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Abstract:

This paper presents the design of a wearable system for measurements of athlete's
performance in combat sports. The system provides objective measurements of athletes'
shots, posture, and movements, and of the effectiveness of their training. The proposed
instrumentation is useful to overcome the limits of traditional training methods, which are
characterized by a subjective evaluation of the training effectiveness by a coach. The
measuring system consists of a distributed network of three battery-powered wireless-
sensing node types, worn by the athletes, and one master node, which is in charge of
signal acquisition and processing tasks. The master node elaborates training statistics
and visualizes them, either in real time during a combat session, or off-line for posttraining
analysis. The wearable measuring system has been tested through real combat training
sessions of athletes with different weights, ages, and experiences, both male and female.
Different from the state-of-art athletes' biometric measurement machines, which are
cumbersome and expensive, the proposed system is designed to ensure a low-cost and
wearable implementation and to give easy-to-understand feedbacks during training,
particularly to nonprofessional athletes.

SECTION 1.

Introduction

The training of athletes in combat sports aims at improving the effectiveness of their shots
and movements. Traditional training methods foresee a subjective evaluation of the
effectiveness of the training by a coach. At the state of art, some measuring machine exists
to provide an objective measure of athletes’ performance. However, the cost of these
machines is too high for nonprofessional athletes.

On the other hand, wearable and low-cost measuring devices, developed in the last years
for health and wellness applications, do not fit the requirements of combat sports. They
give feedbacks about heart and breathe rate, running speed and distance, number of steps,
and estimation of burned calories. Instead, combat sports require the development of
devices able to provide an objective measurement of the effectiveness of punches and/or
kicks, which entail high acceleration levels.

The energetic analysis and the momentum are the simplest ways to study one hit, but they
are hard to correlate with an anatomical damage of a hypothetical human body. Therefore,
these methods can give a false evaluation of the hit effectiveness. According to Fig. 1, a
performance measurement system for sport training has the following targets: 1) giving
an automatic feedback during training to understand which corrections should be made
to optimize the athletes’ movements and 2) defining the training program of each athlete.
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Fig. 1.

Performance measurement system for sport training.

With respect to this long-term result, the focus on short-term research is to provide a cost-
effective measurement of athletes’ biometric performance, and to elaborate and visualize,
in real time, their statistics (black boxes in Fig. 1). To address these issues, this paper
presents a wearable measuring system, which aims at correlating the strength of the hit,
with the effectiveness of the leg/arm movement and the damage caused to the sparring
partner. To address also the market of nonprofessional athletes, the proposed system is
cheap, based on Components Off The Shelf (COTS) sensors and signal-processing devices,
and operates in real time.

Hereafter, Section IIreviews existing measuring devices for sport performance
measurements, proposed by academia and/or industry, and analyzes their limits. Section
ITI discusses the physical quantities to be analyzed for an objective measurement, in real
time and with limited cost, of the combat training effectiveness. Sections IV and V present
the architecture definition and the design of the wearable sensing and measurement
system. Section VI shows and discusses experimental tests carried out during real combat
training sessions. Conclusions are drawn in Section VII.

SECTION II.

State-of-Art Review for Combat Sports Biometric Measurements

At the state of the art, several works provide instrumentations for biometric performance
measurements of athletes. However, most of them [1]-
[21[3][4][5][6][7]1[8][9][10][11][12] are not suited for combat sports that are characterized
by high acceleration levels and by fast movements of upper and lower limbs. Moreover,
combat sports require the measurement of the strength of each hit (punch and kick).
Specific devices for performance measurements of athletes in combat sports have been
proposed [13]-[14][15][16][17][18][19][20][21][22][23][24][25][26][27], but they are
characterized by several limits, listed hereafter.

1. Most of commercially available measurement systems have a price of 2000 USD or
higher [22]. This price limits their usability to professional athletes with sponsors,
or athletes hired from the armed forces. The target price for nonprofessional
athletes should be below 1000 USD.

2. Many available devices for athletes’ performance measurements exploit only
biometric parameters such as force, without any measure of the acceleration profile
in three dimensions of the upper or lower limbs. For example, to monitor the
frequency and magnitude of punches or kicks thrown by a single athlete, a load cell



can be sandwiched between two aluminum plates, embedded in a training
bag [18], [21], and attached to a stand or installed onto a rigid wall. When the
athlete throws the punches or kicks, the impact force is applied onto the force
sensor. The output of the sensor is digitized, and then is transferred to a host PC.
A software, running on the PC, counts the number and amount of the perturbation
from zero, and displays this information to the athlete/coach on a monitor.

3. Most of available instruments [18], [21], [24] are not wearable, and cannot be used
to measure in real time the biometric performance of the two athletes involved in
a combat training session or in a combat match.

