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We investigate the static QQ̄ potential at zero and finite temperature in the presence of a constant and

uniform external magnetic field ~B, for several values of the lattice spacing and for different orientations

with respect to ~B. As a byproduct, we provide continuum limit extrapolated results for the string tension,
the Coulomb coupling and the Sommer parameter at T ¼ 0 and B ¼ 0. We confirm the presence in the
continuum of a B-induced anisotropy, regarding essentially the string tension, for which it is of the order of
15% at jejB ∼ 1 GeV2 and would suggest, if extrapolated to larger fields, a vanishing string tension along
the magnetic field for jejB≳ 4 GeV2. The angular dependence for jejB≲ 1 GeV2 can be nicely
parametrized by the first allowed term in an angular Fourier expansion, corresponding to a quadrupole
deformation. Finally, for T ≠ 0, the main effect of the magnetic field is a general suppression of the string
tension, leading to a early loss of the confining properties: this happens even before the appearance of
inverse magnetic catalysis in the chiral condensate, supporting the idea that the influence of the magnetic
field on the confining properties is the leading effect originating the decrease of Tc as a function of B.
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I. INTRODUCTION

In the Standard Model, the strong and the electroweak
sectors are connected by quarks, which are subject to both
type of interactions. In general, electroweak interactions are
expected to induce relatively small corrections to strong
interaction dynamics; however, this may be not true in the
presence of very strong electromagnetic backgrounds, with
field values comparable to the QCD scale. This is a situation
which is relevant to many contexts, ranging from noncentral
heavy ion collisions [1–6] and the cosmological electroweak
phase transition [7,8], with magnetic fields reaching or
exceeding 1016 T (eB ∼ 1 GeV2), to magnetars [9], where
magnetic fields are expected to be of the order of 1011 T on
the surface but could be significantly larger in the inner cores.
How strong interactions get modified by such large

magnetic fields has been the subject of many recent
theoretical studies (see, e.g., Refs. [10,11] for reviews),
with lattice simulations representing a viable and effective
tool to explore the issue starting from the first principles of
QCD. One important feature is that gluon fields, even if not

directly coupled to electromagnetic fields, undergo signifi-
cant modifications, through effective QED-QCD inter-
actions induced by quark loops, as can be seen both by
lattice simulations [12–28] and by analytical studies using
several approaches, which range from perturbation theory to
effective field theories, and from Nambu-Jona-Lasinio
models to functional renormalization group and holographic
techniques [29–52]. A striking consequence of the QED-
QCD coupling is the distortion of the zero temperature static
quark-antiquark potential. Results reported in Ref. [21]
showed the emergence of anisotropies both in the linear
part (string tension) and in the Coulomb part of the potential.
This behavior is consistent with the results of some of the
existingmodel computations [53–57] andmay have relevant
phenomenological consequences, especially for the spec-
trum of heavy quark bound states [58–67].
The purpose of this study is to move one step forward in

our comprehension of magnetic-induced effects on non-
perturbative QCD dynamics. First of all, we present a
refinement of our zero temperature data following three
different directions:

(i) A complete analysis of the angular dependence of
the potential (in Ref. [21] only quark-antiquark
separations parallel and orthogonal to the magnetic
field were analyzed). This is important to allow for a
realistic modeling of the quark-antiquark potentials
to be used in the computation of the spectrum of
heavy quarkonia.
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(ii) The inclusion of new simulations on finer lattices
will permit us to extrapolate results reported in
Ref. [21] to the continuum limit.

(iii) The investigation of a regime of fields significantly
larger than those used in Ref. [21], in order to inquire
whether new unexpected phenomena may take
place in the QCD vacuum under the influence of
extremely strong background fields.

As a byproduct of this investigation, we will also provide
a continuum extrapolation of the static quark-antiquark
potential, in the usual Cornell parametrization, with physi-
cal quark masses and for the standard case of vanishing
magnetic field.
In the second part of our study, we investigate how the

effect of the magnetic field on the static potential gets
modified by the temperature, a step which is important for a
full comprehension of the properties of the thermal medium
in the presence of magnetic backgrounds. In this case the
static potential (more correctly the free energy) is extracted
from Polyakov loop correlators in place of Wilson loop
expectation values used at T ¼ 0. For temperatures below
the pseudocritical temperature Tc ∼ 155 MeV (at which
chiral symmetry gets restored and quark and gluon degrees
of freedom deconfine), one still expects that heavy
quark-antiquark interactions can be described in terms of
a confining potential, with a string tension which goes to
zero as Tc is approached. Two main questions will be
addressed by our study in this regime: (i) does the
anisotropy survive also in the finite temperature case?
(ii) does the magnetic field enhance the suppression of the
string tension, meaning that a phenomenon similar to
inverse magnetic catalysis [17], observed for chiral sym-
metry, takes place also for the confining properties of the
medium?
The paper is organized as follows. In Sec. II we illustrate

the setup of our numerical simulations and the techniques
adopted to extract the static potential, both at zero and at
finite temperature, in Sec. III we present our numerical
results and finally, in Sec. IV, we draw our conclusions.

