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ABSTRACT. An approach to the formal description of service contragtpresented in terms of
automata. We focus on the basic property of guaranteeirtgrtithe multi-party composition of
principals each of them gets his requests satisfied, sohbatverall composition reaches its goal.
Depending on whether requests are satisfied synchronougigyachronously, we construct an or-
chestrator that at static time either yields composed sesvenjoying the required properties or de-
tects the principals responsible for possible violaticfsdo that in the asynchronous case we resort
to Linear Programming techniques. We also relate our automih two logically based methods
for specifying contracts.

1. INTRODUCTION

Modern software applications are nstand-aloneentities and are embedded in a dynamic dis-
tributed environment where new functionalities are addedeteted in a relatively short period of
time. Service Oriented Computiffd4] is a paradigm for designing distributed applicatiortseve
applications are built by combining sevefale-grainedand loosely-coupleddistributed compo-
nents, calledservices Services can be combined to accomplish a certain compogtiask or to
form a more complex service. A service exposes both theifumatities it provides and the param-
eters it requires. Clients exploit service public inforioatto discover and bind the services that
better fit their requirements.

Service coordination is a fundamental mechanism of theé®eariented approach because it
dictates how the involved services are compositionallemméded together. Service coordination
policies differ on the interaction supports that are addptepass information among services. At
design time, a main task of software engineers is therefoexpress the assumptions that shape
these policies and that will drive the construction of a ectrservice coordinationOrchestration
andchoreographyare the standard solutions to coordinate distributed eesviln an orchestrated
approach, services coordinate with each other by intei@atith a distinguished service, thue-
chestrator which at run-time regulates how the computation evolves ¢horeographed approach,
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the distributed services autonomously execute and irtterilic each other without a central coor-
dinator. Here, we concentrate on orchestration, whereagje&ed some aspects of our proposal
within the choreographed approach(inl[20], 16].

We argue that the design of correct service coordinatiorctipslis naturally supported by re-
lying on the notion ofservice contractwhich specifies what a service is going to guarantee and
offer (hereafter amffer) and what in turn it expects and requires (hereaftexcmes). The coordi-
nation policy has therefore to define the duties and respttitiss for each of the different services
involved in the coordination through treerall contract agreementObviously, this arrangement
is based on the contracts of the involved services, and ensibat all requests are properly served
when all the duties are properly kept. The coordinator thrgarises the service coordination pol-
icy and proposes the resulting overall contract agreenceall the parties. This process is called
contract compaosition

The main contribution of this paper is twofold. First, we pose a rigorous formal technique
for describing and composing contracts, suitable to bemaated. Second, we develop techniques
capable of determining when a contract composition is cbrad leads to the design of a correct
service orchestration. More in detail, we introduce an mata-based model for contracts called
contract automatathat are a special kind of finite state automata, endowell twid operations
for composing them. A contract automaton may represent glesgervice or a composition of
several services, hereafter callgihcipals The traces accepted by a contract automaton show the
possible interactions among the principals, by recordihichvoffers and requests are performed,
and by which principals in the composition. This provides llasis to define criteria that guarantee
a composed service to well behave with respect to the ovaralice contract.

We equip our model with formal notions in language-theorégrms aiming at characterising
when contracts are honoured within a service compositioa fisst consider properties of a single
trace. We say that a trace isdgreementvhen all the requests made are synchronously matched,
i.e. satisfied by corresponding offers. The second propedgk agreements more liberal, in that
requests can be asynchronously matched, and an offer catiberedd even before a corresponding
request, and vice-versa. Then we say that a contract audansdafe(weakly saferespectively)
whenall its traces are in agreement (weak agreement, respectively)

The notions of safety presented above may appear too stroet tey require that all the words
belonging to the language recognised by a contract autonmatsst satisfy agreement or weak
agreement. We thus introduce a more flexible notion thatad@rses when a service composition
may be successful, i.e. at least one among all the poss#uedenjoys one of the properties above.
We say that a contract automatadmits(weak) agreement when such a trace exists.

When a contract automaton admits (weak) agreement, buntigweakly) safe, we define
those principals in a contract that are (weakligple, i.e. those responsible for leading a contract
composition into a failure. Note that the orchestration ofitcacts imposes further constraints
on each principal: some of the interactions dictated byatsise contract may break the overall
composition and thus the orchestrator will ban them.

For checking when a contract automaton enjoys the propeskietched above, we propose two
formal verification techniques that have been also impleemblei]H The first one amounts to build
the so-called controllers in Control Theoty [26]. We showattbontrollers are powerful enough to
synthesise a correct orchestrator enforcing agreementoadetect the liable principals. In order
to check weak agreement and detect weak liability we resotiiriear Programming techniques
borrowed from Operational Research [[34], namely optinosaof network flows. The intuitive
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idea is that service coordination is rendered as an optimalifinerary of offers and requests in a
network, automatically constructed from the contract mnattwn.

Finally, we establish correspondence results betweenkjvagaeement and provability of for-
mulae in two fragments of different intuitionistic logidbat have been used for modelling contracts.
The first one, Propositional Contract Lodic [14], has a sgdeminnective to deal with circularity be-
tween offers and requests, arising when a principal regusaya, before offeringb to another
principal who in turn first requirels and then offerg; note that weak agreement holds for this kind
of circularity. The second fragment, Intuitionist Lineavdic with Mix [21] is a linear logic capable
of modelling the exchange of resources with the possihilftyecording debts, that arise when the
request of a principal is satisfied and not yet paid back.

Plan of the paper. In Sectiorf 2 we introduce contract automata and two operatiocomposition.
Section B discusses the properties of agreement and sdfie¢ytechniques for checking and en-
forcing them are also presented here, along with the nofidialmlity. Weak agreement and weak
liability are defined in Sectionl 4, along with a technique lieck them. In Sectidn 5 we present cor-
respondence results with fragments of Propositional @ohtrogic and Intuitionistic Linear Logic
with Mix. A case study is proposed in Sectidn 6. Finally, tethwork is in Sectiofi]7 and the con-
cluding remarks are in Sectign 8. All the proofs of our resudtind a few auxiliary definitions can
be found in the appendix. Portions of Sectibhs|2, 3,[dnd 4appen a preliminary form iri [18].

2. THE MODEL

This section formally introduces the notion of contractomuéta, that are finite state automata with a
partitioned alphabet. A contract automaton representbehaviour of a set of principals (possibly
a singleton) capable of performing sometions more precisely, the actions of contract automata
allow them to “make” requests, “advertise” offers or “matgi a pair of “complementary” re-
guest/offer. The number of principals in a contract autamas calledrank, and we use a vectorial
representation to record the action performed by eachipehm a transition of a contract automa-
ton, as well as its state as the vector of the states of itsipafs.

LetZ = RUOU{o} be the alphabet dfasic actionsmade ofrequestsR = {a,b,c,...} and
offersQ = {a,b,T,...} whereRNO = 0, ando ¢ RUQ is a distinguished element representing the
idle move. We define the involutiooo(e) : X — X such thato(R) = O, co(Q) =R, co(o) = o.

LetV= (&,...,an) be a vector ofank n> 1, in symbolsy, and letv;;) denote the i-th element
with 1 <i <r,. We writeV,V,.. .V, for the concatenation of vectorsv;, while |V| = nis the rank
(length) ofv andV" is the vector obtained by concatenations of.

The alphabet of a contract automaton consists of vectord) elgment of which intuitively
records the activity, i.e. the occurrence of a basic actfom single principal in the contract. In a
vectorvthere is either a single offer or a single request, or a sipaieof request-offer that matches,
i.e. there exists exactly j such tha; is an offer andy; is the complementary request or vice-
versa; all the other elements of the vector contain the symbmeaning that the corresponding
principals stay idle. In the following let™ denote a vector of rank, all elements of which are.
Formally:

Definition 2.1 (Actions). Given a vectog € 2", if

e d=o™Man™,ng,ny > 0, thend is arequest (action) om if a € R, and is aroffer (action) ona if
aeO

e d=npMan™co(a)n™,n, Ny, Nz > 0, thend is amatch (action) orx, wherea € RUQ.
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Two actionsd andb are complementaryin symbolsd < b if and only if the following con-
ditions hold: (i)Joa € RUQ : & s either a request or an offer an (ii) dis an offer oo —-
bis a request oeo(a) and (iii) dis a request ot = b is an offer onco(a).

We now extract from an action the request or offer made byrcipal, and the matching of
a request and an offer, and then we lift this procedure to aese of actions, i.e. to a trace of a
contract automaton that intuitively corresponds to an etie of a service composition.

Definition 2.2 (Observable) Letw = &; ... &, be a sequence of actions, andddte the empty one,
then itsobservablés given by the partial functio®@bgw) € (RUOU {1})* where:
Obge) =¢
_ J @;Obgw) if dis an offer/request and;, # o
Obgaw) = { 1Obsw))  if disamatch

We now define contract automata, the actions and the statehicli are actually vectors of
basic actions and of states of principals, respectively.

Definition 2.3 (Contract Automata)Assume as given a finite set of stat@s= {q1,0,...}. Then
acontract automator, CA for short, of rankn is a tuple(Q, go, A", A°, T,F), where
e Q=0Q1x...xQrCc Q"
0o € Qs the initial state
A" CR,A° C O are finite sets (of requests and offers, respectively)
F C Qis the set of final states
e T CQxAxQis the set of transitions, whefeC (A" UA°U {o})" and if
(4,4, c_i’) € T then both the following conditions hold:
— dis either a request or an offer or a match
- Viel...n. if &; = o then it must bei; = df ;
A principal contract automaton (or simppyrincipal) has rank 1 and it is such thAt N co(A%) = 0.
A step(w,d) — (W, ) occurs if and only ifv = aw,w € A* and(d,d, /) € T.
The language ofl is .Z(A4) = {w | (W, ) —* (€,d),d € F} where—* is the reflexive, transitive
closure of the transition relation.

Note that for principals we have the restrictidhn co(A°) = 0. Indeed, a principal who offers
what he requires makes little sense.

Example 2.4. Figure[1 shows three contract automata. The automdtiomay be understood as
producing a certain number of resources through one or nfessoes and it terminates with the
request of receiving a signsig. The contract, starts by sending the sigrsifjand then it collects
the resources produced Bl . The contractds represents the contract automaton wh@rend 4,
interact as discussed below. Both and 4, have rank 1 whileds has rank 2.

Contract automata can be composed, by making the cartesidagt of their states and of the
labels of the joined transitions, with the additional pb#iy of labels recording matching request-
offer. This is the case for the actigsig, sig) of the contract automatads in Figure[1.

Below, we introduce two different operators for composiogtcact automata. Both products
interleave all the transitions of their operands. We onhgdaa synchronisation to happen when two
contract automata are ready on their respective requiestaaftion. These operators represent two
different policies of orchestration. The first operator adled simplyproductand it considers the
case when a servicgjoins a group of services already clustered as a single sneted servics.

In the product ofSandS, the first can only accept the still available offers (regsieespectively)
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res res
sig Sig start—>
start—> start—>

FIGURE 1. Three contract automata: from lel{, 4,, and 43 (composition 0f4; and 4,)

of S and vice-versa. In other wordS,cannot interact with the principals of the orchestrat®n
but only with it as a whole component. This is obtained in D#éin 2.5 through the relation
(see Definitior_ ZJ1), which is only defined for actions that aot matches. This is not the case
with the second operation of composition, caleegroduct it puts instead all the principals &at
the same level of those &. Any matching request-offer of either contracts can be,splid the
offers and requests, that become available again, can d@mbined with complementary actions
of S and vice-versa. The a-product turns out to satisfactanibglel coordination policies in dynam-
ically changing environments, because the a-product stgopdorm ofdynamic orchestratigrthat
adjusts the workflow of messages when new principals joirctiméract.

We now introduce our first operation of composition; rechdttwe implicitly assume the al-
phabet of a contract automaton of ramkto be A C (A" UA°U{o})™. Note that the first case of
the definition ofT below is for the matching of actions of two component aut@nahile the other
considers the action of a single component.

Definition 2.5 (Product) Let 4 = (Q;,do;, A, AP, Ti,F),i € 1...n be contract automata of ramk
Theproduct®;., 4 is the contract automatal®, go, A", A°, T,F) of rankm= Y. ,ri, where:

e Q=0Q1x...xQpn, wheredp=0o;---Ton
¢ A =Uicr.nA, A°=Uicr.nA .
e F={th...00|h...0 € Q.G cR,icl...n}
e T isthe least subset @ x Ax Qs.t. (§,¢,d) € T iff, wheng=1d;...G, € Q,
— either there are £i < j <ns.t.(4,&,d) € T, (d,d;,d)) € T}, & =& and
C=pn"gn'djp*withu=ri+...+r_1, V=rizi+...+rj_1,|c(=m
and
d=0...0-1 0 G- dj-1 dj Gj+1---Ch
— orthereis I<i < ns.t.(G;,&,d) € Ti and
C=pYao'withu=ri+...+r_3,v=riz1+...+rn and
d =0...G1 G1...Goand
Vi#i,1< )< n,(qj,éj,q’j) € T; it does not hold thad < &;.

There is a simple way of retrieving the principals involvedai composition of contract automata
obtained through the product introduced above: just infcedprojectiond]' as done below. For
example, for the contract automata in Figre 1, we have- [1}(43) and 4, = 1%(4s).

Definition 2.6 (Projection) Let 4 = (Q,dp,A",A°, T,F) be a contract automaton of ramk then

the projectionon the i-th principal i7" (4) = ([1'(Q), dogy. [ (A"). [1'(A°), [1'(T).[1'(F)) where
iel...nand:

N'(Q) ={dy|deQ} N'(F)={dyldeF} N'A)={alacA (g.aq)ec(T)}
M'(T) = {(@). 8. d) | (@ad) eTAdy #or (A ={alacA’(q,aq) < (T)}
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on tT/ on
start —> start —> start —>

oo
‘U to) 0,t0) tD 0
Q1Q2Q3 yoS qlqﬂzqﬂs > y qquth Ll

FIGURE 2. From left to right and top-down: the principal contractamata of Bill,
Mary and John, the contract autom@gill ® Mary) ® John Bill ® (Mary® John)
andBill XX MaryX John

The following proposition states that decomposition isithverse of product, and its proof is
immediate.

Proposition 2.7 (Product Decomposition)Let 4;,..., 4, be a set of principal contract automata,
then[1'(®je1.n4)) = 4.

Our second operation of composition first extracts from fierands the principals they are
composed of, and then reassembles them.

Definition 2.8 (a-Product) Let A4;, 4, be two contract automata of ramkand m, respectively,
and letl = {'(41) |0<i <n}U{M'(A) | 0< j < m}. Then thea-productof 4; and 4, is
ﬂl®ﬂ2:®ﬂielﬂi-

Note that if4, .4’ are principal contract automata, thé@mw 2’ = 42X .4". From now onwards we
assume that every contract automatoof rankr; > 1 is composed by principal contract automata
using the operations of product and a-product. E.g. in Eiglyrwe have thatl3 = 4, ® 4 =
A1 X 4,. Finally, both compositions are commutative, up to the etgek rearrangement of the
vectors of actions, andl is also associative, whil@ is not, as shown by the following example.

