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Abstract

A comparative study of different models and identification techniques applied to the quantification of valve stiction in industrial
control loops is presented in this paper, with the objective of taking into account for the presence of external disturbances. A
Hammerstein system is used to model the controlled process (linear block) and the sticky valve (nonlinear block): five different
candidates for the linear block and two different candidates for the nonlinear block are evaluated and compared. Two of the five
linear models include a nonstationary disturbance term that is estimated along with the input-to-output model, and these extended
models are meant to cope with situations in which significant nonzero mean disturbances affect the collected data. The comparison
of the different models and identification methods is carried out thoroughly in three steps: simulation, application to pilot plant
data and application to industrial loops. In the first two cases (simulation and pilot plant) the specific source of fault (stiction
with/without external disturbances) is known and hence a validation of each candidate can be carried out more easily. Nonetheless,
each fault case considered in the previous two steps has been found in the application to a large number of datasets collected from
industrial loops, and hence the merits and limitations of each candidate have been confirmed. As a result of this study, extended
models are proved to be effective when large, time varying disturbances affect the system, whereas conventional (stationary) noise
models are more effective elsewhere.

Keywords: Control loop performance monitoring, stiction quantification, Hammerstein system identification, disturbance
estimation

1. Introduction1

Oscillations in control loops cause many issues which can2

disrupt the normal plant operation. Typically fluctuations in-3

crease variability in product quality, accelerate equipment wear,4

move operating conditions away from optimality, and gener-5

ally they cause excessive or unnecessary energy and raw mate-6

rials consumption. The common sources for oscillatory control7

loops can be found in poor design of the process and of the8

control system, e.g. choice and pairing of controlled and ma-9

nipulated variables, from one hand. From another hand, poor10

controller tuning, oscillatory external disturbances, and control11

valve nonlinearities such as stiction, backlash and saturation,12

are frequent causes of excessive loop oscillations. Therefore,13

control loop monitoring and assessment methods are recog-14

nized as important means to improve profitability of industrial15

plants. An effective monitoring system should, first of all, de-16

tect loops with poor performance. Then, for each faulty loop,17

it should indicate the sources of malfunction (among possible18

causes) and suggest the most appropriate way of correction.19

Among actuator problems, valve stiction is said to be the20

most common cause of performance degradation in industrial21

loops [2]. An extensive characterization of this phenomenon22

was firstly given in [3]. Two kinds of models are commonly23

IA preliminary version of this paper has been presented in [1].

used to describe stiction: models derived from physical prin- 24

ciples and models derived from process data. Physical models 25

are more accurate, but owing to the large number of unknown 26

parameters, they may not be convenient for practical purposes 27

[4, 5]. This is the main reason why data-driven models are typ- 28

ically preferred [3, 6, 7, 8, 9]. 29

A review of a significant number of stiction detection tech- 30

niques recently presented in the literature is reported in [2]; 31

among them: cross-correlation function-based [10], waveform 32

shape-based [7, 11, 12, 13, 14, 8, 15], nonlinearity detection- 33

based [16], and model-based algorithms [17]. In [2] a compari- 34

son of performance is also presented by applications on a large 35

benchmark (93 loops) of industrial data. 36

Following their conclusions, research on stiction modeling 37

and detection (i.e. confirmation of its presence) has to be con- 38

sidered a mature topic, even if it may happen that different re- 39

sults are obtained once applied on the same industrial dataset, 40

owing to complexity and superposition of different phenom- 41

ena. Stiction quantification instead has to be regarded as an 42

area where research contributions are still needed. The main 43

difficulty in quantifying the amount of stiction arises from the 44

fact that the valve stem position (MV) is not measured and 45

recorded in many (old designed) industrial control systems [18], 46

and then it must be reconstructed from available measurements 47

(controlled variable, PV, and controller output, OP) by using a 48

data driven stiction model. 49
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In stiction quantification techniques, the control loop is of-50

ten modeled by a Hammerstein system: a nonlinear block for51

valve stiction, followed by a linear block for the process. This52

approach was firstly used in [19] along with a one parameter53

stiction model given in [6]. However this method may not54

capture the true stiction behavior since the nonlinear model55

is not always very accurate. Subsequently, other techniques56

have been proposed [20, 21, 22, 23]. A specific linear model57

was used in [17], which also accounts for nonstationary distur-58

bances entering the process. The control loop was modeled as59

a Hammerstein-Wiener structure also in [24]. More recently,60

a technique based on harmonic balance method and describ-61

ing function identification was proposed in [25]. A simplified62

method based on a new semi-physical valve stiction model was63

illustrated in [26].64

A recent paper by the authors [18] pointed out that, while65

simulation is the first necessary step to check mathematical con-66

sistency of a proposed identification technique, its validation67

on a single set of industrial data can be pointless due to the68

superposition of unknown effects, such as nonstationary distur-69

bances. As a confirmation, results obtained by different quan-70

tification techniques can be very inconsistent once applied on71

the same set of industrial data (as it happened in benchmark72

presented by [2], Chp. 13). To overcome this problem, it is73

suggested in [18] to repeat stiction estimation for different data74

acquisitions for the same valve, in order to follow the time evo-75

lution of the phenomenon and to disregard anomalous cases76

(outliers). The comparison of reasonable values of stiction with77

predefined acceptable thresholds allows one to schedule valve78

maintenance in a reliable way (on-line stiction compensation is79

also an alternative, though not very popular in industry).80

Following the above considerations, this paper represents a81

continuation of the work reported in [18], and addresses the82

following new objectives: i) to compare some different identifi-83

cation techniques (of the linear model in the Hammerstein sys-84

tem) when applied on the same dataset; ii) to show how exter-85

nal nonstationary disturbances can influence stiction estimation86

and system identification. Both aspects were not considered in87

the methodology presented in [18] where a single (ARX) model88

structure and a single identification technique were considered,89

and nonstationary disturbances were not modeled. Preliminary90

results of this study were reported in [1]1.91

The remainder of this paper is organized as follows. In Sec-92

tion 2, five different models and identification methods of the93

linear block (in the Hammerstein system) and two models for94

the stiction nonlinearity are illustrated. The merits of each95

model and identification method are firstly assessed in simula-96

tion in Section 3, and then validated in a pilot plant in Section 4.97

Section 5 is dedicated to applying and evaluating the different98

techniques to several industrial data sets. Finally, conclusions99

are drawn in Section 6. 100

1The present paper extends these previous results in an application-oriented
direction. Different simulation examples and new datasets of pilot plant are now
illustrated, and, mostly, results obtained from several registrations of industrial
control loops are shown.

Figure 1: Hammerstein system representing the (sticky) control valve followed
by the linear process, inserted into the closed-loop system.

