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Abstract

In this paper we propose an empirical analysis of deep recurrent neu-
ral network (RNN) architectures with stacked layers. The main aim is to
address some fundamental open research issues on the significance of cre-
ating deep layered architectures in RNN and to characterize the inherent
hierarchical representation of time in such models, especially for efficient im-
plementations. In particular, the analysis aims at the study and proposal
of approaches to develop and enhance hierarchical dynamics in deep archi-
tectures within the efficient Reservoir Computing (RC) framework for RNN
modeling. The effect of a deep layered organization of RC models is in-
vestigated in terms of both occurrence of multiple time-scale and increasing
of richness of the dynamics. It turns out that a deep layering of recurrent
models allows an effective diversification of temporal representations in the
layers of the hierarchy, by amplifying the effects of the factors influencing the
time-scales and the richness of the dynamics, measured as the entropy of re-
current units activations. The advantages of the proposed approach are also
highlighted by measuring the increment of the short-term memory capacity
of the RC models.
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1. Introduction

The potential ability of Deep Learning models to learn data representa-
tions at different levels of abstraction [1, 2, 3, 4] has progressively attracted
the interest of the Machine Learning community, in particular for the pos-
sibility of disentangling the difficulties in modeling complex tasks by rep-
resenting them in terms of simpler ones in a hierarchical fashion. In the
neuro-computing area, deep neural networks are often composed by a feed-
forward hierarchy of multiple hidden layers of non-linear units. Training of
such architectures is particularly time-demanding, so that a fundamental as-
pect of the successful spread of deep neural networks is related to recent
hardware advancements in the area of high performance computing, espe-
cially graphics processing units (GPUs), aiming at training deep models in
affordable times.

The recent introduction of deep architectures in the class of Recurrent
Neural Networks (RNNs) is arousing a growing interest under both theoret-
ical and applicative points of view [5, 6, 7, 8], especially in regard to the
possibility of developing a hierarchical processing of temporal data. Indeed,
the ability to represent dynamical features at multiple levels of abstraction
allows to capture more naturally the temporal structure of the data when-
ever it is intrinsically characterized by a multiple time-scales organization.
Among the others, language [6], speech [9] and text processing [8] represent
notable examples of application areas involving time-series data with this
type of characterization. Besides, the capability of modeling multiple time-
scales in recurrent networks dynamics has proved effective also as a mean
to deal with long-term dependencies, as evidenced e.g. in [10, 7] and, more
recently, in [4, 11].

Some works in literature aimed at obtaining multiple time-scales dynam-
ics in a layered RNN architecture. One approach consists in progressively
sub-sampling the input to the higher layers [7], forcing the different layers
to operate at different frequencies [12]. Another approach consists in learn-
ing all the weights in the stack of recurrent layers, which is a difficult and
extremely time consuming process even using GPUs and can require ad-hoc
incremental training strategies in order to be effective [8].

The state-of-the-art in this respect is still in its infancy with many open
challenges [13, 4], and some intuitions present in literature deserve further
research and critical assessments. In particular, the observation that stacking
layers of recurrent units inherently creates different time-scales dynamics



at different layers [8, 6], and therefore a hierarchical representation of the
temporal information per se, deserves to be investigated and analyzed.

A starting point for our analysis in this regard is represented by the
observation that stacking recurrent layers can be actually interpreted as the
application of a set of constraints to the architecture of a fully-connected
RNN (with the same number of units). Such constraints involve the pattern
of connectivity among the recurrent units (i.e. avoiding connections from
higher layers to lower layers), which affects the flow of information and the
dynamics of sub-parts of the network state. Moreover, the architectural
restrictions also concern the connectivity with the input layer (i.e. allowing
only to the units in the first layer to be fed directly by the input), influencing
the way in which the external input information is seen by recurrent units
progressively more distant from the input layer (see an explanation related
to the illustration of network architectures in Section 2.2).

This motivates us to a critical assessment of the possible and effective
merits of a layered structure for recurrent architectures and to propose differ-
ent approaches to achieve a hierarchy in temporal representation by efficient
deep recurrent models.

To this aim, the modeling proposal of this paper is based on Reservoir
Computing (RC) [14, 15], which represents a state-of-the-art approach for
extremely efficient RNN modeling. Moreover, and more importantly for the
analysis purposes, the RC approach yields the possibility to investigate the
architectural factors of deep models in a decoupled fashion with respect to
the learning aspects of the dynamical part of the networks. This type of
analysis on the one hand can provide insights on the true merits of learning
of deep RNN dynamics, and on the other hand it allows to propose efficiently
trained models for multiple time-scales processing of temporal data.

Previous works on hierarchical organizations of RC networks mainly fo-
cused on ad-hoc architectures of trained modules for temporal feature dis-
covery [14], but still lack of a general view over the effective potentiality and
emerging properties of deep architectures of layered reservoirs. In particu-
lar, since different parameters of RC models strongly affect their dynamical
behavior and performance, their relationships with layering deserve a sys-
tematic investigation, still missing in literature. Such investigation allows us
to study proposals on what aspects ruling the dynamics of reservoir models
can amplify the potential benefits of a deep architecture (and vice versa), in
particular for the timescale dynamics differentiation, as well as for the effect
of known RC techniques, such as Intrinsic Plasticity (IP) [16, 17, 18], to en-

3



hance the richness of state dynamics (measured as the entropy of reservoir
states).

Overall, the points at issue in this paper are how to obtain, enhance, and
quantify the occurrence of different time-scales (or amplify the richness of
the state dynamics) in deep recurrent architectures, thus contributing to ad-
dress the following open issues: (i) Why stacking recurrent layers imposing
constraints with respect to a full-connected RNN in favor of a layered deep
organization? (ii) What is the inherent (independent from learning) archi-
tectural effect of layering on the hierarchical temporal dynamics developed
by a deep RNN? (iii) Is it possible to keep the advantage of deep learning for
RNN (e.g. in terms of multi time-scales representation of temporal data) by
using an efficient approach such is RC? (iv) What is the role of the hyper-
parameters that rule RC network dynamics within a layered organization of
the reservoir?

This paper extends the preliminary investigation initiated in [19], by pro-
viding a deepened experimental analysis carried out through numerical simu-
lations (referred to as experiments in the rest of this paper) both in terms of
extension of model configurations and parameters, and of a new benchmark
supporting the results. Furthermore, this paper introduces a novel quanti-
tative analysis through measures of the synergistic effect of RC factors and
layering for the ordering and separation of the developed time-scales, and for
the richness of the state dynamics, reporting also the results of a complete
experimental investigation on the short-term Memory Capacity (MC) task.

