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Abstract: trans-[Pt(µ-Cl)Cl(PPh3)]2 reacted with arylaldoximes in 1,2-dichloroethane to afford 

[PtCl2(PPh3){N(OH)=CHAr}] (Ar = 3,4-dimethoxyphenyl, 1-naphthyl, 9-anthryl) where aldoxime 

ligands are N-coordinated to platinum. The obtained complexes are soluble in chlorinated solvents, 

where they afford equilibrium mixtures of cis,trans and/or (E),(Z) isomers. Equilibria in solution 

were studied by 31P-NMR spectroscopy and solid state structural data were obtained by single 

crystal X ray diffraction studies. The reactivity of [PtCl2(PPh3){N(OH)=CHAr}] complexes with 

basic aqueous solutions was studied, under liquid-liquid phase transfer catalysis conditions. The 

outcome of the reaction depends on the stereochemistry of the precursors: cis,(Z)-isomers promptly 

undergo cyclization to the corresponding dinuclear derivatives [Pt{µ-(κ2-N,O)}-

{N(O)=CHAr}Cl(PPh3)]2, where two aldoximate ligands symmetrically bridge two metal centers.  

Keywords: platinum(II); triphenylphosphine; cis-trans isomerism; cyclization; phase transfer 

catalysis. 

1. Introduction 

Since the early discover of anticancer properties of cis-[PtCl2(NH3)2][1], many studies have been 

carried out with the aim of elucidating the mechanism of action of platinum based drugs [2] and it is 

generally accepted that the main target of these bioactive molecules is DNA. The platination of 

DNA generally involves the coordination of purine bases to activated, hydrolyzed forms of the 

metal complexes and can be greatly helped by additional interactions such as hydrogen bonding. As 

a matter of fact, good results have been described for some platinum complexes characterized by 

the presence of OH groups on coordinated ligands [3]. In the context of our studies on platinum(II) 

derivatives [4], we have observed interesting antiproliferative properties for triphenylphosphino 



  

complexes [4a-f]. In particular, trans-[PtCl2(PPh3)(DEA)] (DEA = diethanolamine) [4d,f], where 

the ligated amine bears two hydroxyl groups, was found more active than cisplatin towards HeLa 

cells. Moreover, it is worth to note that hydroxyl functional groups are reactive towards a series of 

chemical transformations, so that platinum compounds bearing OH groups could be good 

precursors to more complex derivatives. We report here the synthesis, characterization and 

reactivity under basic conditions of three complexes [PtCl2(PPh3){N(OH)=CHAr}] (Ar = 3,4-

dimethoxyphenyl, 1-naphthyl, 9-anthryl), bearing, besides PPh3, a coordinated arylaldoxime. 

 

2. Experimental 

2.1. Materials and general methods 

 All manipulations were performed under a dinitrogen atmosphere, if not otherwise stated. 

Solvents and liquid reagents were dried according to reported procedures [5]. 1H-, 13C-, 31P- and 
195Pt-NMR spectra were recorded with a Bruker ‘‘Avance DRX400’’ spectrometer, in CDCl3 

solution if not otherwise stated. Chemical shifts were measured in ppm (δ) from TMS by residual 

solvent peaks for 1H and 13C, from aqueous (D2O) H3PO4 (85%) for 31P and from aqueous (D2O) 

hexachloroplatinic acid for 195Pt. A sealed capillary containing C6D6 was introduced in the NMR 

tube to lock the spectrometer to the deuterium signal when non-deuterated solvents were used. 

FTIR spectra in solid phase were recorded with a Perkin–Elmer ‘‘Spectrum One’’ spectrometer, 

equipped with an ATR accessory. Elemental analyses (C, H, N) were performed at Dipartimento di 

Scienze e Tecnologie Chimiche, Università di Udine. Trans-[Pt(µ-Cl)Cl(PPh3)]2 [4h] was prepared 

according to a reported procedure. Aldoxime ligands ArCH=N(OH) [Ar = 3,4-dimethoxyphenyl 

(1), 1-Naphtyl (2), 9-Anthryl (3)] were prepared by a slight modification of a described 

procedure.[6] In the text the following abbreviations were used: 1,2-dichloroethane (1,2-DCE), 

tetrabutylammonium chloride (TBACl). 

