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We investigate the Bose-Einstein condensation (BEC) patterns, the critical and multicritical behaviors of three-
dimensional mixtures of bosonic gases with density-density interactions, characterized by a global U(1)⊕U(1)
symmetry [one U(1) transformation for each species]. In particular, we consider the three-dimensional Bose-
Hubbard model for two lattice bosonic gases coupled by an on-site interspecies density-density interaction.
We study the phase diagram and the critical behaviors along the transition lines of the BEC of one or both
species. We present mean-field calculations and finite-size scaling analyses of quantum Monte Carlo data. We
also investigate the nature of the multicritical points where the BEC transition lines of the two species meet.
The corresponding universality classes are inferred from a renormalization-group analysis of the corresponding
multicritical U(1)⊕ U(1) Landau-Ginzburg-Wilson �4 theory. We find two distinct critical behaviors, associated
with bicritical and tetracritical points, respectively, depending on the relative strength of the interspecies and
intraspecies interactions.
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I. INTRODUCTION

The complex behavior of mixtures of bosonic gases has
been extensively investigated experimentally, in particular, in
cold-atom systems [1–22], and theoretically [23–50]. These
systems exhibit a rich behavior, at zero and finite temperature,
with several different phases separated by transition lines,
along which one or more components of the system undergo
Bose-Einstein condensation (BEC).

In this paper we consider three-dimensional (3D) mixtures
of two different bosonic gases with short-range interactions
that only depend on the local densities of the two gases.
The Hamiltonian of these systems is invariant under U(1)
transformations acting independently on each species, so the
model is U(1)⊕ U(1) symmetric. In particular, we consider
the 3D two-component Bose-Hubbard model with an on-site
interspecies density-density interaction. This is a realistic
model for two bosonic species in optical lattices [51].

We determine the finite-temperature phase diagram by
using a variety of techniques. First, we consider the mean-
field (MF) approximation, determining the qualitative phase
behavior of the system as a function of the model parameters,
such as the chemical potentials and the on-site interspecies
and intraspecies couplings. We find several different phases,
in which each species may be in the normal or superfluid
state, and identify critical lines and multicritical points (MCPs)
where some transition lines meet.

The 3D phase diagram is investigated in the hard-core (HC)
limit of each species by a finite-size scaling (FSS) analysis
of quantum Monte Carlo (QMC) simulations. The numerical
data allow us to identify the universality class of the transition
lines that correspond to the BEC of one of the two species. We
show that, independently of whether the noncritical component
is in the normal or superfluid phase, the critical behavior of
the condensing species belongs to the 3D XY universality
class characterized by the breaking of a global U(1) symmetry
and by short-range effective interactions. This is the same

universality class associated with the BEC of a single bosonic
gas [52–55] (and also with the superfluid transition in 4He
[56,57], with transitions in some liquid crystals characterized
by density or spin waves and in magnetic systems with easy-
plane anisotropy, etc. [58]). This result implies an effective
decoupling of the critical modes of the condensing species
from those of the noncritical component, independently of
whether the latter is in the normal or superfluid phase.

The phase diagram of mixtures of bosonic gases also
presents particular points where some transition lines meet.
Multicritical behaviors develop at these MCPs, arising from
the competition of the two U(1) order parameters associated
with the BEC of the two species. To identify the possible
universality classes of the multicritical behaviors, we use the
field-theoretic approach, considering the effective Landau-
Ginzburg-Wilson �4 theory for two complex fields with global
U(1)⊕ U(1) symmetry. We study the renormalization-group
(RG) flow in the quartic-parameter space, identifying the stable
fixed points, which control the critical behavior, and their
attraction domain. We obtain accurate results from the analysis
of high-order perturbative series, which are resummed taking
into account their Borel summability.

The paper is organized as follows. In Sec. II we define
the Bose-Hubbard model for two lattice bosonic gases. In
Sec. III we determine the phase diagram of the model in
the MF approximation, showing that, by changing the model
parameters, one can obtain qualitatively different behaviors.
In Sec. IV we present a numerical analysis based on QMC
simulations in the hard-core limit and determine the critical
behavior along the transition lines where one species under-
goes BEC. In Sec. V we study the multicritical behaviors at the
MCPs where BEC transition lines meet in the phase diagram.
Finally, in Sec. VI we summarize and draw our conclusions.
The Appendix reports the five-loop perturbative series in the
minimal-subtraction scheme, which are used in the RG study
of the multicritical behavior.
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II. BOSE-HUBBARD MODEL OF A MIXTURE
OF BOSONIC GASES

The two-species Bose-Hubbard (2BH) model is a lattice
model appropriate to describe mixtures of bosonic gases with
local density-density interactions. Its Hamiltonian reads

H = −
∑

s,〈x y〉
ts(b

†
sxbs y + H.c.) −

∑
s,x

μsnsx

+1

2

∑
s,x

Vsnsx(nsx − 1) + U
∑

x

n1xn2x, (1)

where x is a site of a cubic lattice, 〈x y〉 labels a lattice link
connecting two nearest-neighbor sites, the subscript s labels
the two species, and nsx ≡ b

†
sxbsx is the density operator of

the s species. The 2BH model is symmetric under the U(1)
transformations bsx → eiθs bsx independently acting on the two
species. Therefore, the global symmetry group is U(1) ⊕ U(1).

For t1 = t2, μ1 = μ2, and V1 = V2 = V , the 2BH model (1)
describes the behavior of a mixture of two identical bosonic
gases and it has been extensively studied in Ref. [50]. In this
case, the model has an additional Z2 exchange symmetry, so
the symmetry group becomes Z2,e ⊗ [U(1) ⊕ U(1)]. In the
HC limit, or, more generally, when V � U , both components
condense at the transition. Thus, the global symmetry breaks
to Z2,e ⊗ [Z2 ⊕ Z2]. The critical behavior is controlled by a
decoupled 3D XY fixed point [50]: The critical behaviors of
the two gases are effectively decoupled and belong to the 3D
XY universality class associated with the symmetry breaking
U(1) → Z2. Although the interspecies density-density inter-
action does not change the leading critical behavior, it plays an
important role close to criticality, as it gives rise to very slowly
decaying scaling corrections, which are not present at the BEC
transition of a single bosonic species. In the opposite case,
i.e., for V � U , only one component condenses, so the global
symmetry is broken to U(1) ⊕ Z2. The associated critical
behavior belongs to a different 3D universality class [50].

In the following we consider mixtures of nonidentical gases
described by the 2BH model (1). As we will see, their finite-
temperature phase diagrams present several phases where the
two species are in the normal or superfluid state, separated
by transition lines along which only one species condenses.
Moreover, we will discuss MCPs, which are points in the phase
diagram where some transition lines meet.

The HC limit for the s component is obtained by taking
Vs → ∞. In this limit, using the particle-hole transformation,
we can relate the spectrum of the Hamiltonian for two different
sets of parameters. For instance, assume that V1 = ∞ so that
n1x can only have the values 0 and 1. Under a particle-hole
transformation the kinetic term is unchanged, while n1x →
1 − n1x . Thus, the spectrum of the model with chemical
potentials μ1 and μ2 and interaction U is related to that of
the model with chemical potentials μ′

1 and μ′
2 and interaction

U ′ with

μ′
1 = −μ1, μ′

2 = μ2 − U, U ′ = −U. (2)

Indeed, the energy levels of the two models differ by an
irrelevant constant term proportional to μ1. An analogous
relation holds for the second species if V2 = ∞. These
relations imply that if one of the two components has a hard

core, one can limit oneself to study the phase diagram for
U > 0.