This paper is organized as follows. Section 2 provides an introduction to
the basics of the models and architectures analyzed in the paper. Results
of numerical simulations are presented and discussed in Section 3, by firstly
taking into consideration the effect of RC hyper-parameters and IP on time-
scales differentiation, then investigating the influence of layering in enhancing
the impact of IP in terms of richness of reservoir dynamics, and then report-
ing the results achieved on the MC task under the different architectural
conditions considered. Finally, Section 4 draws the conclusions.

2. Deep Reservoir Computing

In this Section we provide a description of the RC networks considered
in this paper. First, in Section 2.1, we present a brief review of the standard
shallow RC, then, in Section 2.2, we introduce and discuss the proposed deep
RC architecture and baseline variants.



2.1. Shallow Echo State Networks

Within the RC framework [14, 15], the Echo State Network (ESN) model
[20] is a state-of-the-art approach for efficiently modeling RNNs. ESNs imple-
ment discrete-time dynamical systems by means of the computation carried
out by an untrained recurrent reservoir layer, providing a suffix-based Marko-
vian representation of the past input history [21, 22], and by a trained linear
readout. In this work we consider the Leaky Integrator ESN (LI-ESN) model
[23], a variant of the basic ESN in which leaky integrator reservoir units are
adopted. The basic LI-ESN architecture is graphically illustrated in Figure 1.

Figure 1: The architecture of a shallow LI-ESN model.

In a LI-ESN with Ny input units and Ny reservoir units the state is
updated according to the following state transition function:

x(t) = (1 —a)x(t — 1) + atanh(Wu(t) + 0 + Wx(t — 1)), (1)

where u(t) € R and x(t) € RM® denote respectively the input and the
reservoir state at time t, W;, € RY#*Nv is the input-to-reservoir weight
matrix, @ € RV% is the bias-to-reservoir weight vector (where we assume an
input bias equal to 1 for the reservoir units), W e RVa*NE ig the recurrent
reservoir weight matrix, tanh is the element-wise applied hyperbolic tangent
activation function and a € [0,1] is the leaky parameter. The reservoir
parameters are initialized according to the constraints specified by the Echo
State Property (ESP) [20, 21] and then are left untrained. Accordingly, the
weight values in Wy, and in @ are chosen from a uniform distribution over
[—scalegy,, scaley,], where scale;, represents an input-scaling parameter. The
values in matrix W are randomly selected from a uniform distribution and
then re-scaled such that the spectral radius (i.e. the largest eigenvalue in
absolute value) of matrix W = (1 — a) I+a W, denoted by p, is smaller
than 1, ie. p < 1.



Note that the leaky parameter a and the spectral radius of the recurrent
weight matrix p represent two relevant RC hyper-parameters. In particular,
the value of a is related to the speed of reservoir dynamics in response to the
input, with larger values of a resulting in reservoirs that react faster to the
input [23, 14]. The value of p, besides of being linked to the ESP for valid
ESN initialization, is related to the variable memory length and the degree of
contractivity of reservoir dynamics [21], with larger values of p < 1 resulting
in longer memory length.

The output of the LI-ESN is computed by the readout as a linear combi-
nation of the reservoir state activation, according to:

y(t) = Woux(t) + 0, (2)

where y(t) € RMY is the Ny-dimensional output at time t, W,; € RV *N& g
the reservoir-to-readout weight matrix and 6,,; € RYY is the bias-to-readout
weight vector (where we assume an input bias equal to 1 for the readout
units). Training the readout involves solving a linear regression problem,
typically approached by using direct methods such as Moore-Penrose pseudo-
inversion. For further details on the properties of the RC approach the reader
is referred to [14, 20, 21].

In the context of unsupervised reservoir adaptation techniques [14], a well
known approach is represented by Intrinsic Plasticity (IP) [16, 17, 18]. With
the goal of maximizing the entropy of the reservoir units output distribution,
the IP rule implements a gradient descent algorithm that adapts the gain and
bias parameters of the activation function locally to each reservoir unit. In
particular, when using the hyperbolic tangent as activation function, as in our
case, the IP rule aims at the minimization of the Kullback-Leibler divergence
between the empirical output distribution and a Gaussian distribution [16].

In formulas, focusing the attention on a single reservoir unit, the tanh
non-linearity can be expressed as T = tanh(grne; + b), where x,; is the net
input for the unit, x is the output of the tanh non-linearity, whereas g and b
respectively denote the gain and bias of the tanh function. Accordingly, the
IP rule is described by the following equations [16]:

Ab= —n(—(n/c?) + (2/0?)(20% + 1 — 3% + p)), 3)
Ag=mn/g+ Abxy,

where 1 and o denote the mean and standard deviation of the target Gaussian
distribution, n is a learning rate, and the update equations 3 are applied
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individually to each unit in the reservoir. Further details on IP training can
be found in literature works in [16, 17, 18].

2.2. Deep Echo State Networks

In this paper we propose the study of deep RC architectures in which
multiple reservoir layers are stacked one on top of each other. The main
model that we take into consideration is a straight stack of reservoirs, called
deepESN and shown in Figure 2a. In a deepESN, the first layer is fed by the
external input and operates like the reservoir of a shallow ESN, whereas each
successive layer is fed by the output of the previous one. The state transition
function of deepESNs can be expressed as:

xV(t) = (1—aMxD(t=1)+a® tanh(WLi0 () + 00 + WHxD (1)), (4)

where the superscript (/) is used to refer the network’s parameters and hyper-
parameters at layer [. Assuming, for the sake of simplicity, that the same
number of reservoir units Np is present in each layer of the stack, Wffl) in
equation 4 denotes the input weight matrix for layer I, 80 € RN® is the
bias-to-reservoir weight vector for layer [ and WO € RNrxNk represents the
recurrent weight matrix of layer [. In particular, for a deepESN we have
WZ(;) € RNwXNu for the first layer and WZ(Q € RNrXNE for successive layers,
i.e. for [ > 1. Moreover, note that i’ (t) in equation 4 is used to denote the
input for [-th layer of the deepESN architecture at time step ¢, i.e.:

u(t) if 1=1
i0(1) = (5)
x=D() Gf 1> 1.

For what concerns the output computation in a deepESN, a readout com-
ponent is used in order to linearly combine the outputs of all the reservoir
units as in a standard ESN. Rewriting equation 2 by taking into account
the hierarchical organization of the reservoir, and denoting the number of
reservoir layers by Ny, the output of a deepESN at each time step ¢ can be
computed as:

Y(£) = Wou [xO (1) x2() ... xV()]" + O, (6)

where in this case Wy, € RN¥YXNeNe represents the reservoir-to-readout
weight matrix of the deepESN, connecting the reservoir units in all the lay-
ers to the units in the readout. Training a deepESN can therefore be ac-
complished by means of direct methods similarly to the case of a standard
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ESN. Although the main focus of our experimental analysis is on reservoir
dynamics, readout training is also considered in this paper for the purposes
of the MC task.