2.2.Synthesis of platinum complexes [PtCl2(PPh3){N(OH)=CHAr}] 

2.2.1. [PtCl2(PPh3){N(OH)=CH(C6H3(OMe)2)}] ([PtCl2(PPh3)(1)], 4) 

A sample (0.300 g) of trans-[Pt(µ-Cl)Cl(PPh3)]2 [4h] (0.56 mmol of Pt) was suspended in 1,2-DCE 

(15.0 mL) and treated with a solution of aldoxime 1 (0.101 g) in the same solvent (1/Pt molar ratio= 

1.0). The suspension was stirred at room temperature (1h) and then treated with another portion 

(0.101 g) of ligand 1 and refluxed (84 °C). The initially orange suspension turned into a yellow 

solution and a colorless solid formed. The solid was filtered and dried under vacuum (0.100 g). A 

sample of this solid was crystallized from a CHCl3 solution, by slow diffusion of pentane vapors 

and identified (single crystal X-ray diffraction) as (Z)-cis-[PtCl2(PPh3)(1)] {(Z)-cis-4}. The 31P-



  

NMR spectrum of a freshly prepared CDCl3 solution of the crystals showed a signal at 5.60 ppm 

(1JP-Pt = 3860 Hz). The 31P-NMR spectrum of another sample of the crystals dissolved in 1,2-DCE 

showed after 2h four signals: 5.29 (69%), 2.46 (27%), 1.33 (4%), 7.37 (traces). The isomer 

responsible of the 31P-NMR signal at 2.46 ppm was crystallized and identified (single crystal X-ray 

diffraction) as (E)-trans-[ PtCl2(PPh3)(1)] {(E)-trans-4}. A second crop of product was precipitated 

as a mixture of isomers (total isolated yield 51%). We report the spectroscopic characterization for 

the species (Z)-cis-4 and (E)-trans-4. 

 (Z)-cis-4. C27H28Cl2NO4PPt Anal. Calc.: C 44.6, H 3.9, N 1.9 %; Exp.: C 44.8, H 4.4, N 2.0. FTIR 

(ATR, cm-1): 3159 (υ
~ OH), 3048 (υ~ CH), 2992 (υ~ CH), 1623 (υ~ CN). 1H-NMR: 8.66 (d, 1H, 4JH-P=4 

Hz, CHN); 8.32 (bs, 1H, OH); 7.78 (s, 1H, Harom); 6.86 (d, 1H, J=8.9 Hz, Harom); 7.53-7.45 (m, 10H, Harom + 

Harom PPh3); 7.36-7.32 (m, 6H, Harom PPh3) 4.05 (s, 3H, OCH3); 3.98 (s, 3H, OCH'3). 
31P-NMR: 5.60 (1JP-

Pt=3860 Hz).  

(E)-trans-4. 1H-NMR: 10.9 (s, 1H, OH); 8.45 (d, 4JH-P=3 Hz, CHN); 7.82-7.78 (m, 6H, Harom PPh3); 7.73 (s, 

1H, Harom); 7.59 (d, 1H, J= 8.6 Hz, Harom); 7.58-7.46 (m, 9H, H arom PPh3); 6.94 (d, J=8.6 Hz, Harom); 3.97 (s, 

3H, OCH3); 3.92 (s, 3H, OCH'3). 
31P-NMR: 2.54 (1JP-Pt=3658 Hz).  

2.2.2. [PtCl2(PPh3){N(OH)=CH(1-Naphtyl)}] ([PtCl2(PPh3)(2)], 5) 

A sample (0.194 g) of trans-[Pt(µ-Cl)Cl(PPh3)]2 [4h] (0.36 mmol of Pt) was suspended in 1,2-DCE 

(15.0 mL) and treated with a solution of aldoxime 2 (0.064 g) in the same solvent (2/Pt molar ratio= 

1.0). The suspension was refluxed (84 °C) 24h. The initially orange suspension turned into a yellow 

solution and a colorless solid formed. The solid was filtered and dried under vacuum (0.061 g) and 

identified as (Z)-cis-5. The liquid phase was refluxed (12h) and treated with heptane. A second crop 

of solid was obtained and identified as (E)-trans-5. The total, isolated yield was 60%. We report the 

spectroscopic characterization for the species (E)-trans- and (Z)-cis-5. 

