.org/10.1007/s00236-005-0177-z

30 D. BASILE, P. DEGANO, AND G.-L. FERRARI

[42] OASIS-Technical-Committee: OASIS WSBPEL TC, Web services business process execution language version 2.0
(2007), technical Report, OASIS, available at http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[43] Padovani, L.: Contract-based discovery of web services modulo simple orchestrators. Theor. Comput. Sci. 411(37),
3328–3347 (2010),http://dx.doi.org/10.1016/j.tcs.2010.05.002

[44] Papazoglou, M.P., Georgakopoulos, D.: Introduction:Service-oriented computing. Commun. ACM 46(10), 24–28
(Oct 2003),http://doi.acm.org/10.1145/944217.944233

[45] Peltz, C.: Web services orchestration and choreography. IEEE Computer 36(10), 46–52 (2003)
[46] Pfenning, F.: Structural cut elimination: Intuitionistic and classical logic. Information and Computation 157(1-2),

84 – 141 (2000),"http://www.sciencedirect.com/science/article/pii/S0890540199928328"
[47] Rensink, A., Vogler, W.: Fair testing. Information andComputation 205(2), 125 – 198 (2007),

http://www.sciencedirect.com/science/article/pii/S0890540106001106
[48] Schneider, F.B.: Enforceable security policies. ACM Transactions on Information and System Security (TISSEC)

3(1), 30–50 (2000)

http://dx.doi.org/10.1016/j.tcs.2010.05.002
http://doi.acm.org/10.1145/944217.944233
"http://www.sciencedirect.com/science/article/pii/S0890540199928328"
http://www.sciencedirect.com/science/article/pii/S0890540106001106

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 31

9. APPENDIX

9.1. The Model.

Proposition 9.1. The following properties hold:
– ∃A1,A2,A3.(A1⊗A2)⊗A3 6= A1⊗ (A2⊗A3)
– ∀A1,A2,A3.(A1⊠A2)⊠A3 = A1⊠ (A2⊠A3)

Proof. Example 2.9 suffices to prove the first statement. For the second statement one hasA =
(A1⊠A2)⊠A3 =

⊗
Ai∈I Ai = A1⊠ (A2⊠A3) whereI = {Πi(A) | i ∈ 1,2,3}.

9.2. Agreement.

Proposition 9.2. LetK be the mpc of the contract automatonA , thenL (K) =A∩L (A).

Proof. The existence ofK is guaranteed since all actions are controllable and observable andL (A)
is regular, as well asA [26]. By contradiction assumeL (K)⊂A∩L (A), then there exists another
controllerK ′

A
such thatL (K)⊂L (K ′) = A∩L (A).

Proposition 9.3(Mpc). The controllerKA of Definition 3.9 is the most permissive controller of the
contract automatonA .

Proof. In KA every request transition is removed in the first step, so it must beL (KA) ⊆ A∩
L (A). We will prove thatL (KA) = A∩L (A), from this follows thatKA is the most permissive
controller. By contradiction assume that exists a tracew ∈ A∩L (A),w 6∈ L (KA). Then there
exists a transitiont = (~q,~a,~q′) 6∈ TKA

in the accepting path ofw (i.e. the sequence of transitions
used to recognisew). The transitiont is not a request sincew∈A∩L (A), and~q,~q′ 6∈Hanged(KA)
because the transition belongs to an accepting path. Since the only transitions removed to obtain
KA are requests and those involving hanged states, it follows thatt ∈ TKA

.

Theorem 3.18. If two contract automataA1 andA2 are

(1) competitive then they are collaborative,
(2) collaborative and safe, then they are competitive,
(3) safe thenA1⊗A2 is safe,A1⊠A2 admits agreement,
(4) non-collaborative, and one or both unsafe, thenA1⊗A2,A1⊠A2 are unsafe,
(5) safe and non-competitive, thenA1⊠A2 is safe.

Proof. 1) Assume by contradiction thatA1 andA2 are non-collaborative, that is

(Ao
1∩co(Ar

2))∪ (co(Ar
1)∩Ao

2) = /0
Since the two automata are competitive, we have

Ao
1∩Ao

2∩ (co(Ar
1)∪co(Ar

2)) 6= /0
By the distributive law

(Ao
1∩ (co(Ar

1)∪co(Ar
2)))∩ (A

o
2∩ (co(Ar

1)∪co(Ar
2))) 6= /0

By hypothesis the two automata are non-collaborative, hence the above term can be rewritten as

(Ao
1∩co(Ar

1))∩ (co(Ar
2)∩Ao

2) 6= /0
By associative and commutative laws

(Ao
1∩co(Ar

2))∩ (co(Ar
1)∩Ao

2) 6= /0

32 D. BASILE, P. DEGANO, AND G.-L. FERRARI

Which implies
(Ao

1∩co(Ar
2))∪ (co(Ar

1)∩Ao
2) 6= /0

obtaining a contradiction.

2) By hypothesis the automata are collaborative:

(Ao
1∩co(Ar

2))∪ (A
o
2∩co(Ar

1)) 6= /0
By hypothesisA1 andA2 are safe, hence for each request there is a corresponding action, that is
co(Ar

i)⊆ Ao
i wherei = 1,2. Then the following holds

Ao
i ∩co(Ar

i) = co(Ar
i) i = 1,2

By substitution in the previous term we obtain

(Ao
1∩Ao

2∩co(Ar
2))∪ (A

o
2∩Ao

1∩co(Ar
1)) 6= /0

Which implies

(Ao
1∩Ao

2∩ (co(Ar
1)∪co(Ar

2)))∪ (A
o
2∩Ao

1∩ (co(Ar
1)∪co(Ar

2))) 6= /0
By simplification we have

(Ao
1∩Ao

2∩ (co(Ar
1)∪co(Ar

2))) 6= /0
HenceA1 andA2 are competitive.

3) Note that the labels ofA1⊗A2 are the union of the labels ofA1 andA2 (extended with idle
actions for fitting the rank), hence no request transitions are added, andA1⊗A2 is safe. Since the
traces ofA1⊗A2 are a subset ofA = A1⊠A2, A has at least a trace in agreement. Example 3.16
shows that not all the traces ofA admit agreement.

4) Without loss of generality assume thatA1 is unsafe, hence there exists a request~a, and traces
w,v such thatw~av∈L (A1). SinceA1 andA2 are non-collaborative there will be no match between
the actions ofA1 andA2, hence we havew1~a′v1 ∈ L (A1⊗A2),w2~a′v2 ∈ L (A1 ⊠A2) for some
w1,w2,v1,v2, where~a′ is obtained from~a by adding the idle actions to principals fromrA1 + 1 to
rA1 + rA2.

5) The proof is similar to that of item 3, indeed it suffices to prove that no new matches between
principals inA1 andA2 are introduced inA1 ⊠A2. By item 2 it follows thatA1 andA2 are non-
collaborative:

(Ao
1∩co(Ar

2))∪ (A
o
2∩co(Ar

1)) 6= /0
This suffices to prove that no matches will be introduced in their composition.

9.3. Weak Agreement.

Theorem 4.6. Let A1,A2 be two contract automata, then ifA1,A2 are

(1) weakly safe thenA1⊗A2 is weakly safe,A1⊠A2 admits weak agreement
(2) non-collaborative and one or both unsafe, thenA1⊗A2,A1⊠A2 are weakly unsafe
(3) safe and non-competitive, thenA1⊠A2 is weakly safe.

Proof. Let reqw
a ,o fw

a be the number of requests and offers of an actiona∈ R∪O in a tracew.

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 33

(1) For⊗: we will prove that in every trace ofA1⊗A2, for each action the number of requests are
less than or equal to the number of offers, and the thesis follows. By contradiction, assume that
there exists a tracew in A1⊗A2 and an actiona with reqw

a > o fw
a . Assume thatw is obtained

combining two tracesw1,w2 of A1 andA2, that is each principal in each automaton performs
the moves prescribed by its trace. Since both automata are weakly safe, we havereqw1

a ≤ o fw1
a

andreqw2
a ≤ o fw2

a for all actionsa.
Independently of how many matches occur, inw we still have more requests than offers:

reqw1
a + reqw2

a −k≤ o fw1
a +o fw2

a −k wherek are the new matches.
For ⊠ it suffices to take a tracew in A1 ⊠A2 obtained by combining two tracesw1,w2 of

respectivelyA1 and A2, where the match actions of both automata are maintained inw (the
matches are performed by the same principals). In this case,the tracew will be present also in
A1⊗A2, hencew∈W.