The importance of layering with respect to the construction of a pro-
gressively more abstract encoding of the input history, and the relevance
of layering per se, are studied in the following by introducing some specific
architectural cases as a baseline.

In particular, we consider a deepESN architectural variant in which the
external input is provided to every layer, resulting in a model called deepESN
Input to All (deepESN-IA), shown in Figure 2b. Similarly to the case of
deepESN;, the state transition function of deepESN-IA can be expressed by
equation 4 in which the input for each layer [ > 1 at step ¢ is the concatenation
of the external input and the state of the previous layer in the stack:

u(t) if 1=1
i(t) = (7)
[u(t) x"=D(B)]" if 1>1

Accordingly, in a deepESN-IA for [ > 1 we have that WZ(Q € RNex(Ne+Nu),
Note that while higher layers in a deepESN are at increasing distances from
the (external) input, in a deepESN-TA the distance from the input is the
same for every layer.

The relevance of layering in deepESN, with respect to the interplay among
the reservoir dynamics at the different levels in the hierarchy, is investigated
by considering an RC network containing sub-reservoirs that are all fed only
by the input and are not organized in a stack. The resulting (shallow) ar-
chitecture is called groupedESN and it is shown in Figure 2c. In this case,
denoting by x( the state of the I-th sub-reservoir, the state transition func-
tion of a groupedESN can be formulated as follows:

xV(t) = (1= axO(t —1) + a® tanh (W u(t) + 69 + WOxO (¢ — 1)) (8)

where Wffz) € RN¥»*Nu for every [, and it can be noticed that the dynamics
of sub-reservoirs evolve independently of each other.

As a further architectural baseline, in the following we also take into
consideration the case of a standard (shallow) fully connected ESN (whose
dynamics are described by equation 1), with the same number of reservoir
units as in the whole architecture of a deep RC counterpart.
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Figure 2: Deep RC architectures: (a) deepESN, (b) deepESN-IA; (c) groupedESN. As-
pects related to input bias and mathematical notation are not reported here for the ease
of graphical representation (see text for details).

Note that, critically, a deep layered recurrent network adds architectural
constraints to the recurrent connections of a fully connected RNN. A layered
RNN can be re-interpreted as a fully connected RNN (with the same number
of units) where some connections between groups of neurons are removed.
In particular, a layered RNN architecture does not present connections from
higher layers to lower layers and connections from the input layer to layers at
a level greater than one, resulting in a constrained version of a fully connected
RNN. Besides, we introduce (an implementation of) the staking by adding
connections between groups (layers) of neurons without time-delays. Hence,
states variables in equation 5 are all at the same time step ¢, thus imposing
a serial order among the layers for computing the states at each time step.
Of course, the same observations also apply when we take into consideration
layered versus fully-connected ESN architectures. The study of the effects of
the aforementioned constraints in the development of the hierarchical tem-
poral dynamics is one of the main subject of this work. Moreover, again
under a critical perspective, it is worth to note that an ESN with a shallow
reservoir (i.e. without an explicit ordered layered structure) contains already
by construction a rich pool of state dynamics (due to the random weight
initialization). Hence, the same subject is studied in the following also with
respect to the parameters that rule the ESN behavior, in order to investigate



the possible enhancement due to a layered structure on their effect and on
the state dynamics and temporal representation variety.

With this aim, in the following we investigate possible strategies aimed at
driving the emergence of different time-scales dynamics through the different
layers of a deep recurrent architecture.

Our first proposal consists in imposing by design a state dynamics differ-
entiation among the layers, by setting different values of a and p at different
layers (or sub-reservoirs in groupedESNs). Using different values of a im-
plies a differentiation among the speed of state dynamics for the different
layers of the deep architecture. Indeed, the use of leaky units results in the
application of a running average on the state values [4], with the value of
the leaky parameter at each layer determining the extent of the persistence
of past information in the state dynamics at that layer (in our case, val-
ues of a closer to 1 imply that past information is more quickly discarded).
Moreover, in this regard, it is worth to observe that the advantage of having
RNN units with different leaky parameters in order to achieve multiple time-
scales dynamics has already been discussed in pioneering works already in
the 1980s [24, 25]. Varying the values of p implies a variation of contractivity
[21, 22] and memory length among the state dynamics of different layers.

Our second proposal consists in using an efficient unsupervised layer-wise
adaptation of reservoir units by means of IP training. Specifically, we applied
the IP rule as described by equation 3 indifferently for all the considered
architectures!. In our experiments, for all the reservoir units we used the
same values of the IP parameters 1, o and 7 (see equation 3), and we assessed
the influence of layering also in terms of IP effect enhancement.

3. Experimental Analysis

In this Section we present and discuss the results of our experimental
analysis conducted by means of numerical simulations on deep RC networks,
assessing the effectiveness of the methodologies introduced in Section 2.2.
Specifically, in Section 3.1 we investigate the effect of architectural factors,
RC hyper-parameters and IP learning on time-scales differentiation among
the dynamics of different layers, in Section 3.2 we further inquire into the

'The only practical aspect that changes in the different architectural cases is the way
in which the net input is computed, i.e. the value of x,.; in equation 3, which depends on
the input received by each reservoir unit.
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impact of IP on the richness of reservoir dynamics in deep RC architectures,
and in Section 3.3 we evaluate the efficacy of the proposed approaches on the
short-term memory capacity of the resulting models.

3.1. Time-scales Differentiation

In order to assess the extent of the time-scales differentiation among the
layers in the considered recurrent architectures, similarly to [8] we took into
consideration an experimental setting comprising two input sequences, S;
and Sy, both of length 5000 and identical to each other except for a typo (a
perturbation) that is inserted in S, at time step 100. We ran the same RC
network on both the unperturbed and the perturbed input sequences and
collected the correspondingly obtained reservoir states, evaluating how long
the effect of the input perturbation affects the dynamics of each layer by
computing the distance between the states corresponding to S; and Ss as a
function of time. Specifically, a qualitative analysis is provided by plotting
the Euclidean distance between the states of corresponding layers in the un-
perturbed and perturbed cases. In this concern, note that as S; and S5 are
identical until the typo at step t = 100, for all the layers the distances among
the states are always zero by construction for all the time steps ¢ < 100, and
are therefore left out from the plots. Moreover, to complete the qualitative
results provided by the plots described above, we also adopt quantitative
measures of time-scales diversification. This is done by assessing the qual-
ity of the ordering among the time-scales in the different layers by resorting
to known distances between rankings [26], i.e. the Kendall’s tau (KT) and
the Spearman’s footrule (SF), and by introducing an index of time-scales
separation (IS). Smaller values of KT and SF indicate a better ordering of
time-scales across the layers, while higher values of IS denote a greater spac-
ing among the duration of the perturbation effect across the layers. Details
on these qualitative and quantitative means of investigation (including defi-
nitions of KT, SF and IS) are reported in Appendix A.