2. Hammerstein system: models and identification method 101

In this work, the control loop is modeled by a Hammer- 102

stein system as depicted in Figure 1. Two well-established stic- 103

tion models are used to describe the nonlinear valve dynamics: 104

Kano’s [7] and He’s [8] model. Five different models describe 105

the linear process dynamics: ARX (Auto Regressive model 106

with eXternal input), ARMAX (Auto Regressive Moving Aver- 107

age with eXternal input), SS (State Space model), EARX (Ex- 108

tended Auto Regressive model with eXternal input), EARMAX 109

(Extended Auto Regressive Moving Average with eXternal in- 110

put, [27]). 111

2.1. Nonlinear stiction models 112

In Kano’s stiction model [7], the relation between the con- 113

troller output (the desired valve position) OP and the actual 114

valve position MV is described in three phases (Figure 2): 115

I. Sticking: MV is steady (A-B) and the valve does not move, 116

due to static friction force (dead-band + stick-band, S). 117

II. Jump: MV changes abruptly (B-C) because the active 118

force unblocks the valve, which jumps of an amount J. 119

III. Motion: MV changes gradually, and only the dynamic fric- 120

tion force can possibly oppose the active force; the valve 121

stops again (D-E) when the force generated by the control 122

action decreases under the stiction force. 123

In He’s stiction model the relation between OP and MV is
slightly different and simpler [8]. The model uses static fS
and dynamic fD friction parameters and is closer to the first-
principle-based formulation. It uses a temporary variable that
represents the accumulated static force. Note that parameters
of He’s model have their equivalent in Kano’s model and vice
versa, according to the following equations (cf. also Figure 2):

{
S = fs + fd

J = fs− fd
or


fs =

S+ J
2

fd =
S− J

2

(1)

However, due to different logics, the two stiction models can 124

generate different MV sequences for a given OP and with equiv- 125

alent parameters. Note also that Kano’s and He’s models are 126

quite simple, since they imply uniform stiction parameters for 127

the whole valve span. Stiction could be really inhomogeneous, 128

having various amounts for different operating conditions (that129

2



Figure 2: Valve stiction: theoretical behavior of MV vs. OP, and graphical
representation of Kano’s and He’s model parameters.

Figure 3: Valve stiction: typical industrial behavior of PV vs. OP.

is, different OP values) and then producing complicated signa-130

tures on MV(OP) diagram. In order to overcome these limi-131

tations, recent works which implement flexible stiction models132

have been proposed [28, 29].133

Valve stiction produces an offset between controlled vari-134

able PV and Set Point SP, and this causes loop oscillations135

because the valve is stuck even though the integral action of136

the controller increases (or decreases) OP. The MV(OP) dia-137

gram shows a parallelogram-shaped limit cycle, while MV(OP)138

would be perfectly linear without valve stiction. Figure 3 rep-139

resents the PV(OP) plot for a case of flow rate control loop,140

for which the fast linear dynamics allows one to approximate141

MV(OP) with PV(OP), since MV is usually not measured. Fig-142

ure 3 shows also the signature obtained with Kano’s stiction143

model by fitting the industrial data.144

It should be recalled that also in the case of stiction, loops145

with slower dynamics (level control, temperature control) usu-146

ally show PV(OP) diagrams having elliptic shapes. Similar147

PV(OP) diagrams are obtained for other types of oscillating148

loops (external stationary disturbance or aggressive controller149

tuning), and therefore assigning causes is not straightforward.150

It is also worth saying that the value of J is critical to induce151

limit cycles [20, 21]. In addition, while S can be often easily 152

recognized on PV(OP) diagram, since limit cycles show clear 153

horizontal paths, on the opposite, the process dynamics or the 154

presence of high level noise make PV trend deviate significantly 155

from MV trend, and make J almost hidden [2] (see Figure 3). 156

Finally, note that S ' 1% is considered enough amount of 157

stiction to cause performance problems [2]. Increasing the 158

amount of stiction (associated to the ratio S/J), the amplitude 159

and the period of oscillation of OP and PV signals increase sig- 160

nificantly, thus leading to particularly poor performance. For 161

these reasons, being able to quantify and predict the evolution 162

of stiction in time is important in order to schedule maintenance 163

action on more critical valves. 164

2.2. Linear process models 165

The linear part of the Hammerstein system has one of the 166

following structures, in discrete-time form. 167

• ARX:
A(q)yk = B(q)vk−td + ek (2)

where vk and yk are the linear process input and output
(that is, MV and PV respectively); A(q) and B(q) are poly-
nomials in time shift operator q (i.e. such that qvk = vk+1),
and given as:

A(q) = 1+a1q−1 +a2q−2 + ...+anq−n

B(q) = b1q−1 +b2q−2 + ...+bmq−m
(3)

where ek is white noise, td is the time delay of the process, 168

(n,m) are the orders on the auto-regressive and exogenous 169

terms, respectively. 170

• ARMAX:

A(q)yk = B(q)vk−td +C(q)ek (4)

where A(q) and B(q) are defined in (3), whereas:

C(q) = 1+ c1q−1 + c2q−2 + ...+ cpq−p (5)

in which p is the order of the moving average term. 171

• SS:

xk+1 = Axk +Bvk +Kek

yk = Cxk + ek
(6)

where A ∈Rn×n, B ∈Rn×1, C ∈R1×n, K ∈Rn×1, and n is 172

the model order. 173

• EARX:
A(q)yk = B(q)vk−td + ek +ηk (7)

where ηk is a time varying bias representing the additive 174

nonstationary external disturbance, to be estimated along 175

with the polynomials A(q) and B(q) (see Figure 1).176

• EARMAX:

A(q)yk = B(q)vk−td +C(q)ek +ηk (8)
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2.3. Hammerstein system identification177

The proposed stiction quantification techniques are based on178

a grid search over the space of the nonlinear model parameters.179

The computational time of the methodology may be long, but180

it does not represent a disadvantage for three main reasons: the181

procedure is oriented toward an off-line application which re-182

quires data registered for hours, the wear phenomena in valves183

occur slowly (weeks or months), and valve maintenance usually184

occurs periodically on the occasion of a plant shutdown.185

In details, the system identification is carried out according186

to the following procedure. (i) A 2-D grid of stiction parame-187

ters (S,J) is built; for each possible combination of (S,J), MV188

signal is generated from (measured) OP using Kano’s model.189

For He’s model, MV is generated using the corresponding pa-190

rameters ( fs, fd) according to (1). (ii) Coefficients of the linear191

models are identified using different techniques on the basis of192

(generated) MV and (measured) PV sequences.193

The overall model fit is quantified by FPV :

FPV = 100 ·
(

1− ‖PVest −PV‖2

‖PV −PVm‖2

)
(9)

where PV , PVm and PVest are vectors containing values of the194

measured output, measured output average and estimated out-195

put sequences, respectively. The symbol ‖ · ‖ denotes the Eu-196

clidean norm. Thus, for each considered linear model, the op-197

timal combination of (S,J) is computed as the one that maxi-198

mizes the fitting index FPV .199

Note that the stiction parameters grid has a triangular shape,200

since fs ≥ fd ≥ 0 (or S ≥ J). Thus, overshoot stiction cases201

(J > S) are excluded; actually waveforms generated for these202

combinations are rarely observed in practice. The largest value203

of S (and J) is the OP oscillation span. Therefore, under bound-204

ary conditions, when S = J = ∆OP (the span of OP), the valve205

jumps between two extreme positions, generating an exactly206

squared MV signal. Note that computational time is roughly207

halved by the use of a triangular-shaped grid.208

ARX model coefficients are identified by least-squares re-209

gression. SS model coefficients are estimated using a subspace210

identification method, the PARSIM-K technique [30]. AR-211

MAX, EARX and EARMAX models are identified using the212

recursive least-squares (RLS) identification algorithm proposed213

(for EARMAX model) by [27]. For EARX and EARMAX, a214

decoupled parameter covariance update procedure with variable215

forgetting factors is developed to identify the process parame-216

ters and the bias term [27]. To the best of the authors’ knowl-217

edge, this is the first time that a SS model and an EARX model218

are used for Hammerstein system identification applied to valve219

stiction estimation.220

2.4. Specific issues in identification of the Hammerstein stic-221

tion and process system222

It is worth to underline that the exact stiction estimates de-223

pend on several issues. In addition to some general aspects224

(e.g., the dataset used in identification, choice of loss function,225

identification algorithm), in the case of Hammerstein system 226

Figure 4: Ambiguity in the nonlinear model initialization (data of CHEM 10,
benchmark of [2]).