(2) Without loss of generality assume thatA1 is weakly unsafe, hence there exists an actiona and
a tracew1 in A1 such thatreqw1

a > o fw1
a . SinceA1 andA2 are non-collaborative, in every trace

w of A1⊗A2 or A1 ⊠A2 obtained by shufflingw1 with an arbitraryw2 in A2 we will have
reqw

a > o fw
a .

(3) from Theorem 3.18 item 5,A1⊠A2 is safe and sinceA⊂W the thesis follows.

The following proposition helps the proof of Theorem 4.8.

Proposition 9.4. Let WA(W) = {w∈ (R∪O∪{τ})∗ | ∃ f : [1. . . |w|]→ [1. . . |w|] injective and such
that f(i) = j only if w(i) = co(w(j)), total on the requests of w}.
Then, Obs(w) ∈WA(W) implies w∈W.

Proof. Let σ = Obs(w) ∈WA(W), and let f be a function that certifies thatσ ∈WA(W), i.e. that
all the requests inw are fulfilled. Thenf certifiesw∈W.

Theorem 4.8. W is a context-sensitive language, but not context-free. Word decision can be done
in O(n2) time and O(n) space.

Proof. Example 4.7 shows that the property is not context-free. Forproving thatW is context-
sensitive we now outline a Linear Bounded Automata (LBA) [36] that decides whether a trace
w belongs toW, giving us time and space complexity for the membership problem. Roughly, a
LBA is a Turing machine with a tape, linearly bounded by the size of the input. Since we have
an infinite alphabet due to the (unbounded) rank of vector~a, we computeObs(w) and decide if
Obs(w) ∈WA(W). By Proposition 9.4 we obtain the thesis. Below is the schemeof the algorithm:

for i = 0;i < length(w); i ++ do
if wi ∈ R then

for j = 0; j < length(w); j ++ do
if wj = co(wi) then

wj ← #
break

else
if j = length(w)−1 then return false

return true

The length of the tape equals the length ofw, so the algorithm isO(n) space, while it isO(n2) time,
because of the two nestedfor cycles.

The following is an auxiliary result to the theorems below.

Lemma 9.5. Let A be a contract automaton such that~x ∈ Fx, then there exists a run(w, ~q0)→
∗

(ε,~qf) that passes through each tj ∈ T exactly xt j times.

34 D. BASILE, P. DEGANO, AND G.-L. FERRARI

Proof. We outline an algorithm that visits all the transitionst j with xt j > 0, starting from~qf and
proceeding backwards to~q0.

We use auxiliary variablesxt j , t j ∈ T, initialised to zero, for storing how many times we have
passed through a transitiont j . At each iteration the algorithm selects non deterministically a transi-
tion t̂ in the backward star of the selected node such thatxt̂ − xt̂ > 0, and increases by one unit the
variablext̂ for the selected̂t. The next node will be the starting state oft̂. The algorithm terminates
when for all the transitionst j in the backward star we havext j −xt j = 0.

We prove that the algorithm terminates and constructs a trace that passes through eacht j ex-
actly xt j times, and the last transition considered leaves the initial state. For the first step we have
∑t j∈BS(~qf) xt j −∑t j∈FS(~qf) xt j = 1 hence there exists at least oneti ∈ BS(~qf) such thatxti > 0 (and
xti = 0).

Pick up one of these transitions, sayti , and assign it to the iteration variablet̂. Two cases may
arise, depending on the source oft̂:

(1) the source of̂t is~q 6= ~q0: we have∑t j∈BS(~q) xt j −∑t j∈FS(~q) xt j ≥ 0 and we know that∑t j∈FS(~q) xt j >

0, becausêt ∈ FS(~q) andxt̂ > 0, hence∑t j∈BS(~q) xt j > 0.
We now show that there is at least onet ∈ BS(~q) such that(xt − xt) > 0. By contradiction,

assume∑t j∈BS(~q) xt j −∑t j∈BS(~q) xt j = 0. We distinguish two cases:
• ~q=~qf : we have∑t j∈FS(~q) xt j = ∑t j∈BS(~q) xt j , since at every iteration we increase by one unit

the value ofxti for t̂ and we are proceeding backwards starting from~qf (the flow variable of a
loop belongs to both backward and forward star). Since∑t j∈BS(~q) xt j > ∑t j∈FS(~q) xt j , we have
∑t j∈FS(~q) xt j −∑t j∈FS(~q) xt j < 0. Contradiction, since by definition the valuext j for a transition
t j will never be greater then the corresponding valuext j .
• ~q 6=~qf : we have∑t j∈FS(~q) xt j > ∑t j∈BS(~q) xt j . Since∑t j∈BS(~q) xt j = ∑t j∈FS(~q) xt j , we also have

∑t j∈FS(~q) xt j −∑t j∈FS(~q) xt j < 0 obtaining a contradiction as above.
Then, we iterate the algorithm taking the abovet ast̂.

(2) the source ofti is ~q0: we have∑t j∈BS(~q0) xt j −∑t j∈FS(~q0) xt j =−1.
Letk1 =∑t j∈FS(~q0) xt j −∑t j∈FS(~q0) xt j , k2 =∑t j∈BS(~q0) xt j −∑t j∈BS(~q0) xt j , and note that since we are
proceeding backwards starting from~qf it must be that∑t j∈FS(~q0) xt j = 1+∑t j∈BS(~q0) xt j . Hence,
from the previous equations it must be thatk2−k1 = 0. We have that:
• if k1 = 0, we havek2 = 0 and the algorithm terminates;
• if k1 > 0, we havek2 > 0 and the algorithm continues by selecting a transitiont̂ ∈ BS(~q0)

such thatxt̂ −xt̂ = 0.

Since at every iteration we increase the valuext̂ , the constraints onFx guarantee that the algorithm
will eventually terminate. Moreover there exists an execution of the algorithm that traverses all the
possible cycles of the trace induced by~x. Hence we have a trace from~q0 to~qf that passes through
each transitiont j visited by the algorithm exactlyxt j times.

It remains to prove that for all the transitionst j not visited by the algorithm we havext j = 0. By
contradiction assume that there exists a transitionti = (~qs,~a,~qd) with xti −xti > 0 for all the possible
executions of the algorithm.

This is possible only if~qd it is not connected to~qf by the flow~x. Moreover in this case by the
flow constraints on~x it follows that~qs is not reachable from~q0 by the flow~x, i.e. ti is not part of
the trace induced by~x. Then there must exist a cycleC= {tc1, . . . , tcm} with ti ∈C and disconnected
from~q0 and~qf with positive flow. LetQC be the set of nodes having ingoing or outgoing transitions
in C. The constraints∑t∈BS(~q) xt −∑t∈FS(~q) xt = 0 are satisfied for all~q∈C.

We show thatC will eventually violate the constraints defined by the variablesz~qs
t j

. We have:

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 35

∀~q′ ∈Q : ∑
t j∈BS(~q′)

z~qs
t j
− ∑

t j∈FS(~q′)

z~qs
t j
=







−p~qs if ~q′ =~q0

0 if ~q′ 6=~q0,~qs

p~qs if ~q′ =~qs

∀t j ∈ T. z~qs
t j
∈R, 0≤ z~qs

t j
≤ xt j

We have∑t j∈FS(~qs) xt j > 0 andp~qs = 1, hence∑t j∈BS(~qs) z~qs
t j
−∑t j∈FS(~qs) z~qs

t j
= 1 and for all~q∈

QC,~q 6= ~qs : ∑t j∈BS(~q) z~qs
t j
−∑t j∈FS(~q) z~qs

t j
= 0. Note that is not possible to satisfy these constraints

since for allt ∈C, xt are all equal and positive and 0≤ z~qs
t ≤ xt .

Theorem 4.12. Let~v be a binary vector. Then a contract automatonA is weakly safeif and only
if min γ≥ 0 where:

∑
i∈Il

vi ∑
t j∈T

ai
t j
xt j ≤ γ ∑

i∈Il

vi = 1 ∀i ∈ Il . vi ∈ {0,1} (xt1 . . .xtn) ∈ Fx γ ∈R

Proof. (⇒) By contradiction assume thatmin γ < 0. Hence there exists an actiona j such that
v j = 1,∀i ∈ Il , i 6= j.vi = 0 andγ = ∑t j∈T a j

t j
xt j < 0. By Lemma 9.5 we know that~x builds a trace

recognisingw∈L (A), and the number of offers fora j in w are less than the corresponding number
of requests since∑t j∈T a j

t j
xt j < 0, hencew 6∈W.