II. NUMERICAL METHODS

The discretization of the Nf ¼ 2þ 1 QCD action
adopted in this work is a combination of the Symanzik
tree-level improved gauge action and of stout improved
rooted staggered fermions. Explicitly, the partition function
is written as

ZðBÞ ¼
Z

DUe−SYM

Y
f¼u;d;s

detðDf
st½B�Þ1=4: ð1Þ

Here DU is the functional integration over the SUð3Þ link
variables and SYM stands for the tree-level improved
action [68,69],

SYM ¼ −
β

3

X
i;μ≠ν

�
5

6
W1×1

i;μν −
1

12
W1×2

i;μν

�
; ð2Þ

where the real part of the trace of the 1 × 1 and 1 × 2 loops
is denoted by W1×1

i;μν and W1×2
i;μν respectively. Finally, the

staggered Dirac matrix

ðDf
stÞi;j ¼ amfδi;j þ

X4
ν¼1

ηi;ν
2

ðufi;νUð2Þ
i;ν δi;j−ν̂

− uf�i−ν̂;νU
ð2Þ†
i−ν̂;νδi;jþν̂Þ

is written by using the two-time stout-smeared links Uð2Þ
i;μ

[70] (with isotropic smearing parameter ρ ¼ 0.15) and the
Uð1Þ parallel transporters ufi;μ, where the i index denotes
the position in the lattice and the μ index denotes the
direction of the link.
For a magnetic field directed along the ẑ direction, a

possible choice of the Abelian transporters is (qf is the
fermion charge)

ufi;y ¼ eia
2qfBzix ; ufi;xjix¼Lx

¼ e−ia
2qfLxBziy ; ð3Þ

with all the other Uð1Þ link variables being equal to 1.
Moreover, for these transporters to describe a uniform
magnetic field on the lattice torus, the value of Bz has to
satisfy the following quantization condition [71–74]:

eBz ¼ 6πbz=ða2NxNyÞ; bz ∈ Z: ð4Þ

In the following we will consider also the case of a

magnetic field ~B not directed along one of the coordinate

axes. In this case, each component of ~B generates trans-
porters analogous to Eq. (3) in the corresponding orthogo-
nal plane, and the final Uð1Þ phases appearing in the
fermion matrix are the product of the phases that would be
generated by each component separately. All the compo-
nents have to satisfy a quantization condition analogous to
Eq. (4): as a consequence, the magnetic field on the lattice

can be represented by the vector ~b having integer compo-
nents. IfNx ¼ Ny ¼ Nz, i.e. if the quantization condition in
Eq. (4) is the same for all components, then the magnetic

field ~B is parallel to ~b.
The values of the bare parameters used in our simulations

have been chosen so as to move on a line of constant
physics, corresponding to physical values of the quark
masses: to do that, we have followed the determination
reported in Refs. [75,76], based also on the fact that the
magnetic field does not alter the value of the lattice spacing
[15]. In Table I we list for convenience the values of the
bare parameters adopted in the zero temperature runs: some
entries refer also to simulations already reported in

CLAUDIO BONATI et al. PHYSICAL REVIEW D 94, 094007 (2016)

094007-2



Ref. [21]; most of the new runs have been performed on the
finest 483 × 96 lattice.
The Rational Hybrid Monte Carlo [78–80] algorithm has

been used to sample gauge configurations. To determine
the interquark potential in the confined phase, statistics of
Oð103Þ–Oð104Þ trajectories have been collected for each
value of the magnetic background, with measures of
Wilson loops performed every 5 trajectories.
In order to reduce the UV noise, we used HYP [81]

and APE [82] smearing in the following combination:
one step of HYP smearing for temporal links (with the
parameters of the HYP2-action reported in Ref. [83])
and a variable number of isotropic APE smearing steps
(with parameter αAPE ¼ 0.25), which has been chosen
large enough to significantly reduce the noise, but still
small enough to introduce no significant systematic
effects. In practice, we verified that a number of steps
between 20 and 40 (depending on the lattice spacing)
satisfies these requirements. The potential was extracted
from planar Wilson loops of size ~n × nt, making use of
the definition

aVeffða~n; antÞ≡ log

� hWð~n; ntÞi
hWð~n; nt þ 1Þi

�
;

aVða~nÞ ¼ lim
nt→∞

aVeffða~n; antÞ; ð5Þ

i.e. by finding, for each fixed ~n, a range of nt values
where the rhs of the previous definition is stable, in order
to perform a fit to a constant. The fit range has been
varied in order to estimate the systematic error associated
with its choice. It is important to stress that since rotation
symmetry is explicitly broken by the external field,
different orientations of the Wilson loop have to be
studied independently in order to determine properly the
potential.
As an example of the procedure described above, in

Fig. 1 we report the values aVeffða~n; antÞ as a function of
nt, obtained on the finest 483 × 96 lattice with a magnetic

background corresponding to ~b ¼ 32ẑ (jejB ∼ 1 GeV2).
Data refer to the case j~nj ¼ 3 and we report separately
results obtained along the directions parallel or transverse
to ~B, for two different APE smearing levels.
For finite temperature simulations, the static quark-

antiquark potential has been determined from Polyakov
loop correlators

Cð~n; TÞ ¼ hTrLð~rÞTrL†ð~rþ ~nÞi ð6Þ

where ~r and ~n are dimensionless lattice vectors. This
observable is related to the free energy FQQ̄ða~n; TÞ of a
static quark-antiquark pair separated by a distance a~n. In
principle, at a perturbative level, such correlator takes
contribution from both the singlet and octet color channels
[84–87]; however, one can show that only the singlet
contribution survives in the correlator in Eq. (6) [88,89],
so that one can consistently define Cð~n;TÞ∝expð−FQQ̄ða~n;
TÞ=TÞ, where FQQ̄ is the free energy of the static pair in the
singlet channel. Therefore, we shall adopt the definition