Example 2.9. In Figure[2 Mary (the automaton in the central position) ffe toy that both Bill (at
left) and John (at right) request. In the prod(8tll ® Mary) ® Johnthe toy is assigned to Bill who
first enters into the composition with Mary, no matter if Jgiarforms the same move. Instead, in
the producBill ® (Mary® John) the toy is assigned to John. In the last row we have the a-ptodu
of the three automata that represents a dynamic re-orektiestrno matter of who is first composed
with Mary, the toy will be non-deterministically assignexddither principal.

Proposition 2.10. The following properties hold:
—34, 25, A3. (A1 @ A) @ Az # A1 R (A2 @ A3)
VA1, 2, 43. (A1 KR A) K A3 = A1 K (A K 23)

3. ENFORCING AGREEMENT

It is common to say that some contracts are in agreement whibie aequests they make have been
fulfilled by corresponding offers [27, 28, 24,137/ 2| 3] 41,/@312]. In terms of contract automata,
this is rendered in two different ways, the first of which isramluced below and resembles the
notion of compliance introduced in_[2[7,128]. We say that twarmre contract automata are in
agreementvhen the final states of their product are reachable fromrittiali state by traces only
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made of matches and offer actions. Our goal is to enforce ehaviour of principals so that they
only follow the traces of the automaton which lead to agregm@additionally, it is easy to track
every action performed by each principal, because we udergeaf actions as the elements of the
alphabet of contract automata. It is equally easy finding sH@ble in a bad interaction, i.e. the
principals who perform a transition leaving a state fromahhagreement is possible, reaching a
state where instead agreement is no longer possible.

We now introduce the notion @fgreements a property of the language recognised by a con-
tract automaton.

Definition 3.1 (Agreement) A trace accepted by a contract automaton iagreemenitf it belongs
to the set
A={we (Z")* | Obgw) € (OU{1})*,n> 1}

Note that, if an action observable \nis a request, i.e. it belongs B®, thenw is not in agreement.
Intuitively, a trace is in agreement if it only contains ofésnd match actions, i.e. if no requests are
left unsatisfied.

Example 3.2. The automatord; in Figure[l has a trace in agreeme@bsg (Tes o) (sig, sig)) =
rest € 2, and one not in agreemerfbg (sig, sig) (o, res)) = Tres¢ 2.

A contract automaton is safe when all the traces of its lagguae in agreement, and admits
agreement when at least one of its traces is in agreememhalfigr

Definition 3.3 (Safety) A contract automatort is safeif £ (4) C 2, otherwise it isunsafe
Additionally, if #(4)N2A # 0 then4 admits agreement

Example 3.4. The contract automator; of Figure[1 is unsafe, but it admits agreement since
Z(43)N2A = (Tes o)*(sig,sig). Consider now the contract automd&dl andMary in Figure[2;
their productBill ® Mary is safe becaus¢’ (Bill ® Mary) = (toy,foy) C 2.

Note that the se2l can be seen as a safety property in the default-accept abp[4&], where
the set of bad prefixes & contains those traces ending with a trailing request, {wa | w €
2(,0bgd) € R}. One could then consider a definition of product that disalthe occurrence of
transitions labelled by requests only. However, this ob@iould not prevent a product of contracts
to reach a deadlock. In addition, compositionality woulsihbeen compromised, as shown in the
following example.

Example 3.5. In what follows, we feel free to present contract automataitgh a sort of extended
regular expressions. Consider a simple selling scenar@vimg two partiesAnnandBart.

Bart starts by notifying Ann that he is ready to start the tiegjon, and waits from Ann to
select a pen or a book. In case Ann selects the pen, he mayedecidithdraw and restart the
negotiation again, or to accept the payment. As soon as Alectsehe book, then Bart cannot
withdraw any longer, and waits for the payment. The conté&art is:

Bart = (init.pencancel)*.(init.book pay+ init . pen pay)

The contract of Ann is dual to Bart's. Ann waits to receive #ffeation from Bart when ready to
negotiate. Then Ann decides what to buy. If she chooses thespe may proceed with the payment
unless a withdrawal from Bart is received. In this case, Aam iepeatedly try to get the pen, until
she succeeds and pays for it, or buys the book but omits ta ffa@plating the contracAnng Bart
resulting from the orchestration, see below).

The contract oAnnis:

Ann= (init.pencance)”.(init.penpay- init.book)
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The contract? = Ann® Bart is in Figure B top. Assume now to change the produisp to disallow
transitions labelled by requests. The compositioAhandBart is in Figure 3, bottom right part,
and contains the malformed trace in whighrt does not reach a final state:

(init,init ) (book book)

In addition, if a third principaCarol = paywere involved, willing to pay for everybody, the follow-
ing trace in agreement would not be accepted

(init, init, o) (book book o) (o, pay, pay)
because Bart’s request was discarded by the wrongly ameruaeplosition operator. So, composi-
tionality would be lost.

To avoid the two unpleasant situations of deadlock and ladompositionality, we introduce
below a technique for driving a safe composition of congaictthe style of the Supervisory Control
for Discrete Event Systemss [26].

A discrete event system is a finite state automaton, wéereptingstates represent the success-
ful termination of a task, whiléorbiddenstates should never be traversed in “good” computations.
Generally, the purpose of supervisory control theory is/tttsesise a controller that enforces good
computations. To do so, this theory distinguishes betvoemtrollable events (those the controller
can disable) andncontrollableevents (those always enabled), besides partitioning gwetatob-
servableand unobservablgobviously uncontrollable). If all events are observaliiert a most
permissive controller exists that never blocks a good cdatjmn [26].

The purpose of contracts is to declare all the activities pfimacipal in terms of requests and
offers. Therefore all the actions of a (composed) contrextantrollable and observable. Clearly,
the behaviours that we want to enforce upon a given conttdotreaton4 are exactly the traces in
agreement, and so we assume that a request leads to a forkidtie A most permissive controller
exists for contract automata and is defined below.

Definition 3.6 (Controller) Let 4 and K be contract automata, we calf controller of 4 if and
only if £(X) CAN.ZL(A4).

A controller K of 4 is themost permissive controller (mpit)and only if for all K’ controller of.4
itis Z(K') C Z(X).

Since the most permissive controller eliminates the traoks agreement, the following holds.
Proposition 3.7. Let X be the mpc of the contract automaté@nthen.Z?(X) =2AN.£(4).

In order to effectively build the most permissive contrglie introduce below the notion of
hanged state, i.e. a state from which no final state can baedac

Definition 3.8 (Hanged state)Let 4 = (Q, o, A", A%, T,F) be a contract automaton, thgre Q is
hanged and belongs to the setanged 2), if for all ds € F,2w.(w,d) —* (€,qs).

Definition 3.9 (Mpc construction) Let 4 = (Q,qo,A",A°, T,F) be a contract automaton,
K1 = (Q,q,A",A°, T\ ({t e T |tis arequest transitioh, F) and define

Kz = (Q\ Hanged %1), do, A", A%, Ta \ {(d,a, ) | {0, o/ } "Hanged 1) # 0}, F)

Proposition 3.10(Mpc). The controller K of Definition[3.9 is the most permissive controller of
the contract automator.
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(init, init (book bool
start—>( Gox: foz l@ k)@ @

(cancel cancel)

|n|t |n|t
start—) %1 Yoz
(pen p

(cancel cance))

(pay, pay)

Ga1, Gaz

FIGURE 3. The contract automata of Examplel3.5: top the contracinaation.q;
bottom left its most permissive controllé(z, bottom right an automaton obtained
with an inaccurate filtering composition.

Example 3.11. Consider again Example_3.5. For obtaining the most permaéisgintroller we first
compute the auxiliary sefk; that does not contain the transitigtayy,d2,), (o, pay), (dz1,032))
because it represents a request from Bart which is not &dfily Ann. As a consequence, some
states are hanged:

Hanged K1) = {(021,%22) }
By removing them, we eventually obtaikiz, the most permissive controller ¢f depicted in Fig-
ure[3, bottom left part.

The following proposition rephrases the notions of safesafm and admits agreement on au-
tomata in terms of their most permissive controllers.

Proposition 3.12. Let 4 be a contract automaton and 1€{; be its mpc, the following hold:

o if £(Kq) =-2(A)thenA is safe, otherwise i’ (KXz) C £ (A4) then4 is unsafe;
o if £(%K3q) # 0, then4 admits agreement.

We introduce now an original notion tfibility, that characterises those principals potentially
responsible of the divergence from the behaviour in agreeénide liable principals are those who
perform the first transition in a run, that is not possiblehi@ inost permissive controller. As noticed
above, after this step is done, a successful state cannetibked any longer, and so the principals
who performed it will be blamed. Note in passing that hangatks play a crucial role here: just
removing the request transitions fraghwould result in a contract automaton language equivalent
to the mpc, but detecting liable principals would be muchemotricate.

Definition 3.13(Liability). Let 4 be a contract automaton arig; be its mpc of Definitio 3]9; let
(vaw, o) —* (dw;d) be a run of both automata and &be such thataw,g) — (w, a’) is possible in
4 but not in X4. The principald1'(4) such tha#;) # o,i € 1...r 4 areliable for @ and belong to
Liable(4,vaw). Then, the set diable principals in4 is Liable(2) = {i | 3w.i € Liable(2,w)}.

Example 3.14. In Figurel3, bottom left, we haveiable(2) = {1,2}, hence both Ann and Bart are
possibly liable, because the match transition with Igbebk book) can be performed, that leads to
a violation of the agreement.

The following proposition is immediate.
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(o.toy) (o,toy)

FIGURE 4. The contract automatdsill ® Johnof Exampld_3.16

Proposition 3.15. A contract automatord is safe if and only if Liableq) = 0.
Note that the sdtiable(2) can be rewritten as follows

{I ‘ (q7§7q/) € Tﬂaa(i) 7& Daq € Qy@q?q/ g Qf’(ﬂ}
so making its calculation straightforward, as well as clregkhe safety of4.
Some properties ab andX follow, that enable us to predict under which conditions mpo-
sition is safe without actually computing it.
We first introduce the notions of collaborative and comjpwetitontracts. Intuitively, two con-
tracts arecollaborativeif some requests of one meet the offers of the other, and@arpetitivef
both can satisfy the same request. An example follows.

Example 3.16.Consider the contract automddl , Mary, Johnin Figure[2. In Figur€} the contract
automatorBill ® Johnis displayed. The two contract automateary and Bill ® Johnare collab-
orative and not competitive, indeed the offey of Mary is matched irBill ® John and no other
principals interfere with this offer. Moreover, |@; = apple+ cakex apple+ cakeand 4, = apple
The pair4;, 4, is competitive sinced, interferes with4; on theappleoffer.

Definition 3.17 (Competitive, Collaborative)The pair of CA4; = (Q1,0o1, A7, AL, T1,F1) and
.52[2 = <Q2,q02,A5,A8,T2, F2> are

o competitivaf AJNASN co(A]UAS) # 0

e collaborativeif (AN co(A,)) U (co(A}) NAY) # 0.

Note thatcompetitiveand collaborativeare not mutually exclusive, as stated in the first and
second item of Theorem 3J18 below. Moreover if two contratbmata arenon-competitivehen
all their match actions are preserved in their compositiotieed we haved; X 2, = 41 ® 4.

The next theorem says that the composition of safe and nmpetitive contracts prevents all
principals from harmful interactions, unlike the case dessompetitive contracts. In other words,
when 4; and 4, are safe, no principals will be found liable iy ® 4, (i.e. Liable(4; ® 4,) = 0),
and the same happens f@f X 2, if the two are also non-competitive (i.eiable(4; X 4,) = 0).

Theorem 3.18. If two contract automated; and 4, are

(1) competitive then they are collaborative,

(2) collaborative and safe, then they are competitive,

(3) safe then?; ® 4, is safe 4, X 4, admits agreement,

(4) non-collaborative, and one or both unsafe, thenx 4,, 4; X 4, are unsafe,
(5) safe and non-competitive, thefy X 4, is safe.

Note that in itemi B of Theorem 3.118 it can be tttX 4, is notsafe Moreover consider the
contract automata?; and 4, of Exampld 3.16. We have that; X 4, is unsafe because the trace
(o,appleapple)(cake o, o) belongs taZ (41 X 4y).
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4., WEAK AGREEMENT

As said in the introduction, we will now consider a more lddarotion of agreement, where an offer
can be asynchronously fulfilled by a matching request, dvemgh either of them occur beforehand.
In other words, some actions can be taken on credit, assuimang the future the obligations will
be honoured. According to this notion, called hareak agreementomputations well behave
when all the requests are matched by offers, in spite of laslgrchronous agreement, in the sense
of Section[B. This may lead to a circularity, as shown by thangxe below, because, e.g. one
principal first requires something from the other and thesiing to fulfil the request of the other
principal, who in turn behaves in the same way. This is a comsgenario in contract composition,
and variants of weak agreement have been studied using niffereit formal techniques, among
which Process Algebras, Petri Nets, non-classical Logiesnt Structures [13]3] 5, 12].

Example 4.1. Suppose Alice and Bob want to share a bike and an airplaneditier trusts the
other. Before providing their offers they first ask for themqementary requests. As regular ex-
pressionsAlice = bikeairplane andBob= airplanebike. The language of their composition is:

Z(Alice® Bob) = { (o, airplane) (bike bike) (airplane, o), (bike o) (airplane, airplane) (o, bike) } .

In both possible traces the contracts fail in exchangindike or the airplane synchronously, hence
Z(Alice® Bob) N2 = 0 and the composition does not admit agreement.

The circularity in the requests/offers is solved by weakgrhe notion of agreement, allowing
a request to be performed on credit and making sure that ifuthee a complementary offer will
occur, giving rise to a trace in weak agreement. We now fdgnuigfine weak agreement.

Definition 4.2 (Weak Agreement)A trace accepted by a contract automaton of rapkl is inweak
agreemenitf it belongs to20 = {w e (Z")* |w=4&; ...8my,3 a function f : [1..m] — [1..m] total and
injective on the (indexes of the) request actionsvpénd such thaf (i) = j only if & > &;}.

Needless to say, a trace in agreement is also in weak agreesnéhis a proper subset &fJ,
as shown below.

Example 4.3. Consider4s in Figure[1, whose tracfes o)(sig, sig) (o, res) is in 20 but not in2A
(all f such thatf (3) = 1 certify the membership) , whilges o) (sig, sig) (o, res) (o, res) € 2.

Definition 4.4 (Weak Safety) Let 4 be a contract automaton. Then

e if £(A4) C 2 then4 is weakly safeotherwise isveakly unsafe
o if £(A4)N2W +# 0thenAa admits weak agreement

Example 4.5. In Exampld 4.1l we haveZ’ (Alice® Bob) C 20, hence the composition dflice and
Bobis weakly safe. Indeed everfysuch thatf (1) = 3 certifies the membership for both traces.

The following theorem states the conditions under whichlnagreement is preserved by our
operations of contract composition.

