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Abstract 

EU cities are increasingly congested due to the demand and usage of motor vehicles. Future scenarios 

for EU urban centers see a modal shift in personal mobility from cars to lighter, smaller, more special-

ized and environmental-friendly alternatives. 

Electric L-category Vehicles (ELVs) are viable alternatives that can fulfill the commuter needs due to 

their small size and light-weight: by consequence the energy requirement, battery size and related 

costs can be strongly reduced respect to conventional electric cars. 

However, this modal shift must overcome one main challenge: most car drivers do not consider L-

category vehicles as a suitable option mainly due to L-vehicle dynamic limitations. To achieve that, 

the RESOLVE (Range of Electric SOlutions for L-category VEhicles) project, funded in the Horizon 

2020 framework - Green Vehicles GV5-2014 call, will develop components and systems aimed to 

meet the low cost target required for this segment. At the same time, the project will deliver an excit-

ing and attractive ELV driving experience by proposing new concepts (tilting and narrow track), 

while containing as much as possible the vehicle energy consumption. 

In this paper, the dynamics analyses carried out to develop the architecture of ELV vehicles are pre-

sented. A stability analysis of the vehicles in straight line was firstly carried out and the results were 

compared to tilting two and three-wheelers for a wide range of speed. A detailed multibody model 

was developed to simulate the steady-state behavior of the 4-wheelers during turning and to perform 

further dynamic analyses. In addition, an entire vehicle model including electrical and mechanical 

components (battery, power electronics, e-motor, driveline, etc.) was developed to assess the ELVs 

energy needs during reference and real-world driving maneuver. 

The results demonstrated the feasibility of this novel kind of vehicles, confirming the exciting driving 

experience typical of tilting vehicles, combined with comfort, low environmental impact and limited 

energy requirements. 
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1 Introduction 

Although ELV can fulfill most of the commuter needs due to their small size, light weight, low on 

board energy requirement and thus smaller batteries, their market share is still not relevant and, beside 

the low consumption achievable, have often limited handling capabilities. Within this project the driv-

ing experience is took in the outmost regards by implementing a novel vehicle architecture aimed to 

ensure an effective and enjoyable riding dynamics similar to the motorcycle one while maintaining 

limited small transversal dimension. 

This target can be achieved by implementing tilting multi-wheels architectures able to achieve a com-

pletely free roll motion, so that the wheels of each axle have the same roll angle of the vehicle frame 

maintaining all the external forces aligned with the vehicle vertical symmetry plane (Fig. 1): in this 

way no vertical load transfer is requested from left to right side. 

 

Figure 1. Roll equilibrium of tilting multi wheel vehicle 

The equal split between the two wheels in all cornering conditions guarantees the optimal usage of tire 

performances. Indeed, due to the strong non-linear behavior of road-tire adherence depending on ver-

tical load, the wheels can reach greater lateral acceleration values giving more safety margin in eva-

sive maneuvers with respect to both conventional two wheelers and ELVs. 

A similar architecture has been successfully exploited on the market thanks to vehicles with two front 

wheels like the Piaggio MP3. In the RESOLVE project, the concept will be further stressed by apply-



	

ing similar architectures to narrow four wheelers powered by electric powertrains in order to extend 

the obvious advantages also to the rear axle in order to increase static and dynamic stability and to 

allow for the investigation of advanced vehicle control functions (eg. torque vectoring). Two slightly 

different concepts for 4-wheeler tilting vehicles are considered that can be categorized in the L2e and 

L6e vehicle class. Both vehicles are designed for two people and a certain amount of luggage space. 

2 Tilting four-wheeler vehicle description 

The L2e vehicle consists of an aluminium alloy main structure that connects the front and the rear 

tilting components. The front suspension and tilting mechanism is based on a pseudo-McPherson con-

cept. The rear suspension and tilting mechanism includes two separate swing arms with integrated 

motors and gear reduction with pull type spring-dampers. A torque vectoring principle allows for flex-

ible power distribution between the two rear wheels and therefore enables the potential for investiga-

tion of innovative driving assistance functions for vehicle active safety improvement. 

The L6e vehicle consists of a metallic mainframe partly made of aluminium alloy extrusion profiles, 

steel pipes and a structural battery case. This main structure is combined with a steel tubes roll cage 

covered with panels for weather protection and with two tilting substructures on front and back axles. 

The front suspension and tilting mechanism is based on a double transversal wishbone concept. The 

rear suspension and tilting mechanism consists of two swing arms with damper linked to a central rear 

tilting bar. The traction is provided to both rear wheels by a single electric motor encapsulated in the 

mainframe with a differential gear reduction with final belt transmission. 