(⇐) By contradiction there existsw∈L (A)\W. Hence there exists an actiona j that occurs
in w fewer times as an offer than as a request. Let~x be the flow induced in the obvious way by
the tracew, counting the number of times each transition occurs in the path acceptingw. We have
∑t j∈T a j

t j
xt j < 0, hence it must bemin γ < 0.

Theorem 4.14.The contract automatonA admits weak agreement if and only ifmax γ≥ 0 where

∀i ∈ Il . ∑
t j∈T

ai
t j

xt j ≥ γ (xt1 . . .xtn) ∈ Fx γ ∈R

Proof. (⇒) Let w be a trace in weak agreement, and let~x be the flow induced byw. Then by
construction∀i ∈ Il .∑t j∈T ai

t j
xt j ≥ 0, hence maxγ≥ 0.

(⇐) Follows from Lemma 9.5 and the hypothesis.

Theorem 4.17.The principalΠi(A) of a contract automatonA is weakly liableif and only if there
exists a transitiont = (~qs,~a, ~qd) ∈ TA ,~a(i) 6= � such thatγt < 0, where

γt = min {g(~x) |~x∈ F~q0,~qs, ~y∈ F~qs,~qf , ∀i ∈ Il . ∑
t j∈T

ai
t j
(xt j +yt j)≥ 0}

g(~x) = max {γ |~u∈ F~qd,~qf , ∀i ∈ Il . ∑
t j∈T

ai
t j
(xt j +ut j)+ai

t ≥ γ,γ ∈R}

Proof. (⇒) By hypothesis∃w1 such that∀w3.w1~aw3 ∈ L (A) \W and∃w2.w1w2 ∈ L (A)∩W.
Let t = (~qs,~a,~qd) be the transition such that(w1~a,~q0)→

∗ (~a,~qs)→ (ε,~qd), i.e. the principali in ~a
is weakly liable. We show thatγt < 0.

Let w1 from ~q0 to ~qs induce the flow~x, while w2 from ~qs to~qf induce~y. Sincew1w2 is in weak
agreement,∀i ∈ Il .∑t j∈T ai

t j
(xt j +yt j)≥ 0.

Since by hypothesis the i-th principal is liable, the flow~x corresponding to the tracew1 is such
thatg(~x)< 0. Otherwise ifg(~x)≥ 0 we can choose a trace, say,w3 such thatw1~aw3 ∈L (A)∩W,
obtaining a contradiction. Therefore,γt ≤ g(~x)< 0.

36 D. BASILE, P. DEGANO, AND G.-L. FERRARI

Γ, p⊢ p
id

Γ, p∧q, p⊢ r

Γ, p∧q⊢ r
∧L1

Γ, p∧q,q⊢ r

Γ, p∧q⊢ r
∧L2

Γ ⊢ p Γ ⊢ q

Γ ⊢ p∧q
∧R

Γ, p∨q, p⊢ r Γ, p∨q,q⊢ r

Γ, p∨q⊢ r
∨L

Γ ⊢ p

Γ ⊢ p∨q
∨R1

Γ ⊢ q

Γ ⊢ p∨q
∨R2

Γ ⊢ p Γ, p⊢ q

Γ ⊢ q
cut

Γ, p→ q⊢ p Γ, p→ q,q⊢ r

Γ, p→ q⊢ r
→ L

Γ, p⊢ q

Γ ⊢ p→ q
→ R

Γ,¬p⊢ p

Γ,¬p⊢ r
¬L

Γ, p⊢ ⊥

Γ ⊢ ¬p
¬R

Γ,⊥ ⊢ p
⊥L

Γ ⊢ ⊤
⊤R

Γ ⊢ ⊥

Γ ⊢ p
weakR

Γ ⊢ q

Γ ⊢ p։ q
Zero

Γ, p։ q, r ⊢ p Γ, p։ q,q⊢ r

Γ, p։ q⊢ r
Fix

Γ, p։ q,a⊢ p Γ, p։ q,q⊢ b

Γ, p։ q⊢ a։ b
PrePost

FIGURE 13. The rules of the sequent calculus for PCL. The contractual implication
rules areZero,Fix andPrepostwhile the others are the standards for Intuitionistic
logic.

(⇐) by hypothesisγt < 0 and by Lemma 9.5~x corresponds to a runw from the initial state to
~qs such that (by hypothesis again)∀w3.w1~aw3 6∈L (A)∩W and∃w4.w1w4 ∈L (A)∩W, that ist
is a weakly liable transition.

9.4. Automata and Horn Propositional Contract Logic. For completeness, we first define the
grammar for the full PCL, while the rules for its sequent calculus are in Figure 13. Unless stated
differently, in what follows we only consider proofs without the rules(weakR) and(cut), which are
proved to be redundant in [13].

Definition 9.6 (PCL). The formulae of PCL are inductively defined by the following grammar.

p ::= ⊥ false
⊤ true
a prime
¬p negation
p∨ p disjunction
p∧ p conjunction
p→ p implication
p։ p contractual implication

The following proposition will be helpful later on.

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 37

Proposition 9.7. Given a H-PCL formula p and the automatonJpK = 〈Q,q0,Ar ,Ao,T,F〉:

(1) F = {~q= 〈{∗}, . . . ,{∗}〉}, and all (~q,~a,~q′) are such that~q′ =~q and~a is an offer;
(2) every state~q = 〈J1, . . . ,Jn〉 has as many request or match outgoing transitions as the request

actions prescribed by
⋃

i∈1...nJi ;
(3) JpK is deterministic.

Proof. The first item follows immediately from Definition 5.3.
For the second item, we first consider the translation of the clauses in the formula. By construction,
for each of them two cases are possible when considering request actions: eitherJ(

∧
j∈Ji

a j)→ bK or
J(
∧

j∈Ji
a j)։ bK. In both cases we have outgoing request transitions of the form {(J′∪{ j},a j ,J′) |

J′ ∪ { j} ∈ 2Ji , j ∈ J}. Finally by applying the associative composition⊠ (Definition 2.8), some
requests may be matched with corresponding offers, but no new request can be originated.
The third item follows immediately by the translation and bythe condition in Definition 5.1, that all
the atoms are different.

The following lemma shows that if an atoma is entailed by a formulap then there is a trace
recognised by the contract automatonJpK where the request corresponding to the atoma, if any, is
always matched.

Lemma 9.8. Given a H-PCL formula p and an atom a in p we have:

p⊢ a is provable implies∃w∈L (JpK) such that no~a request on a occurs in w

Proof. Consider each of the conjunctsα of p. If a does not appear inα as the premise of an
implication/contractual implication, then the statementfollows trivially by Definition 5.3 and by
hypothesis, since the translation ofa is an offer action. Otherwisea also occurs inα within:

1. a conjunction, or
2. the conclusion of a contractual implication, or
3. the conclusion of an implication.

For the first two cases, by Definition 5.3, a transition labelled by the relevant offera is available
in all states, so preventing a requesta to appear inJpK, i.e. after the product of the principals
(Definition 2.8).

For proving case 3,α =
∧

j∈J a j → a and we proceed by induction on the depth of the proof
of p ⊢ a. It must be the case then that∀ j it holds p ⊢ a j . We can now either re-use the proof for
cases 1 and 2 (that act as base cases), or the induction hypothesis if a j occurs in the conclusion
of an implication. By Definition 5.3 after alla j are matched, the offera will be always available,
preventing a requesta to appear.

In order to keep the following definition compact, we use◦ for either→ or ։. In addition, by
abuse of the notation we also use∧ to operate between formulas, we writep′ for an empty formula
or with a single clause, and we allow the indexing setsJ andK in clauses to be empty. Finally, we
let (

∧
j∈ /0 a j)◦b stand forb.

Definition 9.9. Given a formulap, if from the initial state ofJpK there is an outgoing offer or an
outgoing match transition with label~a, we define

p/~a=























p if ~a is an offer
p′∧ (

∧
z∈Z cz ։ b)∧ (

∧
j∈J a j)◦b′ if ~a is a match with~a(i) = b and

p= p′∧ (
∧

z∈Z cz ։ b)∧ (
∧

j∈J a j ∧b)◦b′

p′∧ (
∧

k∈K ak∧b)∧ (
∧

j∈J a j)◦b′ if ~a is a match with~a(i) = b and
p′∧ (

∧
k∈K ak∧b)∧ (

∧
j∈J a j ∧b)◦b′

38 D. BASILE, P. DEGANO, AND G.-L. FERRARI

~q1start ~q2 ~q3

~q4 ~q5 ~q6 ~q8

~q7

(b,b,�)

(�,c,c)

(�,a,�)

(�,b,�)

(a,a,�)

(�,c,c) (�,c,c)

∗

(�,�,c)
(b,b,�)

(�,b,�),(�,�,c)

(a,a,�)

∗∗

(�,c,c)
(b,b,�)

(b,b,�)

(�,�,c)

FIGURE 14. The contract automatonJAlice∧Bob∧CharlieKdiscussed in Exam-
ple 9.11 is displayed here, where the principals are those ofFigure 9, and
∗= (a,�,�),(�,b,�), ∗∗= (a,�,�),(�,b,�),(�,�,c).