Theorem 4.6. Let 41, 4, be two contract automata, thenf,, 4, are

(1) weakly safe ther?; ® 4, is weakly safed; X 4, admits weak agreement
(2) non-collaborative and one or both unsafe, theénz 4,, 4, X 4, are weakly unsafe
(3) safe and non-competitive, thefi X 4, is weakly safe.

The example below shows that weak agreement is not a cdiiéexiiotion, in language theoret-
ical sense; rather we will prove it context-sensitive. Efiere, we cannot define a most permissive
controller for weak agreement in terms of contract autontzaause they are finite state automata.
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(@0)/(b,0) (5:8)/(0,b)

a/b a/b
sig sig (sig, Sig)
start—s> @ stan_, start—>

FIGURE 5. From left to right the contract automata of Exaniplé 447,45, and.4; ® 2.

Example 4.7. Let 44, 45 and 44 ® 45 be the contract automata in Figure 5, then we have that
L=2N.Z(A4® As) # 0 is not context-free. Consider the following regular langgia

L'={(8,0)"(b,0)"(sig sig) (0, 8)" (o, b) "}
We have that
LNL = {(a o)™ (b,0)™(sig,sig)(o,a)™(a,0)™ | ng > ny > 0,my > mp > 0}
is not context-free (by pumping lemma), and sihéés regular,L is not context-free.

Theorem 4.8. 27 is a context-sensitive language, but not context-free.dWecision can be done
in O(n?) time and Qn) space.

In general, it is undecidable checking whether a regulaguageL is included in a context-
sensitive one, as well as checking emptiness of the intioseaf a regular language with a context-
sensitive one. However in our case these two problems ardadde: we will introduce an effective
procedure to check whether a contract automatasmweakly safe, or whether it admits weak agree-
ment. The technique we propose amounts to find optimal solsitio network flow problems [34],
and will be used also for detecting weak liability.

As an additional comment, note that the membership probdgooliynomial in time for mildly
context-sensitive languages [35], but it is PSPACE-cotepler arbitrary ones. In the first case,
checking membership can be done in polynomial time throwghway deterministic pushdown
automata[33], that have a read-only input tape readable backwarddawards. It turns out that
25 is mildly context-sensitive, and checking whetliee 21 can be intuitively done by repeating
what follows for all the actions occurring im. Select an action; scroll the input; and push all the
requests om on the stack; scroll again the input and pop a request, if\ahgn a corresponding
offer is found. If at the end the stack is empty the trads in 2.

Before presenting our decision procedure we fix some usefigdtion. Assume as given a
contract automatord, with a single final stat€; = Gp. If this is not the case, one simply adds
artificial dummy transitions from all the original final statto the new single final state. Clearly, if
the modified contract automaton admits weak agreementttasariginal one does — and the two
will have the same liable principals. We assume that alestatre reachable fromy and so isjs
from each of them. In addition, we enumerate the requess bé. A" = {a |ic |, = {1,2,...,1}},
as well as its transition§ = {ty,...,ty}. Also, letFS(d) = {(4,d,d) | (4,&8,d) € T} be theforward
star of a stateq, and letBS(d) = {(d/,&,d) | (¢,&,d) € T} be itsbackward star For each transition
t; we introduce thédlow variables x € IN, andzfi1 € R whereg € Q,q # Jo.

We are ready to define the dgf; of flow constraintsan element of whicl = Xy, - %) €

F¢q defines traces from the source state the target statd. The intuition is that each variablg
represents how many times the transitiois traversed in the traces definedsbyHereafter, we will

abbreviateFy, 4, asFx, and we identify a transition through its source and targses.
An example follows.
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FIGURE 6. Top left: the product of two contract automata of Exampe$
and[4.11; top right the booking service of Exaniplg 4.9; bottthe principal con-
tract automaton whose flow constraints generate many frasediscussed at the
end of Examplé 419.

Example 4.9. Figure[6 (top right) shows a simple service of booking, whithe composition of
a client and a hotel contracts.

The contract of the client requires to book a roa {ncluding breakfastk) and a transport
service, by card) or taxi (t); finally it sends a signal of terminatio®)( The contract of the client is
then:

C=rb(c+t)e
The hotel offers a room, breakfast and taxi. Its contract is:
H=rtbe

Four traces accepted by the automatb® C are:
wi = (,1)(o,b)(t,1) (b, o)(e.®)
Wa = (Tv r)(Dv b)(|:’> C) (fv d (57 E’)(e>é)
ws = (T,1)(f,0)(b,b)(0,t)(e,®)
Wy = (T> I')(f, D)(B> b)(Dv C)(evé)
We now detail the flows associated with each trace giving ¢h@fvariables with value 1, all the
others having value 0, because there are no loops. The asbiows are:

Wy {XQanl s Xd1, 02> X2.da » Xdia,0a » Xﬁ4~d1o}

W2 . {XQO,qlvXfil.qpXﬁzﬁsvXﬁsﬂzsvxfie.qg?)(qg,qm}

W3 . {XQO,qlﬂXfilﬂwXfi7~C|87XCI8,q47Xq4~Q1o}

Wy {XCIoﬂlvxﬁlﬂwXﬁ77q8>XCI8ﬂQvquﬂ10}
Note that a flonk may represent many traces that have the same balance otgqtfers for each
action occurring therein. For example, in the contract matton at the bottom of Figuke 6, the same
flow Xgp. 00 = 3, Xau.00 = 2, Xqo.q0 = Xau,00 = 1 represents bot; = acabdabandw, = abdacab

The following auxiliary definition introduces a notatiorr filow constraints. It is beneficial in

the statements of Theoreis 4.2, 4.14[and|4.17 below.
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Definition 4.10. Given a source stagand a destination sta&a the set oflow constraints Ed“ from
gtod is defined as:

~1 ifg=%§
FQJ:{(tha--thnqu:( z X — z %)=4 0 ifq#%d
4e8%a  1eFS@) 1 ifg=d
Va£St. 0<7 <x,
—pd ifg=¢
VAASYG: (Y 4- Y 4)=40 ifq#£sg
teBSq)  teFs(d) pd ifg =g
1 if 3 X, >0
d__ teFS(G) N
where  p _{ 0 otherwise }

In the definition above, the variable% representQ| — 1 auxiliary flows and make sure that a
flow X represents valid runs only, i.e. they guarantee that ther@@ disconnected cycles with a
positive flow. A more detailed discussion is in Exaniple 4.&lotv. Note that the values qﬁ‘; are
notintegers, and so we are defining Mixed Integer Linear Progranm problems that have efficient
solutions [34].

We eventually define a set of variabh{ijsfor each action and each transition, that take the value
-1 for requests, 1 for offers, and 0 otherwise; they help tiagrthe difference between offers and
requests of an action in a flow (recall thatontains the indexes of the requests).

_ 1 ifObgd) =a
vtj=(@&d)eT,viel: & =4 —1 ifObgd) =a
0 otherwise

Example 4.11. Figure[6 (top left) depicts the contra&tz B, where
A=ac'.b+b(bt'.b+3) B=ab.a+b.(b.b.a+ac)

To check whether there exists a run recognising a taegth less or equal requests than offers (for
each action) we solvgtj at'j %, > 0, forx € F.

We illustrate how the auxiliary variablegl ensure that the considered solutions represent valid
runs. Consider the following assignment®oXg, g, = Xa1.d = Xap. 9 = L. Xg..q, = 1, and null ev-
erywhere else. It does not represent valid runs, becaudeatistion(ds, (C,0),0s) cannot be fired
in a run that only takes transitions with non-null valueXirHowever, the constraints on the flow
X are satisfied (e.g. we ha®, crsq) X = St eBgq) X;)- NOw the constraints on the auxmazﬂ
play their role, checking if a node is reachable from theidhistate on a run defined by The
assignment above is not valid since # we have :

0 < quo q4 < X(q07q4> = O
0< 74 4 < ¥auan =0
0< qu4 ds) < X(datb) = 0

Hencey cesiq z?“ q4 Q) 24 EFSE) z? ?34 " ) and we have:

o 3 dopiop

tjeBS(da) tieFS(ds)
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Finally, note in passing that there are no valid flaixs F for this problem.

More importantly, note that the auxiliary variabla?sare not required to have integer values,
which is immaterial for checking that those solutions reprg valid runs, but makes finding them
much easier.

The main results of this section follow.

Theorem 4.12. LetV be a binary vector. Then a contract automat@ns weakly safef and only
if min y> 0 where:

viVax <y Sv=1 Vielh.vve{01} (%...%)eF YER
ieZ| |t1; X ieZ| i i . x

The minimum value of selects the trace and the act@for which the difference between the
number of offers and requests is the minimal achievable ffonif this difference is non-negative,
there will always be enough offers matching the requests,sarid will never generate a trace not
in 20. In other words A4 is weakly safeotherwise it is not.

Example 4.13. Consider again Example 4.9 and&t=r,a°=b,a>=t,a*=c, a®>=e.

If vi =1, for each flowx € F, we have thaf, atljxtj =0 (fori # 1, we havey; = 0). This means
that the request of a room is always satisfied. Similarly f@akfast and the termination signal
e. If v3 =1, for the flow representing the traces, ws we haveztj afj?xtj = 0, while for the flow
representing the traces,,w, the result is 1. The requests are satisfied also in this casteald,
whenv, = 1, for the flow representing the traces,w, we haveztj a{'}xtj = 0, but for the flow
representingv,, ws, the result is-1. Hencemin y= —1, and the contract automatéh® C is not
weakly safeindeed we havew,ws & 0.

In a similar way, we can check if a contract automaton offdraee in weak agreement.
Theorem 4.14. The contract automatoA admits weak agreement if and onlyrifix y > 0 where
Viel. Za{l X, >y (%..%)EFk YER

tje

The maximum value of in Theoreni 4.4 selects the trag¢hat maximises the least difference
between offers and requests of an actiowirf this value is non-negative, then there exists a trace
w such that for all the actions in it, the number of requesteds br equal than the number of offers.
In this case, 2 admits weak agreement; otherwise it does not.

Example 4.15. In Example[4.D,maxy = —1 for the flows representing the traces,ws; and
max Y= 0 for those of the tracew,;,w,, that will be part of the solution and are indeed in weak
agreement. Consequently,® C admits weak agreement.

We now define theveakly liableprincipals: those who perform the first transitioof a run such
that aftert it is not possible any more to obtain a traceih i.e. leading to tracew € £ (A4) \ 20
that cannot be extendedww € . (4) N Q0.

Definition 4.16. Let 4 be a contract automaton and let= w;dw, such thatw € .£(4) \ 20,
YW.wwW € Z(A) N2, Ywa.w1dws € £ (A4) N andIwg.wiwy € £ (A4) N20.
The principals'(4) such thatl;) # o areweakly liableand form the setVLiable( 4, w; d).
Let WLiablg4) = {i | 3w such thati € WLiablg4,w)} be the set of alpotentially weakly
liable principals in4.
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FIGURE 7. The three flows computed by Theorem 4.17

For computing the sa/Liablg4) we optimise a network flow problem for a transitidmo
check if there exists a tracg in which T reveals some weakly liable principals. By solving this
problem for all transitions we obtain the $&t.iablg 2).

Theorem 4.17.The principall'(4) of a contract automator is weakly liableif and only if there
exists a transitiorl = (0s, &, Ga) € Ta, &) # o such thaty < O, where

Ye = min {g(X) | X € Fq,.q ¥ € Feqir Vi €11 Zra{j (%, +¥) >0}
tje
g(X) =max {y| U € Fg,q, Vi €. Zraij(xt,- +U)+a >y,yeR}
tje

Figure[T might help to understand how the flaXyg (andt) and the transitiof are composed
to obtain a path from the initial to the final state. Intuitivehe flow defined above can be seen as
split into three parts: the flowfrom gy to Gs, the flowy from gs to g, and the flowd from gy to g,
computed through the functian

This function takes as input the flatvand selects a flow such that, by concatenatingandt
throught, we obtain a tracey where the least difference between offers and requestsxsmsad
for an action inw. Using the same argument of Theorem 4.14, if the value cosdpistnegative,
then there exists no flo@that composed witKR selects traces in weak agreement.

Finally y; yields the minimal result ofi(X), provided that there exists a flgyy that combined
with X represents only traces in weak agreemen: 4f 0 then the transitiohidentifies someveakly
liable principals. Indeed the flow represents the tracessuch that (15w, represented by, with
ww € .Z(4)NW and (2)Vw,, represented by, with waw, € #(42) \ 20. Note that if a flonx
reveals some weakly liable principals, the minimisatiorried on byy; guarantees that the relevant
transitiont is found. Finding the weakly liable principals is a hard teekd belongs to the family of
bilevel problems([4]. Basically, these problems contain twptimisation problems, one embedded
in the other, and finding optimal solutions to them is stillad Fesearch topic.

Example 4.18. In Figure[6 (top right), the transition®p, (o,c),ds) and (Gs, (o,c),fo) reveal the
second principal (i.eC) weakly liable Indeed the tracér,r)(o,b) ending ing, can be extended
to one in weak agreement, whilg,r)(o,b)(o,c) cannot. Also the tracér,r)(f,o)(b,b) can be
extended to one in weak agreement wifiiig)(t, o) (b, b) (o, ¢) cannot.

For the transition(d, (o, ), ds) we have the tracér,r)(o,b) for the flowX and(t,t) (b, o) (e €)
for the flowy, and we haveri € Ij. 3yt a{j (%; +¥,;) > 0. Note that if we select as floy the
trace (o, ¢)(t,0)(b,0)(e€) then the constraintsi € I Yger a}j (%; +¥;) = 0 are not satisfied for
the actiona* = c (recall Examplé 4.13). For the flo@wthe only possible trace i,c)(b,0)(e ),
andmax y = —1= V(g (0.0).65) SINCEY 1 8 (% + W) + (—1) = —1.

For the transition(dg, (o, c), o) the flowX selects the tracér,r)(t,o)(b,b), the flowy selects
the trace(o,t)(e,€), since the other possible trace, tharisc) (e, g), does not respect the constraints
for the actiona®* (i.e. c). Finally, for the flowd we have the tracée,€), and as the previous case

maxy = —1=VY(g.0.0.4)-
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5. AUTOMATA AND LOGICS FORCONTRACTS

Recently, the problem of expressing contracts and of clinfgdhat the principals in a composition
fulfil their duties has been studied in Intuitionistic Logichere a clause is interpreted as a principal
in a contract, in turn rendered as the conjunction of sewstaakes. Actually, the literature only con-
siders fragments of Horn logics because they have an immeddizrpretation in terms of contracts.
More in detail, these Horn fragments avoid contradictiausks, as well as formulae with a single
Horn clause. These two cases are not relevant becausentegpretation as contracts makes little
sense, e.g. a contract requires at least two parties. & twrhthat these theories can be interpreted
as contract automata, without much effort.

The first logic we consider is Propositional Contract Logt€() [14] able to deal with circular
obligations. Its distinguishing feature is a new implioati calledcontractual implication that
permits to assume as true the conclusions even before thegaehave been proved, provided that
they will be in the future. Roughly, a contract is rendere@ &forn clause, and a composition is a
conjunction of contracts. When a composition is provalblentall the contracts are fulfilled, i.e. all
the requests (represented as premises of implicationgnéaded.