4. Some of the sport measuring devices proposed in the literature adopt a complex
array of video cameras [10]—[11][12][13][14][15], [24]-[25][26]. The idea is to
acquire and process video streams to detect athletes’ movements for automatic
scoring in professional matches of specific sports, such as boxing. However, video-
based signal processing requires power hungry platforms if realized with software
programmable hardware. On the other hand, the development of dedicated
integrated circuits is not feasible in a niche market such as that of sport
measurements. The use of video cameras for accurate biometric and motion
analysis requires good illumination conditions, which are difficult to guarantee for
outdoor training sessions.

5. Low-cost (hundreds of USD) and wearable sensors for combat sport measurements
have been announced for 2017 in [20], but in this case, the analysis is limited to the
acceleration of the upper limbs through sensorized armlets. The system
in [20] does not take into account the deformation caused on the target, and which
part of the body of the sparring partner has been hit. Moreover, movements of the
lower limbs and posture of the athletes are not analyzed in [20].

Wearable devices to measure biometric parameters have been proposed in the literature
for health applications [28]—
[29][301[31][32]1[331[341[351[361[371[381[39][40][41]1[42][43][441[45]. However, they
are suited mainly for remote monitoring of vital signs at home or for health/wellness when
running: they provide functions, such as the measurement of heart-rate and breath-rate,
burned calories, running speed and distance, number of traveled steps. Some of them
include also altimeter and terrain slope estimation. Wearable devices for health
measurements can provide also functions, such as fall detection (for elderly people),
electrocardiography measurements, body temperature, levels of oxygen (SpO2), and
glucose (glycemia) in blood. However, these systems are not suitable for combat sports.
Indeed, as discussed in Section III, the objective measurement of a hit requires the
measurement of high acceleration levels and of the deformation caused on the target. All
of the above-mentioned devices lack the possibility to give the fighter, at low cost, a
feedback to adjust his combat technique or his way of moving.

This paper extends the IEEE MEMEA2016 conference contribution [23]in terms of
detailed review of the state-of-art, inclusion of the evaluation of the posture of the athlete
and its motion activity (missing in [23]), and the analysis of strength and dynamic for
kicks and punches (only punches in [23]). In this paper, a larger set of experiments during
real athletes’ training is used to test and characterize the system. Moreover, [23] uses
custom subgigahertz links to connect the sensing nodes with the gateway node, whereas
in this paper, bluetooth low energy (BLE) wireless technology is used. Operating at 2.4



GHz, with 1-MHz/channel bandwidth, a BLE link allows a data rate of 1 Mb/s, one order
of magnitude higher than in [23]. The increased bandwidth is useful to transmit data from
multiple sensors, placed in different parts of the body (e.g., at wrist, ankle, hip, elbow, and
knee), and not only at wrist as in [20] and [23].

SECTION III.

Measuring Quantities for Combat Sports

Which physical quantities play a role to evaluate the effectiveness of a hit, and how
measuring them at low cost and in real time are still open issues in the literature. The
pressure exerted by the hit on the target’s body is one of the most suited candidates. By
measuring and processing it in real time, and by using models derived from
traumatological studies, the extent of damage from the anatomical point of view can be
estimated. As a consequence, the effectiveness of the athletes’ movements and training
can be evaluated.

Beside the measurement of the pressure on the target’s body, the proposed system aims
also at measuring the acceleration profiles of the athletes. This quantity is important to
analyze wrong trajectories (i.e., deviations from the ideal path depending on the strike)
and any increase in the stiffness of the hitter’s arm (or leg), which prepares himself to the
impact but reduces the speed. Indeed, many inexperienced fighters have a better feeling
of power when delivering strikes with twitched muscles during the whole action. Often, it
is difficult for coaches to persuade them that they need to keep the body as relaxed as they
can to reach higher speed and higher power levels. Measuring the acceleration profile of
the arm/leg is a faster and easier way of teaching nonprofessional athletes, instead of
traditional methods based on subjective analysis and fighting experience.

The proposed instrumentation allows the measurement of time and force of the strike and
acceleration profile of the arm or leg. The time taken to give a punch, or a kick, depends
on the type of combat sport, on the adopted technique, on the specific athlete. Anyway, its
order of magnitude amounts to tenths of seconds. The acceleration of the hit is in the order
of the dozen times the gravity acceleration g . As far as the exchanged force is concerned,
studies in the literature on boxers estimate the limit of compressional force delivered by a
boxer around 5000 or 6000 N on a ten squared centimeters area. Due to these values, a
realistic upper limit for the force of a kick is 12 000 N, which is twice that of a punch. The
use of acceleration measurements has been proposed in [11] and [20], but in [11], it is
limited to a single axis. Instead, as discussed in this paper, the measurement of all three
axis is important. Moreover, in [11] and [20], the deformation caused by the punch or kick
is not taken into account. Another parameter to measure, and to correlate to the other
acquired data, is the posture of the athlete that delivers the shot and that of the athlete
that receives the hit.

SECTION 1V.