FQQ̄ða~n; TÞ ¼ −
1

aNt
logCð~n; TÞ ð7Þ

which, apart from temperature dependent additive renorm-
alizations,we take as an estimate of the static quark-antiquark
potential at finite temperature [Nt is the temporal size of the
lattice, which is related to the temperature of the system
by T ¼ ðaNtÞ−1].
For the finite temperature runs, we have adopted statistics

comparable to T ¼ 0 runs [i.e. Oð103Þ–Oð104Þ trajectories
for each run], withmeasures of the Polyakov loop correlators

TABLE I. Simulation parameters for the T ¼ 0 runs, chosen according to Refs. [75,76] and corresponding to physical values of the
pion mass and of the strange-to-light mass ratio, ms=mu;d ¼ 28.15. The systematic error on a is about 2%–3% [76,77].

Lattice size aðfmÞ β ams b

244 0.2173(4) 3.55 0.1020 0, 12, 16, 24, 32, 40
324 0.1535(3) 3.67 0.0639 0, 12, 16, 24, 32, 40
404 0.1249(3) 3.75 0.0503 0, 8, 12, 16, 24, 32, 40
483 × 96 0.0989(2) 3.85 0.0394 0, 8, 16, 24, 32

0 5 10 15 20
nt

0.275

0.28

0.285

0.29

0.295

aV
ef

f

APE 24 (XY)
APE 36 (XY)
APE 24 (Z)
APE 36 (Z)

FIG. 1. Wilson loop combination aVeffða~n; antÞ defined in
Eq. (5) for j~nj ¼ 3 as a function of nt. Results refer to two
different values of the APE smearing level and to different
orientations (orthogonal, XY, or parallel, Z) of the quark-

antiquark separation relative to ~B ¼ Bẑ. The simulation has been
performed on a 483 × 96 lattice at jejB≃ 1 GeV2.
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performed after each trajectory andone step ofHYPsmearing
in the temporal direction (with the same parameters as for the
T ¼ 0 case) to suppress the UV fluctuations.

III. RESULTS

In this sectionwe present the results of our simulations.We
start with a determination of the static potential at T ¼ 0 and
B ¼ 0 for which, using results at four different lattice
spacings, we are able to obtain a reliable continuum extrapo-
lation. We then move to the results obtained for B ≠ 0: we
investigate the angular dependence of the anisotropic static
potential, which is then continuum extrapolated using the
numerical data for quark-antiquark separations orthogonal or
parallel to the external magnetic field. We point out some
interesting features that seem to emerge in the limit of very
large magnetic field and finally we discuss the modifications
induced by a nonvanishing temperature.

A. T = 0, B= 0: Continuum extrapolated results

The zero temperature static quark-antiquark potential has
been largely investigated by means of phenomenological
studies and lattice simulations and it has been shown to be
well described by the so-called Cornell potential [90]

VðrÞ ¼ −
α

r
þ σrþ V0; ð8Þ

where σ is the string tension, α is the Coulomb parameter
and V0 is an arbitrary constant term. A related quantity that
is often convenient to introduce is the so-called Sommer
parameter r0, which is defined by the equation [91]

r20
dV
dr

����
r0

¼ 1.65: ð9Þ

This parameter can be related to those entering Eq. (8) by

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.65 − α

σ

r
; ð10Þ

so that only two out of r0, α and σ are independent
quantities.
In Fig. 2 we show the results obtained for the potential,

using the procedure outlined in Sec. II, for different lattice
spacings. In this case, since no magnetic background is
present, Wilson loops have been averaged over the different
spatial directions. For each lattice spacing, data have been
fitted according to Eq. (8), in order to extract the values of
σ, α and r0 (σ and r0 have been used as independent fit
parameters). In all cases the fit turned out to have a reduced
chi-square around 1 and we verified the stability of the
results against modifications of the fit range adopted to
extract the parameters.
The values of σ, r0 and α obtained at each lattice spacing

are shown in Fig. 3: they will be used in Sec. III C as
reference values to determine the anisotropies induced by

the presence of the magnetic field, while in the following
we discuss their extrapolation to the continuum limit.
If we take into account only the three smallest lattice

spacings, the continuum extrapolation can be performed in
all cases by using just the expected leading-order a2

scaling: results are reported in Table II.1 We also explored
the possibility of fitting data at all lattice spacings, but
taking into account also Oða4Þ corrections: the continuum
results obtained in this way are in good agreement with the
ones we got previously using only the leading a2 depend-
ence, and the difference between the two values is used as
an estimate of the systematic error related to the continuum
extrapolation, which is reported in Table II as well (see also
Fig. 3). Values obtained for r0 and σ are in good agreement
with phenomenological estimates and with previous lattice
determinations [92–98] (see also Sec. 9.2 of Ref. [99] for a
recent review).