identification with grid search algorithm, also the following is- 227

sues are important: type, order, and time delay of the linear 228

(process) model; type of the nonlinear (stiction) model; step 229

size of the grid. Only some of these aspects will be analyzed 230

hereinafter in the text. 231

Moreover, the way in which the stiction model is initialized 232

must be attended. This issue could seem a negligible aspect, 233

but in reality, as it has been verified by a large number of sim- 234

ulations and applications, it is an important point, as discussed 235

next and in the application results. In particular, the identifica- 236

tion results can be sensitive to the initialization of the Kano’s 237

model. On the opposite, the He’s model does not present these 238

problematics. 239

Given an OP sequence and fixed (S,J) parameters, differ- 240

ent MV sequences can be produced, simply by changing the 241

initial values of the auxiliary parameters of the Kano’s model: 242

us,stp,d [7]. Figure 4 shows that, for the same triangular OP 243

wave, given a combination of stiction parameters (S = 1,J = 244

0.5), four different MV sequences can be generated using dif- 245

ferent values of stp and d. Only after several samples, all MV 246

sequences coincide perfectly with each other. 247

This stationary time depends on the specific OP sequence 248

and the (S,J) combination. Therefore, during the identification 249

procedure, three choices are possible for the initialization of 250

Kano’s model states: 251

In.1 The auxiliary variables are initialized arbitrarily, the same 252

for each combination; 253

In.2 A threshold stationary time is fixed a priori and an average 254

MV sequence is considered after this time; 255

In.3 The stationary time is computed for each (S,J) combina- 256

tion and only the steady sequence of MV is considered. 257

According to the results of extensive simulations that have been 258

carried out, the third (or at least the second) choice should be 259

preferred.260
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3. Simulation study261

The objective of this section is to investigate the impact of262

different factors on the effectiveness of the methods to yield263

accurate estimation. To this aim, simulation results are pro-264

vided to describe the capabilities of the compared algorithms265

for Hammerstein system identification. The systems are simu-266

lated in closed-loop operation, which is known to be a difficult267

task as compared to open-loop identification, because of the268

correlation between process noise and input sequences. OP and269

PV sequences are used without any filtering in the identification270

methodologies, which fall under the class of direct identifica-271

tion techniques.272

3.1. Effect of stiction and disturbance amount273

Firstly, the impact of stiction and external disturbance
amount is investigated. The following ARMAX process, with
(n,m, p) = (3,3,3) and subject to an external disturbance, is
considered in discrete-time form:

yk = 0.5215yk−1−0.0590yk−2 +0.0009yk−3

+0.2836uk−1 +0.2442uk−2 +0.0088uk−3

+ ek +0.5ek−1 +1.0ek−2−1.0ek−3 +ηk (10)

where ηk is the external (unmeasured) disturbance given by:

ηk = a
(
sin(0.03 k)+0.5sin(0.07 k)

)
(11)

with a≥ 0. Stiction parameters are varied to cover a wide range274

of phenomena (S ∈ [1, 12], J ∈ [0.5, 4]) using Kano’s model.275

The stationary disturbance {ek} is a normally distributed white276

noise signal with standard deviation σe = 0.1. The process is277

in closed-loop with a Proportional-Integral (PI) controller hav-278

ing the following transfer function CPI(q) = Kc +
KI

1−q−1 , with279

proportional gain KC = 0.5 and integral gain KI = 0.5 (values280

which allow stable response with acceptable performance).281

The system is excited by introducing a random-walk signal,
as controller set-point, which varies as follows:

SPk =

{
SPk−1 +∆(R2k−0.5) if R1k > 1−δsw

SPk−1 otherwise
(12)

where ∆ is a positive scalar, δsw is the average switching prob-282

ability and R1k, R2k are two random numbers drawn, at time k,283

from a uniform distribution in [0,1]. For simulation purposes,284

the following parameters have been set: ∆ = 2 and δsw = 0.05.285

This type of set-point is thought to reproduce an industrial sce-286

nario of a control loop with variable reference commanded by287

a higher-level Model Predictive Controller.288

One hundred Monte-Carlo simulations are carried out, using289

different realizations of white noise {ek}, for each set of stiction290

parameters and disturbance amplitude. The orders and the time291

delay of the linear process models are fixed a-priori in perform-292

ing identification steps, namely td = 0, (n,m) = (2,2) for ARX293

and EARX, (n,m, p) = (2,2,2) for ARMAX and EARMAX,294

n = 2 for SS. Therefore a little mismatch in the orders of the295

linear part is present. Conversely no structural error is present 296

in the nonlinear part: Kano’s model is also used to generate MV 297

sequences. 298

The first two-thirds of data are used as identification data set; 299

the last third of data is used as validation set in order to test the 300

models previously identified. As in (9), a fitting index for the 301

estimation data set, F(id)
PV , and for the validation data set, F(val)

PV , 302

can be defined. 303

The linear model fit is quantified by the scalar EG given as:

EG = 100 ·
(

1− ‖Gest(z)−G(z)‖∞

‖G(z)‖∞

)
(13)

where G(z) and Gest(z) are the true process and the identi- 304

fied model discrete-time transfer functions, respectively, and 305

‖g(z)‖∞ = maxω∈[0,2π] |g(eiω)|. 306

The nonlinear model fit is quantified by FMV :

FMV = 100 ·
(

1− ‖MVest −MV‖2

‖MV −MVm‖2

)
(14)