Measurement System Architecture
A. General Architecture

The market of performance measurement systems for combat sports is a niche market.
Since it is not affordable, the high development time and cost of application-specific
integrated circuits, an approach based on COTS devices, are used to reach the desired
tradeoff between performance and costs. The proposed measurement system consists of a
distributed network of four types of nodes: three sensing nodes to be worn by the athletes
during training, and one sensor acting as a gateway. The latter is in charge of tasks, such



as data acquisition, local signal processing, and transmission toward visualization devices,
e.g., an LCD display, or toward remote hosts. Considering a ring of size LxL (with L from
minimum 6 m to maximum 8 m), the gateway node is at the ring border, connected via a
wireless link with the sensing nodes, which are worn by the athletes. The distance between
athletes and the gateway node is some meters. At the ring border, there are also the LCD
display for visual feedbacks and the Flash memory, storing all data for off-line future
analysis. All acquired data and processed statistics, via wireless or wired links (Wi-Fi or
Ethernet), can also be transmitted to a host PC and to other video terminals, which can be
placed where desired, near the ring or in a remote position.

B. Sensing Node Types

The first node type (type A) measures the accelerations of upper or lower limbs (or both,
depending on the combat sport) of the athlete under training. The aim is tracking the
movements of the kick or punch. Each of this node is a battery-powered wireless sensor,
worn as a wristwatch, armlet and/or anklet, measuring three-axial accelerations. The
transmission toward the gateway node (at the ring border, at a distance of few meters) is
wireless, via a BLE connection, using a 2.4-GHz antenna directly printed on the PCB. With
respect to the subgigahertz connection adopted in [23], the BLE link allows higher
compatibility with other systems. The main features of BLE are the following: 1) the data
rate can be up to 1 Mbps; 2) the connection distance is up to 100 m in outdoor line-of-
sight conditions and is several meters in indoor conditions; 3) the communication latency
is low, only few milliseconds; 4) the power consumption is limited to few tens of milliwatts.
The worst case for power consumption is when transmitting: a current well below 15 mA
is drained from a power supply of few volts. By implementing power cyclic techniques (the
transceiver is ON only when transmitting data), the energy cost is minimized. The BLE
natively supports security technologies, such as 128-b advanced encryption standard, and
robustness techniques, such as adaptive frequency hopping, lazy acknowledgment, 24-
beyclic redundant code, and 32-b message integrity check. The number of sensors of the
type A, worn by each athlete, depend on the specific sport. For example, two nodes are
required in the case of boxing, for kick-boxing at least four nodes are needed.

The second type of measurement node (type B) consists in an array of strain gauge sensors
used to sense the deformation under the kick or punch of a thin aluminum plate. The plate
should be worn by the sparring partner during training or by each of the two athletes
during a combat match. This node is battery powered and has a BLE wireless transmission
capability toward the gateway node. Depending on the combat sport type, just a thin plate
should be worn to cover the chest, or multiple smaller thin plates should be worn to cover
the parts that in the specific sport can be hit. For example, in the case of kick-boxing, about
ten sensing aluminum plates have to be worn for chest, shoulders, legs, and arms. We
consider that for training combat sports, the head should not be hit, and hence the head
is protected through a nonsensorized helmet.

The third sensing node type (type C) embeds both the functionalities of a motion sensor
and of an electrogoniometer, thus detecting the motion activity and the joint angle (of
knee, elbow, and so on). This node type, completely missing in [23], is detailed in Section
V.C and is equipped with posture estimation algorithms. This sensing node can be worn
through a belt near the hip, or through a knee-pad to measure the knee-angle or similarly
the elbow-angle. Nodes of types A—C mainly require sensing and wireless communication
capabilities at low size and low power consumption. For the sensing nodes, the
requirements in terms of computational power and memory size are limited. When
developing the above-mentioned nodes, to save memory space on the embedded platform,
an operating system has not been used. Instead, a library of basic software functions has



been designed for sensor signal acquisition and for calibration. The software also includes
communication functions to drive the BLE transceivers. For these low-level implementing
software tasks, there is mainly a technical effort, while the innovation of this paper is
related to the measuring system architecture, the sensor signal processing algorithms, and
the results of the experimental test campaign.

C. Gateway Node

The last node type (type D) is a gateway [see Fig. 2]. It is not a wearable node, but it is
placed at a distance of few meters from the athletes, e.g., at the ring border. It collects the
data coming from the wireless sensors of the first three types and implements local signal
processing to calculate athlete performance statistics. Tens of signals are acquired. For
example, for each athlete during a combat training of kick-boxing, four sensors of type A,
eight sensors of type B, and up to six sensors of type C can be used. The cost of each node
for a series production, using the components detailed in Section V, is estimated in few
tens of USD. Therefore, even in the case of a rich configuration, the cost of the whole
system can be kept around one hundred of USD. Obviously, the price of some thousands
of USD of commercial products [22], which includes not only the device and material cost
but also other costs (labor, marketing, and so on), cannot be directly compared with the
cost of a laboratory prototype. However, avoiding the use of array of video cameras, and
of expensive custom sensors, the proposed measuring system, if commercialized, can be
sold in the market at a price well below the target 1000 USD. The number of sensors of
types A and C can be halved if only the preferred part (left or right) used by the athlete to
provide a shot is monitored. The number of sensors of types A and C can be further
reduced if only upper or lower limbs are monitored.