III. MEAN-FIELD PHASE DIAGRAMS

Some qualitative or semiquantitative aspects of the phase
diagram can be inferred by MF calculations. For this purpose
we make the approximation

b†sxbs y = [(b†sx − φ∗
s ) + φ∗

s ][(bs y − φs) + φs]

≈ φsb
†
sx + φ∗

s bs y − |φs |2, (3)

where φs = 〈bsx〉 are two complex space-independent vari-
ables, which play the role of order parameters at the BEC
transitions. The parameters φs are related to the superfluid
densities by ρs ∝ |φs |2. Equation (3) allows us to rewrite the
Hamiltonian (1) as a sum of decoupled one-site Hamiltonians

HMF = −2d
∑

s

ts(φsb
†
s + φ∗

s bs − |φs |2)

−
∑

s

μsns + 1

2

∑
s

Vsns(ns − 1) + Un1n2, (4)

where ns = b
†
sbs . Since the spectrum of the theory is invariant

under bs → eiθs bs , where the θs are two independent phases,
the two parameters φs can be assumed to be real without loss of
generality. They are determined by minimizing the single-site
free energy

F = −T ln
∑

i

e−βEi , (5)

where Ei are the eigenvalues of HMF [59]. At zero temperature
the minimization of the free energy corresponds to the
minimization of the ground-state energy E0.

In the following we restrict ourselves to the case t1 = t2 = t

and V1 = V2 = V . Moreover, we set t = 1 so that all energies
are expressed in units of t .

The model shows a complex phase diagram, with transition
lines (surfaces) along which one component undergoes a
transition from the normal state to a superfluid one. Note that,
in the limit of zero temperature, the normal phases become
Mott insulating phases or simply correspond to the vacuum. In
the following we present MF results for some selected values
of the model parameters, which should be representative of the
different finite-temperature behaviors that can be observed by
varying the parameters.

To begin with, we consider the HC limit V → ∞. Figure 1
shows the zero-temperature phase diagram as a function of μ1

and U , when component 2 has zero chemical potential, i.e.,
for μ2 = 0. We observe several Mott and superfluid phases,
separated by continuous transition lines. The Mott phases
appearing in Fig. 1 are somewhat trivial, as they correspond
to the vacuum or to unit filling (one particle per site). If one
chooses more general values for ts and Vs , one may obtain
more complex Mott phases at T = 0. For instance, for μ1 = μ2

and t1 = t2, the phase diagram also shows a Mott phase with
global unit filling, i.e., n1 + n2 = 1 but ns = 0,1, and therefore
a degenerate ground state [25]. The large degeneracy of the
ground state may be described in terms of isospin degrees
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FIG. 1. The MF zero-temperature phase diagram of the 2BH
model in the HC limit for μ2 = 0, as a function of μ1 and U . The
symbol S marks the superfluid phases: S1 and S2 indicate the phases
in which only components 1 and 2 are superfluid, respectively; in
phase S12 both components are superfluid. The symbols 0s and 1s

mark Mott phases for species s with fillings 0 and 1, respectively. In
the leftmost phase marked 01,S2, we have ρ2 = 1/4 for the superfluid
density and n2 = 1/2, which are the values corresponding to a single
gas with vanishing chemical potential.

of freedom per site, interacting by means of an effective
low-energy spin Hamiltonian [25–27,31].

At finite temperature the vacuum and Mott phases are
replaced by normal phases. As suggested by the T = 0 phase
diagram of Fig. 1, we may have different behaviors depending
on the strength of the interspecies interaction U . For example,
Fig. 2 shows the phase diagram for μ2 = 0 as a function of μ1

and T , for two values of U , U = 10 and U = 4. For U = 10
there is a single MCP where four transition lines meet. For
U = 4 instead two different MCPs are present. The change
of behavior occurs for U = 6. It can be related to the phase
boundary U = 2d appearing in the phase diagram of a single
HC bosonic gas. In the MF approximation all phase boundaries
correspond to continuous transitions.

In order to understand the role of finite intraspecies
couplings, we consider a finite V . In this case, Mott phases with
higher integer fillings are possible. Moreover, when V < U

one may have first-order transition lines between the superfluid
phases of the two components. For example, Fig. 3 shows the
zero-temperature behavior for μ2 = 0 and U = 4 as a function
of V and μ1. In this case, the phase S1, in which component
1 is superfluid and component 2 is depleted, is separated from
phase S2, in which component 2 is superfluid and component
1 is depleted, by a first-order transition line with μ1 = 0 and
0 < V < U .

Finite intraspecies interactions lead to significant changes
of the phase diagram also at finite temperature. For example,
Fig. 4 shows the phase behavior for U = 4, μ2 = 0, and
some finite values of V , as a function of μ1 and T . It
should be compared with Fig. 2, where we report the phase
diagram in the HC limit for the same values of U and μ2.
As V is increased from V = 34.8 to V = 35.3, the phase
diagram changes qualitatively. For V � 35 only one MCP is
present, while for V � 35 three MCPs occur. Moreover, for
V ≈ 35.3 there are two different S12 phases. In particular, both
components condense for any μ1 � 17, if T is not too large.
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FIG. 2. Phase diagram of the HC 2BH model for μ2 = 0 and
two values of U , U = 10 (top) and U = 4 (bottom), as a function
of μ1 and T . In phase S1 component 1 is in the superfluid state,
while component 2 is in the normal state. In phase S2 the opposite
occurs. In phase S12 both gases are superfluid. In the upper (and, for
U = 10, rightmost) region with no label both gases are in the normal
state. The solid and dashed lines indicate the normal-to-superfluid
transition lines of gases 1 and 2, respectively.

Such a large-μ1 S12 phase occurs for any finite V : For μ1

larger than a V -dependent value μb(V ), i.e., for μ1 � μb(V ),
both components always condense for small T . For V → ∞
we have μb(V ) → ∞, so such a phase does not exist in the
HC case, as shown in the bottom panel of Fig. 2.
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45

-20 -10 0 10 20 30 40

FIG. 3. Zero-temperature phase diagram for μ2 = 0 and U = 4,
as a function of μ1 and V . The different phases are labeled as in Fig. 1.
For V < U = 4, a first-order transition line (indicated by a thick line)
runs along μ1 = 0. The phase 11,S2 occurs only for V � 35.3.
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FIG. 4. Phase diagrams for μ2 = 0 and U = 4 as a function of
T and μ1. We report results for several values of the intraspecies
repulsion V , for V close to V ≈ 35 [at T = 0, the phase 11,S2 occurs
only for V � 35.3 (see Fig. 3)]. The different phases and the transition
lines are labeled as in Fig. 2.

When V < U the finite-temperature phase diagram changes
significantly from that observed in the regime V > U . Indeed,
as shown in Fig. 5, in the phase diagram for μ2 = 0, V = 5, and
U = 10, three transition lines meet at a MCP: two continuous

T

μ1

01 02

S1S2

U = 10U = 10
V = 5
μ2 = 0

0

2

4

6

8

10

-4 -3 -2 -1 0 1 2 3 4

FIG. 5. Phase diagram for μ2 = 0, U = 10, and V = 5, as a
function of μ1 and T . Species 1 and 2 are superfluid for μ1 > 0
and μ1 < 0, respectively. These phases are separated by a first-order
transition line along μ1 = 0, ending at the point where the continuous
normal-to-superfluid transition lines of the two gases meet. In the
uppermost phase with no labels, both components are in the normal
state.

normal-to-superfluid transition lines and a first-order transition
line separating the superfluid phases of gases 1 and 2 along the
line μ1 = 0. This is of course consistent with what is observed
at zero temperature (see Fig. 3).