(Z)-cis-5. C29H24Cl2NOPPt. Anal. Calc.: C 49.8, H 3.5, N 2.0 %; Exp.: C 49.4, H 4.0, N 2.0%. 

FTIR (ATR, cm-1): 3117 (υ~ OH), 3049 (υ~ CH), 3006 (υ
~ CH), 1618 (υ~ CN). 1H-NMR: 9.85 (d, 1H, 

J=7 Hz, Harom); 8.81 (s, 1H, OH); 8.78 (d, 1H, CHN); 8.08 (d, 1H, J=8.4 Hz, Harom); 7.88 (d, 1H, J=8.3 Hz, 

Harom); 7.78 (dd, 1H, J=J'= 7.7 Hz, Harom); 7.52 (dd, 1H, J=J'= 7.3 Hz, Harom); 7.38-7.30 (m, 10H, Harom + 

Harom PPh3); 7.21-7.18 (m, 6H, Harom PPh3), 6.89 (d, 1H, J=8.2Hz, Harom). 31P-NMR: 5.60 (1JP-Pt=3860 Hz).  

(E)-trans-5. 1H-NMR: 11.05 (d, 1H, J=3.4 Hz, OH); 9.46 (d, 1H, J= 2.5 Hz, CHN); 8.40 (d, 1H, J=7.3 Hz, 

Harom); 8.14 (d, 1H, J=8.1 Hz, Harom); 8.00 (d, 1H, J=8.1 Hz, Harom); 7.90 (d, 1H, J=7.3 Hz, Harom); 7.86-7.82 

(m, 6Hz, Harom PPh3); 7.60-7.45 (m, 12H, Harom+ Harom PPh3). 
13C-NMR: 148.7, 134.8 (d, JC-P= 10.5 Hz), 



  

133.5, 132.1, 131.7, 131.3, 131.2, 129.7, 128.8, 128.5 (d, JC-P= 64 Hz), 128.1 (d, JC-P= 11.7 Hz), 127.5, 126.4, 

125.0, 123.6. 31P-NMR: 2.38 (1JP-Pt=3678 Hz). 195Pt-NMR: -3610 (1JP-Pt=3678 Hz). 

 2.2.3. [PtCl2(PPh3){N(OH)=CH(9-Anthryl)}] ([PtCl2(PPh3)(3)], 6) 

A sample (0.301 g) of trans-[Pt(µ-Cl)Cl(PPh3)]2 [4h] (0.59 mmol of Pt) was suspended in 1,2-DCE 

(15.0 mL) and treated with a solution of aldoxime 3 (0.129 g) in the same solvent ([3]/[Pt] molar 

ratio = 1.0). The suspension, stirred at room temperature for 4h, at first turned into a yellow solution 

and successively a yellow solid formed. The solid was filtered and dried under vacuum (0.167 g). A 

sample of the solid, dissolved in CDCl3, was studied spectroscopically (31P-NMR, ppm): 1.58 (1JP-Pt 

= 3781 Hz). After 48 h the spectrum showed the signal at 1.58 (20%, 1JP-Pt = 3781 Hz) and a new 

one at 2.29 (80%, 1JP-Pt = 3705 Hz). From this mixture the species responsible of the signal at 2.29 

ppm was crystallized and identified (single crystal X-ray diffraction) as (E)-trans-6. A second crop 

of solid was collected (0.065 g) for a total yield of 54%. We report the spectroscopic 

characterization for the species (Z)-trans-6 and (E)-trans-6. 

(Z)-trans-6. C33H26Cl2NOPPt. Anal. Calc.: C 52.9, H 3.5, N 1.9 %; Exp.: C 52.7, H 4.1, N 1.9%. 