The gateway node (type D) saves the acquired data in a Flash memory so that the training
data can be analyzed off-line when the match is closed. The gateway node also analyzes in
real-time hit statistics during the match to properly assign points to the athletes and drives
a proper graphical user interface for a visual feedback of hits, their force, and their
acceleration. Moreover, the processed data can be transmitted to a remote unit through
the Internet. Different from [23], in this paper, the gateway node also elaborates and
visualizes data related to the posture of the athlete and to the joint angles and accelerations
of hip, knee, and elbow. Such information, combined with data on acceleration and on
strength of punches and kicks, allows an exhaustive analysis of the athlete movements.
Moreover, the gateway node can store in lookup tables (LUTs) precalculated
traumatological maps of the body with different scores. When the information about the
strength and acceleration of the shots, and of the part that has been hit (generated by
sensors of types A and B), is acquired by the gateway, the score of the combat training or
match can be calculated by applying a weight depending on the LUT. This way, the real
effectiveness of the shot during a match or training is evaluated. The LUT can be modified
by an expert (coach, judge, and athlete), according to the different rules of the combat
sports, or according to the different training programs.

The gateway node has reduced constraints in terms of power consumption with respect to
the sensing nodes, but it has an increased cost in terms of computational power and
memory requirements. The gateway node can be in its turn connected through a local USB
port or through Internet (cabled LAN or wireless Wi-Fi) to a remote PC acting as a server.
The gateway node has been implemented as a custom printed circuit board equipped with
32-b ARM Cortex processor, 1-GB RAM memory, 4-GB Flash nonvolatile storage, BLE
chipset, network connectivity (e.g., Wi-Fi, Ethernet, and USB), and Android OS.



SECTION V.

Sensing Acquisition and Processing System
A. Acceleration Measurement

To sense the three-axial acceleration profile of the leg or arm, the accelerometers (type A
nodes) should have these features:

1. bandwidth in the order of hundreds of hertzes;
2. sensing range in the order of a hundreds of g (1 g = 9.81 m/2).

The Sparkfun ADXL377 accelerometer has been selected to fulfill the above-mentioned
requirements. It is capable of a detection range of £+200 g and has a user-configurable
bandwidth, from dc to 500 Hz in our implementation. This sensor is a polysilicon surface-
micromachined structure built on top of a silicon wafer. Polysilicon springs suspend the
structure over the surface of the wafer and provide resistance against acceleration forces.
Deflection of the structure is measured using a differential capacitor that consists of
independent fixed plates and plates attached to the moving mass. The ADXL377 uses a
single structure for sensing the acceleration in the x -axis, they -axis, and thez -axis. As a
result, the three sensor directions are highly orthogonal with little cross-axis sensitivity.
The ADXL377 has a 320-k() resistance on each amplified output. The bandwidth of the
device can be set by simply adding a single capacitor on each of the three outputs. By using
three 10-nF capacitors, a low-pass filtering effect is obtained with a cutoff frequency of
500 Hz. This value has been determined considering that the typical time constants
characterizing athletes’ movements are higher than 2 ms when boxing or kicking. Hence,
the frequency of interest for the biometric measurement system is within the spectrum
range from dc to 500 Hz.

The accelerometer signals are acquired through the 12-bit SAR ADC integrated in an
embedded controller which is based on a 8-b ATmega328P microcontroller, including also
1 Kb of EEPROM, 2 Kb of SRAM, and 32 Kb of Flash memory. It has 14 digital
input/output pins (of which six can be used as PWM outputs), six analog inputs, a 16-MHz
quartz crystal, a USB connection, a power jack, and a reset button. The embedded system
is powered at 3.3 V through a lithium battery. The accelerometers have to be worn as
armlet or anklet or wristwatch. They are battery powered; a BLE wireless chipset is used
to exchange data with the gateway node in Fig. 2.
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Fig. 2. Main building blocks of the gateway.



B. Compressional Force Measurement

To measure the compressional force per area of the kick or punch on the target (type B
nodes), the deformations of a known surface, worn by the athletes, has to be measured. To
this aim, a matrix of strain gauges can be used to get the applied forces’ distribution. The
area of application can be evaluated through a regression algorithm. The surface on which
the punch or kick is applied needs to stay in his elastic deformation range to perform
multiple reading. At this point, we can rewrite the problem as the choice of a specific
material for building a plate of adequate thickness. Then the following steps are followed:
i) characterize the deformation of the wearable plate with known forces and application’s
area; ii) use simulations and a mechanical compression test to formulate the regression
algorithm. To perform this choice ANSYS, an FEM (Finite Elements Modeling) software,
has been used to build the simulation of a pressure on plates of various materials using
the approximation of half-spherical, and normal to the surface, pressure distribution. Fig.
3 shows for example the ANSYS simulation for the pressure detected, before [Fig. 3(a)]
and after [Fig. 3(b)] a kick-shot, on an aluminum plate of size 200 mm x100 mm, with a
mesh of 512 elements, each of 40 mm:. In Fig. 3(a) the magnitude color levels correspond
to a shot strength from o N (blue region) to 12 000 N (red region). In Fig. 3(a) (at rest) to
show lower values, the magnitude color levels correspond to a shot strength from o N (blue
region) to 2000 N (red region).