where MV , MVm and MVest are vectors containing values of 307

the actual valve position, average actual valve position and the 308

estimated valve position. 309

Figure 5 shows a summary of the results for the case of 310

a = 0 in (11), that is, when valve stiction is the only source 311

of loop oscillation. Top panels show the various simulated stic- 312

tion cases (S,J) and the corresponding estimated parameters 313

(Sid ,Jid). Bottom panels show the values of the fitting indices 314

EG and F(val)
PV using the different proposed techniques. Figure 6 315

shows a summary of the results for the case of a = 0.25 in (11), 316

that is, when an external disturbance acts simultaneously with 317

valve stiction. 318

It can be clearly seen that, in the case of pure stiction oscil- 319

lation ARX, ARMAX and SS models ensure a more accurate 320

stiction estimation and, mostly, perform a better linear model 321

identification: EG values are higher. On the other hand, in the 322

presence of external disturbance, the stiction parameters and 323

the linear model identified using EARMAX and EARX are of 324

higher accuracy as compared to the other identification tech- 325

niques: EG and F(val)
PV values are higher. Moreover, the little 326

mismatch in the orders of the linear model does not sensibly 327

affect the results. 328

Note that, both in the case of only stiction and in the case 329

of additive disturbance, a worse model identification arise be- 330

cause J is not perfectly estimated, whereas S is always well es- 331

timated. Higher values of F(val)
PV are obtained for higher values 332

of S. When the amount of stiction increases (that is, the ratio 333

S/J), the amplitude of oscillation increases. Therefore, since 334

the stationary disturbance {ek} has the same standard deviation 335

for each simulation, the higher is stiction, the lower is the noise- 336

to-signal ratio. Anyway, noise-to-signal ratio is significant for 337

all the considered simulations, by ranging in the following in- 338

terval: NSR ∈ [5, 25%]. 339

The effect of magnitude of the external disturbance (η) is 340

further evaluated. The same linear process of (10) is studied, 341

and valve stiction is described by Kano’s model with S = 5 and 342

J = 2. The external disturbance is as in (11) with a ∈ [0, 1].343

5



Figure 5: Simulation example: identification results in absence of the external
disturbance (a = 0). Top panel, left: Sid vs S, right: Jid vs J; bottom panel, left
EG vs. S, right F(val)

PV vs. S.

Figure 6: Simulation example: identification results in the presence of external
disturbance (a = 0.25). Top panel, left: Sid vs S, right: Jid vs J; bottom panel,
left EG vs. S, right F(val)

PV vs. S.

Overall, 10 different values of magnitude of disturbance are344

considered, that is, 10 different combinations of the two sinu-345

soidal waves that form η . For each level of a, and for the five346

different types of linear process model, one hundred Monte-347

Carlo (MC) simulations are carried out, by using different real-348

izations of white noise {ek}. The PI controller has the following349

fixed parameters: Kc = 0.5 and Ki = 0.5. The same procedure350

of identification adopted for Figures 5 and 6 is employed.351

Figure 7 shows a summary of the results for different lev-352

els of disturbance. Top panels show the estimates of stiction353

parameters (Sid ,Jid), while bottom panels show values of the354

fitting indices (EG and F(val)
PV ) for different values of a. It can355

be clearly seen that the higher is the amplitude of disturbance,356

the lower is the identification accuracy of the linear model (EG)357

and the global fitting index (F(val)
PV ). In addition, errors on stic-358

tion parameter J are registered, especially with non-extended359

linear models (ARX, ARMAX and SS), for medium-levels dis-360

turbance. When amplitude of disturbance is high, that is, a361

∈ [0.5, 1], identification effectiveness of linear dynamics is very362

low with non-extended models, but stiction estimation is any- 363

Figure 7: Simulation example: identification results for different levels of dis-
turbance a. Top panel, left: Sid , right: Jid ; bottom panel, left EG, right F(val)

PV .

way correct. Since valve input (OP) data are particularly oscil- 364

lating, and therefore informative, the proposed methodologies 365

are able to choose the correct combination of stiction parame- 366

ters even though linear model is not accurate. Note also that, as 367

expected, extended models prove to be more robust for different 368

levels of disturbance. 369

3.2. Effect of controller tuning 370

In the case of direct identification methods, as the ones pre- 371

sented in this paper, the impact of controller tuning parameters 372

on the estimation results is proved to be not particularly sig- 373

nificant. In general, an aggressive controller tuning makes the 374

input signal (OP) more oscillating and then more persistently 375

exciting for the process to be identified. Whereas, a sluggish 376

tuning produces a slowly-varying input, which is less exciting 377

for the process, and possibly less informative for any identifi- 378

cation procedure. The impact of controller tuning has already 379

been studied by [27], for the identification of a pure linear dy- 380

namics without considering the problem of valve stiction. In 381

addition, the same authors ([17], Chp. 12 in [2]), in the frame- 382

work of a Hammerstein system, considered the case of double 383

source of loop oscillation (aggressive tuning and valve stiction), 384

by showing that the estimates of stiction parameters are still ac- 385

curate. 386

In our study, good performances are possible for reasonably 387

large ranges of controller parameters around nominal values, 388

both for nonextended and extended process models. The ef- 389

fect of poor controller tuning has been analyzed, by using ex- 390

tensive simulation data and then pilot plant data. Here below 391

only the same linear process of Section 3.1 is presented. A 392

case of pure valve stiction, described by Kano’s model with 393

S = 9 and J = 3, is studied; no external disturbance (η) is 394

present. Firstly, the controller parameters are set to Kc = 1.2 395

and Ki = 1.2, which represent an aggressive tuning. Then, the 396

parameters are changed to Kc = 0.2 and Ki = 0.2, which com- 397

pose a sluggish tuning. Note that an appropriate tuning should 398

be Kc = 0.5 and Ki = 0.5. For both tuning settings, one hundred 399

Monte-Carlo (MC) simulations are carried out, by using differ- 400

ent realizations of white noise {ek}.401
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Figure 8: Simulation data with aggressive controller tuning.

Figure 9: Simulation data with sluggish controller tuning.

Figure 8 shows the results of one identification in the case of ag-402

gressive tuning, by using Kano stiction model and ARX linear403

model. Figure 9 reports results of one identification in the case404

of sluggish tuning, by using Kano stiction model and EARX405

linear model. In both cases, PV and MV signals are well esti-406

mated. Similar results have been obtained for the other linear407

process models. Indeed, Table 1 and 2 show the overall re-408

sults obtained for the two different tuning settings. Average409

estimates of stiction parameters (S̄, J̄) with corresponding stan-410

dard deviations (σS, σJ) are reported. Also average indices of411

fitting are evaluated: F̄(id)
PV , F̄(val)

PV . Therefore, good performance412

and robustness of the approaches with respect to very different413

controller tuning parameters are demonstrated.414

3.3. Discussion of results415

Main aspects and basic results of simulation study are dis-416

cussed below. Firstly, it is worth noting that computational417

times are different for each technique. The ARX model, with418

a simple algorithm of LLS identification, requires much shorter419

times compared to ARMAX, EARX, EARMAX and SS mod-420

els. There is approximately one order of magnitude: some sec-421

onds vs. some minutes. 422

Table 1: Results for MC simulations with aggressive tuning.

LIN model S̄ σS J̄ σJ F̄(id)
PV F̄(val)

PV

ARX 9.00 0.00 2.97 0.05 99.73 98.71
ARMAX 9.00 0.00 2.90 0.06 98.77 98.75
SS 9.00 0.00 2.88 0.06 98.78 98.76
EARX 9.00 0.00 2.89 0.07 98.98 98.59
EARMAX 9.00 0.00 2.84 0.09 99.01 98.99

Table 2: Results for MC simulations with sluggish tuning.