FTIR (ATR, cm-1): 3188 (υ
~ OH), 3058 (υ

~ CH), 1627 (υ~ CN). 1H-NMR: 9.61 (d, 1H, 4JH-P=9.0 Hz, 3JH-

Pt=50 Hz, CHN); 9.45 (s, 1H, OH); 8.66 (s, 1H, Harom); 8.44 (d, 2H, J=8.7 Hz, Harom); 8.11 (d, 2H, J=8.4 Hz, 

Harom); 7.66 (m, 2H, Harom); 7.56 (m, 2H, Harom); 7.39-7.23 (m, 15H, Harom PPh3). 
13C-NMR: 155.4, 134.5 (d, 

JC-P= 10.4 Hz), 131.2, 130.8, 130.5, 130.4, 128.7, 127.7 (d, JC-P= 11.5 Hz), 127.6 (d, JC-P= 66.7 Hz), 127.0, 

125.7, 125.6, 123.3. 31P-NMR: 1.58 (1JP-Pt=3781 Hz). 195Pt-NMR: -3559 (1JP-Pt=3781 Hz). 

(E)-trans-6. 1H-NMR: 10.87 (s, 1H, OH); 9.69 (d, 1H, 4JH-P=2.0 Hz, 3JH-Pt=20 Hz, CHN); 8.59 (s, 1H, Harom); 

8.06 (d, 2H, J=8.4 Hz, Harom); 8.03 (d, 2H, J=8.7 Hz, Harom); 7.90-7.85 (m, 6H, Harom PPh3); 7.61-7.56 (m, 4H, 

Harom); 7.56-7.49 (m, 9H, Harom PPh3). 
13C-NMR:152.2, 134.9 (d, JC-P= 10.3 Hz), 131.3, 131.0, 130.0, 128.9, 

128.4, 128.1 (d, JC-P= 11.4 Hz), 128.0 (d, JC-P= 69.0 Hz), 127.0, 125.7, 125.3 (2C); 31P-NMR: 2.29 (1JP-

Pt=3691 Hz). 195Pt-NMR: -3614 (1JP-Pt=3691 Hz). 

2.3.General procedure for the base promoted cyclodimerization reaction 

A 1,2-DCE solution of [PtCl2(PPh3){N(OH)=CHAr}] (0.2 mmol in 15 mL) was mixed with an 

aqueous solution of NaOH (0.4 mmol in 15mL). A catalytic amount (about 10 mg) of TBACl was 

added and the mixture was refluxed under vigorous stirring (2h). The disappearance of the 

precursor was checked by 31P-NMR spectroscopy, together with the appearance of a single new 

signal at -0.858 (1JP-Pt= 3981 Hz) and the two phases were separated. The aqueous phase was 

extracted with portions of CHCl3 (3 x 5 mL) and all the collected organic phases were dried over 

anhydrous Na2SO4. The solution was concentrated under vacuum and then treated with heptane 



  

under stirring. A pale yellow solid formed which was filtered and dried under vacuum. For each 

compound, the precursor used, the isolated product yield and the spectroscopic characterization is 

reported: 

2.3.1. (SP4,4; SP4,4)-(Z, Z)-[PtCl{µ-(κ2-N,O)-(1‒H)}(PPh3)]2 [(SP4,4; SP4,4)-(Z, Z)-7]. (Z)-cis-4 

(50% yield). FTIR (ATR, cm-1): 3059 (υ~ CH), 1598 (υ~ CN). 1H-NMR: 8.11 (d, 1H, CHN); 7.73 

(m, 7H, Harom + Harom PPh3); 7.39-7.25 (m, 9H, Harom PPh3); 7.01 (s, 1H, Harom); 6.82 (d, 1H, Harom); 

3.92 (s, 3H, OCH3); 3.83 (s, 3H, OCH'3). 
13C-NMR: 150.7; 148.3; 134.8; 134.6 (d, JC-P=10 Hz); 

130.6; 128.4 (d, JC-P=64 Hz); 127.8 (d, JC-P=11 Hz); 124.3; 121.6; 111.3; 110.4; 56.1; 55.0. 31P-

NMR: -0.801 (1JP-Pt= 3974 Hz). 195Pt-NMR: -3251 (1JP-Pt= 3974 Hz). 