Fig. 3. Pressure levels of a thin aluminum plate. (a) Before a shot (color scale
from O N (blue region) to 2000 N (red region)]. (b) After a shot [color scale
from O N (blue region) to 12000 N (red region)].

Another idea is the use of wearable shirt made in e-textile to sense the pressure of the hit.
This design suffers the hard problem of regressing from the deformation to the applied
force per area measurement, but it will add the possibility of building a full wearable device
and then discriminate if a hit would be effective or not during a competition. This could
substitute the actual scoring system based on the contact’s kind with a more appropriate



system based on the effectiveness of the hits. An alternative to the use of distributed strain
gauges on the plate to be worn by the athlete can be adopting a load cell, such as the
CZL204 button load cell, facing up to 1000 kg.

In the rest of this paper, the experimental activities have been carried out using the
wearable aluminum plate as compressional force measurement device. To acquire the
strain gauge sensors’ signals a 24-bit sigma-delta ADC, the HX711 from Sparkfun, has
been used. The ADC is controlled via I2C by an embedded microcontroller, the same
already used and described in Section V-A for acceleration measurement.

C. Custom Mobility Sensor

A third sensing node (type C), a custom mobility sensor to study the movement of body
and detect if the posture during training is correct or not has been developed. It is a new
developed sensor able to extract several parameters: fall detection, static detection (no
movement is detected), step detection and stride estimation, and joint angles of hip,
elbow, and knee. Thanks to these data, the correctness of the posture of the athlete during
training can be also evaluated.

The custom mobility sensor is light and small enough so that it can be worn, typically at
the hip through a belt, and at the knee and elbow through knee/elbow-pads, without any
impairment of the training sport activities. Its size (see Fig. 4) is comparable to a coin of
cents of Euro. The sensor is equipped with a System in Package (SiP) device containing a
nine-axis MEMS inertial measurement units (IMUs). It contains a three-axial gyroscope,
a three-axial accelerometer, and a three -axial digital compass. Following the approach
in [46] and [47], by properly processing information from the accelerometers, an
electrogoniometer function is achieved (measurements of joint angles). This way the
complexity of the measuring system is reduced versus the state-of-art approaches using
additional sensors, such as potentiometers, strain gauges, or optical devices to measure
the joint angles [48]. Communication with the gateway is based on a BLE chipset,
integrated into the device, like the other sensors. A 32-b ARM Cortex-M processor is used
to fuse in the digital domain the information coming from the three sensors (gyroscope,
accelerometer, and digital compass). The power consumption is about 10 mW for the
processing core and less than 300 mW for the whole smart sensor (9-D sensor plus
processing and communication chipsets) in typical conditions. The sensor can be supplied
at 3.3 V draining a current less than 9o mA in worst case. Therefore, a typical Li-polymer
battery pack of a smart phone (e.g., the ASUS 11.5-Wh C11P1501 battery) can supply the
device for about 40 h, i.e., about two months without needing recharge for a
nonprofessional athlete with a training program of 5 or 6 h per week.

Fig. 4.

Motion sensor.



Two built-in algorithms run on the device: the first, computing the step detection and the
estimation of the stride length (SL); the second, determining the fall detection or no
movement revelations. Instead, a posture estimation algorithm runs on the gateway node.
The two adopted algorithms, running in the custom mobility sensor, are briefly described
hereafter.

The first algorithm, implemented for step detection, consists of four main stages. In the
first stage, the magnitude of the acceleration ai for each samplei, captured by the
accelerometer, is computed. In the second stage, the local acceleration variance is
computed to remove gravity. The third stage uses two thresholds: the first (T1) is applied
to detect the swing phase, whereas the second (72) is applied to detect the stance phase
(B21) in a single step while walking. The fourth stage detects when a swing phase ends and
a stance phase starts.

Estimating the SL for each detected step can be useful during sport training for the
following;:

1. the extraction of the speed information by multiplying the SL data with the
frequency of steps;

2. the evaluation of the total movement of an athlete during the training phase;

3. providing a feedback of the movements of the two athletes during the combat
training.