LIN model S̄ σS J̄ σJ F̄(id)
PV F̄(val)

PV

ARX 8.99 0.01 2.98 0.15 98.60 98.61
ARMAX 8.99 0.03 2.95 0.15 98.65 98.65
SS 8.99 0.03 2.93 0.16 98.67 98.66
EARX 8.99 0.01 2.90 0.27 98.77 98.40
EARMAX 9.00 0.00 2.88 0.23 98.88 98.90

Note also that in this work, for the sake of simplicity, time 423

delay of the linear process models is never estimated. In par- 424

ticular, time delay is assumed known for the simulation results, 425

and then it is fixed a priori for the pilot plant data and the in- 426

dustrial data (after having performed specific tests to estimate 427

it). In the cases when time delay is unknown, it could be evalu- 428

ated by considering another grid of possible time delay L, where 429

L = Ts td , is taken as a multiple of the sampling time (Ts). For 430

every triple (S,J, td), the coefficients of the linear model could 431

be then identified. This approach is robust, but obviously heavy 432

in terms of computational load. Among other standard solu- 433

tions to estimate the time delay, [22] and [27] have proposed a 434

cross correlation analysis between the input (MV) and the out- 435

put (PV) sequence. Additional simulations with unknown pro- 436

cess time delay have showed that td has no significant impact 437

on the identification methods. Therefore, details are omitted in 438

the sake of space. 439

In addition, it has to be recalled that the main focus of the pa- 440

per is the identification and quantification of a control loop with 441

valve stiction, possibly with the additional presence of external 442

disturbances. So the cases of loop oscillation not due to stic- 443

tion, that is, only due to aggressive controller or external dis- 444

turbances or due to both of these sources, are by purpose not 445

considered in the paper, neither in the simulation section nor 446

for real data sets. Note also that in the industrial practice the 447

proposed identification methods, as almost any stiction quan- 448

tification method, should be applied only on data where valve 449

stiction has been reliably detected by specific diagnosis tech- 450

niques. Nevertheless, cases of pure external disturbance and 451

pure aggressive tuning can be used as negative tests in order to 452

estimate close-to-zero stiction parameters; this has been veri- 453

fied in additional simulation studies not reported in the paper 454

for brevity.455
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Finally, as general results from simulation study, nonextended456

models prove to be better in the case of only valve stiction,457

while extended models outperform simpler models in the pres-458

ence of additional nonstationary disturbance. These same out-459

comes have been obtained using different process dynamics460

(also with time delay estimation), other disturbance amplitudes461

and frequencies, other types of slowly-varying nonstationary462

disturbance (as drift), different trends of SP signal (also con-463

stant), and with He’s stiction model in place of Kano’s model.464

Details are omitted in the sake of space. Similar results are to465

be obtained on real industrial data. Note that, in general, to be466

able to obtain good model parameter estimates, these data have467

to be rich enough. Normal operating data may not be persis-468

tently exciting, especially if the set point is constant for long469

periods of time.470

4. Application to a pilot plant471

In this section, the efficiency of the considered methods on472

pilot plant data are illustrated. A diagram of the pilot plant used473

in the experiments is shown in Figure 10. Water circulates be-474

tween drums D1 and D2, and a pneumatic actuator is coupled475

to a spherical valve (V2) which controls the flow rate. Further476

details on the experimental apparatus can be found in [31]. The477

control valve, its stem and the packing are shown in Figure 10478

(right). Friction is “introduced” into the valve by tightening the479

packing nut. The valve is equipped with a positioner, but the480

position control loop is open: in this way the actual valve stem481

position (MV) is measured but the positioner does not perform482

any control action. The PV is the flow rate through the valve483

and the OP is the output signal from a PI controller. The open-484

ing of the valve V3 (installed downstream the sticky valve V2)485

is changed by imposing, as command (OP), a near sinusoidal486

profile in order to “generate” the external disturbance.487

Three different sets of data are collected with a sampling time488

of 1 s.489

I. A low amount of valve stiction is the only source of oscil-490

lation.491

II. A high amount of stiction is introduced around the valve492

stem.493

III. An external disturbance is introduced and acts simultane-494

ously with stiction of low amount.495

Figure 11 (left) shows the MV(OP) diagram of the valve ob-496

tained imposing triangular waves on OP, oscillating from 0 to497

100% of the valve span, when a low amount of stiction is ap-498

plied to the stem. On the right of Figure 11 the same diagram499

is shown, when a high amount of stiction is applied.500

The valve shows an asymmetric behavior: S (dead-band +501

stick-band) is bigger in the closing direction and smaller in the502

opening direction, while the slip jump J is always really small.503

The stiction parameters obtained from these off-line (manual)504

tests on the valve are approximately known: S ∈ [13, 15], J ∈505

[0.1, 0.2] in the case of low stiction, and S∈ [22, 29], J ∈ [0.2, 1]506

in the case of high stiction. 507

Figure 10: Pilot plant: process diagram (left) and a picture of the sticky valve
(right).

Figure 11: Pilot plant: experimental behavior MV vs. OP in the case of low
stiction (left) and high stiction (right).

Kano’s model and He’s model are used to fit the measured 508

MV signals of the three sets of data collected in closed loop. 509

The best combinations of parameters are, in the case of low 510

stiction, S = ( fs + fd) = 12.1, J = ( fs − fd) = 0.1 (both for 511

Kano’s and He’s model), with a fitting index FMV = 71.75%. In 512

the case of high stiction, actual stiction parameters are S= 22.1, 513

J = 0.2 (for Kano’s), with a fitting of 76.28%, and S = 22.0, 514

J = 0.1 (for He’s), with a fitting of 76.27%. Therefore, both 515

nonlinear models appear sufficiently adequate. 516

The five linear process models with the two stiction mod- 517

els are then applied to detect and quantify the amount of stic- 518

tion without the knowledge of the MV signal. The time de- 519

lay and the orders of the linear process models are fixed a 520

priori, namely td = 5, (n,m) = (2,2) for ARX and EARX, 521

(n,m, p) = (2,2,2) for ARMAX and EARMAX, n = 2 for SS. 522

Table 3, 4 and 5 show respectively the results of the comparison 523

for the first, the second and the third experimental set. 524

Test 1. In Table 3, identification results obtained with all ten 525

combinations of models are reported. In all cases good esti- 526

mates of the nonlinearity are established: FMV ∈ [60%, 70%], 527

and (S,J) are close to their actual values. EARMAX and EARX 528

models perform also a better PV fitting. Figure 12 shows the 529

registered time trends of SP, PV, OP, MV and the estimated val- 530

ues of PV and MV (PVest , MVest ) of the first experiment when 531

Kano’s model for the sticky valve and EARX model for the 532

linear dynamics are used. Both the PV fitting indices are suf- 533

ficiently high (cf. Table 3): F(id)
PV = 88.31% for the identifi-534
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Table 3: Pilot plant first experiment: low amount of valve stiction.