3 Longitudinal dynamics 

For the longitudinal modelling and simulation of the vehicle demonstrators the Modelica simulation 

language using Dymola simulation software was chosen. In this paper, for the sake of conciseness, the 

architecture considered for the simulation is the L6e one, even if an identical analysis was performed 

for the L6e vehicle. 

The demonstrator containing all the electrical and mechanical components of the vehicle is shown in 

Fig. 2. The electrical components include the traction 48V battery, the electric motors, the inverters 

and all the auxiliary modules powered by a service 12 V battery (recharged through a DC/DC con-

verter). To simplify the entire vehicle simulation the sum of the power auxiliaries (e.g. the vehicle 

control, the lights, the energy needed for 12 V system, etc.) are represented by auxiliaries module. The 

e-machine model is coupled through the transmission to the rear axle/tires. The inverter model is 



	

schematically represented, but in the entire simulation model is the inverter model integrated into the 

e-machine model. The total gear ratio of the transmission from the electric motor to the wheels is a 

sensitive design variable and was therefore modified during the simulation process in the range from 

8:1 to 28:1, verifying both acceleration and energy consumption targets on various driving conditions 

and reference cycles. 

 
 

Figure 2. Electrical and mechanical architecture of the demonstrator 1 (KTM) 

A simulation model for investigation and analysis of the demonstrator is shown in Fig. 3. The electri-

cal four-well vehicle was modelled using the libraries SmartCooling [1] and SmartPowerTrains [2]. 

The powertrain models includes a battery (Bat.), an electrical machine (MG), a transmission including 

chain (Trans.) and a rear drive model (Axle Rear) including non-linear tires. A quasi-steady state 

model of the electrical machine with integrated converter and control system is used in the simula-

tions and an idealized parametric battery model (Bat.) is used to supply the electrical machine and all 

the electrical components of the vehicle including auxiliaries (Aux.). 



	

 

Figure 3. The Dymola using Modelica simulation model of the tilting four-wheeler 

Both battery and electric motor/inverter are modeled on characteristic curves (operating maps) which 

can be easily calibrated based on measurement data or data sheets of the component manufacturer. 

The battery model consists of a constant capacitor and a constant internal resistor with a state of 

charge (SOC) estimator designed as follows: 

• if one cell is in the maximum state of charge (SOCMax) the output voltage of this cell is 

the maximum cell voltage (VCellMax); 

• if the cell is discharged to the minimum state of charge (SOCMin) the output voltage of 

this cell is the minimum cell voltage (VCellMin). 

As a consequence, the instantaneous output voltage level of the battery is associated with an instanta-

neous SOC. Figure 4 illustrates the relation between these two quantities used for the first simulation 

run. 



	

 

Figure 4. Relation between open source voltage and discharged capacity of the used cell at 
3A discharge current 

In order to effectively assess the vehicle performances depending on different driving styles and con-

ditions, the following cycles have been considered: a) New European Driving Cycle (NEDC), b) Ar-

temis, c) Worldwide Motorcycle Test Cycle (WMTC) and d) full load. Since the maximum vehicle 

speed is 45 km/h, the parts of the driving cycles which overcomes this speed values has been reduced 

to the maximum allowed speed of the demonstrators, as represented in Fig. 5 for WMTC. 

 

Figure 5. Part 1 of the Worldwide Motorcycle Test Cycle (WMTC), limited velocity 

The same driving scenarios are simulated under all driving cycles by analyzing the sensitivity of ener-

gy consumption depending on both mass and gear ratio variations. 

More than 300 simulation scenarios have been considered and analysed to identify the best gear ratio 

considering both energy consumption and acceleration performances of the vehicle. The analysis 



	

shows that the best gear ratio of the transmission is in the range between 12 and 13. In Fig. 6a and 

Fig. 6b the analysed and described simulation results for the road-slopes 5% and 10% are depicted. 

 

  

(a) (b) 

Figure 6. Acceleration performances and energy consumption for road-slope 5% (a)  
and 10% (b). 

4 Lateral dynamics 

In order to simulate the dynamic behaviour of the vehicle two different approaches were used: 

• a numerical stability analysis of the tilting four-wheelers running in straight line at 

constant speed performed through a simplified model aimed at computing the vehicle 

eigen-modes; 

• a multibody analysis including steady state and transient maneuvers (e.g. steering pad, 

double lane change, slalom etc.) performed using a specifically developed virtual rider. 