B. T = 0, B ≠ 0: Angular dependence

The static potential studied in the previous subsection is
isotropic, i.e. it depends only on themodulus r of the distance
between the quark and the antiquark. In Ref. [21] it was
shown that, at least at nonvanishing lattice spacing, this
property is lost in the presence of a magnetic background
which explicitly breaks rotational invariance. The investiga-
tion carried out in Ref. [21] was restricted to the cases of
quark-antiquark separations parallel or orthogonal to the
magnetic field, the final result of that work being that in both

0.3 0.45 0.6 0.75 0.9 1.05 1.2

r [fm]

-400

-200

0

200

400

600

800

V
(r

) 
[M

eV
]

a = 0.2173fm
a = 0.1535 fm
a = 0.1249 fm
a = 0.0989 fm

FIG. 2. Static potential as a function of the quark-antiquark
distance in physical units and for various lattice spacings. Dashed
curves represent the result of a fit according to the Cornell
potential in Eq. (8), while the solid curve represents the
continuum extrapolation. The constant V0 has been shifted, for
each lattice spacing separately, so that the potential vanishes at r0.

1Such a linear scaling in a2 is compatible with σ and r0 data
also in the whole range of lattice spacings; however, to be
conservative, in Table II we report the values obtained by fitting
just the three finest lattices.
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these directions the potential is still well described by Eq. (8),
but the parameters depend on the direction. In particular, the
string tension is larger (smaller) in the direction orthogonal

(parallel) to ~B, while α has an opposite behavior.

One of the purposes of our present investigation is to
give a full description of the static potential for B ≠ 0.
There are some general features of the angular dependence
that can be fixed a priori: while a generic anisotropic
potential is a function of the distance and of two angular
variables, in the case of a uniform magnetic field we

can still rely on the residual rotational symmetry around ~B,
thus reducing to a single angular variable dependence,
i.e. Vðr; θÞ, where θ is the angle between the quark-

antiquark separation and ~B. Furthermore, since one expects

in general symmetry under inversion of ~B, we require
Vðr; θÞ ¼ Vðr; π − θÞ. Motivated by the results of Ref. [21]
we make the ansatz that for each fixed value of θ the
Cornell description still holds, i.e. that

Vðr; θ; BÞ ¼ σðθ; BÞr − αðθ; BÞ
r

þ V0ðθ; BÞ: ð11Þ

The validity of such an assumption for all values of θ can of
course only be verified a posteriori. Notice that we assume
that also the constant term V0 in the Cornell potential can
take an angular dependence.
The most general description of the angular dependence

of the Cornell parameters can be given in terms of a Fourier
series; for instance for the string tension we can write

σðθ; BÞ ¼ σ̄ðBÞ
�
1 −

X
n≥1

cσ2nðBÞ cosð2nθÞ
�

ð12Þ

where only Fourier coefficients which respect the sym-
metry under θ → π − θ have been used. Our general
parametrization will therefore be the following one:

Vðr; θÞ ¼ −
ᾱðBÞ
r

�
1 −

X
n≥1

cα2nðBÞ cosð2nθÞ
�

þ σ̄ðBÞr
�
1 −

X
n≥1

cσ2nðBÞ cosð2nθÞ
�

þ V̄0ðBÞ
�
1 −

X
n≥1

cV0

2nðBÞ cosð2nθÞ
�
: ð13Þ

How many Fourier coefficients are required to reliably
describe the actual potential can be decided only on the
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FIG. 3. Continuum extrapolation of the QQ̄ potential param-
eters α (top),

ffiffiffi
σ

p
(center) and r0 (bottom) at T ¼ 0 and B ¼ 0.

Two different extrapolations are shown: linear in a2, using only
data from the three smallest lattice spacings (red solid line), and
including a4 corrections on the whole range of lattice spacings
(blue dashed line).

TABLE II. Continuum extrapolated results for α,
ffiffiffi
σ

p
and r0.

We report both the statistical errors of the Oða2Þ fit performed by
using the three smallest lattice spacings, and an estimate of the
systematical error, obtained by comparing with the result of the
Oða4Þ fit on the whole range of lattice spacings (see also Fig. 3).

α 0.395(22)(26)ffiffiffi
σ

p
448(20)(09) MeV

r0 0.489(20)(04) fm
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basis of numerical results, which we are going to expose
and discuss in the following.
In order to study the complete angular dependence of the

potential one could inprinciple proceed in twodifferentways,
i.e. by rotating either theWilson loop or themagnetic field. In
the first case a rotationof the spatial sideof theWilson loopby
small angles (i.e. by less than π=2)would require a significant
modification of the spatial path; in particular, new cusps
appear, which significantly modify the renormalization
factors andmake the comparison of results at different angles
and lattice spacingsmore involved. For this reasonwe choose
to rotate themagnetic field, a choice that requires us, however,
to perform new Monte Carlo simulations for different

orientations of the magnetic field, since ~B enters directly
into the probability distribution of gauge configurations. As a
consequencewe fully investigated just a limited set of angular
orientations; however, as we will show, this is sufficient to
make the picture clear enough.
In simulations with ~B not directed along any of the lattice

axes, in the computationof ratios appearing inEq. (5)wehave
considered separately the Wilson loop directed along the
X, Y and Z directions, which in general correspond to three
different values of θ. Simulations have been performed for
two lattice spacings only, namelya ¼ 0.0989 and 0.1535 fm,
using lattices of size 483 × 96 and 324 respectively. In both
cases we considered a single value of the modulus of the