LIN model NL model S J F(id)
PV F(val)

PV FMV

ARX Kano 11.9 0.2 86.03 84.70 69.35
He 11.8 0.1 86.01 84.63 69.25

ARMAX Kano 11.9 0.2 86.08 84.72 67.54
He 11.8 0.2 86.07 84.56 69.05

SS Kano 12.5 0.1 85.88 84.77 69.09
He 12.9 1.0 85.88 84.29 60.46

EARX Kano 11.9 0.2 88.31 82.95 69.35
He 11.4 0.4 88.49 82.65 60.77

EARMAX Kano 11.9 0.2 88.52 84.03 69.35
He 11.4 0.4 88.57 83.74 60.77

Figure 12: Pilot plant first experiment: registered time trends.

cation dataset and F(val)
PV = 82.95% for the validation dataset.535

Also the estimation of the valve stem position is quite accu-536

rate: FMV = 69.35%. In this first experiment, with only valve537

stiction, both nonextended (ARX, ARMAX, SS) and extended538

models (EARX, EARMAX) are appropriate to the purpose.539

Test 2. Table 4 shows that good estimation results are obtained540

again with nonextended (ARX, ARMAX and SS) models. They541

guarantee a better identification of the nonlinearity: FMV values542

are higher. EARMAX and EARX models perform a slightly543

higher PV fitting but, in this case, produce a significantly worse544

MV estimation: FMV ∈ [25%, 42%]. Since these two models545

have one more degree of freedom, they tend to generate a bias546

term (η) even though the external disturbance is not present in547

order to improve the PV fitting, but this alters the stiction quan-548

tification. Figure 13 shows the corresponding registered time549

trends and estimated signals of the second experiment when550

He’s model and the SS model are used. Both the PV fitting551

indices are high (cf. Table 4): F(id)
PV = 85.77% for the identi-552

fication dataset and F(val)
PV = 83.68% for the validation dataset.553

The estimation of the valve stem position is rather accurate:554

FMV = 71.82%. Non extended models prove themselves most555

appropriate when only valve stiction is present in the control556

loop. 557

Table 4: Pilot plant second experiment: high amount of valve stiction.

LIN model NL model S J F(id)
PV F(val)

PV FMV

ARX Kano 25.2 4.3 85.53 83.57 62.61
He 23.6 1.5 85.59 83.99 63.44

ARMAX Kano 24.5 3.5 85.62 84.27 71.85
He 22.7 2.0 85.77 83.79 71.82

SS Kano 24.5 3.5 85.67 84.26 71.85
He 22.7 2.0 85.77 83.68 71.82

EARX Kano 26.6 0.7 87.07 83.65 28.93
He 25.0 1.6 87.25 83.63 41.39

EARMAX Kano 26.8 3.3 87.37 82.22 25.33
He 25.0 1.6 87.34 83.70 41.39

Figure 13: Pilot plant second experiment: registered time trends.

Test 3. The results of the third experiment are basically oppo- 558

site to those of the second experiment (cf. Table 5). EARMAX 559

and EARX models ensure both a better PV fitting and a higher 560

MV estimation. On the contrary, nonextended models perform 561

a lower identification of the global dynamics and a wrong esti- 562

mation of the nonlinearity. For the validation dataset, SS model 563

produces instable trends in PVest and F(val)
PV indices tend to mi- 564

nus infinite. The presence of a large external disturbance can al- 565

ter significantly stiction estimation when a nonextended model 566

is used to identify the linear dynamics. 567

Figure 14 shows the signals of the third experiment when 568

He’s model and the EARMAX model are used. In the bot- 569

tom panel the stem position of valve V3 is reported; this sig- 570

nal is proportional to the disturbance entering the process. The 571

extended model gives an accurate PV fitting (cf. Table 5), 572

F(id)
PV = 86.50%, F(val)

PV = 83.54%, and a good MV fitting FMV = 573

72.10%, much higher compared to values obtained with ARX, 574

ARMAX and SS models. The estimated stiction values ob- 575

tained with EARX and EARMAX are close to the real parame- 576

ters (S' 13.1;J ' 0.5) unlike those obtained with nonextended 577

models. Therefore, the additional presence of an external dis- 578

turbance can be well managed when an extended model is used 579

for stiction estimation. 580

As general conclusion, the results obtained with pilot plant581
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Table 5: Pilot plant third experiment: low amount of valve stiction and external
disturbance.

LIN model NL model S J F(id)
PV F(val)

PV FMV

ARX Kano 23.7 3.1 84.91 85.19 49.28
He 22.0 4.4 85.38 83.94 46.86

ARMAX Kano 23.7 0.7 85.21 84.65 47.37
He 22.0 4.4 85.46 84.04 46.86

SS Kano 17.1 2.9 85.50 −∞ 69.66
He 17.0 2.2 85.50 −∞ 67.82

EARX Kano 14.7 0.2 86.12 83.62 74.25
He 15.2 2.1 86.38 83.80 73.25

EARMAX Kano 14.8 2.0 86.24 82.93 73.81
He 12.4 4.3 86.50 83.54 72.10

Figure 14: Pilot plant third experiment: registered time trends.