2.3.2. (SP4,4; SP4,4)-(Z, Z)-[PtCl{ µ-(κ2-N,O)-(2‒H)}(PPh3)]2 [(SP4,4; SP4,4)-(Z, Z)-8]. (Z)-cis-5 

(48 % yield). FTIR (ATR, cm-1): 3057 (υ~ CH), 1571 (υ~ CN). 1H-NMR: 9.42 (d, 1H, Harom); 8.72 (s, 

1H, CHN); 7.92 (d, 1H, Harom); 7.76 (d, 1H, Harom); 7.65 (m, 1H, Harom); 7.55-7.44 (m, 4H, Harom + Harom 

PPh3); 7.41-7.32 (m, 7H, Harom + Harom PPh3);7.23-7.10 (m, 6H, Harom PPh3); 6.68 (d, 1H, Harom). 13C-

NMR: 150.1; 147.6; 140.0; 134.4 (d, JC-P=10 Hz); 133.0; 130.5; 128.5 (d, JC-P=68 Hz); 128.4; 

128.2; 127.8; 126.5; 126.0 (2C); 125.4; 123.5. 31P-NMR: -1.58 (1JP-Pt= 3986 Hz). 195Pt-NMR: -3229 

(1JP-Pt= 3986 Hz). 

2.4. X-ray structure determination 

Crystals were selected at room temperature (296 K), glued to glass fibers and analyzed with a 

Bruker Smart Breeze CCD diffractometer. Table 1 summarizes the lattice parameters and the 

respective space groups. Intensity data were collected in the ranges of 2θ angles reported in the 

Table. After correction for Lorentz and polarization effects and for absorption, the structure 

solutions were obtained using the direct methods contained in SHELXS program.[7] The 

asymmetric units of all the three crystals correspond to the respective molecules but in the case of 

(Z)-cis-4 and (E)-trans-6 ones the structures are completed by a solvent molecule: chloroform and 

n-pentane, respectively. The n-pentane solvent molecules are disordered and had to be introduced in 

the model by fitting a molecule with an idealized geometry over the residual maxima of the 

difference Fourier map and refined as a rigid group. All the hydrogen atoms were introduced in 

calculated positions. The final reliability factors and some details of the refinement procedure are 

listed in Table S3. 

The structure refinement was done using SHELXL program,[8] other control calculations were 

performed with the programs contained in the suite WINGX.[9] 

 



  

3. Results and discussion 

3.1 Synthesis of arylaldoxime Pt complexes. 

Arylaldoxime ligands were prepared in good yields by a slight modification of a described 

procedure [6] and were used to synthesize the corresponding platinum(II) complexes according to 

the regio- and stereoselective ring-opening reaction of trans-[Pt(µ-Cl)Cl(PPh3)]2[4h] depicted in 

Scheme 1.  

 

+

L = Arylaldoxime  
Scheme 1. Ring-opening reaction leading to complexes [PtCl2(PPh3){N(OH)=CHAr}] 

 

Although oxime ligands show both N- or O-coordination to metals [10], in the case of platinum(II) 

N-coordination is much more frequently observed [3b,10,11], with the exception of cases where 

deprotonated oximes act as anionic ligands [3a]. In our case, taking into account the strong trans 

effect exerted by PPh3, the reaction of arylaldoximes with trans-[Pt(µ-Cl)Cl(PPh3)]2 (Scheme 1) 

was expected to afford trans platinum complexes with N-coordinated oxime ligands. Nevertheless, 

since square planar Pt(II) complexes often show cis/trans isomerization equilibria in solution and 

arylaldoxime ligands can show (E)/(Z) isomerism as well, up to four complexes could theoretically 

be observed (Scheme 2). With the aim of following the reaction and characterize spectroscopically 

the species formed, a sample (30.0 mg) of trans-[Pt(µ-Cl)Cl(PPh3)]2 was reacted with a slight 

excess of arylaldoxime 1 in CDCl3. 
31P-NMR analysis clearly showed the formation, after only few 

minutes, of a kinetic product (1.25 ppm, 1JP-Pt=3693 Hz), which was reasonably ascribed to (Z)-

trans-[PtCl2(PPh3){N(OH)=CH(C6H3(OMe)2)}] (Scheme 2, (Z)-trans-4). Indeed, the chemical shift 

and the 1JP-Pt coupling constant measured in (Z)-trans-4 were very similar to those measured in 

Pt(II) complexes were a PPh3 group is trans to ligands coordinated via an sp2 nitrogen atom [4a]. 

On the other hand, (Z) geometry in the complex was assigned taking into account the most likely 

(E) geometry for the free ligand in solution. The complex was characterized in solution also by 1H-, 
13C- and 195Pt-NMR (see SI-2).  