magnetic field, j~bj≃ 32, corresponding jejB ∼ 1 GeV2,
since the spatial physical size is consistently aLs ≃ 5 fm.
We studied the following combinations of magnetic field
quanta: ðbx; by; bzÞ ¼ ð0; 0; 32Þ, (4, 13, 29) and (9, 18, 25),
which give access to 8 different values of the angle θ.
In Fig. 4 we show the results obtained for the potential

as a function of r for different values of θ on the finest

483 × 96 lattice. A property of its angular dependence is
clearly visible, which is present also for data on the coarser
324 lattice and is in line with what observed in Ref. [21]: at
fixed r, the potential increases as the angle between the

quark-antiquark separation and ~B increases, and reaches its

maximum in the plane orthogonal to ~B.
A peculiar property that we found is that, as one tries to

perform a best fit of data according to the ansatz given in
Eq. (13), it is sufficient to include only the lowest-order
Fourier coefficient c2 for each parameter, in order to obtain
a reasonable value of the reduced chi-square test (see the
caption of Table III); if further coefficients are inserted in
the fit, they come out to be compatible with zero within
errors. The best-fit function obtained for the finer lattice is
displayed in Fig. 4 as a function of r for several θ values,
while in Fig. 5 the same best-fit function is shown in a
three-dimensional plot. The anisotropy of the potential is
better seen by looking at the contour plot in Fig. 6. The
best-fit parameters for both lattices are reported in Table III,
and in Fig. 7 we show the angular variation of the string

-1.2
-0.6

 0
 0.6

 1.2

-1.2-0.6 0 0.6 1.2
 0

 500

 1000

 1500

 2000

xy [fm]

z [fm]

V
(r

) 
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eV
]

FIG. 5. A 3D plot of the potential as a function of the spatial
coordinates. Data points refer to the 483 × 96 lattice at jejB ∼
1 GeV2 (with ~B directed along Z) and are fitted by the surface
defined in Eq. (13).
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FIG. 4. The potential extracted using (5) from the 483 × 96
lattice, for several values of the angle θ between the Wilson loop

and ~B with jejB≃ 1 GeV2. No normalization has been per-
formed on V0 and best-fit curves are obtained using the
form in Eq. (13).

TABLE III. Best-fit parameters for the potential in Eq. (13).
The reduced chi-square values are χ2=ndof ¼ 53=74 and
χ2=ndof ¼ 36=34 for the 483 × 96 and the 324 lattice respectively.
Note that in this particular case the value of the chi-square is only
a qualitative estimator of the fit goodness, since data are
correlated (correlations have been propagated using a bootstrap
procedure).

ᾱ
ffiffiffī
σ

p
(MeV) V̄0 (MeV)

483 × 96 0.493(6) 414(2) 644(5)
324 0.499(23) 398(4) 407(20)

cα2 cσ2 cV0

2

483 × 96 −0.130ð10Þ 0.262(7) −0.154ð8Þ
324 −0.323ð64Þ 0.351(32) −0.428ð52Þ
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tension, from which it is clear that a single cosine term well
describes data in both cases.
Another interesting feature emerges from the data in

Table III: the constant term in the Cornell potential gets
an angular dependence aswell. This is a very peculiar feature,
since thatwould imply an additive term in the potentialwhich
depends on θ but not on r. However, we stress that the
associated Fourier coefficient cV0

2 is reduced by a factor of
∼2.8 as one moves from the coarse to the fine lattice,
consistently with the vanishing of such an angular depend-
ence in the continuum limit. Notice that an analogous
consideration, i.e. the vanishing of the angular dependence
in the continuum limit, could be made for the Coulomb
coupling, but not for the string tension; a more detailed
discussion of this issue will be done in the following
subsection. Finally, we stress that most of the B-dependence
of the potential can be ascribed to Fourier coefficients, since
the parameters ᾱ, σ̄ and V̄0, which are sort of averaged values
over different directions, show just a mild variation with
respect to the B ¼ 0 case.

Having determined that the full angular dependence of
the static quark potential can be described just by the first
nontrivial harmonic term, we can determine all relevant
parameters from an analysis of the potential along the
directions parallel and orthogonal to ~B, i.e. from θ ¼ 0,
π=2, which are the standard quantities already explored in
Ref. [21] and which have been extended in the present
study to a finer lattice spacing and to different values of B.

C. T = 0, B ≠ 0: Continuum extrapolated results

In this subsection, in order to perform a continuum
extrapolation of the B-dependence of the static potential,
we consider numerical results obtained at different values
of the magnetic field and of the lattice spacing, for quark-
antiquark separations parallel (Z) or orthogonal (XY) to the
magnetic field. That gives us access to the Cornell
parameters in those directions, i.e. αXY and αZ, σXY and
σZ, V0;XY and V0;Z, r0;XY and r0;Z. According to the analysis
of the angular dependence given in the previous subsection,
that provides us with enough information to characterize
the complete behavior of the potential. Indeed, if for each
parameter O we introduce its anisotropy