Mean-field calculations can be straightforwardly extended
to more general cases, such as V1 = V2 and/or t1 = t2.
However, the main features of the possible finite-temperature
behaviors should already be present in the results shown above.

IV. PHASE DIAGRAM IN THE HARD-CORE LIMIT

In this section we investigate numerically the nature of
the transitions occurring in two-component bosonic systems
described by the Hamiltonian (1), by QMC simulations.
As already discussed in the MF approximation, in most of
the cases the transition lines are associated with normal-to-
superfluid transitions of one of the two species. However, it
is also possible to have first-order transition lines between
two phases in which only one component is superfluid [this
behavior is expected in the soft-core regime (see Fig. 5)] and
MCPs where three or four transition lines meet.

Since the normal-to-superfluid transition of a single species
is related to the spontaneous breaking of the U(1) symmetry
of the condensing species, it seems natural that the critical
behavior belongs to the standard 3D XY universality class [58].
This conjecture, however, requires that the second (spectator)
component plays no role at the transition, i.e., an effective
decoupling of the critical modes of the condensing species
from the modes of the spectator one. This hypothesis is
quite natural when the spectator species is in the normal
phase, which is characterized by short-range correlations.
However, if the second component is in the superfluid phase,
in which long-range spin-wave (Goldstone) modes develop,
the asymptotic decoupling of the two species is no longer
obvious. Indeed, the Goldstone modes may give rise to effec-
tive long-range interactions among the condensing particles.
As a consequence, one might observe a different critical
behavior (we recall that the standard 3D XY universality is
observed only if the interactions decay sufficiently fast with
the distance), or XY behavior with peculiar slowly decaying
scaling corrections, as it occurs in the case of mixtures of
identical bosonic gases [50].

To investigate these issues, we perform QMC simulations
of the 2BH model in the HC limit for both species (V1 =
V2 → ∞). Our results provide robust evidence that the critical
behaviors belong to the 3D XY universality class along all
continuous transition lines, including those where one species
condenses in the superfluid background of the other one. In
other words, the local interspecies density-density interac-
tion is an irrelevant RG perturbation at all BEC transition
lines. There is also no evidence of slowly decaying scaling
corrections. Apparently, the leading scaling corrections are
always controlled by the leading irrelevant RG operator that
appears in the standard XY model or at the BEC transition of
a one-component bosonic gas.

As we will see in Sec. V, these features change when we
approach a MCP, where several transition lines meet. In that
case the competition of the two BEC order parameters gives
rise to more important effects.
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A. Quantum Monte Carlo simulations

We consider the 2BH model (1) with t1 = t2 = t = 1 in
the HC limit V1,V2 → ∞, for cubic L3 lattices with periodic
boundary conditions. We perform QMC simulations [60,61]
for μ2 = 0 and two values of U , U = 10 and U = 4, using
the same algorithm employed in Ref. [50] (we refer to this
reference for technical details). In the MF approximation, the
phase behavior as a function of T and μ1 is reported in Fig. 2.
Here we verify that the MF diagram is qualitatively correct.
Moreover, we determine the nature of the critical behavior at
a few selected points, at which the spectator species is both in
the normal and in the superfluid phase.

For this purpose, we focus on the FSS behavior of
the helicity modulus, which generally provides the most
precise numerical results to characterize the critical behavior.
The helicity modulus ϒs of species s = 1,2 is obtained from
the response of species s to a twist in the boundary conditions
by an angle αs , i.e.,

ϒs ≡ − 1

L

∂2 ln Z(αs)

∂α2
s

∣∣∣∣
αs=0

, (6)

where Z(αs) is the partition function for twisted boundary
conditions in one direction and periodic boundary conditions
in the two orthogonal directions. In QMC simulations ϒs is
simply related to the linear winding number Ws of species s,
through the relation ϒs = 〈W 2

s 〉/L.
We also computed expectation values of other observables,

such as the two-point function 〈b†sxbsy〉, its spatial integral, and
the second-moment correlation length. In the following we do
not report the corresponding results. We only mention that they
substantially confirm the conclusions drawn from the analysis
of the helicity modulus.

The helicity modulus at the BEC transition of the s species
is expected to behave as

Rs ≡ ϒsL ≈ f (uL1/ν), (7)

where ν is the correlation-length exponent and the linear
scaling field u is a linear combination of T and the model
parameters, which vanishes at the critical point. Assuming for
simplicity that μ2 is fixed, at a generic critical point (Tc,μ1c),
the scaling field can be written as

u(T ,μ1) ≈ a(T − Tc) + b(μ1 − μ1c), (8)

where a and b are nonuniversal coefficients. In particular,
we have u = a(T − Tc) if we investigate the transition by
varying T keeping μ1 fixed and u = b(μ1 − μ1c) if we vary
μ1 keeping T fixed. The scaling function f (x) is universal,
provided coefficients a and b appearing in Eq. (8) are properly
defined. However, it depends on the shape and boundary
conditions of the system. A straightforward consequence of
Eq. (7) is that the curves Rs(L; μ1) at fixed L cross each other
at the critical point, where their slopes are controlled by the
correlation-length exponent ν.

We wish now to verify our conjecture that the critical
behavior of the condensing component always belongs to
the 3D XY universality class, irrespective of the (normal
or superfluid) state of the spectator component. If true, the
exponent ν appearing in Eq. (7) equals that of the 3D XY

universality class [57] νXY = 0.6717(1). Moreover, also the

R1

μ1

U = 10L = 4
L = 8
L = 10
L = 12
L = 16
L = 20
L = 24
L = 32
L = 40

0.4

0.5

0.6

0.7

-1.92 -1.91 -1.9 -1.89

FIG. 6. Helicity-modulus combination R1 at T = 1, μ2 = 0,
and U = 10 as a function of μ1, close to the normal-to-superfluid
transition.

scaling function f (x) must be equal to that of the 3D XY

universality class apart from a trivial multiplicative rescaling of
the argument. In particular, we should find [57] R∗ = f (0) =
0.516(1) at the transition.

We should note that an accurate determination of the critical
parameters requires us to take into account the corrections
to the asymptotic scaling behavior (7). Including the leading
corrections we have

Rs ≈ f (uL1/ν) + L−ωg(uL1/ν), (9)

where g(x) is a scaling function and ω a universal exponent.
For the standard 3D XY universality class we know that [57,58]
ωXY = 0.785(20).

B. Finite-size scaling at the transition lines

In the MF approximation, for μ2 = 0, U = 10, and suffi-
ciently small temperature values, the system undergoes three
different phase transitions as μ1 is decreased at fixed T (see
Fig. 2). (i) First, starting from large values of μ1, component 1
undergoes a normal-to-superfluid transition, while component
2 remains in the normal phase. (ii) As μ1 is further decreased,
also component 2 condenses, while component 1 is in the
superfluid phase. (iii) Finally, a second normal-to-superfluid
transition of component 1 occurs, but in this case the second
component is superfluid.

Figures 6–8 show QMC results at T = 1 for transition (iii)
at μ1 < 0, up to L = 40. The estimates of R1 show a crossing
point at μ1c ≈ −1.904 (see Fig. 6), indicating that component
1 undergoes a phase transition, while R2 increases linearly with
L (see Fig. 7), which is the appropriate behavior expected for
a gas in the superfluid phase.