Generally, the SL depends on the person, its leg length, and the nature of the movements
during walking. Hence, its estimation can be complex and costly to achieve in real time.
Aiming at a real-time and low-cost implementation of the system, in this paper, we adopt
the hypothesis proposed by Weinberg [30], which assumes that the SL is proportional to
the bounce, or vertical movement, of the human hip. This hip bounce is estimated from
the largest acceleration differences at each step. The algorithm implemented for SL
estimation consists of the following two steps. The first step computes the magnitude of
accelerations ai. The second step estimates the SL using the Weisberg expression
in (1) [29], where the maximum and minimum operations are applied over the filtered
accelerations in a window of size 2w +1around the sample i(p) corresponding to
the p stance detection. In (1) Kis a constant that has to be selected experimentally or
calibrated. If the length SL, estimated by the above-mentioned method, and the frequency
of the step is known, it is possible to derive the velocity of each step as the product of the
two parameters

SL=K4maxayj=(iptw)—-———————— V. —minayj=(ip+w).(1)

The second built-in algorithm, implemented to determine the fall detection, is based on
the controls of some thresholds. Indeed, a fall-like event is defined as an acceleration peak
of magnitude greater than 3 g followed by a period of 2.5 s without further peaks exceeding
the threshold. The accelerometer-sampling rate has been set at 50 Hz, a tradeoff between
resolution and power consumption. Threshold values around 3 g (ranging from 2.5 to 3.5
g), and of about 2 or 3 s, have been widely used in other fall detection systems [32]. The
value 3 g is small enough to avoid false negatives, since real falls are likely to present an
acceleration pattern containing a peak that exceeds such a value. The time interval of 2 or
3 s, without noticeable activity after an acceleration peak, to detect a fall is needed to



distinguish it from a jump. In the case of jump, there are multiple high acceleration peaks
within a window of 1 s [49].

Several sensor placements have been already tested, e.g., the waist, trunk, leg, hip, and
foot. From our test, although data from all locations provided similar levels of accuracy,
the hip was the best single location to record data for activity detection. It provides better
accuracy than the other investigated placements [33]. This location also allows having a
cleaner signal from the IMU. However, the exact position and orientation of the platform
on the hip for fall detection are not important, because our algorithm only works with the
magnitude of sensor readings. This facilitates the use of the system also in nonprofessional
sport scenarios. The function for posture evaluation is running at the gateway-node side.
It first acquires and visualizes several motion parameters for the motion sensors of type C
(if the athlete is moving or is static, if a fall or a step is detected, the SL, the speed, and the
angles of hip, knee and elbow) and of types A (accelerations at wrist and ankle). Then, by
comparing these parameters with proper programmable thresholds, configurable by the
coach through the GUI, an automatic evaluation of the posture as “good,” “wrong,” and
“improvable” is implemented. This analysis refers to the state-of-art works, where posture
is evaluated representing the athlete as a multisegment object (with five joints in our case,
since we are interested in the effectiveness of punches or kicks: anklet, knee, hip, elbow,
and wrist). The proposed system allows for posture analysis, but the threshold values have
to be configured by the user (e.g., athlete, or better the coach or a sport scientist), and
often are derived heuristically. Defining a biomechanical model for an automatic
definition of these thresholds is out of the scope of this paper. In the proposed combat
sport measuring instrument, the calibration can be done at component and system levels.
At component level, since the instrument relies on COTS devices, the manufacturer’s
recommended “step” calibration procedure has to be followed. At system level, by
modifying through the GUI, the above-cited thresholds, and the LUTs in Section IV-C, the
instrument supervisor (e.g., the coach) can calibrate the system response, e.g., the
summary indexes in Table II(a) and (b).

SECTION VI.

Experimental Measurements
A. Measuring Scenario

To test the proposed measuring system in a real scenario, several experimental trails have
been done. Particularly, the training of nonprofessional athletes performing martial arts
such as Karate has been selected as measuring scenario. The acquired data have been
compared with subjective evaluation of the hits and movements by a coach and with the
years of expertise and belt color of the athletes. Hence, it is possible to assess the
correlation between the measurements of the proposed system and the real skill level of
an athlete. Different Karate athletes, with different years of expertise and weight, have
been considered. The current testing population amounts to about 70 people (64 athletes
plus 6 coaches) of different weights, sexes, and colors of the belt, i.e., different levels of
expertise. Several punch and kick tests have been performed, for each subject, with
everyone’s favorite arm or leg.

For the sake of space, this paper shows the results of seven subjects, representative of the
testing population. Table Ireports the identifications of the seven subjects, their
characteristics in terms of age, weight, sex, color of the belt, and years of practice.