We instantiated this experimental approach by considering two datasets.
The first dataset is an Artificial time-scales dataset, designed to avoid biases
towards specific applications, in which each input element is drawn from a
uniform distribution from an alphabet of 10 elements. The second dataset
comes from an excerpt of the Wikipedia text corpus [27], used in [8] and
adopted here to evaluate our results also for the case of a realistic task. Ele-
ments in the Wikipedia dataset represent characters, where in our setup we
considered an alphabet comprising the 95 most common ones (the printable
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ASCII characters) and an unknown character (used to represent all the oth-
ers), as in [8], for a total number of 96 characters. For both the datasets,
we represented the input elements by using a one-hot encoding approach,
thereby resulting in a one-of-10 encoding for the Artificial dataset and in a
one-of-96 encoding for the Wikipedia dataset.

In our experiments, for the only scope of analysis and for the sake of
its uniformity and simplicity, we considered deepESN (and deepESN-IA)
stacked architectures with 10 layers of 10 fully connected units each with
input scaling scale;, = 1. Analogously, for groupedESN, we used networks
with 10 sub-reservoirs of 10 units. Moreover, for baseline comparison with the
standard RC case, we also considered ESNs with 100 fully connected units,
i.e. the total number of reservoir units used for the deep RC setup. We
independently generated 10 guesses for each network hyper-parametrization,
and averaged the results over such guesses.

For the sake of conciseness, we present the results of the qualitative
analysis with the time-scales plots only for the Artificial dataset, while the
quantitative results, i.e. values of KT, SF and IS, are reported also for
the Wikipedia dataset. In the plots presented in the following, the curves
for each layer (or sub-reservoir) are averaged over the 10 network guesses
considered (in order to avoid influences of single instances on our analysis).
Analogously, the values of KT, SF and IS were evaluated on the 10 guesses,
reporting min-max ranges for KT and SF, and mean values for IS.

3.1.1. Intrinsic Architectural Differentiation

Our experimental analysis on the multiple time-scales differentiation is
conducted by firstly considering fixed values of the leaky parameter a = 0.55
and of the spectral radius p = 0.9 among the layers (or sub-reservoirs), using
values that are intentionally not optimized, as the purpose is not to achieve
the best results, but to show the differences occurring among the different
architectures under the same conditions. Figure 3 graphically shows the
results achieved on the Artificial dataset with deepESN, deepESN-TA and
groupedESN. Continuous blue lines refer to the different layers of the deep
architecture (different sub-reservoirs for groupedESN), with darker colors
corresponding to higher layers. For the sake of comparison, the red dashed
line refers to the shallow ESN baseline with a = 0.55 and p = 0.9, as in every
layer of the deep networks. Table 1 reports the values of KT, SF and IS
achieved by deepESN, deepESN-TA and groupedESN on both the Artificial
and the Wikipedia datasets.
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Figure 3: Distance between perturbed and unperturbed states on the Artificial dataset
for the considered RC architectures with @ = 0.55 and p = 0.9 for every layer (or sub-
reservoir). Continuous blue lines correspond to layers in deep RC networks (darker colors
for higher layers) and to sub-reservoirs in grouped ESN. Dashed red lines correspond to the
shallow ESN with the same number of total reservoir units and hyper-parametrization.
a: deepESN, b: deepESN-IA, c: groupedESN.

The intrinsic differentiation among the time-scales dynamics at the dif-
ferent layers of a deepESN is qualitatively analyzed through the plot shown
in Figure 3a, from which it is possible to observe that the effects of the input
perturbation last longer for higher layers in the stack. Such differentiation is
indeed related to the layered deep architecture, as it is strongly attenuated
when the external input is provided to each layer, as in the case of deepEESN-
IA (see Figure 3b) or when layering is removed from the architectural design,
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as in the case of groupedESN (see Figure 3c). These insights are quantita-
tively confirmed by the results in Table 1, showing that deepESN provides a
preferable differentiation of time-scales at the different layers, in this regard
generally presenting a more ordered organization of time-scales, i.e. smaller
values of KT and SF, and better separability, i.c. larger values of IS.

In particular, a comparison between the behaviors of deepESN and deepESN-
IA points out the relevance of having deeper layers at increasing distances
from the external input as a key architectural factor for time-scales sepa-
ration. Note that deepESN and deepESN-IA show a similar hierarchical
organization of time-scales (similar values of KT and SF) and in both cases
the higher layers of the architecture present longer time-scales than the cor-
responding standard ESN (as can be seen in the plots of Figures 3a and 3b).
However deepESN-IA shows a reduced separation of time-scales with respect
to deepESN, as can be seen graphically through a comparison of Figure 3a
and Figure 3b, and also numerically in Table 1, with deepESN-IA leading to
smaller IS values than deepESN.

The case of groupedESN, illustrated in Figure 3¢, shows the intrinsic vari-
ability that can be already present in (sub-)reservoirs with the same hyper-
parametrization when they are not organized in a stack. As can be seen, in
this case the dynamics of all the sub-reservoirs do not present a particular
ordering and have a similar behavior to the one of the shallow ESN with cor-
responding total number of units and values of the hyper-parameters. Quan-
titatively, a comparison between the results of deepESN and groupedESN
in Table 1, shows the inherent impact in terms of ordering and separabil-
ity among the time-scales dynamics (smaller values for KT and SF, larger
values of IS) that are due to the hierarchical organization of the reservoir
layers in deepESN. Notice that in this setting, in which there are no hier-
archies among the sub-reservoirs of a groupedESN (they all have the same
hyper-parametrization), the use of different grades of colors in Figure 3¢ and
the values of KT, SF and IS reported in Table 1 for groupedESN assume a
different meaning than in the case of layered architectures. The results of
groupedESN in this case is indeed representative of a completely un-ordered
sub-reservoir organization and are therefore reported for the sake of com-
pleteness and scale comparison.