In order to check that the critical behavior belongs to the
3D XY universality class, we verify that the data are consistent
with Eq. (9), taking the XY values for the critical exponents.
In practice, we fit the data to

R = R∗ +
m∑

i=1

aiu
iL−i/νXY + L−ωXY

n∑
j=0

bju
jL−j/νXY , (10)

with u = μ1 − μ1c. We set νXY = 0.6717 and ωXY = 0.785,
which are the best available estimates of the two exponents for
the 3D XY universality class. For our data uL−1/νXY is small, so
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FIG. 7. Plot of Rs = ϒsL for the two gases at the normal-to-
superfluid transition of gas 1, for T = 1, U = 4, μ2 = 0, and μ1 =
−1.9035. For L → ∞, R1 approaches the XY critical value R∗ =
0.516(1), while R2 increases linearly with L as is appropriate for a
gas in the superfluid phase.

we have replaced the scaling functions f (x) and g(x) with their
expansions (to order m and n, respectively) around x = 0. The
values of m and n have been chosen by checking the quality
of the fit and the stability of the results with respect to the
order of the expansions. Around μ1 ≈ −1.905, good fits are
obtained by taking m = 1 or 2 and n = 0. Correspondingly,
we estimate μ1c = −1.9035(5). The quality of this XY -biased
fit can be checked by plotting R1(L; μ1) versus uL1/νXY with
u = μ1 − μ1c (see Fig. 8). We observe a good collapse of the
data, confirming the XY nature of the transition.

This FSS analysis confirms the conjecture that the critical
behaviors along the normal-to-superfluid transition lines of a
single species belong to the 3D XY universality class, even
when the other species is in the superfluid phase. Moreover,
corrections to scaling appear to decay as L−ωXY , where ωXY

is the leading irrelevant exponent for the XY universality
class. Therefore, the interactions between the critical and the
noncritical component give rise to corrections that are quite
suppressed, decaying at least as fast as L−ωXY .

C. Phase diagram for μ2 = 0 and U = 4

For μ2 = 0 and U = 4 we have repeated the FSS analysis
of Sec. IV B for other values of the model parameters, with
the purpose of determining an approximate phase diagram,
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FIG. 8. Helicity modulus combination R1 (we plot the same data
reported in Fig. 6) versus uL1/ν , u = μ1 − μ1c, taking ν equal to the
XY value νXY = 0.6717. We use μ1c = −1.9035, obtained by fitting
the data to Eq. (10).
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FIG. 9. Phase diagram of the 3D 2BH model (1) in the HC limit,
for μ2 = 0 and U = 4, as a function of μ1 and T . Transitions where
component 1 condenses are labeled with squares and those where
component 2 condenses with circles. The interpolating lines are only
meant to guide the eye. The same phase diagram, computed in the
MF approximation, is shown in Fig. 2.

to be compared with that obtained in the MF approximation
(see Fig. 2). Our numerical results are in qualitative agreement
with the MF predictions, confirming the presence of two MCPs
where four transition lines meet (see Fig. 9).

To verify the predicted behavior we have performed
simulations at different values of μ1, μ1 = −5, 2, and 6,
varying the temperature T . In Fig. 10 we show the helicity
modulus of the two gases at μ1 = 2 as a function of β = 1/T .
We observe that R1 and R2 cross at two different values
of T , indicating the presence of two separate (but close)
normal-to-superfluid transitions. If we move down from the
high-temperature phase decreasing T , we first observe the
condensation of gas 1 at Tc = 1.9131(4) and then that of gas 2
at Tc = 1.7982(3). Two different transitions are also observed
at μ1 = 6. Here, however, the order is reversed. Decreasing
the temperature, first gas 2 condenses at Tc = 1.575(5) and
then gas 1 condenses at Tc = 1.072(1). At μ1 = −5 we have
observed only one transition, related to component 2. We
have also considered a different line in the phase diagram,
keeping the temperature fixed T = 1 and varying μ1. In this
case we observe two normal-to-superfluid transitions of the
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FIG. 10. Estimates of R1 and R2 versus β ≡ 1/T at μ2 = 0,
U = 4, and μ1 = 2. Two different crossing points are visible,
providing evidence for two distinct transitions.
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FIG. 11. The FSS plot of the helicity modulus of the condensing
species at various normal-to-superfluid transitions for μ2 = 0 and
U = 4. The corresponding critical values in the T -μ1 plane are
indicated in the labels. We show data at μ1 = 2 (at the two transitions
considered in Fig. 10), μ1 = 6 (at the normal-to-superfluid transitions
of both gases), and T = 1 at the two transitions of gas 1 driven by
μ1. For comparison, we also report results for the BEC transition
of the single-species Bose-Hubbard model at μ = 0 and in the HC
limit. The data are plotted versus uL1/ν , where ν = νXY = 0.6717,
u = a(T − Tc) for the transitions at fixed μ1, and u = b(μ1 − μ1c)
for those at fixed T [see Eq. (8)]. The constants a or b (they assume
different values at each transition) are optimized to obtain the best
collapse of the data.

same component, gas 1, at the boundaries of the superfluid
phase S12, at μ1 = 6.133(3) and μ1 = −3.428(3).

Finite-size scaling analyses analogous to those described
in Sec. IV B confirm that all transitions belong to the 3D XY

universality class. As a further check, in Fig. 11 we show the
helicity modulus close to the transitions we have investigated,
as a function of uL1/νXY . By tuning appropriately the constants
a or b [cf. Eq. (8)], at each transition (if our data are obtained
at fixed μ1 = μ1c we optimize the constant a, while if data are
obtained at fixed T = Tc we optimize b) we obtain a perfect
collapse of the data, confirming the universality of the scaling
function f (x) defined in Eq. (7). We also report the helicity
modulus at the BEC transition of a single HC Bose-Hubbard
gas. Results fall on top of those obtained for the mixture,
confirming the XY nature of the transition.

As already anticipated by the MF computations, the phase
diagram reported in Fig. 9 has two MCPs, where four transition
lines meet. At each MCP, both gases simultaneously condense.
Their locations can be inferred from the numerical results
of Ref. [50], where the finite-temperature BEC transitions of
the 2BH model for two equal bosonic gases were studied.
In particular, when μ1 = μ2 = 0, the two identical gases
condense at Tc = 1.88(1) for U = 4 and at Tc = 1.69(1)
for U = −4. Using the particle-hole relation (2), the latter
transition implies an analogous transition at μ1 = 4, μ2 = 0,
U = 4, and Tc = 1.69(1). Clearly, the two transitions at
U = 4, μ1 = 0, μ2 = 0, TMC = 1.88(1) and U = 4, μ1 = 4,
μ2 = 0, TMC = 1.69(1) must correspond to the MCPs of the
phase diagram reported in Fig. 9, since they are characterized
by the simultaneous BEC of both gases.

As shown in Ref. [50], the critical behavior of the transition
of two equal HC bosonic gases with on-site interspecies
density-density interaction is controlled by a decoupled XY

FP. However, in this case the competition of the two U(1)
order parameters leads to unusual slowly decaying scaling
corrections. Indeed, the interspecies density-density interac-
tion gives rise to scaling corrections that decay very slowly, as
ξ −0.022, where ξ is the diverging length scale at the transition.
Such scaling corrections are not present in standard transitions
belonging to the XY universality class, where they decay as
ξ−ωXY with ωXY ≈ 0.78.

V. MULTICRITICAL BEHAVIORS

The competition of distinct types of order gives generally
rise to multicritical phenomena. More specifically, a MCP is
observed at the intersection of two critical lines characterized
by different order parameters. Multicritical behaviors occur
in several physical contexts: in anisotropic antiferromagnets,
high-Tc superconductors, multicomponent polymer solutions,
disordered systems, etc. (see, e.g., Refs. [62–77]).