We now establish a relation betweenJp/~aK, and the contract automaton obtained by changing
the initial state~q0 of JpK to ~q, for the transition(~q0,~a,~q) of JpK. The main idea is to relate the
formula p/~a to the residual of the automatonJpK after the execution of an initial transition labelled
by~a, that isJp/~aK. Recall that the translation given in Definition 5.3 yields deterministic automata.

Lemma 9.10. Given a H-PCL formula p and the contract automatonJpK = 〈Q, ~q0,Ar ,Ao,T,F〉, if
t = (~q0,~a,~q) ∈ T is an offer or a match transition, thenL (A) = L (Jp/~aK) where
A = 〈Q,~q,Ar ,Ao,T,F〉.

Proof. The proof is by cases of~a. If ~a is an offer, then by Definition 5.3 it must be~q = ~q0 and
trivially A = Jp/~aK.

Otherwise, since~a is a match action, say on atomb, it contains a request from, say, thei-th
principal and a corresponding offer from another. Therefore, p=

∧
k∈K αk contains within a clause

α j the atomb, originating the offer, as a conjunction or as a conclusion of a contractual implication
(note that it cannot be an implication because we are in the initial state), andαi also containsb
originating this time the request. We now prove that the automataA and Jp/~aK have the same
initial state. Let~q0 = 〈J1, . . . ,Jn〉, then, since~a(i) = b, the states~q0 and~q only differ in the i-th
element, where in~a(i) the request actionb is not available anymore; formally,∀ j 6= i it must be
~q(j) = ~q0(j) = Jj , and~q(i) = ~q0(i) \ {i}. By Definition 9.9p and p/~a differ because of the single
atomb has been removed fromαi . By these facts and by item 2 of Proposition 5.5 the language
equivalence follows. Indeed,Jp/~aK is the product of the sameJαkK,k 6= i used forJpK, and the
match onb of A leaves~q0, that is not reachable from~q.

Example 9.11. Let JpK be the automaton shown in Figure 14, wherep = Alice∧Bob∧Charlie
and the principals are those of Figure 9. Consider nowp′ = p/(b,b,�) = (a∧ ((a∧ c) ։ b)∧ c)
and buildJp′K= {〈{~q2,~q3,~q5,~q6}, ~q2,Ar ,Ao,T, ~q6〉} (transitions, alphabets and states are taken from
JpK). It is immediate to verify that the language ofJp′K is the same ofJpK, when the initial state is
~q2 instead of~q1.

The following lemma is auxiliary for proving the next theorem. Its second item is similar to
Lemma 1 in [46].

Lemma 9.12. Let a,b be atoms, p,q be conjunction of atoms, with q possibly empty, p1, . . . , pn be
formulae, and◦ ∈ {→,։}, then

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 39

(i) if
∆

Γ,q◦b⊢ p
then ∃∆′ :

∆′

Γ,(q∧a)◦b,a⊢ p
(ii) if Γ ⊢ p then ∀Γ′. Γ,Γ′ ⊢ p

(iii) if
∧

i∈1...n pi ⊢ q then p1, . . . , pn ⊢ q
(iv) if Γ ⊢

∧
i∈1...n pi then ∀i.Γ ⊢ pi

Proof. To prove the first item, we proceed by induction on the depth of∆ and by case analysis on
the last rule applied. In the base case∆ is empty, we have two cases

(1) q non-empty orp 6= b: then it must be thatΓ = p,Γ′ for someΓ′ and the last rule applied isid.
Trivially, ∆′ will be empty and we have

Γ′, p,(q∧a)◦b,a⊢ p
id

(2) q empty andp= b: our hypothesis reads as
Γ,b⊢ b

id, and we build the following deduction

Γ′,a◦b,a⊢ a
id

Γ,a◦b,a,b⊢ b
id

Γ,a◦b,a⊢ b
♦

where if◦=→ thenΓ′ = Γ and♦=→ L, otherwise if◦=։ thenΓ′ = Γ,b and♦= Fix.

For the inductive step, we distinguish two cases:

(1) the last rule applied to deduce the hypothesis does not involve q◦b. Hence the rule must be
applied onp or on a formula inΓ. We can apply the same rule toΓ,(q∧a)◦b,a⊢ p and use the
inductive hypothesis.

(2) the last rule applied to deduce the hypothesis involvesq◦b. There are two exhaustive cases
(a) ◦=→, then the last rule applied is→ L and the deduction tree has the following form:

∆1

Γ,q→ b⊢ q
∆2

Γ,q→ b,b⊢ p
Γ,q→ b⊢ p

→ L

Then by induction hypothesis we have

∆′1
Γ,(q∧a)→ b,a⊢ q

∆′2
Γ,(q∧a)→ b,a,b⊢ p

From the right one and a derivation tree∆3 detailed below, we build

∆3
∆′2

Γ,(q∧a)→ b,a,b⊢ p
Γ,(q∧a)→ b,a⊢ p

→ L

∆3 is the derivation tree:

∆′1
Γ,(q∧a)→ b,a⊢ q Γ,(q∧a)→ b,a⊢ a

id

Γ,(q∧a)→ b,a⊢ q∧a
∧R

(b) ◦=։, then the last rule applied isFix and the deduction tree has the following form:

∆1

Γ,q։ b, p⊢ q
∆2

Γ,q։ b,b⊢ p
Γ,q։ b⊢ p

Fix

40 D. BASILE, P. DEGANO, AND G.-L. FERRARI

Then by the induction hypothesis we have

∆′1
Γ,(q∧a)։ b,a, p⊢ q

∆′2
Γ,(q∧a)։ b,a,b ⊢ p

From the above, we build the following
∆′1

Γ,(q∧a)։ b,a, p⊢ q Γ,(q∧a)։ b,a, p⊢ a
id

Γ,(q∧a)։ b,a, p⊢ q∧a
∧R

∆′2
Γ,(q∧a)։ b,a,b⊢ p

Γ,(q∧a)։ b,a⊢ p
Fix

For the second item, we prove a stronger fact: the last rule used to deduceΓ,Γ′ ⊢ p is the same used
for proving Γ ⊢ p. We proceed by induction on the depth of the derivation forΓ ⊢ p and then by
case analysis on the last rule applied.

The base case is when the axiomid is applied, and the proof is immediate.
For the inductive case, we assume that for some rule♦

∆
Γ ⊢ p

♦ implies
∆

Γ,Γ′ ⊢ p
♦

Rather than considering each rule at a time, we group them in two classes: those with two premises,
and those with one premise. Below, we discuss the first case, and the second follows simply erasing
one premise in what follows. The deduction tree in the premise above has the following form

∆′

Γ ⊢ q

∆′′

Γ′ ⊢ q′

Γ ⊢ p
♦

and by applying the induction hypothesis to both the premises we conclude

∆′

Γ,Γ′ ⊢ q

∆′′

Γ′,Γ′ ⊢ q′

Γ,Γ′ ⊢ p
♦

Moreover note that in this fragment no contradictions can beintroduced.
For the third item, we have a derivation tree∆ for the sequent

∧
i∈1...n pi ⊢ q. To build a deriva-

tion tree∆′ for p1, . . . , pn ⊢ q apply the following two steps. The first step removes from∆ all the
rules∧Li applied to (each sub-term of)

∧
i∈1...n pi , obtaining∆′′. Then, replace all applications of

the axiom(id) in ∆′′ of the form

Γ,
∧

j∈J p j ⊢
∧

j∈J p j
id

with a derivation tree withk= |J| leaves of the form

Γ, p1, p2, ..., pk ⊢ p j
id

and by repeatedly applying the rule(∧R) until we obtain the relevant judgement

Γ, p1, p2, ..., pk ⊢
∧

i∈1...n

pi .

For the fourth item, we have a derivation tree∆ for the sequentΓ ⊢
∧

i∈{1...n} pi .

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 41

For each sequentΓ ⊢ p j , j ∈ {1. . .n}, the derivation tree is then:

∆
Γ ⊢ p j ∧

∧
i∈{1...n}\{ j} pi

p j ,
∧

i∈{1...n}\{ j} pi ⊢ p j
id

p j ∧
∧

i∈{1...n}\{ j} pi ⊢ p j
∧L1

Γ ⊢ p j
cut

Theorem 5.6. Given a H-PCL formula p we have p⊢ λ(p) if and only ifJpK admits agreement.