  

(Z)-trans (Z)-cis

(E)-trans (E)-cis  

Scheme 2. Possible equilibria involving [PtCl2(PPh3){N(OH)=CHAr}] complexes. 

 

Besides the signal corresponding to the kinetic product (Z)-trans-4, two other minor signals with 

satellites (2.54 ppm,1JP-Pt=3668 Hz, 6% and 5.60 ppm, 1JP-Pt=3890 Hz, traces) were soon observed 

in the 31P-NMR spectrum, clearly indicating the presence of equilibria in solution. The relative 

intensities of the signals changed with time (Table S1) and, after 24h, some colorless crystals 

formed, which were identified as (Z)-cis-4 by single crystal X-ray diffraction. 31P-NMR analysis 

carried out on a freshly prepared solution of (Z)-cis-4 in CDCl3 allowed to assign to this complex 

the resonance at 5.60 ppm (1JP-Pt=3890 Hz). When a sample of (Z)-cis-4 was dissolved in refluxing 

1,2-DCE, a yellow solution was obtained. 31P-NMR spectrum registered on the same solution at 

room temperature showed four signals (5.29 {69%, 1JP-Pt=3857 Hz}, 2.46 {27%, 1JP-Pt=3664 Hz}, 

1.33 {4%, 1JP-Pt=3700 Hz}, 7.33 {traces}). While signals at 5.29 and 1.33 belonged to the 

aforementioned (Z)-cis-4 and (Z)-trans-4, the product characterized by the signal at 2.46 ppm was 

crystallized and identified as (E)-trans-4 by single crystal X-ray diffraction, so that it was possible 

to assign the resonance at 7.33 ppm to (E)-cis-4. When the synthesis of complex 4 was carried out 

in 1,2-DCE on a preparative scale, (Z)-cis-4 precipitated out of the reaction mixture and was 

recovered pure, while a second crop of solid was obtained as a mixture of isomers and the overall 

yield was about 50%. Analogous preparations were carried out using arylaldoximes 2 and 3 and the 

complexes were identified on the basis of their 31P-NMR chemical shifts and coupling constants. In 

all cases studied the formation of a kinetic product was observed, followed by its isomerization. 



  

With naphthalene derivative 2 it was possible to obtain the least soluble (Z)-cis-5 isomer in good 

yield, while with the anthracene derivative 3, isomerization to cis isomers was not observed, 

probably due to steric hindrance: in this case, the kinetic product (Z)-trans-6 precipitated out (54%) 

from the reaction mixture and was characterized spectroscopically. A sample of (Z)-trans-6 slowly 

isomerized in CHCl3 solution to (E)-trans-6, which was crystallized by addition of pentane. Its 

structure was determined by single crystal X-ray diffraction. A schematic representation of the 

identified isomers for complexes 4-6, with the corresponding 31P-NMR observed signals, is 

depicted in Chart 1. 
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Chart 1. 31P-NMR data in 1,2-DCE solution for complexes 4-6. 

 

With a similar procedure trans-[Pt(µ-Cl)Cl(PPh3)]2 was reacted with 1,3-diphenylpropan-2-one 

oxime (S1). In this case only cis/trans isomerism was possible, since the oxime was obtained from a 

symmetric ketone. The kinetic trans isomer (S2) was characterized in solution (Table S1), while the 

less soluble cis-S2 was recovered in good yield (SI-4). 

All the prepared oxime Pt(II) complexes were not soluble in water nor ethanol. They were soluble, 

but not stable in DMSO. As a matter of fact, 31P-NMR spectra registered in DMSO solutions of 

compounds 4-6 showed their conversion into cis-[PtCl2(PPh3)(DMSO)] (18.15 ppm, 1JP-Pt = 3772 

Hz) [4d]. Cis isomers reacted slower than trans isomers, anyway in all cases the substitution 

reaction was complete within 48h. This behavior is due to the strong trans effect exerted by PPh3.  