4.1 Stability analysis of the rigid vehicle 

The model developed for the stability analysis is shown in Fig. 11. It is composed of 23 rigid bodies, 

the suspension are assumed as infinitely rigid elements as well as the tire are modelled as rigid lentic-

ular rings. The rider, which is not represented, is rigidly fixed to the main frame and the global center 

of gravity of the vehicle is assumed to be invariant in a vehicle reference frame. 

 



	

 

Figure 7. Stability analysis model and state variables. 

Since the vehicle is equipped with front and rear tilting mechanisms, even if the suspensions are as-

sumed as rigid, the model roll motion is still one degree of freedom for the system. 

Five state variables fully describe the state of the model state which are: 

• longitudinal (u) and lateral (v) speed of the projection of the center of gravity on the road 

(point N); 

• yaw velocity of the main frame (r); 

• steering angle δ; 

• roll angle φ. 

Nine dynamic equilibrium equations were derived from the simplified model, along with four tire 

lateral constitutive equations (linear behaviour with respect to slip angle and camber) and eight con-

gruence equations which relate the front and rear camber and slip angles and the inclination of the 

front and rear tilting mechanisms with the model state variables. 

After suitable substitutions the system was linearized and written in the state space form and the ei-

genvalues and eigenvectors of the state matrix were computed for different longitudinal speed values 

in the range 0–40 m/s. 

Figure 9 shows the real and imaginary parts of the most significative eigenvalues of the dynamic ma-

trix. 



	

The capsize mode [3, 4], which represent the vehicle fall aside, is non-oscillatory in the entire investi-

gated range since its associate eigenvalues is always real and greater than zero, that means that the 

mode is unstable in the whole investigated speed range. The weave mode, which consists in a counter-

phase oscillation of the steering wheel and the main frame, is characterized by two different real ei-

genvalues at very low longitudinal speed (non-oscillatory behavior) and two complex-conjugate ei-

genvalues (oscillatory behaviour) at higher longitudinal speed; the eigenvalue is stable since the real 

part of the eigenvalues is always negative and the oscillation frequency is in the range 0–1.5 Hz. The 

wobble eigenvalue, which consists in the oscillation (frequency 0–4.5 Hz) of the handlebar along the 

steering tube, in almost all the considered longitudinal speed range and becomes unstable at about 38 

m/s: this value is way higher respect to the maximum allowed speed of the demonstrators. At very 

low speed, two different real eigenvalues were found which becomes two complex-conjugate eigen-

values at about 5 m/s. Finally, the rear wobble is a non-oscillatory and it is strongly stable in the 

whole considered longitudinal speed range and for this reason it is usually not deeply investigated in 

the literature [5]. 

The trend of the eigenvalues is similar to the ones already found for similar two and three wheelers 

[6]. The unstable eigenvalue related to the capsize exists, in different speed range, for every tilting 

vehicles and it is usually stabilized by the rider action. 

4.2 Stability analysis of the tilting mechanism 

Besides the analysis of the rigid vehicle eigenmodes, the suspension systems oscillations were consid-

ered separately. Indeed, once the right values of the spring and damping values of the front and rear 

shock absorbers were found considering classical ride dynamics [5, 7], additional possible oscillations 

arose, which do not exist in two-wheelers. 

 

Figure 8. Real part (a) and imaginary part (b) of the eigenvalues of the rigid vehicle. 



	

Figure 9a shows a simplified representation of the front tilting mechanism [8], which is composed by 

the front wheels, the inferior A-arms, the shock absorbers and the superior tilting lever which is linked 

to the main frame trough a revolute joint. The mechanism is schematically summarized in Fig. 9b 

where a 3 degrees of freedom equivalent plane system is represented. The upper lever, which has iner-

tia Jy computed about the rotation axis, can rotate by the angle θ and the translation of the wheel 

masses m (which also includes the equivalent mass of the inferior A-arms) are related to the state var-

iables y1 and y2. The shock absorbers stiffness and damping, k and c respectively, are assumed con-

stant and are obtained through the vehicle ride analysis (omitted). 

 

Figure 9. Tilting mechanism scheme (a) and model (b). 

The dynamic equations were linearized considering the tilting mechanism in the central position and 

the eigenvalues and eigenvector were computed. The results, in terms of natural frequency and damp-

ing of each eigenmode, are shown in Fig. 10, as a function of the inertia of the tilting lever Jy . 

Three natural modes can be identified which are ascribable to: 

• Mode 1 rotation of the tilting lever and wheel masses fixed (red line); 

• Mode 2 in-phase bounce of the wheel masses and tilting lever fixed (blue line); 

• Mode 3 out of phase bounce of the wheel masses and rotation of the tilting lever (green 

line). 