3.1.2. Differentiation by Variation of RC Hyper-parameters
In light of the results shown in Section 3.1.1, we can observe that the
inherent diversification among the layers dynamics in a deepESN is quite

14



Model | KT (min-max) | SF (min-max) | IS (mean)
Artificial

deepESN a = 0.55 0-2 0-2 203.90 (£83.39)

deepESN-IA ¢ =0.55 | 0 - 2 0-2 134.10 (£37.68)

groupedESN a = 0.55 | 8 - 10 26 - 42 18.70 (456.56)
Wikipedia

deepESN a = 0.55 0-2 0-2 175.70 (+£98.48)

deepESN-TA a = 0.55 | 0 - 4 0-4 123.90 (£22.48)

groupedESN a = 0.55 | 7- 10 22 - 44 -22.40 (£58.16)

Table 1: Values of Kendall’s tau (KT), Spearman’s footrule (SF) and index of separa-
tion (IS) achieved on the Artificial dataset and on the Wikipedia dataset by deepESN,
deepESN-IA and groupedESN with with ¢ = 0.55 and p = 0.9 for every layer (or sub-
reservoir). For KT and SF smaller values are better, for IS higher values are better.

narrow (Figure 3a), with the range of emerging time-scales presenting a lim-
ited extent. Such differentiation can be emphasized within the efficient RC
approach by resorting to the strategies proposed in Section 2.2.

We first take into consideration the effect due to a diversification of the
value of the leaky parameter among the layers. Figure 4 shows the results
achieved by deepESN, deepESN-TA and groupedESN using a fixed value of
p = 0.9 and decreasing values of the leaky parameter a for increasing layer
depth, from 1 to 0.1, thus imposing a progressively slower speed of reservoir
dynamics at higher layers in the architecture. Table 2 reports the KT, SF
and IS values obtained by deepESN, deepESN-TA and groupedESN in the
same conditions.

For the sake of comparison, in each plot of Figure 4 it is reported also the
result obtained by standard shallow ESN with values of p = 0.9, as in every
layer of the deep RC networks, and a = 0.55, i.e. the average value among
the layers of the deep architectures. Such result is reported here (and also in
the following analysis) as a summary for the values and comparisons already
discussed with regard to Figure 3, as indeed the aim is to assess the extent
of the differentiation among the behaviors shown by the different layers, also
in comparison to the average case.

As can be seen in Figure 4a, the variability of the leaky parameter has a
great impact on the differentiation among the emerging time-scales dynamics,
showing a much wider extent of the ordered diversification than deepESN
with fixed values of a (Figure 3a). As can be seen by comparing Tables 2
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Figure 4: Distance between perturbed and unperturbed states on the Artificial dataset
for the considered RC architectures with p = 0.9 for every layer (or sub-reservoir) and a
varying from 1 to 0.1 among the layers (or sub-reservoirs). Continuous blue lines corre-
spond to layers in deep RC networks and to sub-reservoirs in groupedESN. Darker colors
correspond to decreasing values of a, and to higher layers in deep RC networks. Dashed
red lines correspond to the shallow ESN (for graphical reference with respect to Figure 3,
see text). a: deepESN, b: deepESN-IA, c: groupedESN.

and 1, varying the value of the leaky parameter across the layers of a deepESN
results in generally lower values of KT and SF and higher values of IS.

This characterization is a result of the interplay between layering and
leaky integration variability, and also in this case it is strongly reduced when
all the layers are at the same distance from the input, i.e. for deepESN-
IA, or when non-stacked architectures are considered, i.e. for groupedESN.
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Specifically, also in this case, deepESN-IA leads to a reduced separation of
time-scales across the layers, while groupedESN in addition to the reduced
separation also results in a worse ordering with respect to the duration of
the perturbation effect, which is graphically pointed out by the overlapping
among the curves in Figure 4c¢ (highlighted in the zoom), and by the results
in Table 2.

Model | KT (min-max) | SF (min-max) | IS (mean)
Artificial

deepESN 0-0 0-0 367.80 (£76.25)

deepESN-IA | 0- 2 0-2 204.30 (+£44.51)

groupedESN | 2 -9 4-18 285.00 (£50.07)
Wikipedia

deepESN 0-2 0-2 335.50 (£92.69)

deepESN-TA | 0 - 2 0-2 295.00 (+42.54)

groupedESN | 4-9 4-18 298.10 (448.86)

Table 2: Values of Kendall’s tau (KT), Spearman’s footrule (SF) and index of separa-
tion (IS) achieved on the Artificial dataset and on the Wikipedia dataset by deepESN,
deepESN-IA and groupedESN with with p = 0.9 for every layer (or sub-reservoir) and a
varying from 1 to 0.1 among the layers (or sub-reservoirs). For KT and SF smaller values
are better, for IS higher values are better.

The effect due to the variation of the p hyper-parameter among the layers
is similar to the case of variable a, though with a reduced extent of differenti-
ation. For the sake of succinctness, results concerning the p hyper-parameter
are omitted here and are reported in Appendix B.

3.1.3. Differentiation by IP Training

The impact on the development of multiple time-scales due to the unsu-
pervised IP training is shown in Figure 5 and Table 3, considering the cases
of deepESN, deepESN-IA and groupedESN with constant values of a = 0.55
and p = 0.9 for all the layers (or sub-reservoirs), and using IP learning. In
our experimental setting, we used values of 4 =0, 0 = 0.1 and n = 0.00001
for the IP parameters in equation 3. For comparison, in the plots of Figure 5
we also show the result obtained by the corresponding standard shallow ESN
architecture using IP with and the same hyper-parametrization.

The remarkable effect of IP on the time-scales differentiation in a layered
architecture is pointed out by a comparison between the results of deepESN
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under the same settings of a and p, with IP learning (Figure 5a) and without
IP learning (Figure 3a). It can be observed that after IP training the higher
layers in the deepESN architecture tend to forget more slowly the past input
history, and the effect of the typo perturbation has a much longer duration.
Results in Table 3 show that deepESN with IP achieves better results in terms
of time-scales ordering and separation among the layers, outperforming the
results of the base deepESN case with corresponding settings (in Table 1).
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Figure 5: Distance between perturbed and unperturbed states on the Artificial dataset
for the considered RC architectures, with a = 0.55 and p = 0.9 for every layer (or sub-
reservoir) and using IP learning. Continuous blue lines correspond to layers in deep RC
networks (darker colors for higher layers) and to sub-reservoirs in groupedESN. Dashed
red lines correspond to the shallow ESN with the same number of total reservoir units and
hyper-parametrization. a: deepESN, b: deepESN-IA; c: groupedESN.
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In addition to the amplifying effect of IP on the time-scales differentiation
observed on deepESN, it is also possible to notice the enhancement effect of
layering on the IP efficacy. Indeed the hierarchical organization of reservoir
layers in deepESN, with higher layers at increasing distance from the input,
allows to trigger a process of increasing effectiveness of IP among the layers,
as can be seen also by the fact that the curves representing the dynamics of
the first deepESN layer and of the shallow ESN almost overlap in the plot in
Figure 5a. On the other hand, when the deepESN architectural character-
izations are lost, layer dynamics are made more uniform by IP learning, as
can be seen for deepESN-TA (Figure 5b) and groupedESN (Figure 5b).