δOðjejBÞ ¼ OXYðjejBÞ −OZðjejBÞ
OXYðjejBÞ þOZðjejBÞ

ð14Þ

and its average relative change with B

ROðjejBÞ ¼ OXYðjejBÞ þOZðjejBÞ
2OðjejB ¼ 0Þ ð15Þ

we have, assuming that cO2n ≃ 0 when n > 1,

δO ¼
X
n

cO2n ≃ cO2 ð16Þ

and

ROðjejBÞ ¼ ŌðjejBÞ
OðjejB ¼ 0Þ

�
1 −

X
n even

cO2n

�

≃ ŌðjejBÞ
OðjejB ¼ 0Þ : ð17Þ

That is, such quantities (together with the values at B ¼ 0)
are enough to fix all the coefficients giving a nontrivial
contribution to Eq. (13) in the physically realized case, in
which c2n ≃ 0 for n > 1.
Results obtained in this way for the c2 coefficients at the

various magnetic fields and lattice spacings are shown in
Fig. 8, while in Fig. 9 we report results for the quantities
ROðjejBÞ. A remarkable feature is that these quantities
show a very mild variation with the magnetic field, so that
most of the dependence of the potential on B can be
ascribed to the anisotropy coefficients c2. Moreover, the

-3 -2 -1  0  1  2  3
xy [fm]
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z 
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FIG. 6. Contour plot of the function displayed in Fig. 5.
Contour lines are plotted every 500 MeV.
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FIG. 7. Rescaled form of the string tension as function of the
angle θ for the two lattices 324 and 483 × 96. The dashed line is
the function − cosð2θÞ.
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signs of such anisotropies are always consistent with the
fact that, at fixed r, the potential has a minimum (maxi-
mum) for θ ¼ 0ðπ=2Þ.
We performed a continuum limit extrapolation of our

data according to the following ansatz:

cO2 ¼ AOð1þ COa2ÞðjejBÞDOð1þEOa2Þ

RO ¼ 1þ ĀOð1þ C̄Oa2ÞðjejBÞD̄O
; ð18Þ

which is similar to the one adopted inRef. [21] and consists of
a power law inB for both set of quantities,with the insertion of
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FIG. 8. The anisotropy coefficients cO2 for all the potential
parameters O ¼ α, σ, V0. Data have been computed according to
the definition in Eq. (14). Gray bands represent the continuum
extrapolation obtained by fitting with Eq. (18) all data except that
of the coarsest lattice 244.
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FIG. 9. The ratios RO for all the potential parameters O ¼ α, σ,
V0. Data have been computed according to the definition in
Eq. (17). Gray bands represent the continuum extrapolation
obtained by fitting with Eq. (18) all data except that of the
coarsest lattice 244.
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Oða2Þ corrections for all involved coefficients. Reasonable
fits are obtained once the data on the coarsest lattice are
discarded; indeed, for the lattice spacing a ¼ 0.2173 fm,
large cutoff effects are expected for jejB≳ 1=a2≃
0.8 GeV2. Continuum extrapolated results are displayed in
Fig. 8 and Fig. 9, while numerical results for the best-fit
parameters are reported in Table IV. It has to be explicitly
remarked that the functions in Eq. (18) are not intended to
have any intrinsic physical meaning: the only physical
requirements are cO2 ðB¼0Þ¼0 and ROðB ¼ 0Þ ¼ 1. This
form is used because it is the simplest expression that well
describes data in the whole range of lattice spacing studied
without introducing any specific theoretical bias. As a matter
of fact, a simple linear behavior inB (i.e.DO ¼ 0 and D̄O¼0)
describes data almost as well and leads to continuum values
which are compatible,within errors, in the explored range.We
have also tried to repeat our fits on restricted ranges of jejB,
obtaining variations of the fitting parameters which are well
within the statistical uncertainties.
The results obtained for the c2 coefficients show that,

while the anisotropy of the string tension has a well defined
nonzero continuum limit, with a value around 15% for
jejB ∼ 1 GeV2, those of the Coulomb coupling and of V0

seem to disappear in the same limit. Indeed, reasonable best
fits are obtained also by imposing cα2 and cV0

2 to vanish in
the continuum limit (χ2=ndof ∼ 9.4=12 and χ2=ndof ≃
14.4=12 respectively for cα2 and cV0

2 ), while the same is
not true for cσ2 (χ

2=ndof ≃ 87=12). The continuum extrapo-
lated results obtained for the RO ratios confirm, instead,
that on average all Cornell parameters have little depend-
ence on the magnetic field. Again, reasonable best fits are
obtained also by imposing RO to be B-independent in the
continuum limit (χ2=ndof ¼ 8.3=12 for ᾱ, χ2=ndof ¼
9.1=12 for V̄0, and χ2=ndof ¼ 18=12 for σ̄).
In summary, the modification of the quark-antiquark

potential induced by the magnetic field persists in the
continuum limit, and this is mostly due to the anisotropy
induced in the string tension. In order to directly compare
with the analysis of Ref. [21], in Fig. 10 we report also
results for the relative variation of the string tension along
the XY and Z axis, together with their continuum extrap-
olations, obtained using the same functional form as for RO.