Mode 2 is, obviously, independent from the tilting lever inertia, since the body does not move. On the 

other hand, the tilting lever inertia influences the remaining two natural modes. In particular, if the 

inertia is low, the Mode 1 is over damped but the Mode 3 is almost not damped. This is due to the fact 

that, with low tilting lever inertia, the wheel masses have anti-symmetric displacement and the shock 



	

absorber are not compressed since the tilting lever rotates in-phase with the wheels displacement. On 

the contrary, if the inertia is increased, the Mode 1 becomes oscillatory, even if it is strongly damped, 

and the Mode 1 is fairly damped: in this case, the rotation of the tilting lever and the anti-symmetric 

displacement of the wheel masses are not in phase and the damping element of the shock absorbers 

can actually dissipate energy. 

 
Figure 10. Natural modes of the tilting mechanism: frequency (a) and damping (b). 

This analysis, even if performed with a simplified model, shows a possible issue of the tilting four-

wheeler vehicles which does not exist in two wheelers and has to be taken into account to correctly 

design the tilting mechanism, in order to prevent undamped oscillations. 

4.3 Multibody simulations 

A multibody model of the vehicle was developed in MSC.Adams View environment. The model is 

made up of 32 rigid bodies connected through revolute, spherical and translational joints and it has 17 

degrees of freedom, which can be ascribed to: 

• three translations and three rotations of the whole vehicle assumed as a unique rigid body; 

• four rotations of the wheels along their axis; 

• four independent translations of the suspensions; 

• two rotations of the tilting mechanism; 

• one rotation of the handlebar along the steering tube. 



	

The rider is assumed as a rigid body fixed to the main frame, the shock absorbers are modelled as 

constant stiffness and constant damping elements and the tire have radial compliance and non-linear 

longitudinal and lateral characteristics based on Pacejka model. 

A virtual rider was implemented to reproduce the actual rider behaviour and was based on two inde-

pendent controller [9]: the speed follower for the longitudinal dynamics and the roll follower for the 

lateral dynamics. In particular, the speed follower law, for each wheel, was determined on the basis of 

the following equations 

 

where T21 and T22 are the rear left and rear right wheel traction torque respectively, c1 and c2 are con-

troller parameters, ut(t) is the target speed profile and u(t) is the actual longitudinal speed of the vehi-

cle. The additional term k(t) can be added to a wheel and subtracted from the other without affecting 

the longitudinal dynamics of the vehicle. This term can be a very important peculiarity of four-

wheelers and can be actively controlled in order to obtain desired yaw control, as in cars, or to prevent 

vehicle fall. Indeed, as it is discussed below, due to tilting mechanisms equilibrium, the longitudinal 

forces affects also the vertical loads on the wheels. 

Concerning the roll follower, the handlebar velocity 𝛿𝛿 was determined as follows 

 

where k1, k2 and k3 are controller parameters, 𝜙𝜙𝑡𝑡(𝑡𝑡) is the target roll angle profile and 𝜙𝜙(𝑡𝑡) is the roll 

angle of the main frame. 

 

Figure 11. Multibody model in MSC.Adams View environment. 



	

Figure 12 shows the results related to a manoeuvre composed by the vehicle acceleration from 0 to 30 

km/h followed by a slalom. The vehicle accelerates up to the target speed in about 7 s (the accelera-

tion time can be changed acting on the constants c1 and c2) and then keeps constant speed. Starting 

from t=10 s the slalom manoeuvre begins: the actual roll follows the target roll profile with a delay of 

about 0.1 s and the steering wheel angle, which is computed integrating the law given in Eq. 3, is al-

most in counter-phase. This is a very important result: indeed, as already discussed in [9], the roll (and 

trajectory) of a tilting vehicle is not related, by an almost in-phase constant, to the steering input as it 

happens in cars. 

Finally, Fig. 13–15 shows the results obtained in a constant speed (45 km/h) rightward steering pad 

manoeuvre where the target roll angle was assumed 30◦ and different constant values of k(t) (see Eq. 

1–2) were imposed (i.e. zero, positive and negative). In particular, Fig. 13 shows the vertical loads on 

each tire, the target and actual roll angle and the steering angle during steering pad manoeuvre. Since 

the tire load are not statically determined, a load transfer is measured mainly on rear wheel, where the 

vertical load on the external wheel is higher than the one on the internal wheel. On the other hand, 

almost no load transfer is measured at front wheels. The steering wheel angle is initially leftward 

(counter-steering) and then rightward, as it happens in all tilting vehicle. This is a promising results 

since the driver probably will not perceive differences from classic tilting two-wheelers during normal 

ride. 