  

 

3.2 Reactivity of arylaldoxime Pt complexes with NaOH under phase transfer catalysis conditions. 

It is known [10,12] that the acidity of oxime hydroxyl group is enhanced upon coordination to metal 

centers. This reactivity has been used [3a] to prepare dinuclear derivatives upon treatment of some 

bis(oxime)dichloroplatinum complexes with silver acetate. It seemed then interesting to investigate 

the behavior of arylaldoxime complexes towards bases. In a preliminary experiment, a solution of 

(E)-trans-6 in 1,2-DCE was treated with an aqueous solution of NaOH, in the presence of a 

catalytic amount of tetrabutylammonium chloride. The mixture was refluxed and the reaction was 

monitored by 31P-NMR spectroscopy. The analysis of the spectrum showed the presence of several 

signals, which were not assigned. An analogous behavior was observed when (E)-trans-5 was used. 

The outcome of the reaction did not change when the process was carried out at room temperature. 

On the contrary, good results were obtained when (Z)-cis-4 was reacted under the same 

experimental conditions. After two hours, the 31P-NMR signal due to (Z)-cis-4 had disappeared and 

a single, new signal with satellites was observed (-0.807 ppm, 1JP-Pt=3974 Hz). A yellow solid was 

recovered upon the usual work-up and addition of pentane. The 1H-NMR analysis in CDCl3 showed 

the absence of the OH signal of the precursor, while other signals were significantly shifted. The 

complete conversion of the precursor was evident also in the ATR-FTIR spectrum of the recovered 

solid, where the strong absorption at 3159 cm-1, due to OH stretching, had disappeared. The slow 

diffusion of pentane vapours into a CHCl3 solution afforded crystals, which allowed the structural 

determination (Figure S1) of the dinuclear derivative (SP4,4; SP4,4)-(Z, Z)-[PtCl{µ-(1‒H)}(PPh3)]2 

(Figure 1), where two monoanionic aldoximate ligands coordinate two platinum centers in a head-

to-tail mode. To the best of our knowledge, only another example of this kind is described.[3a] In a 

similar way, a single product was obtained starting from (Z)-cis-5. Despite several attempts, it was 

not possible to crystallize the complex, but its ATR-FTIR and NMR spectroscopic features, very 

similar to those observed in the case of [(SP4,4; SP4,4)-(Z, Z)-7], allowed to identify it as (SP4,4; 

SP4,4)-(Z, Z)-[PtCl{µ-(2‒H)}(PPh3)]2 [(SP4,4; SP4,4)-(Z, Z)-8] (Figure 1).  

These data show that the selectivity observed in the formation of dinuclear complexes 7 and 8 

depends on the stereochemistry of the precursor, the cis isomers allowing the formation of the 

dinuclear complex more quickly than possible other products. This data is in agreement with the 

behavior previously observed in DMSO. 
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Figure 1. Structure of dinuclear complexes 7 and 8. 

3.3 Structural determinations 

 

 

Figure 2. Structures of (Z)-cis-4 (A), (E)-trans-4 (B) and (E)-trans-6 (C). 

The structures of complexes (Z)-cis-4, (E)-trans-4 and (E)-trans-6 are reported in Figure 2 (A, B 

and C respectively), while the most significant bond lengths and angles for the three derivatives are 

listed in Table S2. In all the complexes, the coordination around platinum is square planar, with 

small deviations from ideality. Oxime ligands are N-coordinated to the metal, as in most of the 

described oxime platinum(II) complexes. In (Z)-cis-4 the Pt‒N bond length (2.014(3) Å) is in good 

agreement with data described for [PtX2(N-oxime)(L)] complexes (X = halide, L = N-coordinated 



  

oxime, DMSO) [13], where Pt‒N bond lengths range from 1.90(2) Å to 2.051(9) Å. The molecules 

of (Z)-cis-4 are held in couples by OH⋅⋅⋅Cl interactions with O(1)⋅⋅⋅Cl(2') distance of 3.08 Å as 

shown in Figure S2. 