Proof. (⇒) Sincep ⊢ λ(p) by Lemma 9.12(iv) (whereΓ = p) we havep ⊢ a for all atomsa in p.
It suffices to apply Lemma 9.8 to each of these atoms, and by Definition 5.3 the offers are never
consumed, there must be a tracew∈L (JpK) where all the requests are matched.

(⇐) Let ~q0 be the initial state ofJpK and~f be the final state. We proceed by induction on the
length ofw.

In the base casew is empty, hence the initial state ofJpK is also final. This situation only
arises when the second rule of Definition 5.3 has been appliedfor all conjunctsαi corresponding to
principals. Therefore it must be thatp is a conjunction of atoms, sop= λ(p) and the thesis holds
immediately.

For the inductive step we havew = ~aw2, and (~aw2, ~q0)→ (w2,~q)→+ (ε, ~f). By inductive
hypothesis and Lemma 9.10 we havep/~a ⊢ λ(p/~a). If ~a is an offer by Definition 9.9 we have
p= p/~a and the thesis holds directly. Note thatλ(p) = λ(p/~a) because~a labels a match or an offer
transition outgoing from~q0 and the offer comes from the conclusion of a contractual implication or
a conjunction of atoms, that is unmodified inp/~a . Hence since by inductive hypothesisp/~a⊢ λ(p/
~a) and sinceλ(p) = λ(p/~a), proving p ⊢ p/~a entails p ⊢ λ(p). This is because of the following
proof (note that there exists a longer one, cut-free) and Lemma 9.12(ii)

p⊢ p/~a p, p/~a⊢ λ(p)
p⊢ λ(p)

cut

To provep⊢ p/~a we proceed by cases according to the structure ofp, (omitting the cases for
J = /0 for which the proof is trivial)
• if p= p′∧ (

∧
z∈Z cz ։ b)∧ (

∧
j∈J a j ∧b→ b′) we have to prove the sequentp⊢ p/~a that reads as

(p′∧ (
∧

z∈Z

cz ։ b)∧ (
∧

j∈J

a j ∧b→ b′)) ⊢ (p′∧ (
∧

z∈Z

cz ։ b)∧ (
∧

j∈J

a j → b′))

For readability, we first determine the sequentΓ ⊢ (
∧

j∈J a j)→ b′ where

Γ = p′,(
∧

z∈Z

cz ։ b),(
∧

j∈J

a j ∧b)→ b′

from p, by applying the rule∧R, and Lemma 9.12(iii). Then we build the following derivation,
where * is detailed below:

Γ,
∧

j∈J a j ⊢
∧

j∈J a j
id

∗

Γ,
∧

j∈J a j ⊢ b
♦

Γ,
∧

j∈J a j ⊢
∧

j∈J a j ∧b
∧R

Γ,
∧

j∈J a j ,b′ ⊢ b′
id

Γ,
∧

j∈J a j ⊢ b′
→ L

Γ ⊢ (
∧

j∈J a j)→ b′
→ R

The fragment * of the proof can have two different forms, depending on the setZ:
– if Z = /0, then * is empty and the rule♦ is id

42 D. BASILE, P. DEGANO, AND G.-L. FERRARI

– otherwise the fragment * consists of the two sub-derivations below, and the rule♦ applied to
them isFix

∆3

Γ,
∧

j∈J a j ,b⊢
∧

z∈Z cz
(9.1)

Γ,
∧

j∈J a j ,b⊢ b
id

We now show how to obtain∆3. Let ∆ be the derivation tree forp/~a ⊢ λ(p/~a), that exists
by the inductive hypothesis. Note that sinceλ(p/~a) is a conjunction where

∧
z∈Z cz occurs, the

following proof can be obtained by applying Lemma 9.12(iv) for all cz and by combining them
with rule∧R:

∆2

(p′,(
∧

z∈Z cz ։ b),(
∧

j∈J a j → b′)) ⊢
∧

z∈Z cz
(9.2)

Now, in order to obtain the following from the proof (9.2), i.e.

∆3

(p′,(
∧

z∈Z cz ։ b),(
∧

j∈J a j ∧b)→ b′,
∧

j∈J a j ,b) ⊢
∧

z∈Z cz
(9.3)

we apply Lemma 9.12(ii): the left hand-side of the sequent

(p′,(
∧

z∈Z

cz ։ b),(
∧

j∈J

a j → b′)) ⊢
∧

z∈Z

cz

is augmented with
∧

j∈J a j . Finally by applying Lemma 9.12(i), the formula
∧

j∈J a j → b′ above
becomes(

∧
j∈J a j ∧b)→ b′,b, obtaining (9.3).

• if p= p′∧ (
∧

k∈K ak∧b)∧ ((
∧

j∈J a j ∧b)→ b′) we have to prove the sequentp⊢ p/~a that reads
as

(p′∧ (
∧

k∈K

ak∧b)∧ (
∧

j∈J

a j ∧b)→ b′) ⊢ (p′∧ (
∧

k∈K

ak∧b)∧ (
∧

j∈J

a j → b′))

For readability, we first determine the sequentΓ ⊢ (
∧

j∈J a j)→ b′, where

Γ = p′,(
∧

k∈K

ak∧b),((
∧

j∈J

a j ∧b)→ b′)

from p, by applying the rule∧R and Lemma 9.12(iii). Then we build the following derivation,
where * is detailed below:

Γ,
∧

j∈J a j ⊢
∧

j∈J a j
id

∗

Γ,
∧

j∈J a j ⊢ b
♦

Γ,
∧

j∈J a j ⊢
∧

j∈J a j ∧b
∧R

Γ,
∧

j∈J a j ,b′ ⊢ b′
id

Γ,
∧

j∈J a j ⊢ b′
→ L

Γ ⊢ (
∧

j∈J a j)→ b′
→ R

The fragment * of the proof can have two different forms, depending on the setK:
– if K = /0, then * is empty and the rule♦ is id
– otherwise the rule♦ is ∧L2 applied to the fragment * below

p′,(
∧

k∈K ak∧b),b,((
∧

j∈J a j ∧b)→ b′),
∧

j∈J a j ⊢ b
id

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 43

• if p= p′∧ (
∧

z∈Z cz ։ b)∧ ((
∧

j∈J a j ∧b)։ b′) we have to prove the sequentp⊢ p/~a that reads
as

(p′∧ (
∧

z∈Z

cz ։ b)∧ (
∧

j∈J

a j ∧b)։ b′) ⊢ (p′∧ (
∧

z∈Z

cz ։ b)∧ (
∧

j∈J

a j ։ b′))

For readability, we first determine the sequentΓ ⊢
∧

j∈J a j ։ b′ where

Γ = p′,(
∧

z∈Z

cz ։ b),(
∧

j∈J

a j ∧b։ b′) ,

by applying the rule∧R and Lemma 9.12(iii). Then we build the following derivation, where *
is detailed afterwards:

∗

Γ,b′ ⊢
∧

j∈J a j ∧b
Fix

Γ,b′ ⊢ b′
id

Γ ⊢ b′
Fix

Γ ⊢
∧

j∈J a j ։ b′
Zero

The fragment * of the proof can have two different forms, depending on the setZ:
– if Z = /0, we have thatΓ = p′,b,(

∧
j∈J a j ∧b)։ b′ and

Γ,b′,
∧

j∈J a j ∧b⊢
∧

j∈J a j ∧b
id

∆′3
Γ,b′ ⊢

∧
j∈J a j Γ,b′ ⊢ b

id

Γ,b′ ⊢
∧

j∈J a j ∧b
∧R

Γ,b′ ⊢
∧

j∈J a j ∧b
Fix

Since the inductive hypothesis guarantees thatp/~a⊢ λ(p/~a) holds andλ(p/~a) is a conjunction
where

∧
j∈J a j occurs, by applying the reasoning of the previous case we have a derivation tree

∆′2 for the sequent
(p′,b,(

∧

j∈J

a j ։ b′)) ⊢
∧

j∈J

a j

As done above, by applying Lemma 9.12 we obtain the derivation tree∆′3 for

(Γ′′, p′,b,(
∧

j∈J

a j ∧b)։ b′,b′) ⊢
∧

j∈J

a j

– if Z 6= /0 we obtain:

(∗∗)

Γ,b′,
∧

j∈J a j ∧b⊢
∧

z∈Z cz

(∗∗∗)