data have basically confirmed the ones achieved with simula-582

tion data.583

5. Application to industrial data584

In this section, the performance of the proposed methods are585

further compared on some different industrial datasets.586

5.1. Data from benchmark [2]587

Three loops of the dataset of the book of [2], illustrated as588

a benchmark for stiction detection methods, are firstly used.589

These three loops are clearly indicated as suffering from valve590

stiction by several detection methods [2]. The five proposed591

linear process models are tested, while only Kano’s model is592

used to describe the sticky valve dynamics. Unless otherwise593

specified, datasets are used in full: the first two-thirds of data594

are used as identification set and the last-third is used as valida-595

tion set. The time delay and the linear models orders are fixed:596

td = 1, (n,m) = (2,2) for ARX and EARX, (n,m, p) = (2,2,2)597

for ARMAX and EARMAX, n = 2 for SS. These data are also598

used purposely to show the effect of the initialization of Kano’s599

model on stiction estimates.600

The results are then compared with the estimates given601

by some well-established literature procedures: (i) Karra and 602

Karim [17], (ii) Jelali [21], (iii) Lee at. al [22], (iv) Romano and 603

Garcia [24]. Note that the proposed EARMAX-Kano model is 604

directly comparable with [17], since both use a recursive least- 605

squares (RLS) algorithm. In addition, the proposed ARMAX- 606

Kano model is quite close to the approach of [21], which but 607

uses global optimization algorithms to get the solution. Fi- 608

nally, the method of [24] employs a different model structure 609

(Hammerstein-Wiener), which tends to produce results farther 610

from others. 611

CHEM 25. The data of this pressure control loop were ob- 612

tained from a refinery. Karra and Karim used the following 613

parameters for their EARMAX model: td = 1 and (n,m, p) = 614

(2,2,2). Jelali tested the loop twice using an ARMAX model 615

with: (i) td = 2, (n,m, p) = (3,2,2) and (ii) td = 1, (n,m, p) = 616

(2,2,1). Romano and Garcia tested 272 non specified samples 617

without reporting the exact model parameters. Lee et al. used a 618

second order linear model, that is, an ARX with (n,m) = (2,1), 619

and He’s stiction model on a specific data window (100 - 350 620

samples). 621

Table 6 summarizes the estimates obtained using the pro- 622

posed models and the results available in the literature. The 623

estimates of (S,J) with all methods are really close. Only Lee 624

et al. obtain a higher value of J, probably due to the use of He’s 625

model. The proposed EARMAX model (case a) gives exactly 626

the same stiction estimate of Karra and Karim once that Kano’s 627

model is initialized as in the literature work. Using In.2 ini- 628

tialization discussed in 2.4, slightly different values of S and J 629

are obtained (case b). It should be also noted that the proposed 630

EARX and EARMAX models produce the highest values of PV 631

fitting. 632

CHEM 10. These data come from a pressure control loop in a 633

chemical process industry. Karra and Karim used the following 634

parameters for their EARMAX model: td = 1 and (n,m, p) = 635

(2,2,2) [2, Chp. 12]. Lee et al. used an ARX(2,1) and He’s 636

stiction model. 637

Table 7 summarizes all the results. The estimates of S are 638

very close in all the five proposed methods, while the estimates 639

of J are bit more variable. These results are obtained with In.2 640

initialization of Section 2.4 setting the stationary time of MV at 641

the first tenth of the data length. Also Lee et al. obtained simi- 642

lar values of S and J, while Karra and Karim obtained a similar 643

value of S but a smaller value of slip-jump (J = 0.05). In par- 644

ticular, for this dataset, as showed for EARMAX model, differ- 645

ent stiction estimates are possible using four different Kano’s 646

model initializations of type In.1 (cf. Figure 4). Note that val- 647

ues close-to-zero of stiction are incorrectly obtained with a spe- 648

cific initialization: stp = 0;d =−1. 649

POW 4. These data are from a level control loop in a power 650

plant. Karra and Karim used an EARMAX model with unspec- 651

ified parameters applied on an initial data window (1 - 1000 652

samples). Jelali tested the loop using an ARMAX model of un- 653

specified orders, probably on the first 700 samples. Lee et al. 654

used an ARX(2,1) and He’s stiction model applied on all avail- 655

able data. The proposed identification methods are executed on656
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Table 6: CHEM 25: comparison of results.

LIN model NL model S J F(id)
PV F(val)

PV

ARX Kano 1.8 0.3 74.14 72.96
ARMAX Kano 1.8 0.2 74.45 73.79
SS Kano 2.0 0.2 73.88 73.55
EARX Kano 1.8 0.3 78.67 73.92
EARMAX (a) Kano 1.8 0.3 78.83 73.95
EARMAX (b) Kano 1.6 0.0 79.32 74.09

Karra & Karim [17] Kano 1.8 0.3 - -
Jelali (i) [21] Kano 1.80 0.59 - -
Jelali (ii) [21] Kano 1.87 0.60 - -
Romano & Garcia [24] Kano 1.60 0.44 68.70 -
Lee et al. [2, Chp. 13] He 1.62 1.62 - -

Table 7: CHEM 10: comparison of results.

LIN model NL model S J F(id)
PV F(val)

PV

ARX Kano 1.85 1.70 93.21 92.86
ARMAX Kano 1.85 1.50 93.50 92.92
SS Kano 1.85 1.70 93.63 92.87
EARX Kano 1.90 1.45 93.79 91.33
EARMAX Kano 1.85 1.35 93.85 92.55
EARMAX (stp = 1;d = 1) Kano 1.85 1.80 93.83 92.55
EARMAX (stp = 1;d =−1) Kano 1.90 1.75 94.10 91.16
EARMAX (stp = 0;d = 1) Kano 1.85 1.65 93.60 92.28
EARMAX (stp = 0;d =−1) Kano 0.20 0.10 93.34 91.63

Karra & Karim [2, Chp. 12] Kano 1.85 0.05 - -
Lee et al. [2, Chp. 13] He 1.77 1.73 - -

the first 1000 samples, with In.2 initialization of Section 2.4 and657

setting the stationary time of MV at the first tenth of the data658

length.659

Table 8 summarizes all the results. For this loop, the es-660

timates of stiction parameters are different with the five pro-661

posed methods. ARX, ARMAX and SS models agree and esti-662

mate low values of stiction: S ∈ [0.8, 0.9], J = 0. Conversely,663

EARX and EARMAX models yield larger amounts: S = 4.1,664

J ∈ [0.4, 0.7]. Also Lee et al. obtained low values, while Karra665

and Karim estimated a much more significant amount of stic-666

tion and they also assessed the presence of an external distur-667

bance. For this case, it can be observed that techniques which668

implement an extended process model yield higher stiction val-669

ues than techniques which use a nonextended model. The first670

ones also identify a significant additional disturbance, which671

alters numerical estimates of stiction. Note that Jelali obtained672

the largest stiction amount, since his final value of S falls close673

to the initial guess (S0 = 4.80) obtained with the ellipse-fitting674

method [32].675

As overall considerations, since there is no information about676

the real values of S and J, it is not possible to say exactly which677

are the best estimates. However, for the first two applications,678

as the stiction estimates in all proposed methods are close and679

next to the values reported in some well-established literature680

works, it is possible to conclude that all the techniques give ac- 681

Table 8: POW 4: comparison of results.

LIN model NL model S J F(id)
PV F(val)

PV

ARX Kano 0.9 0.0 84.82 84.29
ARMAX Kano 0.9 0.0 84.80 84.33
SS Kano 0.8 0.0 85.19 84.78
EARX Kano 4.1 0.7 85.95 82.37
EARMAX Kano 4.1 0.4 86.13 82.70

Karra & Karim [2, Chp. 13] Kano 3.6 1.2 - -
Jelali [21] Kano 4.49 2.49 - -
Lee et al. [2, Chp. 13] He 0.58 0.39 - -

ceptable results. In particular, the estimates of S are very close 682

and therefore really reliable. The estimates of J are more vari- 683

able and therefore, as expected and previously discussed, more 684

difficult. Moreover, the initialization of Kano’s model is proved 685

to be a factor which can alter stiction estimates. The third 686

application clearly confirms that different techniques can also 687

strongly disagree when applied on the same industrial data [2, 688

Chp. 13]. Some other examples of comparison of selected stic- 689

tion quantification techniques applied on benchmark data are 690

reported in [33]. 691

5.2. Data from other industrial loops 692

The proposed identification techniques are then applied to 693

three datasets obtained during multiannual application of a per- 694

formance monitoring software [34] in Italian refinery and petro- 695

chemical industries. Data refer to repeated registrations (of 696

PV, OP, SP) for the same loops. The source of malfunction 697

is known to be stiction, but the actual MV signals are not avail- 698

able. Trends of values of parameter S are reported for each 699

combination of nonlinear and linear model. Values of J are not 700

reported since their estimate, as shown previously, is less sig- 701

nificant and reliable. 702

Loop I. These data were previously presented in [18], as appli- 703

cation of the original grid search technique and the first identi- 704

fication method (ARX model). For this pressure control loop, 705

six different registrations, collected during a month, are avail- 706

able just before the valve maintenance. Four detection tech- 707

niques ([10, 13, 15, 16]) indicate this loop as always affected 708

by stiction in these acquisitions. Therefore, rather constant stic- 709

tion values, though unknown, are expected. In Figure 15 pretty 710

uniform values of stiction (S ∈ [4, 5.6]) are obtained for each 711

combination of nonlinear and linear models. Low variability in 712

estimated values of S is given by all linear models plus Kano’s 713

model. SS model plus Kano’s model gives the lowest vari- 714

ability (σS = 0.23) with a mean value (Ŝ = 5.36) higher than 715

other techniques. Slightly higher variability is obtained with 716

He’s model, especially with SS model. Figure 16 shows time 717

trends of SP, PV, OP and estimated values of PV and MV (PVest , 718

MVest ) of registration # 3 when Kano’s model and EARMAX 719

model are used. 720

The results of this industrial application reproduces the out- 721

come of the first experimental set in the pilot plant (cf. Table 3),722
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Figure 15: Industrial Loop I: Trends of the identified stiction parameter S using
different linear models: top, Kano’s model; bottom, He’s model.