In the next sub-sections, we translate a fragment of the fdommulae of Propositional Contract
Logic into contract automata, and we prove that a formuladsable if and only if the correspond-
ing contract automaton admits agreement.

We then study the connection between contract automatahenbhtuitionistic Linear Logic
with Mix (ILL™[21]. This logic is used for modelling exchange of resosrbetween partners
with the possibility of recording debts (requests satisbigd principal offer but not yet paid back
by honouring one of its requests), and has been recently givaodel in terms of Petri Nets [11].
In this logic one can represent the depletion of resourcesyii case of offers, that also here can be
put forward before a request occurs. Again, we translatagnient of Horn formulae as contract
automata, and we prove that a theorem there correspondsatt@maton that admits agreement.

Our constructions have been inspired by analogous onésdaitd however offer a more flexi-
ble form of compositionality. Indeed, for checking if twgoeeate formulas are provable, it suffices
to check if the composition of the two corresponding aut@msistill in agreement. If the two au-
tomata are separately shown to be safe, then their composstin agreement due to Theorem 3.18.
With Debit Petri Nets[[11] instead, one needs to recompudenthole translation for the composed
formulas, while here we propose a modular approach.

5.1. Propositional Contract Logic. The usual example for showing the need of circular obliga-
tions is Examplé_4]1. In the Horn fragment of PCL we use, daePCL, the contracts of Alice
and Bob make use of the new contractual implicaffon» F’, whose intuition is that the formula
F’ is deducible, provided that later on in the proof aswill be deduced.

According to this intuition and elaborating over Exampldl,4Alice’s contract [ offer you
my aeroplane provided that in the future you will lend me ybike) and Bob’s ( offer you my
bike provided that in the future you will lend me your aero@aare rendered dsike — airplane
airplane — bike, respectively. Their composition is obtained by joining ttvo, and one represents
that both Alice and Bob are proved to obtain the toy they retjog

((bike— airplane) A (airplane — bike)) - (bikeA airplane)

In words, the composition of the two contracts entallsthe requestsbike by Alice andairplane
by Bob). We now formally introduce the fragment of H-PCL[[${f7at has a neat interpretation in
contract automata, under the assumption that a principaiataffer and require the same.
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FIGURE 8. The three rules of PCL for the contractual implication.

Definition 5.1 (H-PCL). Assume a denumerable set of atomic formudaems= {a,b,c,...} in-
dexed byi € |, j € J wherel andJ are finite set of indexes; then thePCL formulae pp/,... and
the clausest, a;, ... are generated by the following BNF grammar
p= Aia O o= Ajesdj | (Ajesdj) = b | (Ajesaj) > b
where|l| > 2,|J] > 1,i # j impliesa; # a;, andVj € J.a; # b
Also, letA(p) be the conjunction of all atoms in.

In Figurel8 we recall the three rules of the sequent calcduthke contractual implication [14,
13]; the others are the standard ones of the Intuitionisbigit.and are in the appendix, Figlrg 13.

As anticipated, in H-PCL all requests of principals aress$itil if and only if the conjunctiop
of the contracts of all principals entails all the atoms rroaTed.

Definition 5.2. The formulap represents a composition whose principals respect all tiiga-
tions if and only ifp - A(p).

Below, we define the translation from H-PCL formulae to cactrautomata. A simple inspec-
tion of the rules below suffices to verify that the obtainetbenata are deterministic.

Definition 5.3 (From H-PCL to CA) A H-PCL formula, with sets of indexdsandJ as in Defini-
tion[5.1, is translated into a contract automaton by thevdlhg rules, where? = {qu {*} | g € 2’}:

[Aicr oi] = Kie [ai]

[Ajesail = {31 {10,435 | ] € L {({x}, 35, {x}) [a] € A°}, {{x}})
[(Aaj) —b] =(2,Ju{x}.{aj | j€J},{b},

jed
{(FU{ita, ) [ Yu{i} e jebu{({x}b.{=)} {{}})
[(Aay) —b] =(2,3u{x},{a | j € 3},{b},

jed
{(YU{i}t,a,F) | YU{j} e jeI}u{(ab,q) |ge P} {{x}})

As expected, a Horn formula is translated as the producteo&tliomata raising from its com-
ponentsy;. In turn, a conjunction of atoms yields an automaton withnglgi state and loops driven
by offers in bijection with the atoms. Each state stores tmaber of requests that are waiting to
fire, and{«} stands for no requests. A (standard) implication shufflebalrequests corresponding
to the premisea; and then has the single offer corresponding to the conelusié contractual im-
plication is similar, except that the offeb {n the definition) can occur @nyposition in the shuffle,



AUTOMATA FOR SPECIFYING AND ORCHESTRATING SERVICE CONTRAG 19

b

RO
a
start—).—»& C.—».:) start —>8

(3,b,0) (&0,0),(0,b,0)

bbu ﬁ.a.u
(0,0,T) (a,0,0), bD (9,0,8)
D DDC

FIGURE 9. The contract automata of Examples 5.4[and]9.11, top frértoleight:
[Alice], [Bob], [Charlie]; bottom: Kjajice] [Botje [Charlie] -

and from there onwards it will be always available. Note thate is no control on the number of
times an offer can be taken, as H-PCL is not a linear logic.

Example 5.4. Consider again Examgdle 4.1, and let us modify it to bettesitate some peculiarities
of H-PCL. Assume then that there are three kids: Alice, Bab@harlie, who want to share some
toys of theirs: a bikdéy, an aeroplana and a carc. The contract of Alice says “l will lend you my
aeroplane provided that you lend me your bike”. The conw&8ob says “I will lend you my bike
provided that in the future you will lend me your aeropland gaur car”. The contract of Charlie
says “l will lend you my car”. The contract of Alice is expresisby the classical implication— a.
The contract of Bob igaA c) — b, while the contract of Charlie is simply. The three contracts
reach an agreement: the conjunction of the formulae reptiegethe contracts entails all its atoms,
thatis(b —-a)A((anc) - b)AckaAncAb.

Figure[® shows the translation éflice A BobA Charlie, according to Definition 513. It is
immediate verifying that the automaton is safe, since slfréces are in agreement.

The following proposition helps to understand the main ltesfuthis section.

Proposition 5.5. Given a H-PCL formula p and the automatpp] = (Q,qo, A", A°, T,F):

(1) F={d= ({x},...,{=})}, and all (d,4,¢) are such thatf = g anda is an offer;

(2) every statef = (J1,...,Jn) has as many request or match outgoing transitions as theestqu
actions prescribed byjic1 nJi;

(3) [p] is deterministic.

As said above, when seen in terms of composed contractrielap - A(p) expresses that
all the requests made by principals prmust be fulfilled sooner or later. We now show that the
contract automatofip] admits agreement if and only if- A(p) is provable.

Theorem 5.6. Given a H-PCL formula p we havetpA(p) if and only if[p] admits agreement.

We have constructively proved that a formuylefulfils all its obligations if and only if the
corresponding automatofp] admits agreement. Interestingly, a contractual implcat — b
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corresponds to a contract automaton that is enabled to &redhclusiorb at each state; while for
the standard implicatioo— d the conclusion is available only after the prentideas been satisfied.

Example 5.7. Consider Example5.4. The conjunction of all the formulasiéits atoms, indeed
the corresponding translation into contract automatadalysgl in Figuré ® admits agreement.

Needless to say, the provability pf- A(p) implies that]p] admits weak agreement. However,
the implication is in one direction only, as shown by thedaling example.

Example 5.8. Consider the H-PCL formulp= (b — a) A (a— b). We have thafp] does not admit

agreement andl#A(p). Nevertheles§p] admits weak agreement. For examgke,—)(a,a)(—,b) €
Z([p]) is a trace in weak agreement.

As a matter of fact, weak agreement implies provability waeiormulap contains no (stan-
dard) implications, as stated below.

Theorem 5.9. Let p be a H-PCL formula with no occurrence of standard ingtlimns —, then
pHE A(p) if and only if[p] admits weak agreement.

This result helps to gain insights on the relation betweendntractual implication» and
the property of weak agreement. Indeed, checking weak agneteon a contract automatd@p] is
equivalent to prove that the formugafulfils all its obligations (i.e.p A(p)) only if pcontains no
standard implication-.

5.2. Intuitional Linear Logic with Mix. In this sub-section, we will interpret a fragment of the
Intuitionistic Linear Logic with Mix (LL™*) [21] in terms of contract automata. Originally, this
logic has been used for modelling exchange of resourcesebeatwartners with the possibility of
recording debts, through the so-calleegative atomsBelow, we slightly modify Examplg 5.4 to
better illustrate some features lafl ™,

Example 5.10. Alice, Bob and Charlie want to share their bike, aeroplareecan, according to the
same contracts declared in Examplg 5.41LUh™™ the contract of Alice is expressed by the linear
implication b — a; the contract of Bob i ® ¢- ® b (® is the tensor product of Linear Logic);
the contract of Charlie is the offer The intuition is that a positive atom, egin the contract of
Charlie, represents a resource that can be used; similariihé b of Bob. Instead, the negative
atoms @ andc’ of Bob) represent missing resources that however can be takeredit to be
honoured later on. The implication of Alice says that theuesea is produced by consuminig
providedb is available. (There are some restrictions on the occueié negative atoms made
precise below). The composition (via tensor product) oftkinee contracts is successful, in that all
resources are exchanged and all debts honoured. Indeggogsible to prove that all the negative
atoms, i.e. all the requests, will be eventually satisfiedthls case we have that all the resources
are consumed, and that the following sequent is provaliee® Bob® Charliet-.

We now recall the basics 6EL™X. Let A, AL be respectively the set gbsitiveandnegative
atoms ranged over bya,b,c,... € A and bya*,b’,ct,--- € AL, LetL = AUA"L be the set of
literals, and assum& C A, X C L, whereX does not contain any atom and its negatiora’,
according to Definitiod 213 (recall that a principal autoamais such thaiA' N co(A°) = 0). A
positivetensor product is a tensor product of positive atoms.

As said, we only consider a fragment of HdirlL.™* called HILL™*, defined below. It only
has tensor products attbrn implications @y b — @,cx @ Note that the premises of the Horn
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FIGURE 10. The contract automata of Example 5.10. Top from left thtri
[[AliCEﬂ, [[Botj]. Bottom from left to right:[[CharIie]], %Aliceﬂ&[Bokﬂ]&[{Charlie}] .
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FIGURE 11. A subset of the rules of the sequent calculubLaf",

implications are always positive tensor products, and tdmelcisions are tensor products of literals,
possibly negative.

Since the treatment for non-linear implications|bf. ™ is similar to that presented in Sec-
tion[5.1, we feel free to only deal below with linear implicatts and tensor products of literals.

Definition 5.11 (H-ILL™*). The Horn formulaep, pi, ... and the clauses,aj, ... of H-ILL™* are

defined by
pr=QRa ai=R)alXb—Xa

iel acX beY aeX

The subset of the rules of the sequent calculug bf* relevant to our treatment is in Figurel 11,
whereA, B stand for a Horn formulg or clausea, while y may also be empty (note that in rule
(Negl), A=aand scA* = at); I andl”’ stand for multi-sets containing Horn formulae or clauses;
andr,I” is the multi-set union of andl”’, assuming,0 = . The complete set of rules folL™X
is in [21], and can be found in the appendix.

The following auxiliary definition of the concatenation efd automata helps to translate a
H-ILL™* formula.
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Definition 5.12 (Concatenation of CA)Given two principal contract automata
a1 = (QL,gb, A A% TL FL) and 42 = (Q2 2, A A% T2, F2), their concatenatioris
q1. 72 — (Q1U Qz,q(l),ArlLJArz,AOlUAOZ,
(T"\{(a.ad)eT'|d eF}HUT?
U{(a.ad) | (@ad)eThd e F},F?)

Concatenation is almost standard, with the proviso thateptace every transition of! lead-
ing to a final state with a transition with the same label legdb the initial state 0f1°. Note also
that loops can be ignored, because the automata obtaindé nahslation in Definition 5.13 below
have no cycles.

Similarly to what has been done in the previous sub-sectidensor product is rendered as
all the possible orders in which the automaton can fire (thieras corresponding to) its literals. If
the literal is a positive atom, then it becomes an offer, &ftiloriginates a request if the atom is
negative. A linear implication is rendered as the concaienaf the automaton coming from the
premise, and that of the conclusion, with the following psov In the premise all the atoms are
positive, but they arall rendered agequestdi.e. as negative atoms), and shuffled. The states are
in correspondence with the atoms still to be fired &afstands for the (final) state where all atoms
have been fired.

Definition 5.13 (Translation of HILL™X). Given a set of atomX, letP = {quU {«} | q € 2X} with
typical elemenZ. The translation of a HLL™* formula p into a contract automatgp] is induc-
tively defined by the following rules:

[Ricr ai] = Xici [o]

[Ra] =(PXuU{x},{a]a" e XNA} {alae XnA},

acX
{(zu{at},a,z2)|zu{at} ePat e X}U
{(zu{a},a,2) | Zu{a} e Pae X},
{{=}})

[[®beY b—o Qacx aﬂ = [[®beY bJ_]] : [[®an aﬂ
Moreover, we homomorphically translate multi-sets of Hfmnmulae and clauses as follows:
[p,] =[P X[r] [o,F] = [a] W[r]

The automata obtained by translating the formulae reptieggetine contracts of Alice, Bob and
Charlie in Examplé 5.0 are in Figurel10.

Definition 5.14. A sequent” F Z is honouredif and only if it is provable and is a positive tensor
product or empty.

Intuitively, honoured sequents can be proved and additiotiaey have no negative atoms,
i.e. no debts. The main result of this section is that a sadquéenZ is honoured if and only if the
corresponding contract automatfir] admits agreement. An important outcome is the possibifity o
expressing each H-L™* formula as a contract automatah so to use our verification techniques.
It is then possible to compose severalllH-"* formulae through the composition operators of
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contract automata, exploiting compositionality and tHategl results (for example Theorém 3.18)
for efficiently checking the provability of formulae in HL™X, In the statement below and in the
proofs in the appendix, we say thft] admits agreement oA whenever there exists a trace in
Z([r]) only made of match actions and offers in correspondencethéttiterals inZ.

Theorem 5.15. Given a multi-set of Horn formulale, we have that
I' = Z is an honoured sequent if and onlyfif] admits agreement on Z

Through this result we have linked the problem of verifyihg torrectness of a composition
of services to the generation of a deduction tree that praésLL ™ formula. Moreover, we have
shown that the possibility of recording debts inlH-" solves circularity issues arising from a
composition of services.

6. AN EXAMPLE

In this section we consider a well-known case study takem f46]. This is a purchasing system
scenario, where a manufacturer (the buyer) wants to builcbdugt. To configure it, the buyer
lists in an inventory the needed components and contactschgsing agent. The agent looks for
suppliers of these components, and eventually sends b#uok boiyer its proposal, if any. A supplier
is assumed to signal whether it can fulfil a request or notgither may happen, the interactions
between it and the purchasing agent are rolled back, so amtamtee the transactional integrity of
the overall process. A description of the WSDL of the sej@s well as the BPEL process from
the purchasing agent’s perspective are in [45], where #res#ictional integrity is maintained using
the tags<f aul t Handl er s> and<scope> of BPEL.