The phase diagrams obtained in the previous sections show
various MCPs (see, e.g., Figs. 2 and 5 in Sec. III and Fig. 9
in Sec. IV, where BEC transition lines meet). At the MCP, the
competition of the two order parameters gives rise to peculiar
critical properties. Their scaling behaviors are controlled by the
stable fixed point (FP) of the RG flow, which can be studied by
field-theoretic approaches based on the appropriate multicrit-
ical Landau-Ginzburg-Wilson (LGW) �4 theory describing
two interacting complex order-parameter fields.

A. Multicritical U(1)⊕ U(1) LGW �4 theory

The LGW theory describing the competition of the two
different U(1) order parameters is obtained by constructing
the most general �4 theory of two complex fields ϕs(x), which
is invariant under independent U(1) transformations acting on
each of them. Its Hamiltonian is

HLGW =
∫

d3x

[∑
s,μ

|∂μϕs |2 +
∑

s

rs |ϕs |2

+ 1

24

∑
s

vs |ϕs |4 + 1

4
u|ϕ1|2|ϕ2|2

]
, (11)

with two quadratic parameters r1 and r2 and three quartic
parameters v1, v2, and u. A multicritical behavior is obtained
by tuning the quadratic parameters r1 and r2 simultaneously
to their critical values, keeping the quartic parameters fixed.
Note that the theory is well defined (the quartic potential is
bounded from below) for v1 > 0, v2 > 0, and u > − 1

3

√
v1v2.

Mean-field calculations show that the U(1)⊕ U(1) LGW
theory (11) leads to two different phase diagrams [64,65,74]
(see Fig. 12), depending on the sign of � ≡ v1v2 − 9u2. If � >

0, four critical lines meet at the MCP (tetracritical behavior),
as in the left panel of Fig. 12, while if � < 0, two critical lines
and one first-order line (bicritical behavior) meet at the MCP
(see the right panel of Fig. 12). Note that, in the HC limit,
the 2BH model should correspond to the LGW theory with
� > 0, because of the correspondence Vs ∼ vs and U ∼ u.
Therefore, we expect a tetracritical behavior. A bicritical
behavior is expected instead in the opposite limit Vs � U .
The MF results presented in Sec. III are completely consistent
with this prediction.
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FIG. 12. Different phase diagrams for models with two different
interacting U(1) order parameters. In the left panel the MCP is
observed at the point where four transition lines meet (tetracritical
point); all transitions are continuous. In the right panel two continuous
transitions (thin lines) and one first-order transition (thick line) meet
at the MCP (bicritical point).

B. Multicritical scaling

In the LGW theory the transition lines appearing in
Fig. 12 are obtained by tuning one of the two quadratic
parameters r1 and r2 to its critical value. Multicritical behaviors
arise when both of them are tuned to criticality. Therefore,
generic multicritical behaviors are associated with two relevant
scaling fields w1 and w2 (analytic functions of the model
parameters such that w1 = w2 = 0 at the MCP) with positive
RG dimensions y1 and y2. For example, in the case of the 2BH
model (1) w1 and w2 may be taken as linear combinations of the
temperature and the chemical potentials of the two gases. In the
absence of external fields, the singular part of the free-energy
density is expected to obey the scaling law

Fsing(w1,w2,w3, . . .) = b−dF(by1w1,b
y2w2,b

y3w3, . . .), (12)

where b is an arbitrary blocking variable. Here we consider
additional irrelevant scaling fields wi , i � 3 with RG di-
mensions yi < 0, that give rise to scaling corrections at the
critical point. Neglecting their contribution and appropriately
fixing the arbitrary variable b as b = |w1|−1/y1 , we obtain the
asymptotic scaling expression

Fsing ≈ |w1|d/y1f±(w2|w1|−y2/y1 ), (13)

where f± are universal scaling functions, which depend on the
sign of w1: f+(x) should be considered for w1 > 0 and f−(x)
in the opposite case. Close to the MCP, all transition lines
correspond to constant values of the product w2|w1|−y2/y1 .

Within the LGW theory, a standard multicritical behavior
can only be observed if there exists a stable FP for the
corresponding RG flow and the system is in its attraction
domain. In the opposite case, the flow generically runs to
infinity and the transition is discontinuous. Note that this can
also occur if a stable FP exists, but the system is outside its
attraction domain.

We should note that the unstable FPs of the theory also can
be associated with more complicated multicritical behaviors.
In this case one should perform additional tunings of the
parameters and correspondingly introduce additional relevant
scaling fields. For example, consider a FP that is unstable with
respect to one of the RG quartic perturbations, i.e., such that
the flow ends at the FP only if one performs one additional
tuning of the initial parameters. This means that there is an
additional relevant scaling field. Equation (12) still holds, but

now y3 > 0. Therefore, the contribution of w3 can no longer
be neglected approaching the critical point. From a more
phenomenological point of view, this higher-order multicritical
behavior can be observed by varying three model parameters.
In the corresponding parameter space, one has surfaces of
standard critical transitions. These surfaces intersect along
lines that correspond to standard multicritical behavior. The
transition may be continuous, controlled by the stable FP, or
of first order, if the RG flow goes to infinity. The higher-order
multicritical behavior is observed at the intersection of the
multicritical lines. Of course, such points are quite difficult to
observe in practice.

C. Perturbative field-theoretic expansion

The critical behavior at a continuous transition is controlled
by the FPs of the RG flow, which are determined by
the common zeros of the β functions associated with the
parameters appearing in the quartic potential. The presence
of a stable FP controls the universal features of the critical
behavior if the transition is continuous. If no stable FP exists,
the generic transition is expected to be of first order.

The β functions of the theory can be computed using
perturbation theory. In the calculation one should be careful to
tune r1 and r2 to their critical value to obtain the critical theory.
This requirement is automatically satisfied if one considers
the ε expansion, which is based on dimensional regularization
around four dimensions [78]. Indeed, in this regularization
scheme, one considers directly the massless critical theory. The
same is true in the related 3D scheme of Ref. [79], the so-called
minimal subtraction (MS) scheme without ε expansion. Here
one also considers the MS perturbative series, but does not
expand in powers of ε, setting ε = 1.

The Hamiltonian fields and parameters are renormalized
[80] by setting ϕs = Z

1/2
s ϕsr , vs = Adμ

εZvs
(vsr ,ur ), and u =

Adμ
εZu(vsr ,ur ), where vsr and ur are the MS renormalized

quartic couplings. The five renormalization functions Zs and
Zvs,u are normalized so that Zs ≈ 1, Zvs

≈ vs , and Zu ≈ u

at tree level. Here Ad is a d-dependent constant given by
Ad ≡ 2d−1πd/2�(d/2). The MS β functions are obtained by
differentiating the renormalized couplings with respect to the
scale μ, keeping the bare couplings v1, v2, and u fixed. The
two-loop β functions associated with the quartic couplings are

βv1 = −εv1r + 5
3v2

1r + 3u2
r − 5

3v3
1r − 5

2v1ru
2
r − 6u3

r ,

βv2 = −εv2r + 5
3v2

2r + 3u2
r − 5

3v3
2r − 5

2v2ru
2
r − 6u3

r ,

βu = −εur + 2u2
r + 2

3v1rur + 2
3v2rur − 5

2u3
r

− 2v1ru
2
r − 2v2ru

2
r − 5

18v2
1rur − 5

18v2
2rur . (14)

The complete five-loop series are reported in the Appendix.
The zeros of the β functions provide the location of the