Γ,b′,b⊢
∧

j∈J a j Γ,b′,b⊢ b
id

Γ,b′,b⊢
∧

j∈J a j ∧b
∧R

Γ,b′ ⊢
∧

j∈J a j ∧b
Fix

From the induction hypothesis, with the argument used in theprevious cases, we prove the fol-
lowing sequent

(p′,(
∧

z∈Z

cz ։ b),(
∧

j∈J

a j ։ b′)) ⊢
∧

z∈Z

cz

Now, we apply Lemma 9.12 to it, we determine the deduction(∗∗) and a proof for the leftmost
sequent above

(p′,b′,
∧

j∈J

a j ∧b,(
∧

z∈Z

cz ։ b),(
∧

j∈J

a j ∧b։ b′)) ⊢
∧

z∈Z

cz

44 D. BASILE, P. DEGANO, AND G.-L. FERRARI

Just as done above, from the induction hypothesis we prove the sequent

(p′,(
∧

z∈Z

cz ։ b),(
∧

j∈J

a j)։ b′) ⊢
∧

j∈J

a j

from which we obtain the right most sequent above (***), by applying Lemma 9.12

(p′,b′,b,(
∧

z∈Z

cz ։ b),(
∧

j∈J

a j ∧b)։ b′) ⊢
∧

j∈J

a j

• if p= p′∧ (
∧

k∈K ak∧b)∧ (
∧

j∈J a j ∧b։ b′) we have to prove the sequentp⊢ p/~a that reads as

(p′∧ (
∧

k∈K

ak∧b)∧ (
∧

j∈J

a j ∧b։ b′)) ⊢ (p′∧ (
∧

k∈K

ak∧b)∧ (
∧

j∈J

a j ։ b′))

For readability, we first determine the sequentΓ ⊢
∧

j∈J a j ։ b′ where

Γ = p′,(
∧

k∈K

ak∧b),(
∧

j∈J

a j ∧b։ b′) ,

by applying the rule∧R and Lemma 9.12(iii). Then we build the following derivation, where *
is detailed afterwards:

∗

Γ,b′ ⊢
∧

j∈J a j ∧b
Fix

Γ,b′ ⊢ b′
id

Γ ⊢ b′
Fix

Γ ⊢
∧

j∈J a j ։ b′
Zero

The fragment * of the proof can have two different forms, depending on the setK:
– if K = /0, we haveΓ = p′,b,(

∧
j∈J a j ∧b)։ b′ and

Γ,b′,
∧

j∈J a j ∧b⊢
∧

j∈J a j ∧b
id

∆′3
Γ,b′ ⊢

∧
j∈J a j Γ,b′ ⊢ b

id

Γ,b′ ⊢
∧

j∈J a j ∧b
∧R

Γ,b′ ⊢
∧

j∈J a j ∧b
Fix

Since the inductive hypothesis guarantees thatp/~a⊢ λ(p/~a) holds andλ(p/~a) is a conjunction
where

∧
j∈J a j occurs, by applying the reasoning of the previous case we have a derivation tree

∆′2 for the sequent
(p′,b,(

∧

j∈J

a j ։ b′)) ⊢
∧

j∈J

a j

As done above, by applying Lemma 9.12 we obtain the derivation tree∆′3 for

(p′,b,(
∧

j∈J

a j ∧b)։ b′,b′) ⊢
∧

j∈J

a j

– if K 6= /0 we have thatΓ = p′,(
∧

k∈K ak∧b),(
∧

j∈J a j ∧b)։ b′ and

Γ,b′,
∧

j∈J a j ∧b⊢
∧

j∈J a j ∧b
id

∆′3
Γ,b′ ⊢

∧
j∈J a j

Γ,b′,b⊢ b
id

Γ,b′ ⊢ b
∧L2

Γ,b′ ⊢
∧

j∈J a j ∧b
∧R

Γ,b′ ⊢
∧

j∈J a j ∧b
Fix

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 45

Since the inductive hypothesis guarantees thatp/~a⊢ λ(p/~a) holds andλ(p/~a) is a conjunction
where

∧
j∈J a j occurs, by applying the reasoning of the previous case we have a derivation tree

∆′2 for the sequent
(p′,(

∧

k∈K

ak∧b),(
∧

j∈J

a j ։ b′)) ⊢
∧

j∈J

a j

As done above, by applying Lemma 9.12 we obtain the derivation tree∆′3 for

(p′,(
∧

k∈K

ak∧b),(
∧

j∈J

a j ∧b)։ b′,b′) ⊢
∧

j∈J

a j

Theorem 5.9. Let p be a H-PCL formula with no occurrence of standard implications→, then
p⊢ λ(p) if and only ifJpK admits weak agreement.

Proof. (⇒) Straightforward from Theorem 5.6 and fromA⊂W

(⇐) SinceJpK admits weak agreement there exists a tracew∈L (JpK) where each request is
combined with a corresponding offer. For provingp⊢ λ(p) we will prove p⊢ a for all the atomsa
in λ(p) and the thesis follows by repeatedly applying the rule∧R. If a occurs within:

(1)
∧

j∈J a j : it suffices to apply the rules∧L1,∧L2, id;
(2)

∧
j∈J a j ։ a: p⊢ a holds if we prove the sequent

Γ,(
∧

j∈J

a j ։ a) ⊢ a

that is obtained fromp⊢ a by repeatedly applying the rules∧Li, for someΓ containingp and
sub-formulas ofp. The proof of this sequent has the following form:

∗

Γ,(
∧

j∈J a j ։ a),a⊢
∧

j∈J a j Γ,(
∧

j∈J a j ։ a),a⊢ a
id

Γ,(
∧

j∈J a j ։ a) ⊢ a
Fix

We prove the sequent in the left premise, it suffices to establish the sequents
Γ,(

∧
j∈J a j ։ a),a⊢ a j , for all the atomsa j of

∧
j∈J a j . Then, the derivation proceeds by re-

peatedly applying the rule∧R. We are left to proveΓ,(
∧

j∈J a j ։ a),a⊢ a j , which is done
by recursively applying the construction of cases (1) and (2). This procedure will eventually
terminate. Indeed, at each iterationa j is either a conjunct in

∧
k∈K ak (case 1) and the proof is

closed by rule(id), or a j is the conclusion of the contractual implication
∧

k∈K ak ։ a j and the
proof proceeds as in case (2) by applying the rule(Fix). In the last case, the premise in the
left hand-side becomesΓ′,(

∧
k∈K ak ։ a j),a,a j ⊢

∧
k∈K ak, so addinga j in the left part of the

sequent. The number of iterations is therefore bound by the number of atoms inp.
(3)

∧
j∈J a j ։ b wherea 6= b. This case reduces to one of the above two, because if∃ j ∈ J such that

a j = a, thena must also appear in another conjunct
∧

z∈Z az or in another contractual implication∧
z∈Z az ։ a, otherwise all the traces ofJpK would have an unmatched request ona, against the

hypothesis that it admits weak agreement.

9.5. Automata and Intuitionistic Linear Logic with Mix. We recall for completeness the full
grammar ofILLmix.

Definition 9.13. The formulasA,B, . . . of ILLmixare defined as follows:

A ::= a | A⊥ | A⊗A | A⊸ A | A&A | A⊕A |!A | 1 | 0 | ⊤ | ⊥

46 D. BASILE, P. DEGANO, AND G.-L. FERRARI

A⊢ A
Ax

Γ ⊢ Γ′ ⊢ γ

Γ,Γ′ ⊢ γ
Mix

Γ ⊢ A

Γ,A⊥ ⊢
NegL

Γ,A,B⊢ γ

Γ,A⊗B⊢ γ
⊗L

Γ ⊢ A Γ′ ⊢ B

Γ,Γ′ ⊢ A⊗B
⊗R

Γ ⊢ A Γ′,B⊢ γ

Γ,Γ′,A⊸ B⊢ γ
⊸ L

Γ,A⊢ B

Γ ⊢ A⊸ B
⊸ R

Γ ⊢ A Γ′,A⊢ γ

Γ,Γ′ ⊢ γ
Cut

Γ,A⊢

Γ ⊢ A⊥
NegR

Γ ⊢

Γ ⊢ ⊥
⊥R

⊥ ⊢
⊥L

⊢ 1
1R

Γ ⊢ γ

Γ,1⊢ γ
1L

Γ ⊢ ⊤
⊤

Γ,0⊢ A
0L

Γ,A⊢ γ Γ,B⊢ γ

Γ,A⊕B⊢ γ
⊕L

Γ ⊢ A

Γ ⊢ A⊕B
⊕R1

Γ ⊢ B

Γ ⊢ A⊕B
⊕R2

Γ ⊢ A Γ ⊢ B

Γ ⊢ A&B
&R

Γ,A⊢ γ

Γ,A&B⊢ γ
&L1

Γ,B⊢ γ

Γ,A&B⊢ γ
&L2

Γ,A⊢ γ

Γ, !A⊢ γ
!L

!Γ ⊢ A

!Γ ⊢!A
!R

Γ ⊢ γ

Γ, !A⊢ γ
weakL

Γ, !A, !A⊢ γ

Γ, !A⊢ γ
coL

FIGURE 15. The sequent calculus forILLmix

The full sequent calculus forILLmixis displayed in Figure 15. We will only consider proofs
without the ruleCut, which is redundant by [21], Theorem 24.