We slightly modify the original protocol, where the purclmgsagent guarantees its identity to
the buyer through a public-key certificate. For brevity,ehee assume to have two sell&sand
S, and two purchasing agerntg and Ay, that behave differently. A service instance involves the
buyer, an agent and both sellers. The buyezquires the certificate of an agent (acteant), then it
offers the inventory requirementsy). Finally, it terminates by receiving either a propogaid) or
a negative messagadp), if no proposal can be formulated. The selwaits for a requestpen
of a component from an agent. It then replies by offering agfmr that part pquo), or a negative
messagenope if it is unavailable, and restarts. The second seflealways accepts a request, but
never replies. The first ageAy offers its certificate dert), then requires the inventory lisng). It
then sends a request to and waits for a reply from the selléris.agent must communicate at least
with one supplier before replying to the buyer, and it camapzer all the available suppliers in the
network, unknown a priori, before compiling its proposaindfly, it sends to the buyer a proposal
(prop), or the negative messageop). The second agert, behaves similarly té\;, except the first
two actions are exchanged: before sending its certificalBe itcfirst requires the inventory list.

In Figure[12 from top to bottom, we display, from left to righhe automatd,S; and $;
the automatad; and Ay; then the most permissive controlléf of B® S ® S ® A; (the whole
composition is omitted to save space); finally a portiorBab S ® S ® Ay in weak agreement.
This example shows that through contract automata one eatifigd which traces reach success,
and which a failure, together with those principals resgmedor diverging from the behaviour
in agreement, as well as to single out which failures depenthe order of actions, and which
not. Indeed, by inspecting, that of course is safe, one can notice thahever interacts witls,
because it never replies and so it is recognised liable. Aatgenof fact, the composed automaton
B® S ® S ® A1 admits agreement, but it is not safe. Note thatlocks every communication
with S, so enforcing transactional integrity, becadgeemoves all possibilities of rollbacks from
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FIGURE 12. The contract automata for the example

a trace not in agreement. The composed automBtears; ® S ® A, admits weak agreement but
not agreement (and its most permissive controller is empggauseB and A, fail in exchanging
the certificate and the inventory requirements, as bothtadk svaiting for the fulfilment of their
requests. However, by abstracting away the order in whitihrecare performed, circularity is no
longer a problem, and these requests satisfied. Not&glistletected to be also weakly liable.
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7. RELATED WORK

Contract automata are similar to I/O [40] and Interface Awaita [1], introduced in the field of Com-
ponent Based Software Engineering. A first difference i$ phiaacipal contract automata have no
internal transitions, and that our operators of compasitiack each principal, to find the possible
liable ones. Also we do not allow input enabled operatiortsramm-linear behaviour (i.e. broadcast-
ing offers to every possible request), and our notion of egent is dual to that of compatibility
in [1], that requires all theffersto be matched.

We now relate our approach to the growing body of work in tterditure introduced to describe
and analyse service contracts.

Behavioural contracts. In [24] the behaviour of web-services is described througbraata, equiv-
alent to our principal contract automata. However, onlypéity interactions are considered, i.e.
interactions between a single client and a single servetewhr model deals with multi-party in-
teractions through orchestration. Different notions ahptiance are introduced, and one of them
is close to our notion of agreement. [n [27] behavioural @wis are expressed in CCS and the
interactions between services are modelled via 1/O actidhg main focus of this work is on for-
malising the notion of progress of interactions. Two diferchoice operators, namely internal and
external, describe how two services interact. The intechaice requires the other party to be able
to synchronise with all the possible branches of the firsileafor the external choice it suffices to
synchronise with at least one branch. A client and a sereecampliant if their interactions never
get stuck. This approach is extended to a multi-party varbip extending thet-calculus in [28]
with the above notions of non-deterministic choice. Our eladpresents internal/external choice
as a branching of requests/offers, and it is intrinsicaliytiparty. Also, we consider stronger prop-
erties than theirs: progress guarantees that a subset inhciznmeets their requests, while (weak)
agreement requires that all of them do, i.e. that each a@hceaches a successful state. We also
consider (weak) liability of principals, and conditionsdem which (weak) safety is preserved by
composition (collaborative and competitive). A CCS-likegess calculus, called BPEdbstract
activitiesis used in[[37] to represent BPEL activitiés [42], for contivegg BPEL processes with con-
tracts in [27]. The calculus is endowed with a notion of caamte and sub-contract relation (see
below). Contract automata and this formalism are very ¢lesg both are finite state, so it would
not be difficult to formally relate them.

In [43] the approach of [27] is extended by exploiting an esthator for managing thsub-
contractrelation. A contracto; is sub-contract ob» if o1 is more deterministic or allows more
interactions or is a permutation of the same channets oHowever, it is not always the case that a
contracto, compliant witho, is also compliant witlo,. A technique for synthesising an orchestra-
tor is presented to enforce compliance of contracts undesuh-contract relation. This approach is
further extended i |2], where an orchestrator is synteesfromsession contractsvhere actions
in a branching can only be all inputs or outputs. Only biypadntracts are considered, and synthe-
sis is decidable even in the presence of messages nevesrddlito the receiver (orphan messages).
Two notions of compliance are studied: respectful and gpetful. In the first, orphan messages
and circularities are ruled out by the orchestrator, whiléhe second they are allowed. Our notion
of weak agreement is close to the orchestrator ofl[43, 2]ercdse oflisrespectful compliance

In [3] the contracts of [27] are enriched with a mechanismrémovering from a stuck compu-
tation. The external choices are calladractable and a client contrac + b is compliant with a
servera since, in case the client decides to séni can retract the choice and perform the correct
operationa. In our work, the controller for the case of agreement cutthalpaths which may lead
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one principal to perform a retract. Hence, a controlledratton of services needs not to roll back,
as the orchestrat@reventdiring of liable transitions. This means that, if a compasitdf contracts
is safe then the contracts are compliant accordinglto [3g ddnverse does not hold. Indeed, our
notion of agreement is stronger, as we force an interactisemwices to reach a successful state.
The compliance relations studied in [27] 28 [37,143 2, 3haaely inspired by testing equiva-
lence [41]: a CCS process (in our case the service) is tegdst an observer (the client), in two
different ways. A servicenay-satisfya client if there exists a computation that ends in a sucgkssf
state, and a servigaust-satisha client if in every maximal trace (an infinite trace or a tréta can
not be prolonged) the client can terminate successfullyctgecture that may-test corresponds to
the notion ofstrong agreementf [20,[16] (there exists a trace only composed of matchekiew
must-test impliestrong safetyall traces are in strong agreement), but not vice-versaefample
the servica*.b does not must-satisfy the clieat.b, but their product is strongly safe (if unfair, the
service may never offds to its client). Actually, strong safety is alilghould testingf [47], where
the divergent computations are ruled out.

Session types and choreographiesSession types have been introduced to reason over the be-
haviour of communicating processes, and are used for tygfiagnel names by structured sequences
of types [31]. Session types can be global or locabldbal typerepresents a formal specification
of a choreography of services in terms of their interactiohbe projection of a safe global type
to its components yields a salfecal type which is a term of a process algebra similar to those
of [27]. Conversely, from safe local types it is possibleynthesise a choreography as a safe global
type [38)39]. In[[22] the contracts aof [27] are shown to be alglmf first-order session types [32].
This approach is then extended[inl[23] by introducing a modibhigher-order contracts and relating
them to higher-order session types, that also handle sedslegation.

Although the above approaches and ours seem unrelatedaormmpare them by resorting
to communicating finite states machines! [25], that are fstdge automata similar to ours, to which
local types are proved to correspond![30]. These automégeairt through FIFO buffers, hence a
principal can receive an input only if it was previously eagad, and in this they differ from contract
automata, where offers and requests can match or even firagtcinead in any order. However, under
mild conditions, the two classes of automata are equivdB){16], so establishing a first bridge
between the choreography model based on session types laadtomata model of orchestration.

Many properties of communicating finite state machines,aasptiance in the asynchronous
case, are not decidable in generall [25], but some becomexsuasing FIFO queues and bags|[29].
Moreover in [39] compliance between communicating finitgesmachines is guaranteed whenever
it is possible to synthesise a global choreography from thiérmwould be interesting to describe
compliance of([25] in terms of flow control, as done for weakesgnent, and to study a relaxation
of the linear problem which makes the problem decidable.

In [37] the compliance and sub-contract relations are eddrto deal with choreographies.
Compliance is obtained by seeing a choreography as a cordmmmice, similarly to our com-
posed contract automata. Since a client cannot interabttivit choreography on actions already
used while synchronising by other services, in order toinltampliance the client must ben-
competitivewith the other services.

A-calculus, logics, event-structures.Services are represented in [10, 9] mexpressions, and
safety policies are imposed over their interactions. A tgpd effect system is used to compute
the types of the services and their abstract behavioursatbahen model checked at static time to
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guarantee that the required policies are always satisfiethaifd result shows how to construct a
plan that associates requests with offers so to guarand¢@ahexecutions will violate the security
requirements. IN[17, 19] these techniques have been dpplian automata based representation
of the contracts of [27], recovering the same notion of peegr

Propositional Contract Logic¢ [14] and Intuitionistic LaeLogic with Mix [21] have been
already discussed in Sectioh 5.

Processes and contracts are two separate entitles in filiRg ours. In this formalism contracts
are represented as formulae or as process algebras. A promedulfil its duty by obeying its
contract or it behaves dishonestly and becomuisable— and redeems by performing later on the
prescribed actions. Also our principals can be at fault,durtnotion of liability slightly differs
from culpability, mainly because we do not admit the podisjoof redeeming.

Contracts are represented [in [6] through Event Structundsveed with certain notions from
Game Theory. An agreement property is proposed, ensurfiegrdgaractions among participants,
that is similar to ours under an eager strategy. A princgalipable if it has not yet fired an enabled
event, it is otherwise innocent. In particular a principgieees to a contract if it has a positive pay-
off in case all the principals are innocent, or if someone &sfound culpable. Additionally the
authors study protection: a protected principal has a nseimd) strategy in every possible context,
but this is not always possible. Finally two encodings fragssson types to Event Structures are
proposed, and compliance between bi-party session tyd®isn to correspond to agreement of
the corresponding event structures via an eager strategy.

8. CONCLUDING REMARKS

We have studied contract composition for services, foagsen orchestration. Services are for-
mally represented by a novel class of finite state automatigdccontract automata. They have two
operators that compose services according to two diffemetibns of orchestrations: one when a
principal joins an existing orchestration with no need ofabgl reconfiguration, and the other when
a global adaptive re-orchestration is required. We haveee@fnotions that illustrate when a compo-
sition of contracts behaves well, roughly when all the rastmare fulfilled. These properties have
been formalised as agreement and safety, and have beesdshadh in the case when requests are
satisfied synchronously and asynchronously. Furthernaanetion of liability has been put forward.
A liable principal is a service leading the contract composiinto a fail state. Key results of the pa-
per are ways to enforce good behaviour of services. For thehsgnous versions of agreement and
safety, we have applied techniques from Control Theory]enair the asynchronous versions we
have taken advantage of Linear Programming techniqueswed from Operational Research. Us-
ing them, we efficiently find the optimal solutions of the flawthe network automatically derived
from contract automata.

We have also investigated the relationships between ouramrautomata and two intuitionis-
tic logics, particularly relevant for their ability in dedning the potential, but harmless and often
essential circularity occurring in services. We have abergd a fragment of the Propositional Con-
tract Logic [14, 13] particularly suited to describe contsa and we relate it through a translation
of its formulas into contract automata. Similarly, we haxarained certain sequents of the Intu-
itionistic Linear Logic with Mix that naturally represenbistracts in which all requests are satisfied.
Then we have proved that these sequents are provable if &l asuitable translation of them as
contract automata admits agreement.

A main advantage of our framework is that it supports the ligraent of automatic verifica-
tion tools for checking and verifying properties of contraomposition. In particular, the formal
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treatment of contract composition in terms of optimal soha of network flows paves the way of
exploiting efficient optimisation algorithms. We have deped a prototypical verification tool [15],
available ahtt ps:// gi t hub. com davi debasi | e/ wor kspace.
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9. APPENDIX

9.1. The Model.

Proposition 9.1. The following properties hold:
321,25, 43.(A1 @ A) @ Az # A1 @ (A @ A3)
VA1, 2, 43.(A1 KR A) K A3 = A1 K (A, K 43)

Proof. Example[2.D suffices to prove the first statement. For thengestatement one hag =
(X A) K A3 = Q4 A = A1 K (4K 43) wherel = {N'(4) |i € 1,2,3}. ]

9.2. Agreement.
Proposition 9.2. Let X be the mpc of the contract automaté@nthen.Z (X) =2AN.Z(4).

Proof. The existence of is guaranteed since all actions are controllable and oaskErand?’(4)
is regular, as well a& [26]. By contradiction assumé&’(X) C AN.Z(A4), then there exists another
controller K3 such that? (X) C Z(X') =AN.2(A4). ]

Proposition 9.3(Mpc). The controller % of Definition[3.9 is the most permissive controller of the
contract automatord.

Proof. In XKz every request transition is removed in the first step, so istrhe £ (%3) C AN
Z(4). We will prove thatZ (Xz) = 20N £ (4), from this follows thatX; is the most permissive
controller. By contradiction assume that exists a trace AN .2 (4),w ¢ £ (%Kz). Then there

exists a transitiont = (d, &, ﬁ’) & Ty, in the accepting path of (i.e. the sequence of transitions

used to recognise). The transitiort is not a request since € AN.Z(4), andq, q ¢ Hanged X3)
because the transition belongs to an accepting path. Swecenly transitions removed to obtain
K4 are requests and those involving hanged states, it follbats € Ty, . ]

Theorem 3.18. If two contract automatad; and 4, are

(1) competitive then they are collaborative,

(2) collaborative and safe, then they are competitive,

(3) safe then?; ® 4, is safe 4; X 4, admits agreement,

(4) non-collaborative, and one or both unsafe, theng 4,, 4; X 4, are unsafe,
(5) safe and non-competitive, thef X 4, is safe.

Proof. [) Assume by contradiction that; and.4, are non-collaborative, that is
(AN co(A))) U (co(A))NAS) =0
Since the two automata are competitive, we have
A?NAIN (co(A]) UCo(AS)) # 0
By the distributive law
(A2N (co(A7) Uco(Ap))) N (AZN (co(A7) UCo(Ay))) # O
By hypothesis the two automata are non-collaborative, énéme above term can be rewritten as
(A2 co(A7)) N (Co(Ay) NAY) # O
By associative and commutative laws
(A2 co(Ag)) N (co(Ay) NAZ) # 0
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Which implies
(A2 co(Ag)) U (Co(Ay) NAZ) # 0
obtaining a contradiction.