D. Anisotropic deconfinement in the large field limit?

The continuum extrapolation discussed in the previous
subsection has been obtained for a range of magnetic fields

going up to around 1 GeV2; however, it is tempting to
extrapolate it to larger values of B. In particular, results
obtained for the longitudinal string tension indicate that it
would vanish for magnetic fields of the order of 4 GeV2:
this is clearly visible from Fig. 11, where the continuum
extrapolation for the ratio σðjejBÞ=σð0Þ along the axes has
been extended up to eB ∼ 4 GeV2.
A vanishing string tension at some critical value of B,

corresponding to a sort of longitudinal deconfinement, is
compatible with large-B effective field theories (see, e.g.,
Ref. [100]) and would have important consequences, e.g.,
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FIG. 10. Ratios between the string tension computed along the
XY (empty symbols) and the Z (full symbol) directions and the
string tension computed at B ¼ 0. Bands denote the continuum
extrapolations, which have been obtained using an ansatz
analogous to the one used in Eq. (18) on the three finest lattice
spacings. Best-fit parameters (relevant in the continuum limit) are
AσXY ¼ 0.084ð42Þ,DσXY ¼ 0.90ð37Þ, with χ2=ndof ¼ 8.9=11, and
AσZ ¼ −0.198ð39Þ, DσZ ¼ 2.08ð44Þ with χ2 ¼ 10.6=11.

TABLE IV. Continuum limit of the anisotropies defined in
Eq. (14), performed using the ansatz in Eq. (18). The fit does not
include the coarsest 244 lattice.

Aσ 0.151(32) Dσ 1.64(30) χ2=ndof 9.5=11

Aα 0.046(39) Dα 1.51(67) χ2=ndof 7.3=11
AV0 0.066(36) DV0 1.48(50) χ2=ndof 7.8=11
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FIG. 11. Relative change of the string tension as a function of
jejB, along the directions parallel and orthogonal to the back-
ground field. The shadowed band corresponds to the large field
extrapolation of the continuum limit obtained for jejB≲ 1 GeV2.
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for the anisotropic propagation of heavy quark-antiquark
pairs, and could be put in connection with theoretical
speculations about anisotropic quantum transitions at large
values of B [101].
A question naturally arises at this point: how reliable is

the extension to large magnetic fields of a continuum
extrapolation obtained in a smaller range of B? In order to
better appreciate the question, we stress that assumptions
different from Eq. (18) could lead to different predictions in
the large B region: for instance, if a linear behavior in B is
assumed, the continuum limit does not change within errors
for ejBj≲ 1 GeV2, but the point where the longitudinal
string tension vanishes moves to ejBj ∼ 10 GeV2.
Unfortunately, a direct continuum extrapolation for

jejB ≫ 1 GeV2 is presently hindered by the large ultra-
violet cutoff effects which are expected when jejB≳ 1=a2

[74]. This sets the limit jejB≲ 1 GeV2 for two of the lattice
spacings explored in the present study.
To have more reliable indications of what happens at

such large fields, we can extend the range of explored jejB
just for the finest lattice spacing, a≃ 0.0989 fm, for which
1=a2 ∼ 4 GeV2. Therefore, we have performed further
numerical simulations for jejB ∼ 2 and 3 GeV2, obtaining
the results for the string tension which are reported in
Fig. 11. The new results suggest that the steady decrease of
the longitudinal string tension persists up to very large
fields, even if with a slight tendency to undershoot the
extrapolation of the continuum band, so that its vanishing at
some critical magnetic field is a concrete possibility. On the
other hand, understanding whether an anisotropic decon-
finement really takes place at some critical value of B
requires further dedicated simulations at finer values of the
lattice spacing.

E. T > 0 results

For finite temperature runs, we have extracted the static
potential from the gauge invariant correlator of Polyakov
loops, see Eqs. (6) and (7). In this case we report on results
at a single value of the lattice spacing (the finest one,
a≃ 0.0989 fm) and for three temperatures below the
transition temperature, namely T ≃ 100, 125, 143 MeV
(corresponding to lattices 483 × 20, 16, 14, respectively),
where we still expect the system may exhibit confining
properties. In the deconfined phase, instead, Polyakov loop
correlators give access to various kind of gluonic screening
masses: the effect of the magnetic field on those masses will
be studied in a forthcoming investigation. In Fig. 12
we show the results obtained for FQQ̄ at some values of
the magnetic field, respectively for T ≃ 100 MeV and
T ≃ 125 MeV. In general, we observe a behavior which
is different from that present at T ¼ 0.
The anisotropy is still visible, and goes in the same

direction as for T ¼ 0, with the potential for quark-
antiquark separations parallel to ~B being suppressed with

respect to the orthogonal case. The anisotropy is more
pronounced for large magnetic fields and for intermediate
separations, while it disappears in the limit of large
distances: this is actually expected, since the magnetic
background cannot disrupt the cluster property of the
theory; hence, the correlation of two Polyakov loops must
be independent, in the large distance limit, from the
direction of their relative separation.
Contrary to the zero temperature case, the main effect

of the magnetic field seems to be that of suppressing
the potential in all directions. Only for relatively small
magnetic fields (smaller and smaller as the temperature
increases) can the observed FQQ̄ be fitted according to a
Cornell potential and is qualitatively similar to that
observed for T ¼ 0. However, in these cases one is not
able to distinguish, within errors, the results obtained in the
various directions: this is due to the larger statistical
uncertainties affecting the Polyakov loop correlator, espe-
cially in the low temperature regime, where the Polyakov
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loop is more suppressed and the correlators are noisier. The
results obtained for the string tension in such cases are
reported in Fig. 13. As expected for vanishing jejB, the
string tension σ decreases as the temperature approaches
the deconfinement transition. Such an effect comes out to
be enhanced when the external field is turned on.
The observed behavior is consistent with the decrease of