The following definition and lemmata are auxiliary.

Lemma 9.14. If Γ ⊢ Z is an honoured sequent, there exists a derivation tree forΓ ⊢ Z such that:

• it only uses the rules Ax,Mix,NegL,⊗L,⊗R and⊸ L of Figure 15;
• it is only made of honoured sequents.

Proof. Recall that we are in the Horn fragment and we only consider cut-free proofs. SinceZ is a
positive tensor product (or empty), a simple inspection on the rules in Figure 15 suffices to prove the
first statement. The second statement is proved becauseAx,Mix,NegL,⊗L,⊗R and⊸ L introduce
no sequents with negative literals on their right hand-side.

Lemma 9.15. Let Γ ⊢ Z be an honoured sequent, then:

Γ ⊢ Z impliesJΓK admits agreement on Z.

Proof. We will prove that there exists a tracew ∈ L (JΓK) made of matches and as many offers
as the literals inZ =

⊗
a∈Y a (recall that they all are positive), or it is made by only matches if Z

is empty. Also, note that the sequents in the proof ofΓ ⊢ Z are all honoured, by hypothesis and
Lemma 9.14. We proceed by induction on the depth of the proof of Γ ⊢ Z.

In the base case, the proof consists of a single application of the ruleAx. By Definition 5.13 one
first has an offer transition for eacha in Z, and then interleaves them in any possible order. Hence
the thesis holds trivially.

For the inductive case we proceed by cases on the last rule applied. We assume that all clauses
(i.e. principals) inΓ are divided by commas, which can be easily obtained by repeatedly applying

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 47

the rule⊗L. In the following, leta be offers in correspondence with the literalsa in Z, we will
consider only the relevant rules as stated by Lemma 9.14.

•
Γ ⊢ Γ′ ⊢ Z

Γ,Γ′ ⊢ Z
Mix By induction hypothesis there existsw ∈ L (JΓK) with match actions, only,

andw1 ∈L (JΓ′K) with match actions and offers in correspondence with the literals inZ (if non-
empty). By Definition 2.8, there existsw2 ∈L (JΓK⊠ JΓ′K) in agreement.

•
Γ ⊢ A

Γ,A⊥ ⊢
NegLBy induction hypothesis there existsw ∈L (JΓK) with match actions, and with

offers in correspondence with the literals inA. By Definition 5.13 the traces of the automaton
JA⊥K are all the possible permutations of the requests in correspondence with the literals inA⊥.
The thesis follows, because there is an offer for each request, and by Definition 2.8.

•
Γ,A,B⊢ Z

Γ,A⊗B⊢ Z
⊗L By the induction hypothesis there existsw ∈ L (JΓ,A,BK) =

L (JΓK⊠ JAK⊠ JBK)with offers in correspondence with the literals inZ (if non-empty). No atom
and its negation can occur inA⊗B by Definition 5.11, because it is a principal. HenceJA⊗BK
andJA,BK are the same automaton (with a different rank), and the statement follows immediately.

•
Γ ⊢ A Γ′ ⊢ B

Γ,Γ′ ⊢ A⊗B
⊗R By the induction hypothesis there existw∈L (JΓK) andw′ ∈L (JΓ′K) with

only match actions and offers in correspondence with the literals inA and inB, respectively. Now
Definition 2.8 guarantees that there exists a trace inL (JΓK⊠ JΓ′K) in agreement.

•
Γ ⊢ A Γ′,B⊢ Z

Γ,Γ′,A⊸ B⊢ Z
⊸ L By the induction hypothesis there existsw ∈ L (JΓK) and

w′ ∈L (JΓ′,BK) with only match actions and offers in correspondence with the literals inA and
in Z (if non-empty), respectively. By Definition 5.13 the literals occurring inA become requests
in JA ⊸ BK, in all possible ordering. The tracew contains exactly the needed matching offers.
We conclude by noting that no other request is possible inL (JΓ,Γ′,A⊸ BK).

In order to keep the following definition compact, with a slight abuse of the notation we use⊗ to
operate between formulas; we remove the constraints of Definition 5.11 on the indexing setsI in
formulas andX1,X2 andY in clauses; and we let

⊗
b∈ /0 b⊸

⊗
a∈X2

a to stand for
⊗

a∈X2
a.

Definition 9.16. Given a Horn formulap and an offer or match transition leaving the initial state of
JpK with label~a, then define the formulap/~a as:

p/~a=















































p′⊗
⊗

a1∈X1
a1 if ~a is an offer onc and

p= p′⊗
⊗

a1∈X1∪{c} a1

p′⊗
⊗

a1∈X1
a1⊗

⊗
a2∈X2

a2 if ~a is a match onc and
p= p′⊗

⊗
a1∈X1∪{c} a1⊗⊗

a2∈X2∪{c⊥}a2

p′⊗
⊗

a1∈X1
a1⊗

⊗
b∈Y b⊸

⊗
a2∈X2

a2 if ~a is a match onc and
p= p′⊗

⊗
a1∈X1∪{c} a1⊗⊗

b∈Y∪{c} b⊸
⊗

a2∈X2
a2

48 D. BASILE, P. DEGANO, AND G.-L. FERRARI

We now establish a relation betweenJp/~aK, and the contract automaton obtained by changing
the initial state~q0 of JpK to ~q, for the transition(~q0,~a,~q) of JpK. Without loss of generality we
assume that the automaton obtained from Definition 5.13 is deterministic. If not, we first transform
the non deterministic automaton to a deterministic one.

Lemma 9.17.Given a Horn formula p and the contract automatonJpK= 〈Q, ~q0,Ar ,Ao,T,F〉, if t =
(~q0,~a,~q)∈T is an offer or a match transition, thenL (A)=L (Jp/~aK), whereA = 〈Q,~q,Ar ,Ao,T,F〉.

Proof. The proof is similar to the one of Lemma 9.10. The statement follows by noting that in Def-
inition 5.13 a tensor product is translated in all the possible permutations of actions corresponding
to the literals, and noting that inp/~a we remove exactly the actions fired in~a, that are therefore not
available any more in the state~q.

The following lemma suggests that we can safely substitute amulti-set of Horn formulae and
clausesΓ with a single Horn formula, without affecting the corresponding automaton.

Lemma 9.18. LetΓ be a non-empty multi-set of Horn formulae, then there existsa Horn formula p
such that:

JΓK = JpK

Proof. Immediate from Definition 5.13 (recall that we abuse the notation).

We now prove the following lemma.

Lemma 9.19. Let Γ 6= /0 be a multi-set of Horn formulae and Z be a positive tensor product or
empty. Then

JΓK admits agreement on Z impliesΓ ⊢ Z is an honoured sequent

Proof. By hypothesisw∈L (JΓK) is a trace only composed of match and offer actions onZ. We
proceed by induction on the length ofw. In the base casew has length one. Note that it is not
possible to havew= ε by the hypothesisΓ 6= /0 and Definition 5.11. Moreover by Definition 5.11
it must be thatw = ~a where~a is a match on actiona (a Horn formula must contain at least two
principals). Hence by Definition 5.13 it must be thatZ = /0 andΓ = {α⊗α′} whereα = a and
α′ = a⊥ for some literala. Then we have:

a⊢ a
Ax

a,a⊥ ⊢
Neg

a⊗a⊥ ⊢
⊗L

For the inductive step, letw=~aw2, let ~q0 and~f be the initial and the final states ofJΓK, then
(~aw2, ~q0)→ (w2,~q)→+ (ε, ~f). Let p be a Horn formula such thatJΓK = JpK (Lemma 9.18), so it
suffices to provep ⊢ Z. By the induction hypothesis and Lemma 9.17 we have thatJp/~aK admits
agreement on someZ′ implies p/~a⊢ Z′ is honoured. To buildZ from Z′, we proceed by cases on~a:

• if ~a is an offer action on c we prove thatp⊢ Z whereZ = Z′⊗c. We have the following