Model | KT (min-max) | SF (min-max) | IS (mean)
Artificial

decpESN [ 0-2 0-2 785.10 (£243.97)

deepESN-IA | 0-7 0-14 24.00 (+8.99)

groupedESN | 6 - 10 20 - 44 -0.40 (£3.23)
Wikipedia

deepESN 0-0 0-0 644.40 (+£183.61)

deepESN-TA | 2 -8 2-14 20.90 (+4.66)

groupedESN | 6 - 10 10 - 44 -1.80 (+6.84)

Table 3: Values of Kendall’s tau (KT), Spearman’s footrule (SF) and index of separa-
tion (IS) achieved on the Artificial dataset and on the Wikipedia dataset by deepESN,
deepESN-TA and groupedESN, with with ¢ = 0.55 and p = 0.9 for every layer (or sub-
reservoir) and using IP learning. For KT and SF smaller values are better, for IS higher
values are better.

The strong effect of IP on the emerging of multiple time-scales differentia-
tion in deepESN can be explained in terms of a diversification of the memory
length in the different layers, similarly to the effect of the variation of the
spectral radius. Indeed, by changing the gains of the reservoir units’ activa-
tion functions, IP potentially act on the real value of the spectral radius at
the different layers, as noticed also in [17] for standard RC networks.

3.2. Richness of Reservoir Dynamics: IP Training and Layering

The role of IP learning in relation to layering then deserves to be further
investigated in the context in which it has been introduced, i.e. the informa-
tion maximization of reservoir state dynamics [16, 17, 18]. To this aim, we
evaluated the entropy of reservoir units activations over time, as a measure
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of the richness of state dynamics, assessing the effect of IP in conjunction
with layering. We approximated the entropy of the output distribution of
each reservoir unit 4, by computing the integral estimate [28] H;:

Hi = — / fi(x) log fi(x)dz (9)

where f; is the estimate of the probability density function of the i-th reser-
voir unit output distribution over time, computed by means of kernel density
estimation, and the integral in equation 9 is computed by numerical integra-
tion?. The layer-wise effect of IP on the entropy of reservoir units activations
is graphically shown in Figure 6 for both the Artificial (Figure 6a) and the
Wikipedia (Figure 6b) datasets. The plots show the values of the entropy
averaged on the units of each layer (or sub-reservoir) for deepESN, deepESN-
IA and groupedESN, using the same experimental setting considered with
regard to Figure 5 and Table 3 (i.e. a = 0.55, p=0.9, p =0 and o = 0.1).
For the sake of comparison, Figure 6 also shows the entropy achieved by a
shallow ESN (with the same total number of reservoir units) under the same
conditions. It can be seen that for both the datasets, the entropy of deep-
ESN states clearly increases with increasing layer depth, showing the same
incremental 1P effect already observed in Figure ba. On the other hand,
in the cases of deepESN-TA and groupedESN, the entropy remains almost
constant among the layers (or sub-reservoirs), and very close to the values
corresponding to a standard shallow ESN.

The values of the state entropy averaged over all the reservoir units in
deepESN, deepESN-IA, groupedESN and ESN in the same experimental set-
tings are reported in Table 4. From such results it is possible to appreciate
the overall strong impact of IP on the hierarchical architecture of deepESN,
resulting in an average entropy improvement of =~ 27% with respect to the
shallow ESN for both the datasets, whereas deepESN-IA and groupedESN
obtained results very close to those of shallow ESN. Results in Table 4 con-
firm that in this experimental setting the effectiveness of IP is enhanced only
by using a hierarchical reservoir organization with layers at increasing dis-
tance from the input. When IP is applied to layers of reservoir units at the
same distance from the input, or to non-stacked sub-groups of reservoir units,
analogous results to the application of IP to a shallow ESN are achieved.

2Note that the H; values computed by means of equation 9 result in approximations
of the Shannon’s differential entropy, which can also assume negative values.
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Figure 6: Layer-wise averaged entropy of reservoir states on the Artificial dataset (a)
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groupedESN the results refer to sub-reservoirs. The average entropy of the shallow ESN
counterpart is reported as a continuous red line across each plot.

3.3. Short-term Memory Capacity

A last set of experiments has been considered to assess the effectiveness of
the proposed approaches on the MC task [29]. This task provides a measure
of short-term memory capacity of RC networks, by evaluating how well it is
possible to recall delayed versions of the input based on reservoir activations.
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Model | Entropy |

Artificial
deepESN -1.066 + 0.021
deepESN-IA | -1.410 4 0.007
groupedESN | -1.425 £+ 0.005
shallow ESN | -1.451 £ 0.003

Wikipedia
deepESN -1.071 4+ 0.019
deepESN-TA | -1.431 4+ 0.006
groupedESN | -1.449 + 0.004
shallow ESN | -1.469 + 0.005

Table 4: Average entropy of reservoir states on the Artificial and on the Wikipedia datasets
(higher values are better), obtained by deepESN, groupedESN and deepESN-TA with a =
0.55 and p = 0.9 for every layer (or sub-reservoir) and IP learning. The average Entropy
of corresponding shallow ESN is reported as well for the sake of reference comparison.

Input consists of a temporal signal whose elements u(t) are drawn from a
uniform distribution over [—0.8,0.8]. The task requires to reconstruct the
input stream with increasing delays, i.e. for each time step ¢ we consider
target values g (t) = u(t — k), for k =0, ..., 00. The overall MC is defined as:

MC = 3" (ult - k), yel0)) (10)
k=0

where r2(u(t — k), y(t)) is the squared correlation coefficient between the
input with delay & and the corresponding re-constructed value y(t). In
practice, due to theoretical results on RC networks [29], the MC can be com-
puted by considering only a finite number of delayed signals. In this paper we
set up an MC task similarly to [16], by considering a number of delays equal
to 200 (i.e. twice the number of total reservoir units considered). The input
signal contained 6000 steps, 5000 of which used for training and the remain-
ing 1000 for test. For this task we adopted similar settings to those already
used for previous experiments. In particular, we considered deepESN archi-
tectures with 10 reservoir layers of 10 fully connected units and input scaling
scale;, = 0.1, instantiating the networks with constant values of the leaky
parameter a € {0.1,0.55,1} and of the spectral radius p € {0.1,0.5,0.9}
among the layers. Moreover we considered deepESN settings in which the
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value of a varies from 1 to 0.1 among the layers, with constant values for
p € {0.1,0.5,0.9}, and in which the value of p varies among the layers from
0.1 to 0.9, with constant values of a € {0.1,0.55,1}. We also ran experiments
using IP learning, which has a known improvement effect on the MC task [16],
using values of n = 0.00001, g = 0 and o € {0.1.0.01} for all the RC settings
mentioned above. Analogous experiments were conducted for deepESN-IA
and groupedESN, as well as for standard ESN (for the sole scope of base-
line reference and assessment). For each network hyper-parametrization, we
independently generated 10 guesses, averaging the results over such guesses.
In all the considered cases, the values of a, p and o were chosen by model
selection on a validation set (comprising 20% of the data in the training set).