FPs of the RG flow. Their stability is controlled by the matrix
�i,j = ∂βi/∂gj [the indices correspond to the three quartic
couplings g ≡ (v1,v2,u)] evaluated at the given FP. The FP
is stable if all eigenvalues ωi of the stability matrix have a
positive real part.
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D. Renormalization-group flow and FPs close
to four dimensions

We first determine the FPs and their stability properties
close to four dimensions, using the first few terms of the
standard ε expansion [81]. We find six different FPs, of which
the only stable one is located at

v1r = v2r = 1
2ε + 7

16ε2 + O(ε3),

ur = 1
6ε − 1

48ε2 + O(ε3). (15)

In the general O(n1)⊕ O(n2) model this FP is named
biconical FP [64,65] and it generally satisfies v1r = v2r . In
the U(1)⊕ U(1) case, however, v1r = v2r and therefore this FP
also appears in the theory with v1 = v2 and r1 = r2,

HLGW =
∫

d3x

[∑
s,μ

|∂μϕs |2 + r
∑

s

|ϕs |2

+ v

24

∑
s

|ϕs |4 + u

4
|ϕ1|2|ϕ2|2

]
, (16)

which is symmetric under the larger symmetry group Z2,e ⊗
[U(1) ⊕ U(1)]. Note that this FP is degenerate with the O(4)
FP at leading order in ε. As a consequence, n-loop calculations
at this FP provide results to O(εn−1) only. Thus, the available
five-loop series reported in the Appendix allow us to determine
the location of the FP only to order ε4. For the same reason
the smallest eigenvalue of the stability matrix is of order ε2:
ω1 ≈ ε2/6.

The U(1)⊕ U(1) LGW theory reduces itself to the O(4)-
symmetric �4 theory when r1 = r2 and v1 = v2 = 3u. Corre-
spondingly, the RG flow has an O(4)-symmetric FP at

v1r = v2r = 3ur = 1
2ε + 13

48ε2 + O(ε3). (17)

This FP is unstable in the full theory (11), since one eigenvalue
of the stability matrix is negative, ω1 ≈ −ε2/6. Therefore,
it corresponds to a higher-order multicritical behavior with
three relevant scaling fields, of RG scaling dimensions y1 ≈
2 − ε/2, y2 ≈ 2 − ε/6, and y3 ≈ ε2/6.

The LGW theory decouples into two identical U(1) �4

theories when u = 0. We can therefore identify a decoupled FP
(DFP) with ur = 0. At the DFP, the two U(1) order parameters
are decoupled, with a critical behavior belonging to the XY

universality class. The DFP is located at

v1r = v2r = 3
5ε + 9

25ε2 + O(ε3), ur = 0. (18)

The DFP is stable within each U(1) theory. Therefore, its
stability properties in model (11) depend only on the RG
dimension yu of the coupling u associated with the quartic term
|ϕ1|2|ϕ2|2 that couples the two fields. The RG dimension yu can
be evaluated using general scaling arguments [66,69,70,82]. At
the DFP, the operator |ϕ1|2|ϕ2|2 scales as the product of two
energylike operators of the d-dimensional XY universality
class. Therefore, the RG dimension yu is given by

yu = 2

νXY

− d. (19)

Using νXY ≈ 1/2 + ε/10, we obtain yu ≈ ε/5 > 0. Therefore,
the DFP is unstable close to four dimensions.

The other three FPs also have ur = 0. Their stability matrix
has two or three negative eigenvalues and hence they can only
be observed by tuning four or five different system parameters.
They are of little relevance for interacting Bose gases.

The above calculations can be straightforwardly extended
to O(ε5) [O(ε4) in the case of the stable FP] using the complete
series reported in the Appendix. However, methods based on
the ε expansion allow us to find only those 3D FPs that can
be related, by analytic continuation, to those present close
to four dimensions. However, new FPs may emerge in three
dimensions, which cannot be detected by the ε expansion,
because they do not have a 4D counterpart. This means that
the ε expansion may not provide the correct description of the
3D RG flow. For example, this occurs for the Ginzburg-Landau
model, in which a complex scalar field is coupled to a gauge
field, which is appropriate to describe superconductors and the
nematic–smectic-A transition in liquid crystals [83]. Although
ε-expansion calculations do not find a stable FP [83]—
therefore, they predict a first-order transition—numerical
analyses show that these systems can also undergo continuous
transitions in three dimensions (see, e.g., Refs. [84,85]). This
implies the presence of a stable FP in the 3D Ginzburg-Landau
theory, in agreement with experiments in liquid crystals [86].
Other examples are provided by the O(2)⊗ O(N ) LGW �4

theories describing frustrated spin models with noncollinear
order [87,88], the 3He superfluid transition from the normal
to the planar phase [89], etc. Therefore, a more conclusive
analysis of the RG flow in three dimensions requires a direct
3D study.

E. Fixed points in three dimensions

We now extend the analysis to the 3D case. Since the ε

expansion suggests that the relevant FPs belong to the plane
v1r = v2r , we first consider the 3D FPs that appear in the LGW
theory (16) and discuss their stability in the multicritical theory
in which the exchange symmetry is broken.

The analysis of the FPs for the model (16) is reported in
Ref. [50]. Two stable FPs are identified: the DFP and a second
FP, named asymmetric FP (AFP). The DFP controls the tran-
sitions at which two identical gases condense simultaneously.
The AFP instead is the relevant FP for transitions at which only
one gas undergoes BEC, breaking the exchange symmetry of
the model (16).

Let us now discuss the stability of these two FPs within the
multicritical theory (11), starting with the DFP. For u = 0 the
model corresponds to two noninteracting U(1) systems. We
thus obtain for the RG dimensions of the quadratic operators
y1 = y2 = 1/νXY = 1.4888(3). The two quartic perturbations
that are present for u = 0 can be identified with the quartic
perturbation of the standard U(1) theory, so yv1 = yv2 =
−ωXY = −0.785(20). The RG dimension of the perturbation
coupling the two XY models can be computed as in the 4D
case, using Eq. (19) and νXY = 0.6717(1) [57]. We obtain

yu = 2

νXY

− 3 = −0.0225(4), (20)

which is also negative, confirming the stability of the DFP
in three dimensions, at variance with the behavior close to
four dimensions. Since u = 0, we have � = v1v2 − 9u2 > 0.
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Thus, the DFP should be relevant for systems that have a
tetracritical MCP (see Fig. 12). The asymptotic decoupling of
the critical modes allows us to simplify Eq. (12). Neglecting
scaling corrections, i.e., setting wi = 0 for i � 3, we can
simply rewrite

Fsing(w1,w2) ≈ b−dFXY (by1w1) + b−dFXY (by1w2)

≈ a
(1)
± |w1|3νXY + a

(2)
± |w2|3νXY , (21)

where a
(a)
± are constants (related the signs of wi). By

appropriately choosing w1 and w2, we can additionally set
a

(1)
+ = a

(2)
+ = 1 so that a

(1)
− = a

(2)
− . The scaling fields are

defined by the requirement that the transition lines correspond
to w1 = 0 or w2 = 0. Note, however, that the approach to the
asymptotic decoupled scaling behavior (21) is characterized
by very slowly decaying corrections, due to the small value of
RG dimension yu of the leading irrelevant RG perturbation. As
already discussed in Ref. [50], this may make the observation
of the asymptotic behavior (21) quite difficult in experiments
and numerical studies.