[2) By hypothesis the automata are collaborative:
(A2 co(Ag)) U (AzNco(Ay)) # 0

By hypothesis4; and 4, are safe, hence for each request there is a correspondiog,atiat is
co(A) C AP wherei = 1,2. Then the following holds

A’Nco(A) = co(A) i=12

By substitution in the previous term we obtain
(AL NAZNCO(A;)) U (AZNATNCO(Ay)) # O
Which implies
(AN AZN (co(A}) Uco(Az))) U (A2NAL N (CO(AL) UCO(A;))) # O

By simplification we have

(AL NAZN (co(A}) Uco(Ay))) # 0
HenceA; and.A4, are competitive.

[3) Note that the labels off; ® 2, are the union of the labels ¢t; and 4, (extended with idle
actions for fitting the rank), hence no request transitioesaglded, and; ® 4, is safe Since the
traces of4; ® 4, are a subset ofl = 2; X 4,, 4 has at least a trace in agreement. Exarhple] 3.16
shows that not all the traces gf admit agreement.

[4)) Without loss of generality assume th@tis unsafe, hence there exists a reqaesind traces
w, Vv such thawav e #(4;). Since4; and4, are non-collaborative there will be no match between
the actions of4; and 4,, hence we haveviavy € £ (41 ® 4),WoaVy € £ (4, X 4,) for some
W1, Wy, V1, V2, Whered is obtained fromd by adding the idle actions to principals from, + 1 to
lg,+ra,.

[B) The proof is similar to that of itefd 3, indeed it suffices toye that no new matches between
principals in4; and 4, are introduced in4; X 4,. By item[2 it follows that4; and .4, are non-
collaborative:

(AN CO(A))) U (ASMCO(AY)) # 0
This suffices to prove that no matches will be introduced @&rtbomposition. L]

9.3. Weak Agreement.

Theorem 4.6. Let 41, 4, be two contract automata, thendf,, 4, are

(1) weakly safe therf; ® 4, is weakly safe; X 4, admits weak agreement
(2) non-collaborative and one or both unsafe, thenz 4,, 4, X 4, are weakly unsafe
(3) safe and non-competitive, thefi X 4, is weakly safe.

Proof. Letred},ofy’ be the number of requests and offers of an acii@R UQ in a tracew.
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(1) For®: we will prove that in every trace ofl; ® 4,, for each action the number of requests are
less than or equal to the number of offers, and the thesmaisll By contradiction, assume that
there exists a trace in 4; ® 4, and an actiora with red) > ofy’. Assume thatv is obtained
combining two tracesvi,w, of 4; and 4y, that is each principal in each automaton performs
the moves prescribed by its trace. Since both automata aaklyveafe, we haveed! < ofj1
andredj? < ofy“ for all actionsa.

Independently of how many matches occurwrwe still have more requests than offers:
reg +regt? — k < ofM + o2 — k wherek are the new matches.

For X it suffices to take a trace in 4; X 4, obtained by combining two tracesg;,w, of
respectively4; and 4,, where the match actions of both automata are maintained (the
matches are performed by the same principals). In this tasdracew will be present also in
2, ® Ay, hencew € 2.

(2) Without loss of generality assume that is weakly unsafe, hence there exists an aci@nd
atracew; in 4; such thated® > ofy*. Since4; and4, are non-collaborative, in every trace
w of 4; ® 4, or 4; X 4, obtained by shufflingv; with an arbitraryw, in 4, we will have
regy > ofy’.

(3) from Theoreni 3.18 itein 57; X 4, is safe and sinc& C 20 the thesis follows. ]

The following proposition helps the proof of Theorem|4.8.

Proposition 9.4. LetWAQD) = {we (RUOU{t})*|3f : [1...|w|]] — [1...|w]] injective and such
that f(i) = j only if w(;) = co(w(;)), total on the requests of v
Then, Obév) € WA(QY) implies we 20.

Proof. Let 0 = Obgw) € WA2D), and letf be a function that certifies thate WA2D), i.e. that
all the requests imw are fulfilled. Thenf certifiesw € 20. ]

Theorem 4.8. 20 is a context-sensitive language, but not context-free.dWecision can be done
in O(n?) time and Qn) space.

Proof. Example[ 4.7 shows that the property is not context-free. gfoving that2y is context-
sensitive we now outline a Linear Bounded Automata (LBA)|[8&t decides whether a trace
w belongs to20, giving us time and space complexity for the membership lprab Roughly, a
LBA is a Turing machine with a tape, linearly bounded by tteesif the input. Since we have
an infinite alphabet due to the (unbounded) rank of vedtave computeObgw) and decide if
Obgw) € WA(2D). By Propositior 9.4 we obtain the thesis. Below is the schefitiee algorithm:
for i = 0;i < lengthiw);i++ do
if wi € R then
for j =0;j < lengthiw); j++ do
if wj = co(w;) then
Wi < #
break
else
if j =lengthlw) — 1then return false
return true

The length of the tape equals the lengttwpo the algorithm i©(n) space, while it iD(n?) time,
because of the two nestéat cycles. L]

The following is an auxiliary result to the theorems below.

Lemma 9.5. Let A4 be a contract automaton such th&e F, then there exists a ru(w, ) —*
(¢,d) that passes through eacha T exactly ¥ times.
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Proof. We outline an algorithm that visits all the transitiofjswith x; > 0, starting fromgs and
proceeding backwards Gp.

We use auxiliary variable®;,tj € T, initialised to zero, for storing how many times we have
passed through a transitiop At each iteration the algorithm selects non determiradiica transi-
tion f in the backward star of the selected node suchsthatk; > 0, and increases by one unit the
variablex; for the selected. The next node will be the starting statefofThe algorithm terminates
when for all the transitiong in the backward star we hawg —%; = 0.

We prove that the algorithm terminates and constructs @ titsat passes through eatghex-
actly x; times, and the last transition considered leaves thelisiizdie. For the first step we have
SteBS) X — 2teFSdn Xy = 1 hence there exists at least apne BSs) such thatg, > 0 (and
)_(ti - O)

Pick up one of these transitions, sayand assign it to the iteration variallleTwo cases may
arise, depending on the sourcefof
(1) the source dfis g # do: we havey 1 csq) %; — Yt;eFs@) X%; = 0 and we know tha¥y cpsq) X; >

0, becausé € FS(d) andx; > 0, hencey, cggq) %; > 0.

We now show that there is at least ane BS@) such that(x. — %) > 0. By contradiction,
assume , cggq) %; — S;eBsg) Xy = 0. We distinguish two cases:

e §=0s: we have) crsq X; = Yt eBsq) X;» Since at every iteration we increase by one unit
the value ofk, for f and we are proceeding backwards starting fgnithe flow variable of a
loop belongs to both backward and forward star). Sificesgq) %; > t;eFsq) X;, We have
dteFs@) X — 2y eFs@ Xy < 0. Contradiction, since by definition the valgefor a transition
tj will never be greater then the corresponding vadye

e §# 0r: We havely crsg) Xy > Ytesg) X SINCEYt epgg) Xy = Yt eFs@) X, We also have
dteFs@ X — 2yersg Xy < O obtaining a contradiction as above.

Then, we iterate the algorithm taking the abowest.

(2) the source of; is Go: we haveS sy %; — Dt eFsig) X% = — 1.

Letky = Yt ersiq) X — 2t eFsiao) X » K2 = Yty eBS(do) X — 2t eBS(qp) X @Nd Note that since we are

proceeding backwards starting frajp it must be thalyy crsq) %; = 1+ Yt,eBgq0) %;- Hence,

from the previous equations it must be that- k; = 0. We have that:

e if ky =0, we havek, = 0 and the algorithm terminates;

o if k; > 0, we havek, > 0 and the algorithm continues by selecting a transifienBSdp)
such thatx — X = 0.

Since at every iteration we increase the valyeghe constraints ofy guarantee that the algorithm
will eventually terminate. Moreover there exists an exiecubdf the algorithm that traverses all the
possible cycles of the trace induced %yHence we have a trace frodg to G that passes through
each transition; visited by the algorithm exactly, times.

It remains to prove that for all the transitiofjsot visited by the algorithm we havg = 0. By
contradiction assume that there exists a transttien(ds, &, dq) with x, — %, > 0 for all the possible
executions of the algorithm.

This is possible only ifjy it is not connected tgj; by the flowX. Moreover in this case by the
flow constraints orX it follows that s is not reachable frongy by the flowX, i.e.t; is not part of
the trace induced by. Then there must exist a cydle= {t.,...,tem} With t; € C and disconnected
from §p andds with positive flow. LetQc be the set of nodes having ingoing or outgoing transitions
in C. The constraint§cggq) % — Ytersq) % = O are satisfied for affj € C.

We show thaC will eventually violate the constraints defined by the \/alwij‘; We have:
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VieQ: Y A - Y aF=q 0  ifq+#dods
teBSd)  teFs(d) pd if of =0s
vieT. 48R, 0<ZF <x,
We have}y crsq)%; > 0 and p% =1, hence} cgsq,) ng — Yt eFS(h) ng =1 and for allg €
Qc.d# Gs: Yt;eBsq) zﬁs — Yt eFsa) ng = 0. Note that is not possible to satisfy these constraints
since for allt € C, x are all equal and positive andiozf‘; < X%. ]

{&sﬁ&%

Theorem 4.12. LetV be a binary vector. Then a contract automat@ns weakly safef and only
if min y > 0 where:

vi Yax <y Svi=1 Viell.vie{0,1} (%,...%)€F YeER
ieZ| |t1; X ieZ| i i . X

Proof. (=) By contradiction assume thatiny < 0. Hence there exists an actiah such that
vi=1Viel,i#jv=0andy= 3t at'j %; < 0. By Lemméd 9.5 we know that builds a trace
recognisingv € .Z’(4), and the number of offers fa! in w are less than the corresponding number
of requests sincgy v al x; < 0, hencew ¢ 2U.

(<) By contradiction there exists € .2 (4) \ 20. Hence there exists an actiahthat occurs
in w fewer times as an offer than as a request. ¥Lbt the flow induced in the obvious way by
the tracew, counting the number of times each transition occurs in #ta pcceptingv. We have

Syera % <0, hence it must bainy < 0. ]
Theorem 4.14. The contract automator admits weak agreement if and onlyribix y > 0 where
viel. Zra{J X, >y (%...%,)€F YER

tje

Proof. (=) Let w be a trace in weak agreement, andxete the flow induced byv. Then by
constructionvi € I). 3ot a{j X%, > 0, hence may > 0.
(<) Follows from Lemma9J5 and the hypothesis. ]

Theorem 4.17.The principall'(4) of a contract automatord is weakly liableif and only if there
exists a transitiot = (Gs,d,qa) € T4, ;) # o such thaty; < 0, where

Ye = min {g(X) | X € Fqq, ¥ € Faqis Vi €11 zra{j (%, +¥) >0}
tje
g(%) = max {y| O € Fg,q, Vi €. zra{j(xt,. +u,)+a>yyeR}
tje

Proof. (=) By hypothesisiw; such thatvws.wiaws € £ (2) \ 20 and 3w, waw, € £ (4) N20.
Lett = (Gs,d,dq) be the transition such thé&v1d,do) —* (4,ds) — (€,dq), i.e. the principal in &
is weakly liable. We show that < 0.

Letw; from @ to s induce the flowk, while w, from s to G inducey. Sincew;ws is in weak
agreementyi € I 3y 7 &, (%; + V) = 0.

Since by hypothesis the i-th principal is liable, the fl&worresponding to the trase, is such
thatg(X) < 0. Otherwise ifg(X) > 0 we can choose a trace, sag, such thatv,aws € . (4) N2,
obtaining a contradiction. Thereforg,< g(X) < 0.
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rp—qrk-p FLp—>qqkr rp—gakp rp—-aqqktb
Fix PrePost
Mp—>qkr Np—»qta—»b

FIGURE 13. The rules of the sequent calculus for PCL. The contractydication
rules areZero, Fix andPre postwhile the others are the standards for Intuitionistic
logic.

(<) by hypothesisg < 0 and by Lemma 91X corresponds to a ruw from the initial state to
ds such that (by hypothesis agaijz.wi8ws ¢ £ (A4) N2 and3wg.wiw, € £ (A4) N2, that ist
is a weakly liable transition. ]

9.4. Automata and Horn Propositional Contract Logic. For completeness, we first define the
grammar for the full PCL, while the rules for its sequent ohls are in Figuré 13. Unless stated
differently, in what follows we only consider proofs withihe rules(weakR and(cut), which are
proved to be redundant in [13].

Definition 9.6 (PCL). The formulae of PCL are inductively defined by the followingugmar.

p = L false
T true
a prime
-p negation
pvp disjunction
pPAP conjunction
p—p implication
p—p contractual implication

The following proposition will be helpful later on.
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Proposition 9.7. Given a H-PCL formula p and the automatpp] = (Q,qo, A", A% T,F):

(1) F={d= ({«},....,{+})}, and all (d,&,¢) are such thaty = g anda is an offer;

(2) every statef = (J1,...,Jn) has as many request or match outgoing transitions as theestqu
actions prescribed byJic1 nJi;

(3) [p] is deterministic.

Proof. The first item follows immediately from Definitidn 3.3.

For the second item, we first consider the translation of lligses in the formula. By construction,
for each of them two cases are possible when consideringsequtions: eithef( A jc; aj) — b] or
[(Ajes @) — b]. In both cases we have outgoing request transitions of tie f6J' U {},a;,J’) |
Ju{j} €2} jed}. Finally by applying the associative compositizh (Definition[2.8), some
requests may be matched with corresponding offers, but waeguest can be originated.

The third item follows immediately by the translation andthg condition in Definitiof 5]1, that all
the atoms are different. ]

The following lemma shows that if an atoais entailed by a formula then there is a trace
recognised by the contract automafmj where the request corresponding to the agonifi any, is
always matched.

Lemma 9.8. Given a H-PCL formula p and an atom a in p we have:
pF ais provable impliesiw € .Z([p]) such that nca request on a occurs in w

Proof. Consider each of the conjuncts of p. If a does not appear in as the premise of an
implication/contractual implication, then the statemtoilows trivially by Definition[5.3 and by
hypothesis, since the translationais an offer action. Otherwisgalso occurs it within:

1. a conjunction, or
2. the conclusion of a contractual implication, or
3. the conclusion of an implication.

For the first two cases, by Definition 5.3, a transition lalby the relevant offexis available
in all states, so preventing a requesto appear in[p], i.e. after the product of the principals
(Definition[2.8).

For proving case 3x = Ajc;a; — a and we proceed by induction on the depth of the proof
of pi-a. It must be the case then thd it holds p - a;. We can now either re-use the proof for
cases 1 and 2 (that act as base cases), or the induction bgisotha; occurs in the conclusion
of an implication. By Definitiod 5.3 after all; are matched, the offex will be always available,
preventing a requesito appear. ]

In order to keep the following definition compact, we uskr either— or —. In addition, by
abuse of the notation we also useo operate between formulas, we wriefor an empty formula
or with a single clause, and we allow the indexing sedmdK in clauses to be empty. Finally, we
let (Ajcp@;j) o b stand forb.