More in detail, Figs. 5—-13 show the measured spatial displacement and speed, as a
function of time, for five different movements, specific of the karate tradition: gyaku-tsuki,
oi-tsuki, mae-geri, yoko-geri keage, and yoko-geri kekomi. Reported measurements refer
to karate movements performed by the subject B25. For comparison, Fig. 7 shows the
same gyaku-tsuki movement by the athlete Br6. Fig. 14 shows the considered coordinates
for the experimental tests (in the case of a punch). Table II(a) and (b) and Figs. 15—
19 show the hit strength and the acceleration measured when performing a front kick and
a front punch (toward the chest of the sparring partner) by all the seven athletes in Table
I

TABLE 1
CHARACTERISTICS OF THE ATHLETES UNDER TESTS

SubjectID | Y1 02 03 Br6 | B23 | B21 | B25
Belt, color |Yellow| Orange |Orange| Brown |Black| Black |Black

Sex Male | Male |Female| Female | Male | Male | Male
Age, yrs 18 35 22 21 31 30 42
Practice, yrs| 1 2 3 6 23 21 25

Weight, kg | 62 | 101 | 50 60 | 72| 86 | 75
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TABLE 11

(a) MEASURED MAXIMUM STRENGTH FOR FRONT PUNCH. (b) MEASURED
MAXIMUM STRENGTH FOR FRONT KICK

(a)
SubjectID Yl | 02| O3 |Br6| B23 |B21| B25
Strength, kg 31 | 83 | 61 [103] 261 |202| 211
PSWR 0.5 ]0.82|1.22|1.72| 3.63 |2.35| 2.81
Automatic feedback | Improvable | Good Exc. Good
(b)
SubjectID Y1l | 02| O3 |Br6 | B23 |B21| B25
Strength, kg 68 |155 | 147|239 | 540 [481]| 517
KSWR 1.1 [1.53]2.94|398| 7.5 |5.59]6.89
Automatic feedback | Improvable | Good Exc. Good
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Fig. 14.  Coordinates for the experimental tests (punch).
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Performance measurements of Athlete Y1.
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Performance measurements of Athlete B23.

B. Experimental Results

Fig. 5 shows the spatial displacement of the hand when the athlete B25, a black belt, male
of 75 kg, is performing a fist gyaku-tsuki. The fist gyaku-tsuki is also known as reverse
punch since it is a punch with the rear arm when stepping forward. In the gyaku-tsuki
technique, the fist projection can be seen, with a good approximation, as a uniformly
accelerated motion: in Fig. 6 the hand speed is growing, almost constantly, from o up to
12.5 m/s in the first phase of the movement (160 ms). After the peak, the speed is
decreasing back toward zero in the second part of the movement (roughly 160 ms). The
average acceleration is about 78 m/=. These values are in line with measurements of the
gyaku-tsuki movement proposed in the literature [24]. It is worth noting that in [24] a
more complex system is used, based on video cameras plus off-line processing of the
acquired images with a specific software. In Fig. 7, the same analysis of Fig. 6 has been
repeated when the gyaku-tsuki movement is performed by athlete Br6, a brown belt,



female of 60 kg. The waveform in Fig. 7 is similar to that in Fig. 6, but the maximum speed
of the hand is almost halved, as well as the acceleration. This reduced dynamism of the
gyaku-tsuki movement will result in a lower efficacy of the hits of athlete Br6 versus B25
[see also results in Table II(a)].

During the gyaku-tsuki movement, we also measured the angular speed of the pelvis,
whose peak values are 16 and 12 rad/s for athletes B25 and Br6, respectively.

Figs. 8 and 9, for athlete B25, show the same measurements of Figs. 5 and 6, for the fist
oi-tsuki, which is the punch with the lead arm (when stepping forward). From Fig. 9, the
oi-tsuki is a sequential combination of three main parts. First, there is an almost uniform
motion with a speed of about 2 m/s (rotation of the hip and forward step). Then (fist
thrusts forward), there is an uniformly accelerated motion with a duration of about 150
ms, with a maximum speed of about 8 m/s. Finally, there is a deceleration phase of about
150 ms.

Figs. 10 and 11 show the displacement of the foot projection and the speed during a mae-
geri, which is a front kick. From Figs. 10 and 11, it seems that initially the foot is moved
with an accelerated motion (rotation of the hip) reaching a speed of about 13 m/s in 100
ms (acceleration of about 130 m/s:). Then (lower leg movement), there is another
accelerated motion at about 100 m/s: (from 130—270 ms). The final foot speed is about 20
m/s. Figs. 12 and 13 show the displacement of the foot projection and the speed of the
yoko-geri movement, which is a side kick, and can be done according two different
techniques: yoko-geri kekomi (blue lines in Figs. 12 and 13) and yoko-geri keage (red lines
in Figs. 12 and 13).

For all the athletes in Table I, Table II(a) and (b) shows the maximum measured strength
of a front punch strike and of a front kick strike during their training. Table 1I(a) and
(b) shows also the ratio between these strengths and the weight of the athlete [kick-
strength-to-weight ratio (KSWR) and punch-strength-to-weight ratio (PSWR)]. In
addition, Table II(a) and (b) shows the feedback value (1: bad; 2: improvable; 3: good; and
4: excellent) of the system in terms of automatic evaluation of the athletes’ movement
when providing the shot. With respect to other biometric parameters, as in Figs. 5-13,
or Figs. 15—19, KSWR and PSWR and the feedback value are useful as synthetic objective
measures of the performed hit, and are easy-to-understand for nonprofessional
athletes. Table II(a) and (b) refers to front punch strike and front kick strike just as an
example. The same results can be obtained during a combat training match for all types of
hits. The results of a series of multiple kicks or punches are stored separately in the
instrument memory, while in real time, the display is refreshed to visualize the
performance of the last hit.