 
In (E)-trans-4 and (E)-trans-6 the Pt‒N bond lengths are significantly longer (2.134(3) and 

2.1393(16) respectively), due to the trans influence exerted by triphenylphosphine and already 

observed for some dipyridyl- and piperazino- Pt(II) complexes. [4a] Indeed, these bond lengths can 

be compared with those reported for trans-hydrido(3-methylisoxazol-4,5-dion-4-oximato-

N)bis(triphenylphosphino)platinum(II) [14] (2.15(3) Å) and for some platinum acetyl(N-oxime) 

derivatives [15] (bond lengths ranging from 2.104(3) to 2.137(3) Å), where the N-coordinated 

oxime ligand is trans to residues (hydride and acetyl) characterized as well by a strong trans 

influence. Couples of molecules of (E)-trans-6 interacts by π-stacking of phenanthryl moieties at 

distance of about 3.5 Å, as shown in Figure S3.  

 

4. Conclusions 

New dichloroplatinum(II) complexes bearing PPh3 and arylaldoxime ligands were prepared starting 

from trans-[PtCl(µ-Cl)(PPh3)]2 and arylaldoximes. In each case, coordination to platinum involved 

nitrogen and the kinetic (Z)-trans- product formed at first. Anyway, equilibria in solution involving 

cis/trans and/or (E)/(Z) stereoisomers were observed. The study of these equilibria by NMR 

spectroscopy, together with X-ray diffraction on solid samples, allowed to describe completely the 

investigated systems. While (E)/(Z) isomerism involving the oxime C=N double bond was observed 

in all cases studied, cis/trans equilibria were affected by steric hindrance; as a matter of fact, with 

anthryl-9-carbaldoxime 3, only trans isomers were obtained. It is worth to note that cis isomers 

were generally less soluble than the corresponding trans derivatives and could be obtained as pure 

samples. 

[PtCl2(PPh3){N(OH)=CH(Ar)}] complexes reacted promptly with aqueous NaOH, under PTC 

conditions and the outcome of the reaction was affected by stereochemistry. While trans isomers 

afforded mixtures of unidentified products, (Z)-cis-4 and (Z)-cis-5 were converted cleanly into rare 

dinuclear aldoximate complexes (SP4,4; SP4,4)-(Z,Z)-[PtCl{µ-(1‒H)}(PPh3)]2 (7) and (SP4,4; 

SP4,4)-(Z, Z)-[PtCl{µ-(2‒H)}(PPh3)]2 (8). Since the process is stereospecific, the steric hindrance 

of cis mononuclear precursors is maintained in the dinuclear products 7 and 8. Thus, the loss of 

selectivity observed with trans isomers has to be sought in their higher reactivity, due to the strong 

trans effect exerted by PPh3. The different reactivity of the two isomers is in agreement with the 



  

behavior previously observed in DMSO. Although for both isomers thecoordinated oxime is 

substituted by DMSO, trans-4-6 reacted faster than the corresponding cis isomers. The prompt and 

clean reactivity observed for the aforementioned (Z)-cis- complexes 4 and 5 under basic PTC 

conditions is promising, in view of their further derivatization. 

Acknowledgements. The authors thank the Università di Pisa for financial support (Fondi di Ateneo 

2015). S. Samaritani is grateful to the financial support provided by Università di Pisa—Progetti di 

Ricerca di Ateneo 2015—‘Sintesi e studio delle proprietà di composti di metalli di transizione come 

agenti Antitumorali’ (PRA_2015_0055). Thanks are due to Dr. Martina Dell’ Acqua for preliminary 

experiments. 

 

Appendix A. Supplementary data 

Experimental details concerning the preparation of 5 as well as some spectroscopic data are 

reported as Supplementary Information. 

CCDC 1535199-1535202 contain the supplementary crystallographic data for the derivatives (Z)-
cis-4 , (E)-trans-4 , (E)-trans-6 and [(SP4,4; SP4,4)-(Z, Z)-7]. These data can be obtained free of 
charge from The Cambridge Crystallographic Data Centre via 
www.ccdc.cam.ac.uk/data_request/cif 
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Highlights 

• trans-[Pt(µ-Cl)Cl(PPh3)]2 and arylaldoximes afforded [PtCl2(PPh3){N(OH)=CHAr}]. 

• cis,trans and/or (E),(Z)-isomers equilibria were studied in solution. 

• [PtCl2(PPh3){N(OH)=CHAr}] reacted with NaOH(aq) under PTC conditions. 

• dinuclear [Pt{µ-(κ2-N,O)}-{N(O)=CHAr}Cl(PPh3)]2 were obtained from cis-(Z)-isomers. 

 