Definition 9.9. Given a formulap, if from the initial state of] p] there is an outgoing offer or an
outgoing match transition with labédl we define

p if dis an offer
P'A(AzezCz— b) A (Ajesaj) ol if dis a match withg;) = b and
p/é: p:p//\(/\zezcz_”b)/\(/\jeJaj/\b)ob/

P'A (Akek & AD) A (Ajesaj) ol if dis a match withe;) = band
P A (Akek & A D) A (Ajesaj Ab)obf
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(G

.0)
b,b, o ,d,0
(.00 @ Y22 )(g}(aa )@(b,bﬂ)@

(0,b,0), (0,0,0) o (9,5,C)

FIGURE 14. The contract automatdmlice A BobA Charlie]discussed in Exam-
ple[9.11 is displayed here, where the principals are thoségoie(9, and
* = (3,0,0),(0,b,n), *x = (a,0,0),(o,b,0),(0,n,T).

We now establish a relation betwepp/d], and the contract automaton obtained by changing
the initial statefy of [p] to g, for the transition(dp,&,d) of [p]. The main idea is to relate the
formula p/a to the residual of the automatdp] after the execution of an initial transition labelled
by &, that is[p/d]. Recall that the translation given in Definitibn 5.3 yieldgatministic automata.

Lemma 9.10. Given a H-PCL formula p and the contract automafgj = (Q,qo, A", A% T,F), if
t=(qo,d,d) €T is an offer or a match transition, then?(4) = Z([p/d]) where
A=(Q,q,A A T,F).

Proof. The proof is by cases &. If @ is an offer, then by Definition 5.3 it must = go and
trivially 4 = [p/d].

Otherwise, sincé is a match action, say on atol it contains a request from, say, théh
principal and a corresponding offer from another. Theesfpr= A,k 0k contains within a clause
a; the atomb, originating the offer, as a conjunction or as a conclusiba contractual implication
(note that it cannot be an implication because we are in tii@listate), anda; also containd
originating this time the request. We now prove that the mata 2 and [p/d] have the same
initial state. Letdp = (J,...,Jn), then, sinced;) = b, the states]p andd only differ in thei-th
element, where ird;) the request actiob is not available anymore; formally;j # i it must be
dij) = do¢j) = Jj, andd) = doy \ {i}. By Definition[9.9 p and p/a differ because of the single
atomb has been removed from. By these facts and by item 2 of Proposition]5.5 the language
equivalence follows. Indeedp/d] is the product of the samf],k # i used for[p], and the
match onb of 4 leavesly, that is not reachable fromj L]

Example 9.11. Let [p] be the automaton shown in Figdrel 14, where- Alice A BobA Charlie

and the principals are those of Figlile 9. Consider mpow p/(b,b,0) = (aA ((aAc) — b) Ac)

and build[p'] = {({0,0s,0s,06}, G2, A",A°, T,Gs) } (transitions, alphabets and states are taken from
[p]). It is immediate to verify that the language [qf | is the same of p], when the initial state is

0> instead off;.

The following lemma is auxiliary for proving the next thenre Its second item is similar to
Lemma 1 in[[46].

Lemma 9.12. Let a b be atoms, [ be conjunction of atoms, with q possibly empty,. p, p, be
formulae, and € {—,—}, then
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L A . N
O Facbrp M U @raebarp
(i) if THp then VI.T,"Fp
(i) it Aier.nPitq then p....pakg

(iv) if TEAjcLnp then Vi.l Fp

Proof. To prove the first item, we proceed by induction on the depth ahd by case analysis on

the last rule applied. In the base cdsis empty, we have two cases

(1) gnon-empty omp # b: then it must be thaf = p,I"’ for somel™’ and the last rule applied id.
Trivially, A" will be empty and we have

FCnMA@ohakﬂd

(2) gempty andp = b: our hypothesis reads mid, and we build the following deduction
d

,aoch,ak aIOI I aob,abk bI
N aob,akb ¢
where ifo =— thenl” =T and<{>) =— L, otherwise ifo =— thenl” = I,b and<{> = Fix.
For the inductive step, we distinguish two cases:

(1) the last rule applied to deduce the hypothesis does molviemgqo b. Hence the rule must be
applied onp or on a formula irl". We can apply the same ruleffio(qA a) ob,at p and use the
inductive hypothesis.

(2) the last rule applied to deduce the hypothesis invodmels. There are two exhaustive cases

(a) o =—, then the last rule applied is- L and the deduction tree has the following form:

A JAYS
rq—bkq r,g—bbtp
L
rg—bkp -

Then by induction hypothesis we have

Ny Ny

r,(gAna) —batq r,(gAna) —»babkp

From the right one and a derivation trag detailed below, we build

A/
2
r(qrna) —b,abkp
I (qana) — b,akp
Az is the derivation tree:
Ay
r,(qha) —-b,akq I,(qAa) —batka
r,(qha) —»b,akFqgAa
(b) o =—, then the last rule applied Fsix and the deduction tree has the following form:
JAV] A
g—bpk-q ,g—bbk pFix
rg—bkp

Az

—L

id

AR
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Then by the induction hypothesis we have

iV A
1 2
r,(gna) —»bapkq r,(gAna) - b,abkp
From the above, we build the following
iy i
r.(@\a—baprq T, a—bapra . &,
r,(qgAna) —»b,a,pkgAa I',(q/\a)—»b,a,bl—pFix

r,(qhna) - b,atk p

For the second item, we prove a stronger fact: the last rad tesdeducé€, I’ - pis the same used
for proving ' - p. We proceed by induction on the depth of the derivationlfér p and then by
case analysis on the last rule applied.

The base case is when the axiddris applied, and the proof is immediate.

For the inductive case, we assume that for some{ule

A L A
er<> implies mo

Rather than considering each rule at a time, we group themdrtkasses: those with two premises,
and those with one premise. Below, we discuss the first cagdegha second follows simply erasing
one premise in what follows. The deduction tree in the preratsove has the following form
A/ A//
r-q TI'+Hq
Ne=p

and by applying the induction hypothesis to both the presnige conclude

N N

frrg  Trrg,
rrep
Moreover note that in this fragment no contradictions caimbreduced.
For the third item, we have a derivation tr&dor the sequenf\ic;_, pi - 9. To build a deriva-

tion treed’ for pa,..., pn - q apply the following two steps. The first step removes frbrall the

rules AL; applied to (each sub-term ofy;c; , pi, obtainingA”. Then, replace all applications of
the axiom(id) in A” of the form

d

i
r»/\jeJ pj F /\jeJ Pj
with a derivation tree with = |J| leaves of the form

id
rv P1, P2, ..., Pk = pJ
and by repeatedly applying the ruleR) until we obtain the relevant judgement

r7 P1, P2, ..., Pk = /\ Pi.

icl..n

For the fourth item, we have a derivation tedéor the sequent - Aic(1 ny Pi-
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For each sequentt p;, j € {1...n}, the derivation tree is then:

id
A Pjs Aiegr.n¢jy PiE Pj
ALL
CEPI ANty B PiAAieqr.nnjy PiE Pj
T cut U]

Theorem 5.6. Given a H-PCL formula p we havetpA(p) if and only if[p] admits agreement.

Proof. (=) Sincept A(p) by Lemmd9.1Piv) (wherel = p) we havep I- a for all atomsa in p.
It suffices to apply Lemma 9.8 to each of these atoms, and byiibefi[5.3 the offers are never
consumed, there must be a trace Z([p]) where all the requests are matched.

(<) Let qp be the initial state of p] and f be the final state. We proceed by induction on the
length ofw.

In the base case is empty, hence the initial state §p] is also final. This situation only
arises when the second rule of Definitjon|5.3 has been apialieall conjunctsa; corresponding to
principals. Therefore it must be thptis a conjunction of atoms, o= A(p) and the thesis holds
immediately.

For the inductive step we hawe = aw,, and (aw,, o) — (W2,d) — (&, f). By inductive
hypothesis and Lemnfa® we havep/at A(p/d). If & is an offer by Definitio 9J9 we have
p = p/dand the thesis holds directly. Note tidip) = A(p/d) because labels a match or an offer
transition outgoing frondjp and the offer comes from the conclusion of a contractualicapbn or
a conjunction of atoms, that is unmodifiedppid . Hence since by inductive hypothegiga - A(p/
d) and since\(p) = A(p/d), proving p+ p/d entailspt A(p). This is because of the following
proof (note that there exists a longer one, cut-free) andrhai®.12(ii)

pFp/d pp/a-Ap)

pEA(p)

To provept p/d we proceed by cases according to the structurg, ¢dmitting the cases for
J = 0 for which the proof is trivial)

o if p=pP'A(AzezC— b)A(Ajesaj Ab— b') we have to prove the sequept- p/dthat reads as
(PA(N»b)A(Najab—=B)E(PA(Acz—>b)A(Na—b))
zeZ jed zeZ jed
For readability, we first determine the sequBrt (A c;aj) — b’ where
F=p.(A\cz—Db),(\ajrb) —»b
zeZ jed

from p, by applying the ruleAR, and Lemma 9.1@ii ). Then we build the following derivation,
where * is detailed below:

cut

*

id o
M Ajcsdj b Ajesdy M Ajesaj=b AR "
r?/\jEJaj l_/\jEJaj/\b rv/\jEJajvbll_b/
—L
I',/\jeja,- b

—R

ME(Ajesaj) = 0

The fragment * of the proof can have two different forms, detieg on the sef:
— if Z=0, then * is empty and the rul¢ isid
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— otherwise the fragment * consists of the two sub-derivatibalow, and the rulé> applied to

them isFix
Az

ra/\jEJ aj,bk AzezC:
id

(9.1)

rv/\jEJajvbl_b

We now show how to obtaifrz. Let A be the derivation tree fop/at A(p/d), that exists
by the inductive hypothesis. Note that simdg/d) is a conjunction wheré\,., ¢, occurs, the
following proof can be obtained by applying Lemma 4i¥2 for all c, and by combining them
with rule AR:

o 0.2)
(W?(/\ZEZCZ—»b)?(/\jEJaj — b)) F Az .
Now, in order to obtain the following from the prodf (9.2kg.i.
Ba (9.3)

(P, (AzezCz > b), (/\jeJ aj A\ b) — b/>/\j6] aj>b) F Nzez Cz
we apply Lemma9.3@ ): the left hand-side of the sequent
(p,(\cz—~b),(Aay—b)) - Ac
zeZ jed zeZ
is augmented with\ j; a;. Finally by applying Lemm&a 9.12), the formula/;;a; — b’ above
becomeg \c;aj Ab) — b/, b, obtaining [9.8).

o if p=pP A(Axek & AD) A ((Ajes@j Ab) — ') we have to prove the sequept- p/d that reads

as
(P AN aAb) A(Aajab) =B F (P A(Aanb)A(Aa —b))
keK jed keK jed
For readability, we first determine the sequert (A ;) — b, where
r=p,(/\anb),(AajArb)—b)
keK jed

from p, by applying the ruleAR and Lemma 9.1@ii ). Then we build the following derivation,

where * is detailed below:
*

id o
M Ajcsdj b Ajesdy M Ajesaj-b AR i
M Ajesdj E AjesajAb M Ajesay, b D
—L
I',/\jeJa,- Fb

—R

ME(Ajesaj) = 0

The fragment * of the proof can have two different forms, defirg on the seK:
— if K=0, then * is empty and the rul¢ isid
— otherwise the rul&) is AL2 applied to the fragment * below

d

5, Ak & AD),5, (A8 AB) = ), Ay I B
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if p=p' A(AzezCz— b)A((Ajesdj Ab) — 1) we have to prove the sequemt- p/d that reads

as
(PA(Ncz>b)A(Najab) »b)E(PA(Acz—b)A(Na —b))

zeZ jed zeZ jed
For readability, we first determine the sequert A;c;a; — b’ where
M= p/>(/\cz—» b)v(/\aj Ab— b/)v
zeZ jed

by applying the ruleAR and Lemma 9.7@ii ). Then we build the following derivation, where *

is detailed afterwards:
*

Fix —id
FOF Ay Ab - T0FD -
IX
r-o Zero
TF Ay =0

The fragment * of the proof can have two different forms, depieg on the seZ:
— if Z= 0, we have thal = p',b, (Ajc;8; Ab) — b’ and

A/
3 id
" FoFAjwa T.0ED
r,b’,/\lejaj/\bl_/\JEJaj/\b r,bll_/\JEJaJ/\b F|X
MO EAjesajAb

Since the inductive hypothesis guarantees giat- A(p/&) holds and\(p/d) is a conjunction
whereA ¢ a; occurs, by applying the reasoning of the previous case we aaerivation tree
A, for the sequent
(P.b,(Aaj b)) Ag
jed jed
As done above, by applying Lemrha 9.12 we obtain the deratieA’ for

(r",¢',b,(\ajAb) - b b))+ A a

jed jed
— if Z # 0 we obtain:
(G % ) id
(%) r0.b-Ajea TL0,bED
M Ajesj AbE Agez C; ME,bE AjesajAb Fix
F,b’l—/\jeJajAb

From the induction hypothesis, with the argument used irptiegious cases, we prove the fol-

lowing sequent
(P, (Acz=»b),(Aay»0) - Ac
zeZ jed zeZ
Now, we apply Lemm&9.12 to it, we determine the deductior) and a proof for the leftmost
sequent above

(.0, Aajab,(A\cz—b),(Aajab—b)F Ac

jed ze”Z jed ze”Z
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Just as done above, from the induction hypothesis we prevsdafuent
P.(Acz—b),(N\a) »b)F Aa
zeZ jed jed
from which we obtain the right most sequent above (***), bpling Lemmd 9.1P

(p,0,b,(/\cz—~b),(A\ajab) - b))+ A g
zeZ jed jed

o if p=p'A(Akek &AD)A(Ajesaj Ab— ') we have to prove the sequemt- p/d that reads as
(FA(Narb)A(Najab—b))E(PA(N aAb)A(Naj — b))
keK jed keK jed
For readability, we first determine the sequEnt A ;c;a; — b’ where
=p.(Aanrb),(Aajab—1b),
keK jed

by applying the ruleAR and Lemma 9.7@ii ). Then we build the following derivation, where *

is detailed afterwards:
k

ForAoanrb X Forpo
Sk Fix
r-o Zero

The fragment * of the proof can have two different forms, defieg on the seK:
— if K=0, we have = p/,b,(Ajc;a; Ab) - b and

A/
3 id
4 TPFAay THFD
[0, Ajesaj AbF Ajeyaj Ab Mo AjesajAb Fix
r,bll_/\JeJaJ/\b

Since the inductive hypothesis guarantees gHiat- A (p/&) holds and\(p/d) is a conjunction
where/\jc;a; occurs, by applying the reasoning of the previous case we aaerivation tree

A, for the sequent
(Pib,(Aaj b)) g
jed jed
As done above, by applying Lemiha 9.12 we obtain the derivatieA, for
(p’,b,(/\aj /\b) —» b/,b/) F /\aj
jed jed
— if K# 0we have thal = p/, (Axek & A D), (Ajesaj Ab) — b and

A, F,b’,bl—bld/\LZ
] r,b’k/\j@aj MokEb AR
i
r,b’,/\jejaj/\bl_/\jejaj/\b r,bll_/\je]aj/\b Ei
iX

r,bll_/\JeJaJ/\b
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Since the inductive hypothesis guarantees giat- A(p/&) holds and\(p/d) is a conjunction
where/\ jc;a;j occurs, by applying the reasoning of the previous case we aaerivation tree
A, for the sequent
(P, (A anb),(Aa— b)) - Aa
keK jed jed
As done above, by applying Lemina 9.12 we obtain the derivatieA, for

(P, (\ aAb),(Aajab) —b.b')F A a O
keK jed jed
Theorem 5.9. Let p be a H-PCL formula with no occurrence of standard ingtlimns —, then
pF A(p) if and only if[p] admits weak agreement.