For the reader’s convenience, Fig. 14 remarks that a proper position of the accelerometer
on the arm or leg produces the following;:

1. positives Z accelerations when moving forward on the sagittal plane with parallel
direction regarding the floor;
2. positives Y moving to the right of the subject on the transverse plane;
3. positives X moving up.
For example, Figs. 15—19 show the measured fist acceleration along the three axis (x, y, z),
the execution time of the punch in seconds, and the strength (measured as the



deformation revealed by the sensing node, type B, placed on the hit target). In Table II(a)
and (b) and in Figs. 15, 16, 18, and 19, with the unit kg, we refer to kilogram-force, which
corresponds to 9.81 N. The results in Fig. 15, measured during a test training of athlete Y1
in Table I, refer to a punch technique judged by the subjective coach analysis having a
nonoptimal trajectory. In Fig. 15, a relevant ascending movement (X’s spike up to 7 g), a
quite large right-left oscillation and Z acceleration (i.e., in the target direction) can be
noticed. This movement allows the athlete to produce a hit with a ratio versus its weight
of about 0.5 for the punch. The test in Fig. 16 shows a better movement of the subject O2
in Table I (which indeed is an orange belt, with an experience twice that of athlete Y1).
In Fig. 16, the acceleration along the direction of hit (axis z ) is much higher than the other
axis. The deformation of the target for the punch is equivalent to about 83 kg. The PSWR
figure of merit is 0.82, roughly 60% better than the PSWR of athlete Y1, although much
lower than the performance of the more experienced athletes in Figs. 18 and 19. The limits
of the movements of the athlete O2 can be analyzed looking at the zoom of the z-axis
acceleration in Fig. 17. In Fig. 17, the athlete O2 reaches a peak at 8 g with a transitory in
less than 100 ms, of which 75 ms during the acceleration increase phase. The weak slope
of the acceleration during the hit produces a strike with strength-to-weight ratio lower
than 1.

Fig. 18 shows a trajectory, produced by athlete O3, evaluated as good by the coach and by
our system. In Fig. 18, we can see the absence of ascending movement. There is a small
deflection to the right of the subject, but the Z acceleration is good with a peak higher than
10 g. This leads to a fast hit and to a PSWR factor higher than 1 (1.22), 48.7% better than
athlete O2. Fig. 19 shows a trajectory, evaluated as excellent by the coach and by the
automatic evaluation system, taken by athlete B23. To be noted that in Fig. 19, there are
no lateral or ascending oscillations. The forward acceleration in Fig. 19, along the axis z is
remarkable, with a spike up to 25 g. The strength of the hit in Fig. 19 is higher than 250 kg
with a PSWR of 3.63. Similar results are achieved for the Athletes B21 and B25. As a
secondary comment, we remark that such good force result of the athletes B21, B23, and
B25 are produced by the ability of use their legs to push against the floor ad use the hips
and elbows to drive this energy directly into the strike without break this kinetic chain.
Usually, an athlete manages such a coordinative skill around the tenth year of practice.
To achieve a feedback from the users, athletes, or coaches, they were asked to fill an
evaluation questionnaire and to give an overall mark about the usefulness of the proposed
system for training support (from 0, completely unuseful, to 5: absolutely useful; where
0—2 are considered negative marks and 3—5 are considered positive marks). Considering
the overall testing population of 70 subjects, we achieved an average mark of 4.2 with
95.7% of positive marks, i.e., above or equal 3. The testing and evaluation campaign is still
on-going to extend the subjects under test well beyond 70.

SECTION VII.

Conclusion

A system for athletes’ performance measurements in combat sports has been presented.
A low-cost implementation is proposed to address the market of nonprofessional athletes.
It is organized as a distribute network of multiple wearable and battery-powered sensing
nodes, with wireless BLE connectivity versus a gateway node that collects the biometric
data. The gateway node also implements local tasks for signal processing and hit statistic
evaluation, data storage, data visualization, and data transfer to remote hosts. Beside the
analysis of waveforms related to different biometric parameters (e.g., speed, acceleration,
spatial displacement, hit strength, and so on) the system also provides two intuitive
parameters, KSWR and PSWR, and a synthetic value of the training effectiveness, to give
an easy-to-understand feedback to athletes and coaches. By properly programming LUTs



at the gateway node side, the score for all hits can be weighted according to the effective
traumatological damage they cause. The system is scalable in terms of sensing nodes,
according to the specific combat sport. Experimental measurements on different athletes
confirm the strong relationship between the device’s tests and the real skill level of
athletes, evaluated also through a coach subjective assessment.
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