| Model | Memory Capacity |
deepESN 42.45 + 3.11
deepESN + var. a 37.15 + 2.48
deepESN + var. p 30.79 £ 1.15
deepESN-TA 28.05 £ 1.87
grouped ESN 28.02 + 1.77
shallow ESN 27.50 £ 1.34
deepESN + IP 54.49 £+ 3.82

deepESN + var. a + IP | 52.03 £ 5.43
deepESN + var. p + IP | 48.01 £ 3.36

deepESN-IA + IP 36.78 £ 2.69
groupedESN + IP 39.02 £+ 2.25
shallow ESN + IP 37.06 &= 1.48

Table 5: Memory Capacity results (higher is better) achieved by deepESN, deepESN-TA
and groupedESN and shallow ESN. Results for deepESN are reported also for the cases of
layers with decreasing values of a (var. a) and increasing values of p (var. p) among the
layers. The first group of results refers to RC models without the use of IP, the second
group refers to the corresponding models with IP (denoted by +IP).

The MC values on the test set achieved by deepESN, deepESN-IA, grou-
pedESN and shallow ESN are reported in Table 5. Results show that deep-
ESN obtained the best MC both without IP and with IP, improving the re-
sults obtained by shallow ESNs (which are in line with literature results [16]).
In particular, without IP, deepESN obtained an MC value of 42.45 that rep-
resents an improvement of ~ 54% with respect to the value achieved by
shallow ESN. The hierarchical organization of deepESN architecture also al-
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Figure 7: MC results of deepEESN and shallow ESN for different values of the spectral radius
p and of the leaky parameter a. (a): different values of a, without IP, (b): different values
of p, without IP, (c): different values of a, with IP, (d): different values of p, with IP. For
deepESN each reservoir layer has the same hyper-parametrization.

lowed to exalt the known effect of IP on the MC, leading to a value of 54.49,
which improves the result achieved by shallow ESN with IP by ~ 47%. In
both the cases, without and with IP, the selected values of spectral radius
and leaky parameter for deepEESSN were @ = 1 and p = 0.9, while varying the
values of these two parameters among the layers led to slightly lower MC
results. Moreover, notice that deepESN-TA and groupedESN achieved MC
values very close to the one of shallow ESN, both with and without IP.

A further comparison between the MC of deepESN and shallow ESN is
presented in Figure 7, which shows the results achieved in correspondence
of different values of the leaky parameter a and of the spectral radius p
(constant for all the layers) while the values of the other parameters were
selected on the validation set, without using IP (Figures 7a and 7b) and
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using IP (Figures 7c and 7d). Results clearly show that deepESN improves
the short-term MC of shallow ESN in all the cases.

4. Conclusions

In this paper we have proposed an experimental analysis of state dynamics
in deep recurrent neural architectures, targeted at assessing the real effect of
layering on the development of a hierarchical representation of the temporal
information. In particular, the recourse to RC networks allowed us to conduct
such analysis separately from learning aspects.

Despite the observations that stacking recurrent layers is just an archi-
tectural constraint to a fully connected RNN, and that a shallow reservoir
already provides a rich pool of varied state dynamics by construction, the ex-
perimental evidences in this paper have shown that it is possible to exploit the
same factors that influence the dynamics of shallow recurrent architectures
to achieve a temporal data representation at multiple levels of abstractions
through a layered network organization.

In particular, the introduction of the deepESN model allowed us to study
the intrinsic properties of deep layered recurrent architectures in terms of
time-scales differentiation, and highlight such properties in comparison to
purposely introduced baseline models. This allowed us to evaluate the ef-
fect of architectural factors such as the progressive distance of higher layers
from the external input (versus deepESN-TA) and the effective hierarchical
interplay among layers of recurrent units (versus groupedESN).

Experiments on two benchmark datasets have shown the synergy between
stacking reservoir layers and the role of already known RC parameters. On
the one hand, such analysis provided insights on the amplification of the ef-
fect of these RC parameters in a deep architecture. On the other hand, it
allowed us to propose effective strategies to enhance the time-scale differen-
tiation among layers using different values of the leaky parameter and of the
spectral radius, or by unsupervised IP learning focused only the parameters
of the activation function. This allows us to preserve the efficiency of the
RC approach, without resorting to a full RNN training (extended to all the
units parameters).

More in detail, the variability of parameters of reservoir design ruling the
speed of dynamics in response to the input, i.e. the leaky parameter, and
the memory length, i.e. the spectral radius, could effectively amplify the
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emergence of multiple (separated) time-scales, hierarchically ordered across
the layers of a deepESN.

The use of an efficient technique for unsupervised adaptation of (only)
the parameters of the reservoir activation functions, i.e. IP learning, has
shown a great impact on the development of multiple time-scales (enhanced
in deep models). Such impact has been investigated also in terms of im-
proved richness of reservoir dynamics by measuring the entropy of reservoir
state activations, showing that the known effect of IP learning is actually
progressively enhanced among the layers of a deepESN architecture. Fur-
thermore, the advantages brought by the proposed approaches have been
shown also on the MC task, showing that deepESN allows to improve the
short term memory capacity with respect to the shallow case, and that the
known effect of IP learning on the MC task is greatly exalted by the use of
a layered architecture.

Overall, after assessing the intrinsic architectural properties of general
deep layered RNN in representing different time-scale dynamics, more inter-
estengly for RC modeling, the results of our experimental analysis pointed
out the actual relevance of the interplay between layering and RC parame-
ters aspects on the diversification of temporal representations. In particular,
the proposed approaches allowed us to achieve a time-scale differentiation in
deep models that is higher with respect to a standard ESNs without a lay-
ered structure, and led to explicitly address the concept of including temporal
data representation at different level of abstraction within the RC paradigm.