  

 (a) (b) 

Figure 12. Vehicle speed (a) and vehicle roll (target and measured) along with steering 
angle (b) during acceleration and slalom manoeuvre. 



	

  
 

(a) (b) 
 

 
 

(c) 

Figure 13. Vertical loads on wheels (a), target and actual roll angle (b) and handlebar angle 
(c) during steering pad manoeuvre – k(t)=0. 

Fig. 14 shows the same manoeuvre performed with a constant positive k(t) value superimposed to the 

longitudinal dynamics controller (Eq. 1–2). The effect of k(t) does not affect neither the longitudinal 

speed (not represented) nor the roll angle but influences both the load transfer and the steering wheel 

angle. In particular, in this case the load transfer is increased with respect to the previous manoeuvres 

and the absolute value of the steering wheel angle necessary to keep the roll angle constant is reduced, 

resulting in a yawing effect on the vehicle lateral dynamics. 

	  



	

  
 

(a) (b) 
 

 
 

(c) 

Figure 14. Vertical loads on wheels (a), target and actual roll angle (b) and handlebar angle 
(c) during steering pad manoeuvre – k = const. > 0. 

On the contrary, if k(t) is assumed constant and negative (Fig. 15), the load transfer on rear wheels is 

inverted (load higher on the external wheel) and the steering wheel angle necessary to keep the roll 

angle constant is (in absolute value) greater, resulting in a counter yawing effect on the vehicle lateral 

dynamics. 

These preliminary simulations showed the capability of the model and of the virtual rider to correctly 

reproduce different speed and roll angle profiles and highlighted some important peculiarities of tilt-

ing four wheelers. In particular, a strong bond between the longitudinal forces on the rear wheels 

(which can be controlled by the electronic differential) and the vehicle dynamics, both in terms of 

vertical loads at each wheel and rider inputs, arose which opens up the possibility of controlling the 

yaw dynamics in an active way. This can be strongly beneficial in aiding the rider in order to prevent 

otherwise uncontrollable fall events. 

	  



	

  
(a) (b) 

 

 
 

(c) 

Figure 15. Vertical loads on wheels (a), target and actual roll angle (b) and handlebar angle 
(c) during steering pad manoeuvre – k = const. < 0. 

5 Conclusions 

L-category vehicles have the potential to be one of the key technologies for future urban mobility. The 

RESOLVE GV5 project is aimed to overcome the main limitations of the conventional three-four 

wheeler L-category products in terms of costs, energy efficiency and driving performance by the im-

plementation of innovative vehicle concepts. Highly modular architectures, together with efficient 

batteries and electric drivetrain components as well as appropriate vehicle control systems will be 

used in order to develop lightweight and cost effective demonstrators. The tilting dynamic of the vehi-

cles will be the key feature able to improve the handling performances and therefore the joy of use of 

these kinds of vehicles while maintaining limited lateral dimensions. 

This paper focuses on the first steps of the virtual development of two vehicles in the L2 and L6 cate-

gory. Using longitudinal simulation techniques and different driving cycles, the key performance of 

the vehicles was evaluated and the architecture of drivetrain and transmission was optimized guaran-

teeing the best compromise between energy efficiency and acceleration performances. 

In a next step dedicated simulation models were developed to investigate the rigid vehicle stability, 

the stability of the tilting mechanism and handling behavior. The stability analysis results of the rigid 

vehicle showed a similar behavior compared to existing two and three wheelers on the market with a 

dominant unstable eigenvalue related to the capsize that is typical for all tilting vehicles and stabilized 

by the rider steering actions. 



	

A specific modal analysis of the tilting mechanism with suspension elements revealed three modes: 

(1) rotation of the tilting lever and wheel masses, (2) in-phase bounce of the wheel masses and tilting 

lever and (3) out of phase bounce of the wheel masses and rotation of the tilting lever. These modes 

are heavily influenced by the tilting architecture itself and a specific design approach must be fol-

lowed in order to prevent undamped oscillations while maintaining limited masses and dimensions for 

the vehicles. 

In the multibody simulations, a virtual rider was implemented in order to reproduce the actual rider 

behavior for investigating the vehicle kinematics and dynamics. As expected, no significant lateral 

load transfer was found while cornering on the two front wheels, but the strong influence of the trac-

tion forces on the rear vertical loads allows for promising future developments in terms of control 

strategies for an active differential system. 

The simulation results obtained in this phase of the project will guide the definition of the final vehi-

cle architectures for the two demonstrators: parts and components will be engineered and integrated in 

the vehicle concepts. A final phase of experimental testing will be performed on the two full scale 

prototypes and the results will be used in order to validate and, eventually, finely tune the simulation 

driven engineering approach. 
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