The second stable FP of the reduced theory (16) is the
AFP that controls the critical behavior when only one of
two bosonic species condenses [50]. It also appears in the
O(2)⊗ O(2) LGW theory describing the critical modes of some
frustrated spin models with noncollinear order [87,90,91].
Within the multicritical theory (11), the AFP should describe
bicritical points (right panel of Fig. 12), essentially because
it is associated with the BEC of only one species. The RG
dimensions of the two relevant perturbations at the AFP
correspond to the dimensions of the quadratic operators. The
RG dimension y1 is obtained from the relation y1 = 1/ν,
where ν is the correlation-length exponent of the LGW theory
(16). The analysis of the perturbative expansions within two
different renormalization schemes [50,87] (the so-called d = 3
massive zero-momentum and MS schemes) gives ν = 0.57(3)
and ν = 0.65(6), respectively, so y1 ≈ 1.7. The RG dimension
y2 can be derived from the results reported in Ref. [73] for
the quadratic perturbations to the FPs of the O(2)⊗ O(2)
theory. We obtain y2 = 1.34(15) and y2 = 1.25(4) in the two
different perturbative schemes. The stability properties of the
AFP within the multicritical theory (11) depend also on the RG
dimension yvd

of the quartic coupling vd ∼ v1 − v2 associated
with the operator Pd = |ϕ1|4 − |ϕ2|4 breaking the exchange
symmetry. The RG dimension yvd

can be computed by a
perturbative analysis in the MS scheme without ε expansion.
We obtain the estimate yvd

= −0.6(1), where the error takes
into account how the estimate changes as the FP position varies
within one error bar (we use the FP estimates of Ref. [87])
and the dependence on the resummation parameters. Since
yvd

< 0, the quartic perturbation Pd is irrelevant and therefore
the AFP is stable in the multicritical theory.

It is worth mentioning that the AFP is not connected
with the stable biconical FP found close to four dimensions.
Indeed, they describe different symmetry-breaking patterns.
The stable FP close to four dimensions corresponds to a
tetracritical MCP, in contrast with the AFP, which gives rise to
a bicritical behavior. Apparently, the biconical FP disappears
when approaching three dimensions, while the AFP, which is
absent close to four dimensions, appears only close to three
dimensions [87].

It is also interesting to discuss the O(4) FP, which is already
unstable in the reduced theory (16). A complete analysis shows
that there are three different relevant scaling fields at the O(4)
FP in the full theory (11). Summarizing, the RG dimensions
of the relevant scaling fields are y1 = 1.333(4) associated with
the scalar quadratic perturbation at the O(4) FP [obtained
using ν = 1/y1 = 0.750(2) [92,93]], y2 = 1.813(6) associated
with the spin-2 quadratic perturbation [71], and y3 = 0.125(5)
associated with the spin-4 quartic perturbation [71,92].

The analysis we have presented considers only the FPs with
v1r = v2r . A priori other FPs may be present with v1r = v2r .
As we will see in the next section, the analysis of the general
RG flow does not find any evidence of additional stable FPs.

F. Three-dimensional RG flow

In this section we study the RG flow. In particular, we
determine the RG trajectories starting from the Gaussian FP,
where the quartic couplings vanish. This study allows us to
determine the stable FPs and their attraction domain in the
space of the Hamiltonian (bare) quartic parameters. We use
here the MS scheme without ε expansion [79], which provides
a genuine 3D critical scheme.

The RG trajectories are obtained by solving the differential
equations

− λ
dur

dλ
= βu[ur (λ),vsr (λ)],

−λ
dvsr

dλ
= βvs

[ur (λ),vsr (λ)], (22)

where s = 1,2, λ ∈ [0,∞), with the initial conditions

ur (0) = vs r (0) = 0,

dur

dλ

∣∣∣∣
λ=0

= u,
dvsr

dλ

∣∣∣∣
λ=0

= vs. (23)

Note that the trajectories do not depend on the Hamiltonian
parameters individually, but only through their dimensionless
ratios. For this purpose, we rescale λ → λ/

√
v1v2 so that

the initial conditions become Ru = u/
√

v1v2 for dur/dλ,
and Rv = √

v1/v2 and 1/Rv for the derivatives of dv1r/dλ

and dv2r/dλ, respectively. Note that the LGW theory (11) is
stable for Ru > −1/3. Since � = v1v2(1 − 9R2

u), one expects
tetracritical or bicritical behavior if −1/3 < Ru < 1/3 and
Ru > 1/3, respectively. Moreover, the symmetry of the model
under v1 → v2 and v2 → v1 allows us to restrict the analysis
to 0 � Rv � 1. To obtain meaningful results, the perturbative
series are resummed by employing the Padé-Borel technique
(see, e.g., Refs. [58,80]).

Typical results are shown in Fig. 13, where we report a
projection of the trajectories in the (v1r ,ur ) plane for Rv = 1/2
(results for other values of Rv are qualitatively analogous). For
Ru slightly larger than −1/3 (see the behavior for Ru = −0.20
in the figure), it is not possible to follow the flow beyond a
certain value of λ, since the Borel transform becomes singular
on the positive real axis. These trajectories clearly correspond
to systems that undergo discontinuous transitions. If we further
increase Ru, we observe that trajectories flow to the DFP, which
is the stable FP relevant for small values of u. If Ru is increased
again, the relevant FP changes and the trajectories end up at the
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FIG. 13. The RG flow as a function of v1r and ur , for Rv = 1/2
and several values of Ru, in the MS scheme without ε expansion. We
also report the positions of the O(4) unstable fixed point, of the DFP,
and of the AFP. Thin solid lines correspond to the separatrices of the
RG flow, connecting the different FPs.

AFP. If Ru is further increased, trajectories run into the non-
Borel summable region v1r < 0 and v2r < 0 (see the behavior
for Ru = 0.60 in the figure). It is interesting to observe that
the range of values of Ru corresponding to trajectories flowing
to the AFP is quite small. For the approximant shown in the
figure, we should have 0.33 � Ru � 0.40. For any Ru � 0.40
the trajectories flow to infinity. This suggests that most of the
bicritical MCPs undergo first-order transitions. Note that the
numerical analysis does not provide any evidence of additional
FPs. Apparently, all relevant FPs belong to the symmetric
model with v1 = v2.

G. Implications for the Bose-Hubbard model
of two lattice bosonic gases

The above RG analysis applies to generic mixtures of
bosonic gases with short-range density-density interspecies
interactions, which have global U(1)⊕ U(1) symmetry, and, in
particular to the 2BH model (1). In the hard-core limit of both
gases, the MCPs are predicted to be tetracritical (see left panel
of Fig. 12), consistently with the numerical results shown in
Fig. 9. The multicritical behavior is controlled by the DFP,
with slowly decaying scaling corrections. At the MCP there
is an asymptotic decoupling of the critical modes associated
with the two components [see e.g., Eq. (21) for the singular
part of the free energy].

On the other hand, 2BH models in the soft-core regime Vs �
U correspond to LGW �4 models with � < 0. Thus, they
should present bicritical points (see the right panel of Fig. 12),
consistently with the mean-field analysis presented in Fig. 5.
In this region continuous multicritical behaviors are controlled
by the other stable AFP, which leads to the nontrivial scaling
behavior (13) describing entangled BEC critical modes.

VI. CONCLUSION

In this paper we studied the critical and multicritical
behaviors that can be observed in 3D mixtures of bosonic
gases interacting by short-range density-density interactions.