As such, the analysis proposed in this paper paves the way to further
studies on the design of novel deep neural network models for efficient rep-
resentation learning on sequences. Future developments deserve to move
from the current insights to the design and concrete set up of new learning
models boosted by an enriched representation of the input dynamics, ex-
ploiting the time-scale differentiation developed through the layers to solve
complex tasks that require/involve processing time-series data at different
levels of time granularity. The opening of this line of research would con-
tribute to achieving new findings that are demanded to result in a relevant
breakthrough in the area of efficiently learning from sequential and temporal
data.
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Appendix A. Qualitative and Quantitative Measures of Time-scales
Differentiation

In this Section we provide details on the measures used in Section 3.1
to evaluate the goodness of time-scales differentiation among the layers of a
stacked RC architecture.

Taking into consideration a deepESN with Nj, layers and 2 sequences,
the unperturbed one S; and perturbed one Sy (in which a typo is inserted
with respect to S; at step ¢ = 100), here we denote by x{/ (t) and x;f]l)(t) the
state of layer [ at step t for the unperturbed and the perturbed sequence,
respectively. For each layer [, we evaluated the Euclidean distance between
corresponding states x’ (t) and X,(f)(t) as a function of time, i.e. DO(t) =
||x£f) (t) — x,(,l)(t)||2. Then we plotted the distances DY (t) for + > 100 and
for all the layers, in order to graphically investigate how long the effect of
the input perturbation at step 100 affects the state dynamics of each layer,
providing a qualitative analysis of the time-scales differentiation emerging in
the architecture. Analogous plots can of course be obtained also for the cases
of deepESN-TA and groupedESN.

The qualitative investigation described above is completed by adopting
quantitative measures of time-scales diversification. To this aim, the max-
imum duration of the perturbation effect on layer [ can be expressed as
PO = max, (DY (t) > 0). By ordering the set of values { PO} we can de-
fine a ranking on the layers based on the duration of the perturbation effect,
denoted by {O® fiﬁ, and which represents a permutation of {1,2,..., N, }.
Specifically, if O = n it means that the layer [ is the n-th one in terms
of duration of the input perturbation effect. In this sense, the ideal case is
represented by the identity permutation ranking 1,2, ..., Ny, i.e. O =1 for
every [ = 1,..., Ny, corresponding to an increasing duration of the pertur-
bation effect for higher layers. Based on these definitions, we can quantify
the quality of the ordering among the time-scales in the network’s layers
by measuring the distance between the ranking {O(l)}l]\; " and the identity
permutation ranking. To do so, we adopt two known distances between
rankings [26], i.e. the Kendall’s tau and the Spearman’s footrule distances,
respectively denoted by K'T" and SF', and computed according to:

KT = |{(11,lz) : (1 <l <l < NL) A (()(ll) > O(lz))}l
(A1)
SF =34 [1-0",
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where, with respect to the identity permutation, KT sums the number of
required pairwise swaps, while SF sums the total amount of displacement
of the elements in the ranking. Accordingly, smaller values of KT and SF
denote better orderings of the times-scales.

Morcover, we can quantify the extent of time-scales separation by mea-
suring the distances between the duration of the perturbation in consecutive
layers, introducing an index of separation, denoted by IS, and computed as:

N
1s=>%"ph - pt, (A.2)

=2

where higher values of IS correspond to a greater spacing among the duration
of the perturbation effect in the different layers.

Appendix B. Time-scales Differentiation: Variation of p

This Section provides the results on time-scales differentiation due to the
variability of the spectral radius p among the layers of a stacked RC network.

Figure B.8 shows the results achieved by deepESN, deepESN-IA and grou-
pedESN using a fixed value of a = 0.55 and increasing values of the spectral
radius p for increasing layer depth, from 0.1 to 0.9, resulting in increasing
memory length for higher layers. In Figure B.8 we also show the result
of standard shallow ESN with a and p equal to the corresponding averages
among the layers of the deep architectures. Table B.6 reports the KT, SF and
IS values obtained by deepESN, deepESN-TA and groupedESN in the same
conditions. For the sake of reference comparison, Figure B.8 and Table B.6
also report the results obtained by deepESN with constant value of p = 0.5,
i.e. the average among the p values in the considered range of variability.

The effect of the spectral radius variation can be appreciated by com-
paring the results obtained for the cases of deepESN with constant p for
every layer (Figure B.8a) and of deepESN with p varying among the layers
(Figure B.8b). As can be seen, varying the value of p leads to a clear im-
provement of the hierarchical time-scales differentiation, as also reflected by
the values in Table B.6, with deepESN using different values of p achieving
better results than deepESN with constant p in terms of KT, SF and IS
values.

A comparison among the considered cases with p varying among the
layers (or sub-reservoirs) of the architecture, i.e. deepESN (Figure B.8b),
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Figure B.8: Distance between perturbed and unperturbed states on the Artificial dataset
for the considered RC architectures with a = 0.55 for every layer (or sub-reservoir) and
p varying from 0.1 to 0.9 among the layers (or sub-reservoirs). Continuous blue lines
correspond to layers in deep RC networks and to sub-reservoirs in groupedESN. Darker
colors correspond to increasing values of p, and to higher layers in deep RC networks.
Dashed red lines correspond to the shallow ESN (for graphical reference with respect to
Figure 3, see text). For the sake of reference the results corresponding to deepESN with
constant p = 0.5 for all the layers is reported as well. a: deepESN with constant p, b:
deepESN, c: deepESN-IA, d: groupedESN.

deepESN-TA (Figure B.8c¢) and groupedESN (Figure B.8d), confirmed also
by the results on KF, SF and IS values in Table B.6, shows similar results to
the case of variable a (analyzed in Section 3.1.2, in Figure 4 and Table 2),
though the effect of differentiation in this case is less significant.
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Model | KT (min-max) | SF (min-max) | IS (mean)
Artificial

deepESN p = 0.5 0-3 0-4 68.20 (£21.16)

deepESN var. p 0-2 0-2 161.90 (£129.19)

deepESN-IA var. p | 0 -4 0-4 95.20 (£24.02)

grouped ESN var. p | 0-6 0-6 95.40 (£22.57)
Wikipedia

deepESN p=05 | 0-6 0-6 54.90 (£17.43)

deepESN var. p 0-2 0-2 168.00 (£69.95)

deepESN-IA var. p | 0 -2 0-2 92.80 (£18.75)

groupedESN var. p | 0 - 4 0-6 100.70 (£39.86)

Table B.6: Values of Kendall’s tau (KT'), Spearman’s footrule (SF) and index of separation
(IS) achieved on the Artificial and on the Wikipedia datasets by deepESN, deepESN-TA
and groupedESN with a = 0.55 for every layer (or sub-reservoir) and p varying from 0.1 to
0.9 among the layers (or sub-reservoirs). For the sake of reference comparison the results
achieved for the case of deepESN with constant p = 0.5 for all the layers is reported as
well. For KT and SF smaller values are better, for IS higher values are better.
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