Figure 16: Industrial Loop I: time trends for registration # 3.

where all the linear models are equally valid. In this applica-723

tion, all the identification techniques prove to be sufficiently724

reliable: constant stiction trends are always estimated. Note725

that slightly decreasing trends of stiction are anyway admissi-726

ble. Here the SP is variable (Figure 16), therefore stiction could727

be not exactly the same for different operating conditions along728

the same registration or - more likely - along different acquisi-729

tions, while Kano’s and He’s models imply uniform parameters730

for the whole valve span.731

Loop II. These data are from a flow rate control loop with PI-732

algorithm controller and variable set point. The presence of733

stiction is clearly recognizable by the PV and OP shapes being734

close to squared and triangular waves, respectively (Figure 17).735

Moreover, the plot of PV(OP) shows evident stiction character-736

istics (Figure 18), since in FC loops PV is proportional to MV.737

The same four detection techniques ([10, 13, 15, 16]) indicate738

this loop as affected by stiction in 11 acquisitions registered739

along two consecutive days. Therefore, nearly constant stiction740

values, though unknown, are expected. From Figure 19, rather741

uniform values of stiction (S ∈ [1.8, 2.5]) are quantified with742

nonextended models. The lowest variability in estimated values743

of S is given by ARMAX and SS models plus Kano’s or He’s 744

Figure 17: Industrial Loop II: time trends for registration # 9.

Figure 18: Industrial Loop II: experimental behavior PV vs. OP obtained in
registration # 9.

model (σS ∈ [0.13, 0.14]) with a mean value Ŝ ∈ [2.26, 2.30]. 745

Conversely, an excessively high variability is obtained using ex- 746

tended models: EARX and EARMAX. 747

The results of this industrial application are rather similar to 748

the outcome of the second experimental set in the pilot plant (cf. 749

Table 4), where the nonextended models are more appropriate 750

for the case of only valve stiction. Extended models prove to 751

be not sufficiently reliable: high variable stiction trends are es- 752

timated. Sometimes even zero values are obtained: loop oscil- 753

lation is not associated with valve stiction but wrongly with a 754

significant bias term of external disturbance. 755

Loop III. These data are from a flow rate control loop, the con- 756

troller has a PID algorithm, and the SP is variable since the loop 757

is the inner part of a cascade control. The same four detection 758

techniques ([10, 13, 15, 16]) indicate stiction in 6 acquisitions 759

registered along four months. Therefore, a constant or increas- 760

ing trend of stiction is expected. Once again the presence of 761

stiction is clearly recognizable by the shapes of PV and OP 762

signals, being close to squared and triangular waves, respec- 763

tively (Figure 20). Now, for this loop, the two extended models 764

(EARX and EARMAX) give rather uniform values of stiction 765

(S ∈ [2.1, 3.1]). Conversely, for registration # 4, using ARX 766

and ARMAX models, and for # 5, using all three nonextended 767

models, very low (S ' 0) or low values are estimated (see Fig-768
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Figure 19: Industrial Loop II: Trends of the identified stiction parameter S using
different linear models: top, Kano’s model; bottom, He’s model.

Figure 20: Industrial Loop III: time trends for registration # 2.

ure 21). These estimates appear incorrect since they result as769

outliers with respect to the main stiction trend. In these two770

registrations, PV signal does not clearly show a singular fre-771

quency of oscillation (cf. Figure 22). An external disturbance772

might act simultaneously with valve stiction.773

The results of this last industrial application are rather similar774

to the outcome of the third experimental set in the pilot plant775

(cf. Table 5), where extended models are to be preferred for the776

case of simultaneous valve stiction and external disturbance.777

Non extended models are not sufficiently reliable: inconsistent778

values of stiction can be estimated. The loop oscillation is not779

due to a singular frequency and external disturbance can alter780

stiction estimation.781

As a general conclusion, the results obtained with industrial782

data confirm those achieved with pilot plant data. Nonextended783

models are the best choice when valve stiction is the only source784

of loop oscillation; extended models are better for the case of785

simultaneous presence of external disturbances. It is worth not-786

ing that for industrial data the presence (or the absence) of non787

stationary disturbances is not known a priori. Nevertheless,788

repeated data acquisitions for the same valve can help since789

they allow one to perform comparable estimates, that is, time790

evolution of stiction can be followed and eventual anomalous 791

Figure 21: Industrial loop III: Trends of the identified stiction parameter S using
different linear models: top, Kano’s model; bottom, He’s model.

Figure 22: Industrial Loop III: time trends for registration # 4.

cases can be assessed. For example, outliers can be ascribed 792

to the presence of disturbances whether non extended models 793

are used, or, on the opposite, the absence of disturbances can 794

be inferred whether inconsistent estimates are obtained when 795

extended models are tested. Anyway, this criterion could be 796

not reasonable when only few acquisitions, or even just one, 797

are available. In such cases a conservative approach should be 798

to test all different models and then emit an average verdict. 799

Thus, a reliable detection of additional external disturbances 800

seems the definitive solution to this problem. Recent techniques 801

[35, 36] allow one to detect multiple oscillation. Therefore, they 802

could be used as a preliminary step in stiction estimation in or- 803

der to assess the simultaneous presence of different sources of 804

oscillation (stiction and disturbance) and to direct the choice 805

between simpler and extended process models. 806

6. Conclusions 807

In this paper the effect of nonstationary disturbances on es- 808

timated amount of stiction has been investigated. For this rea- 809

son, two different stiction models and five linear models are 810

proposed and compared in order to identify the Hammerstein 811

system of the sticky valve and the process. The identification812
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methods have been validated, firstly, by using closed-loop sim-813

ulation data in the presence of different faults (low/high stic-814

tion, with/without external non-stationary disturbances). Then,815

practical applicability and significance has been demonstrated816

through the application of the considered identification meth-817

ods to data obtained from a pilot plant and to a large number of818

industrial loops.819

For the nonlinear part, both Kano’s and He’s models confirm820

to be appropriate to model the sticky valve. Simpler models821

(ARX, ARMAX and SS) appear to be the best choice for linear822

process dynamics when stiction is the only source of loop oscil-823

lation. Extended models (EARX and EARMAX), incorporat-824

ing the time varying additive nonstationary disturbance, have825

one more degree of freedom, i.e. the bias term which is esti-826

mated recursively along with the process and stationary noise827

parameters. When the external disturbance is actually present,828

extended models prove to be very effective and generate consis-829

tent stiction model parameters. As a matter of fact, as verified830

by different types of industrial data, the extended models en-831

sure a better process identification and a more accurate stiction832

estimation in the case of significant disturbances acting simul-833

taneously with valve stiction.834

Future research directions may include the application of re-835

cent techniques aimed at detecting the presence of large ex-836

ternal disturbances in order to choose between extended and837

nonextended models. Furthermore, more complex and flexible838

stiction models could be used to describe non uniform friction839

dynamics in order to obtain more consistent estimates when re-840

peated data registrations are analyzed.841
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