These systems have a global U(1)⊕ U(1) symmetry, related
to independent U(1) transformations acting on each species.
As a representative of this class of systems, we considered
the 3D Bose-Hubbard model for two lattice bosonic gases
coupled by an on-site interspecies density-density interaction,
whose Hamiltonian is given in Eq. (1). However, the qualitative
features of the finite-temperature phase diagram and the results
for the universality classes associated with the critical and
multicritical behaviors apply to generic bosonic mixtures.

The generic features of the phase diagram of the 2BH
model have been determined in the MF approximation and
additionally confirmed by QMC simulations. The qualitative
behavior depends on the model parameters, such as the chem-
ical potentials and the on-site interspecies and intraspecies
couplings. By varying them, one can observe several transition
lines, along which one of the two species undergoes a normal-
to-superfluid transition, and different types of multicritical
behavior.

The transition lines separating the different phases gen-
erally correspond to the BEC condensation of one of the
two species. We showed that, independently of whether the
other species is in the normal or superfluid phase, the critical
behavior of the condensing species belongs to the 3D XY

universality class, characterized by the breaking of a global
U(1) symmetry and short-range effective interactions, which
is the same universality class associated with the BEC of
a single bosonic gas. Therefore, the critical modes of the
condensing gas effectively decouple from those of the other
species, independently of whether the latter is in the normal or
superfluid phase.

The phase diagram of mixtures of bosonic gases also
presents particular points where some transition lines meet.
At these points multicritical behaviors develop, due to the
competition of the U(1) order parameters related to the two
bosonic gases. We investigated them using a field-theoretic
approach based on the effective LGW �4 theory for two
complex scalar fields with global U(1)⊕ U(1) symmetry. The
possible universality classes that describe the multicritical
behaviors are associated with the stable FPs of the RG flow.
They can be determined by studying the RG trajectories
in the critical theory, starting from the unstable Gaussian FP in
the quartic-parameter space. For this purpose, we considered
the so-called MS scheme without ε expansion [79]. We started
from the five-loop MS β functions, resummed them using
the Padé-Borel technique, and solved the flow equations. We
found two stable FPs, which also belong to the �4 theory
(16), which has an additional Z2 symmetry related to the
exchange of the two order parameters. This more symmetric
model has already been discussed in the context of the critical
behavior of a mixture of two identical gases [50]. If the
system has a tetracritical continuous transition (see Fig. 12),
the critical behavior is controlled by a decoupled FP. Each
component shows an XY critical behavior—correspondingly,
the RG dimensions of the two relevant operators are y1 =
y2 ≈ 1.49— but with very slowly decaying scaling corrections
(they decay as ξ−0.022, where ξ is the correlation length)
due to interspecies coupling. If instead the system undergoes
a bicritical continuous transition, the critical behavior is
associated with a different asymmetric FP, with y1 ≈ 1.7 and
y2 ≈ 1.3.
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The above results apply to the MCPs that can be observed
in generic mixtures of bosonic gases with short-range density-
density interspecies interactions, which realize systems with
global U(1)⊕ U(1) symmetry. In particular, they apply to the
MCPs of mixtures of lattice bosonic gases described by the
Bose-Hubbard model (1). The RG analysis of the U(1)⊕ U(1)
LGW �4 theory predicts tetracritical and bicritical points in the
hard-core Vs � U and soft-core Vs � U regimes, respectively,
associated with different universality classes, controlled by the
stable decoupled and asymmetric FPs, respectively.

Recent experiments on atomic gas mixtures [1–22], using
either two different atomic species or the same atomic species
in two different states, have already obtained several interest-
ing results on the properties of the low-temperature condensed
phase and on the interplay of the different condensates. They
have also demonstrated the possibility of a robust control
of the model parameters, which may allow the observation
of the different phases, such as those found in the present
study, and the determination of the nature of the critical and
multicritical behaviors. Our results should provide a complete
characterization of the possible BEC patterns and of the
critical behaviors that these systems may develop along their
transition lines. Our findings may be also relevant for possible
applications of degenerate bosonic mixtures in optical lattices
as analog quantum simulation devices [94].

Most cold-atom experiments have been performed in inho-
mogeneous conditions, due to the presence of space-dependent

trapping forces, which effectively confine the atomic gas
within a limited space region [51]. The trapping potential
is effectively coupled to the particle density, which may be
taken into account by adding a further Hamiltonian term to the
2BH Hamiltonian (1), i.e., Htrap = ∑

sx Vs(x)nsx , where Vs

is the space-dependent potential associated with the external
force. The inhomogeneity arising from the trapping potential
introduces an additional length scale �t into the problem, which
drastically changes the general features of the behavior at
the phase transitions. Experimental data for inhomogeneous
trapped cold-atom systems are usually analyzed using the
local-density approximation (see, e.g., Ref. [51]). However,
this approach fails to describe the emergence of large-scale
correlations [40,54]. This problem may be overcome exper-
imentally by using (almost) flat traps, giving rise to a finite
space region where the system is effectively homogenous [95].
Otherwise, one may infer the critical behavior by studying
the scaling behavior with respect to the trap size �t , which
is expected to be universal and controlled by the critical
exponents of the universality class of the corresponding
homogenous system, in the large trap-size limit [38,54,55,96].
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APPENDIX : FIVE-LOOP SERIES OF THE U(1)⊕ U(1) LGW THEORY

We report here the five-loop perturbative series of the β functions used in Sec. V F to analyze the RG flow of the U(1)⊕ U(1)
LGW �4 theory. We consider the perturbative expansions obtained in 4 − ε dimensions, using the dimensional regularization
and in the modified MS scheme. They were computed in Ref. [71] for general O(n1)⊕ O(n2) theories, but they were not reported
there. Apart from the first few orders, coefficients are reported with a 10−6 numerical precision, although they are computed in
terms of fractions and ζ functions (the exact series are available on request). To simplify the formulas, the renormalized couplings
are named v1, v2, and u instead of v1r , v2r , and ur . The five-loop β functions read

βv1 (v1,v2,u) = −εv1 + 5
3v2

1 + 3u2 − 5
3v3

1 − 5
2v1u

2 − 6u3 + 14.381u4 + 36.1747v1u
3 + 8v2u

3

+ 2.3125v2
1u

2 + 0.125v2
2u

2 − 1.08333v1v2u
2 + 4.99347v4

1 − 120.062u5 − 164.419v1u
4 − 91.2808v2u

4

− 165.154v2
1u

3 − 10.9914v2
2u

3 − 18.2281v1v2u
3 − 5.32929v3

1u
2 − 0.489598v3

2u
2 − 0.144409v1v

2
2u

2

+ 0.969685v2
1v2u

2 − 21.9072v5
1 + 1090.1u6 + 1633.45v1u

5 + 947.957v2u
5 + 1140.29v2

1u
4

+ 257.256v2
2u

4 + 608.06v1v2u
4 + 950.994v3

1u
3 + 37.2454v3

2u
3 + 32.3079v1v

2
2u

3 + 35.291v2
1v2u

3

+ 6.68047v4
1u

2 + 1.27762v4
2u

2 − 0.142137v1v
3
2u

2 + 1.6941v2
1v

2
2u

2 + 2.20787v3
1v2u

2 + 120.141v6
1, (A1)

βv2 (v1,v2,u) = βv1 (v2,v1,u), (A2)

βu(v1,v2,u) = −εu + 2u2 + 2
3v1u + 2

3v2u − 5
2u3 − 2v1u

2 − 2v2u
2 − 5

18v2
1u − 5

18v2
2u

+ 11.7312u4 + 11.3082v1u
3 + 11.3082v2u

3 + 3.50134v2
1u

2 + 3.50134v2
2u

2 + 1.11111v1v2u
2 + 0.652778v3
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2
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2
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