∆′

p⊢ (p/~a)⊗c

∆
(p/~a) ⊢ Z′ c⊢ c

Ax

p/~a⊗c⊢ Z′⊗c
⊗R

p⊢ Z
cut

where∆ is obtained by the inductive hypothesis and for∆′ we have two cases depending onp:

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 49

– p= p′⊗
⊗

a1∈X1∪{c}a1 then the derivation
∆′

p⊢ (p/~a)⊗c
becomes

p′⊗c⊢ p′⊗c
Ax

if X1 = /0 and the following otherwise

p′ ⊢ p′
Ax ⊗

a1∈X1
a⊢

⊗
a1∈X1

a
Ax

p′,
⊗

a1∈X1
a⊢ p′⊗

⊗
a1∈X1

a
⊗R

c⊢ c
Ax

p′,
⊗

a1∈X1
a,c⊢ p′⊗

⊗
a1∈X1

a⊗c
⊗R

p′,
⊗

a1∈X1∪{c} a⊢ p′⊗
⊗

a1∈X1
a⊗c

⊗L

p′⊗
⊗

a1∈X1∪{c} a⊢ p′⊗
⊗

a1∈X1
a⊗c

⊗L

• if ~a is a match action we prove thatp⊢ Z. We have the following

∆′

p⊢ p/~a
∆

p/~a⊢ Z′

p⊢ Z′
cut

where∆ is obtained by the inductive hypothesis,Z = Z′ because~a is a match, and for∆′ we have
eight cases depending onp:

– p= p′⊗c⊗c⊥; then the derivation
∆′

p⊢ p/~a
becomes:

∆mix

p′,c⊗c⊥ ⊢ p′
⊗L

p′⊗c⊗c⊥ ⊢ p′
⊗L

Since the deduction tree∆mix will be also used later on, we keep it more general, by writingq
for p′:

∆mix =

c⊢ c
Ax

c,c⊥ ⊢
NegL

q⊢ q
id

q,c,c⊥ ⊢ q
Mix

– p= p′⊗
⊗

a1∈X1∪{c}a1⊗c⊥

then, writing in∆mix p′⊗
⊗

a1∈X1
a1 for q the derivation

∆′

p⊢ p/~a
becomes:

∆mix

p′⊗
⊗

a1∈X1∪{c} a1,c⊥ ⊢ p′⊗
⊗

a1∈X1
a1
⊗L

p′⊗
⊗

a1∈X1∪{c}a1⊗c⊥ ⊢ p′⊗
⊗

a1∈X1
a1
⊗L

– p= p′⊗
⊗

a2∈X2∪{c⊥}a2⊗c

then, writing in∆mix p′⊗
⊗

a2∈X2
a2 for q the derivation

∆′

p⊢ p/~a
becomes:

∆mix

p′⊗
⊗

a2∈X2∪{c⊥}a2,c⊢ p′⊗
⊗

a2∈X2
a2
⊗L

p′⊗
⊗

a2∈X2∪{c⊥}a2⊗c⊢ p′⊗
⊗

a2∈X2
a2
⊗L

– p= p′⊗
⊗

a1∈X1∪{c}a1⊗
⊗

a2∈X2∪{c⊥}a2

50 D. BASILE, P. DEGANO, AND G.-L. FERRARI

then, writing in∆mix p′⊗
⊗

a1∈X1
a1⊗

⊗
a2∈X2

a2 for q the derivation
∆′

p⊢ p/~a
becomes:

∆mix

p′⊗
⊗

a1∈X1∪{c}a1⊗
⊗

a2∈X2
a2,c⊥ ⊢ p′⊗

⊗
a1∈X1

a1⊗
⊗

a2∈X2
a2
⊗L

p′⊗
⊗

a1∈X1∪{c} a1⊗
⊗

a2∈X2∪{c⊥}a2 ⊢ p′⊗
⊗

a1∈X1
a1⊗

⊗
a2∈X2

a2
⊗L

– p= p′⊗c⊗ (c⊸
⊗

a2∈X2
a2)

then the derivation
∆′

p⊢ p/~a
becomes:

∆ax ∆⊸

p′,c,(c⊸
⊗

a2∈X2
a2) ⊢ p′⊗

⊗
a2∈X2

a2
⊗R

p′⊗c⊗ (c⊸
⊗

a2∈X2
a2) ⊢ p′⊗

⊗
a2∈X2

a2
⊗L(x2)

where lettingq= p′

∆ax =
q⊢ q

Ax

and∆⊸ is the following proof:

c⊢ c
Ax ⊗

a2∈X2
a2 ⊢

⊗
a2∈X2

a2
Ax

c,(c⊸
⊗

a2∈X2
a2) ⊢

⊗
a2∈X2

a2
⊸ L

– p= p′⊗
⊗

a1∈X1∪{c}a1⊗ (c⊸
⊗

a2∈X2
a2)

then, letting in∆ax q= p′⊗
⊗

a1∈X1
a1, the derivation

∆′

p⊢ p/~a
becomes:

∆ax ∆⊸

p′⊗
⊗

a1∈X1
a1,c,(c⊸

⊗
a2∈X2

a2) ⊢ p′⊗
⊗

a1∈X1
a1⊗

⊗
a2∈X2

a2
⊗R

p′⊗
⊗

a1∈X1∪{c}a1⊗ (c⊸
⊗

a2∈X2
a2) ⊢ p′⊗

⊗
a1∈X1

a1⊗
⊗

a2∈X2
a2
⊗L — twice

– p= p′⊗
⊗

a1∈X1∪{c}a1⊗ (
⊗

b∈Y∪{c}b⊸
⊗

a2∈X2
a2)

then writingq̂ for p′⊗
⊗

a1∈X1
a1⊗ (

⊗
b∈Y b⊸

⊗
a2∈X2

a2) below, the derivation
∆′

p⊢ p/~a
be-

comes:

∆ax ∆⊸2

p′⊗
⊗

a1∈X1
a1,c,(

⊗
b∈Y∪{c} b⊸

⊗
a2∈X2

a2) ⊢ q̂
⊗R

p′⊗
⊗

a1∈X1∪{c}a1⊗ (
⊗

b∈Y∪{c}b⊸
⊗

a2∈X2
a2) ⊢ q̂

⊗L(x2)

whereq= p′⊗
⊗

a1∈X1
a1 in ∆ax, and∆⊸2 is the deduction tree below:

c⊢ c
Ax ⊗

b∈Y b⊢
⊗

b∈Y b
Ax

c,
⊗

b∈Y b⊢
⊗

b∈Y∪{c}b
⊗R ⊗

a2∈X2
a2 ⊢

⊗
a2∈X2

a2
Ax

c,(
⊗

b∈Y∪{c} b⊸
⊗

a2∈X2
a2),

⊗
b∈Y b⊢

⊗
a2∈X2

a2
⊸ L

c,(
⊗

b∈Y∪{c} b⊸
⊗

a2∈X2
a2) ⊢

⊗
b∈Y b⊸

⊗
a2∈X2

a2
⊸ R

AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRACTS 51

– p= p′⊗c⊗ (
⊗

b∈Y∪{c}b⊸
⊗

a2∈X2
a2)

then, lettingq= p′ in ∆ax, the derivation
∆′

p⊢ p/~a
becomes:

∆ax ∆⊸2

p′,c⊗ (
⊗

b∈Y∪{c}b⊸
⊗

a2∈X2
a2) ⊢ p′⊗ (

⊗
b∈Y b⊸

⊗
a2∈X2

a2)
⊗R

p′⊗c⊗ (
⊗

b∈Y∪{c}b⊸
⊗

a2∈X2
a2) ⊢ p′⊗ (

⊗
b∈Y b⊸

⊗
a2∈X2

a2)
⊗L

The main theorem of this sub-section has now an immediate proof.

Theorem 5.15.Given a multi-set of Horn formulaeΓ, we have that

Γ ⊢ Z is an honoured sequent if and only ifJΓK admits agreement on Z

Proof. By Lemmata 9.15 and 9.19.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2, 10777
Berlin, Germany

	1. Introduction
	Plan of the paper.

	2. The Model
	3. Enforcing Agreement
	4. Weak Agreement
	5. Automata and Logics for Contracts
	5.1. Propositional Contract Logic
	5.2. Intuitional Linear Logic with Mix

	6. An example
	7. Related Work
	Behavioural contracts
	Session types and choreographies
	-calculus, logics, event-structures

	8. Concluding Remarks
	Acknowledgements
	References
	9. Appendix
	9.1. The Model
	9.2. Agreement
	9.3. Weak Agreement
	9.4. Automata and Horn Propositional Contract Logic
	9.5. Automata and Intuitionistic Linear Logic with Mix