Proof. (=) Straightforward from Theorem 5.6 and frahc 20
(<) Since[p] admits weak agreement there exists a trace.Z ([p]) where each request is
combined with a corresponding offer. For provipg A(p) we will prove pt+ afor all the atomsa
in A(p) and the thesis follows by repeatedly applying the miRe If a occurs within:
(1) Ajesdy: it suffices to apply the rulesLy, ALz, id;
(2) Ajesaj — a pr aholds if we prove the sequent

r(/\a—~ata
jed
that is obtained fronp  a by repeatedly applying the ruled.;, for somel" containingp and
sub-formulas op. The proof of this sequent has the following form:
. id
M (Ajesaj — @),ak Ajes @ M (Ajesaj —a),atka
M (Ajesaj—~a)Fa

We prove the sequent in the left premise, it suffices to dstabthe sequents
M, (Ajesaj — a@),al-a, for all the atomsa; of Ajc;a;. Then, the derivation proceeds by re-
peatedly applying the rulaR. We are left to prove', (Ajc;a; — a@),al- a;, which is done
by recursively applying the construction of cases (1) and Tais procedure will eventually
terminate. Indeed, at each iteratiapis either a conjunct in\,.x a (case 1) and the proof is
closed by rulgid), or a; is the conclusion of the contractual implicatigfp.x a« — a; and the
proof proceeds as in case (2) by applying the fH&). In the last case, the premise in the
left hand-side becomds, (Ack & — @j),a,8j F Arek &, SO addingg; in the left part of the
sequent. The number of iterations is therefore bound by duhgber of atoms irp.

(3) Ajesaj — bwherea b. This case reduces to one of the above two, becauledf such that
a; = a, thenamust also appear in another conjupgt; a, or in another contractual implication
Nz 8z — @, otherwise all the traces §p] would have an unmatched requestapmgainst the
hypothesis that it admits weak agreement. L]

Fix

9.5. Automata and Intuitionistic Linear Logic with Mix. We recall for completeness the full
grammar ofiLL™X,

Definition 9.13. The formulasA, B, ... of ILL™*are defined as follows:
Az=a|A' |AQA|A—-A|ARA|AGAIA|1|O|T|L
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r- rky r=A MABFYy
— Ax — Mix NegL — ®L
AFA rr'ey AL MNABFY
rN-A M-8 rA I',Bry NAEB
— ®R — oL —— —oR
rrr-AsB rr'A—Bty rN-A—B
r’-A I Ary AR (s
Cut NegR —— 1R —1L
rr'ey AL M=_1. 1+
M-y
—1R 1L —T oL
1 Miky r=T1 oA
Aty I,Bry r=A r-B
eL —&R1 —oR2
MNA®BFYy r'-AoB r’-AoB
rN-A r-B ARy rBry
— &R —&1L1 —&L2
M- A&B MNA&BFY MNA&BFY
ARy Ir-A M-y MIAARY
IL IR weakL ——coL
MI1AFYy Ir=IA MIAFy MIAFyY

FIGURE 15. The sequent calculus ftrL ™*

The full sequent calculus fdt.L™%is displayed in Figuré15. We will only consider proofs
without the ruleCut, which is redundant by [21], Theorem 24.
The following definition and lemmata are auxiliary.

Lemma 9.14. If I - Z is an honoured sequent, there exists a derivation tre€ foZ such that:

e it only uses the rules AKix,NeglL ®L,®R and— L of Figure[15;
e itis only made of honoured sequents.

Proof. Recall that we are in the Horn fragment and we only considefree proofs. Sinc& is a
positive tensor product (or empty), a simple inspectionhartles in Figurg 15 suffices to prove the
first statement. The second statement is proved bedaubéix, Negl, &L, ®R and— L introduce
no sequents with negative literals on their right hand-side L]

Lemma 9.15. Letl - Z be an honoured sequent, then:
I = Z implies[l'] admits agreement on.Z

Proof. We will prove that there exists a tragec Z([I']) made of matches and as many offers
as the literals irZ = @,y a (recall that they all are positive), or it is made by only nhets if Z

is empty. Also, note that the sequents in the proof of Z are all honoured, by hypothesis and
Lemmd 9.1#. We proceed by induction on the depth of the prbbfroZ.

In the base case, the proof consists of a single applicafitreauleAx. By Definition[5.13 one
first has an offer transition for eaehin Z, and then interleaves them in any possible order. Hence
the thesis holds trivially.

For the inductive case we proceed by cases on the last rulie@py/e assume that all clauses
(i.e. principals) inl" are divided by commas, which can be easily obtained by reglgaapplying
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the rule®L. In the following, leta be offers in correspondence with the literalén Z, we will
consider only the relevant rules as stated by Leinmd 9.14.

r- rez
. Tz Mix By induction hypothesis there existse .Z([I']) with match actions, only,
rr=z
andw; € Z([I'']) with match actions and offers in correspondence with tleedis inZ (if non-
empty). By Definitior 2.8, there existg; ¢ .Z([I]X [I']) in agreement.

Mr=A

rA-E

offers in correspondence with the literalsAn By Definition[5.13 the traces of the automaton
[A1] are all the possible permutations of the requests in casrece with the literals iA*.
The thesis follows, because there is an offer for each réqaled by Definitiorl 2.8.

NegL By induction hypothesis there existse . ([']) with match actions, and with

rABFZ
o — ®L By the induction hypothesis there exister € Z([[,AB]) =
NA®BEZ
Z([FX[A] X [B]) with offers in correspondence with the literalsdr{if non-empty). No atom
and its negation can occur A B by Definition[5.11, because it is a principal. Herféez B]

and[A, B] are the same automaton (with a different rank), and thersttefollows immediately.

r-A r'-B
e ——— ®RBy the induction hypothesis there existc £ ([']) andw € .Z([I'']) with
rr'-AsB
only match actions and offers in correspondence with tkedlis inA and inB, respectively. Now
Definition[2.8 guarantees that there exists a trac& (i’ | X [[']) in agreement.

r'-A 1Bk-Z _ _ _ _

o — L By the induction hypothesis there existsv € Z([I']) and
rrrA—-BkZ
w e Z([I'',B]) with only match actions and offers in correspondence wiéhliterals inA and
in Z (if non-empty), respectively. By Definitidn 5.1.3 the litts@ccurring inA become requests
in [A — B], in all possible ordering. The trase contains exactly the needed matching offers.

We conclude by noting that no other request is possible’{filr,[",A — B]). (]

In order to keep the following definition compact, with a kligtbuse of the notation we usgto
operate between formulas; we remove the constraints of ibefifs.11 on the indexing setsin
formulas andXy, X; andY in clauses; and we [&®,.pb — @ 4cx, a to stand for®,cx, a.

Definition 9.16. Given a Horn formulg and an offer or match transition leaving the initial state of
[p] with labeld, then define the formulp/d as:

P ®Qaex, 1 if &is an offer onc and
p=p® ®alexlu{c} a
P ® Rayex, 81O Rayex, 82 if &is a match orc and
p/a= P=P & ®aexuic 21
®a26X2u{cL} a
PO ®aex a1 ® Rpey b — ®q,ex, @ if dis a match ore and
p = p/ ® ®816X1U{C} al®
Rbevuic) P — Rapex, @2
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We now establish a relation betwepp/d], and the contract automaton obtained by changing
the initial stateqo of [p] to G, for the transition(dp,d,d) of [p]. Without loss of generality we
assume that the automaton obtained from Definftion]5.13terahinistic. If not, we first transform
the non deterministic automaton to a deterministic one.

Lemma 9.17.Given a Horn formula p and the contract automafgj = (Q, o, A",A°, T, F), ift =
(0o, d,d) €T is an offer or a match transition, the#' () = £ ([p/d]), where4 = (Q,d, A", A°, T,F).

Proof. The proof is similar to the one of Lemrha 9110. The statemdhiviis by noting that in Def-
inition [5.13 a tensor product is translated in all the pdssitermutations of actions corresponding
to the literals, and noting that ip/& we remove exactly the actions fireddnthat are therefore not
available any more in the stadie L]

The following lemma suggests that we can safely substituteiléi-set of Horn formulae and
claused™ with a single Horn formula, without affecting the corresgimg automaton.

Lemma 9.18. Letl" be a non-empty multi-set of Horn formulae, then there egistern formula p
such that:
[F]=T[pl

Proof. Immediate from Definition 5.13 (recall that we abuse the thortd. ]
We now prove the following lemma.

Lemma 9.19. Let " # 0 be a multi-set of Horn formulae and Z be a positive tensor pobar
empty. Then

[I'] admits agreement on Z impli€s- Z is an honoured sequent

Proof. By hypothesisv € Z([I']) is a trace only composed of match and offer actionZ oiwe
proceed by induction on the length of In the base case has length one. Note that it is not
possible to havev = € by the hypothesi§ # 0 and Definition 5.11L. Moreover by Definitidn 5]11
it must be thatw = & whered is a match on actioa (a Horn formula must contain at least two
principals). Hence by Definition 5.113 it must be that 0 andl = {a ® a’} wherea = a and
a’ = a* for some literala. Then we have:

For the inductive step, lat = aw, let @y and f be the initial and the final states ff], then
(8w, o) — (W2,0) = (g, T). Let p be a Horn formula such th4f] = [p] (Lemma9.IB), so it
suffices to provep - Z. By the induction hypothesis and Lemimd® we have thafp/d] admits
agreement on somé& impliesp/at Z' is honoured. To buil@ from Z’, we proceed by cases an

e if dis an offer action on ¢ we prove thpt- Z whereZ = Z’ ® c. We have the following

a AX
o (p/@)-2" ctc oR
pk(p/d)®c p/d®ckZ'®c
cut
p-Z

whereA is obtained by the inductive hypothesis and46mwe have two cases depending j@n
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— P=P ®®aexuic) & then the derivatlonW becomesmp‘x

if X; = 0 and the following otherwise

AX AX
p/ l_ p/ ®81€X1 a l_ ®816X1 a ®R AX

P, Qaex, @ P O Qgex, @ ckc
P, Qaex, &CH P Q@ Qg,ex, 8®C
p/7 ®alexlu{c} ak pl ® ®aleX1 axc
p/ X ®alexlu{c} at p/ & ®aleX1 awc
o if dis a match action we prove thpt- Z. We have the following
iy A
p-p/a p/a-z
pEZ
whereA is obtained by the inductive hypothests= Z' because is a match, and fofA’ we have
eight cases depending @n

®L

®L

cut

Amix
iy p,coctkp
- p=p ®c®ct; then the derlvatloni becomes:—
P=pece Fp/a PoCcoHci - p
Since the deduction tre&,ix will be also used later on, we keep it more general, by wriing
for p':

®L

®L

ckH cAX :
coir esk ql—qIOI ,
Amix = ? MIX
g,c,ct g

_ p = p/ ® ®a1€X1U{C} al ® (:_L
!/

_— . A
then, writing iNAmix P’ ® Qa,ex, &1 for g the derlvatlonl_i/é becomes:

Amix
p, & ®316X1U{C} ap, ctk p/ ® ®alexl a
p/ ® ®alexlu{c} a cth p/ & ®aleX1 a1

— p = p/ ® ®a2€X2U{CJ‘} a2 ® C

®L

!/

e _ JAN
then, writing iNAmix P’ ® Qa,ex, a2 for g the derlvatlonm becomes:

Drix
e ®azeX2U{ci} a,ckp® ®azeX2 &
P& ®azexzu{ci} pRCHP® ®azexz a
-p=p® ®alexlu{c} a1 ®a26X2u{0L} a

®L

®L
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/

— L A
then, writing iNAmix P’ ® Rayex, 81 @ Qamex, a2 for g the derlvatlonrr)/é becomes:

Amix
®L
p/ ® ®alexlu{c} Qe ®a26X2 a, cth p/ ® ®aleX1 Qe ®a26X2 a

p/ ® ®alexlu{c} Qe ®azexzu{ci} ak p, ® ®alexl QX ®azeX2 a2

- Pp=pPRCcO(C—o Qaex, a2)

!/

then the derivationAi becomes:
prp/d

A
p,7 C7 (C - ®612€X2 a‘2) l_ p, X ®6126X2 az
p/ ® C® (C - ®826X2 az) l_ p/ ® ®82€X2 a2
where lettingg = p/

®R

®L(x2)

Aax = ﬂ AX
andA_, is the following proof:

AX AX
ckc ®a2€X2 a - ®a26x2 a

C7 (C - ®a2€X2 a‘2) l_ ®a2€X2 a‘2
- p= p/ ® ®a1€X1U{C} a® (C - ®62€X2 a'2)

/

then, letting iN\ax 4 = P’ ® ®3,cx, a1, the derivationp%p/é becomes:

AaX Aﬂ)
P® ®aleX1 a,C, (C - ®azeX2 a2) FpP® ®alexl ae ®azeX2 a2
P& ®alexlu{c} Qe (C - ®azexz a2) Fp® ®alexl Iy ®azeX2 a

-p=p® Qayexiuict 8 ® (Qpeyuiey b — Rapex, 32)

®R
® L —twice

/

then writingg for P’ ® @q,cx, 81 ® (Rpey b — Qg ex, @2) below, the derivationll%p/a be-
comes:

Bax 82 ®R
P& ®alexl a, C, (®beYu{c} b—o ®azeX2 a2) g 2 L(XZ)
P® ®aleX1u{c} a® (®beYU{c} b—o ®azexz a2) Fq
whereq = p' ® ®a,,cx, a1 in Aax, andA . is the deduction tree below:

AX AX
ckc ®b€Yb'_®b€Yb ®R Ax

C, ®beY b ®beYu{c} b ®azexz at ®azexz a2
C, (®beYu{c} b—o ®azeX2 a2)7 ®beY b ®azeX2 a
C, (®beYU{c} b—o ®azexz a2) + ®beY b—o ®azexz a
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-p=pec® (®beYu{c} b—o Rarexe a)

A/
i — i At .
then, lettingg = p’ in Ay, the del’lvatloinp/a becomes:
Aax sz
p,c® (®beYu{c} b— ®azexz aZ) FpP® (®beY b—o ®azexz aZ)

®L
Pece (®beYu{c} b—o ®azexz aZ) Fp® (®beY b—o ®azexz aZ)

The main theorem of this sub-section has now an immediatf.pro

®R

Theorem 5.15. Given a multi-set of Horn formulale, we have that

I' = Z is an honoured sequent if and onlyfif] admits agreement on Z
Proof. By Lemmatd 9.5 and 9.119.
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