the chiral pseudocritical temperature which has been
observed in previous studies [15,17]. This phenomenon
has been usually named as inverse magnetic catalysis,
because of its relation with the behavior of the chiral
condensate, which is an increasing function of B at low T
(direct magnetic catalysis), and becomes nonmonotonic
around the transition, in association with a decrease of Tc.
Our observations provide evidence for a strong effect of
the magnetic field also on the confining properties of the
medium which, at fixed temperature, seem to be lost if the
magnetic field is strong enough.
Actually, looking at the behavior of the chiral condensate

for the same values of temperature and magnetic field, the
effect on the confining properties seems to be the leading
phenomenon. In Fig. 14 we report the renormalized light
chiral condensate as a function of B for the three explored
temperatures, which is defined as [15]

hψ̄ψirðT; BÞ ¼ ml

m4
π
ðhψ̄ψilðT; BÞ − hψ̄ψilð0; 0ÞÞ ð19Þ

where the T ¼ 0 subtraction eliminates additive divergen-
ces, while the multiplication by the bare light quark mass
ml takes care of multiplicative ones. It is clearly visible that
for the two lowest temperatures, no signal of inverse
magnetic catalysis is visible in the explored range of B,
while in the same range we already observe a strong
modification of the free energy of the static pair, such that

we are not able to fit it according to a Cornell potential,
something which we interpret as an effective disappearance
of the confining properties.
This might have many interesting interpretations and

consequences. First, from a theoretical point of view, the
suppression of the confining properties seems to be a
dominant phenomenon with respect to the effect of the
magnetic field on the chiral condensate, so that one would
be tempted to describe the observed decrease of Tc with B
in terms of “deconfinement catalysis” rather than of
“inverse magnetic catalysis”; notice that this point of view
is also suggested by recent computations in effective
models [45,46] and holographic computations [49].
Second, from a phenomenological point of view, the
precocious modification of the confining properties
induced by the magnetic background might have signifi-
cant consequences on the suppression of heavy quark
bound states (e.g., J=ψ) to be observed in the thermal
medium produced in noncentral heavy ion collisions.

IV. CONCLUSIONS

Following an explorative study [21], which showed the
presence of strong effects on the confining properties of the
QCD vacuum induced by the presence of an external
magnetic background, we have performed a deeper inves-
tigation of the phenomenon, which has extended the
previous analysis of Ref. [21] in various directions. We
have thus studied the static potential for various orienta-
tions of the quark-antiquark separation with respect to the
background field, in order to obtain information about its
angular dependence. Then, exploiting new numerical
simulations performed for finer values of the lattice
spacing, we have extracted a continuum extrapolation of
our results and tried to extend the analysis towards larger
magnetic fields. As a byproduct of our study, we have also
obtained a continuum extrapolation of the static potential at
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FIG. 13. The square root of the string tension σ along different
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0 data refer to an average over all directions.
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zero external field. Finally, we have extended our inves-
tigation at finite temperature, exploring the effects of the
magnetic background below the pseudocritical temperature
Tc. Our main results can be summarized as follows.
At zero temperature, the full angular dependence of the

anisotropic potential can be described assuming that it has a
Cornell form along each direction. Moreover, the angular
dependence of the parameters can be accounted for by the
first allowed term c2 in a Fourier expansion in θ, which
corresponds to a quadrupole deformation. On the other
hand, the continuum extrapolation of our results shows that
the magnetic field induces a significant anisotropy only for
the string tension, while the Coulomb coupling is almost
unaffected, at least for jejB≲ 1 GeV2. The latter result is
compatible with an analysis based on the numerical study
of gluon field strength correlators [23].
The observed anisotropy of the potential suggests that

the string tension in the direction parallel to the magnetic
field might disappear for magnetic fields of the order of
jejB ∼ 4 GeV2. While this extrapolation to large magnetic
fields cannot be supported by a reliable continuum limit in
that regime, we have verified that it is consistent with
results obtained at the finest explored lattice spacing, where
we managed to perform numerical simulations for magnetic
fields up jejB ∼ 3 GeV2. Future numerical studies on finer
lattices could check the hypothesis of a possible longi-
tudinal deconfinement at large B, which presently is just
suggested by our results.
Finally, our finite temperature results, obtained in an

interval ranging approximately from 100 MeV to right
below the pseudocritical temperature, have shown that the

main effect of the magnetic field on the static potential in
that range consists of a general suppression of the string
tension and of the confining properties of the medium.
Moreover, such a phenomenon still happens even when no
signal of inverse magnetic catalysis is visible in the chiral
condensate, thus suggesting that the decrease of the
pseudocritical temperature as a function of B, usually
named as “inverse magnetic catalysis,” might accompany
and follow a “deconfinement catalysis,” representing the
leading physical phenomenon: this idea is also supported
by some recent computations in effective models [45,46]
and holographic computations [49]. From a phenomeno-
logical point of view, the precocious disappearance of the
confining properties of the static potential might have a
significant influence on the suppression of heavy quark
bound states produced in the thermal medium, even below
Tc, in all situations in which a strong magnetic field might
be present, e.g., in noncentral heavy ion collisions and in
the thermal medium of the early Universe. This is an issue
of particular interest and should be further investigated in
future studies.
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