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Abstract—Every year 2.3 million people die worldwide due to
occupational illnesses and accidents at work. By analyzing the
workers’ behavior when in the presence of risks managers could
assign tasks to those workers who appear to be the most sensitive
to risk being assigned and are thus more likely to exert more
caution in the presence of that risk. This paper presents a novel
multi-objective formulation of the personnel assignment problem,
maximizing workers’ sensitivity to risk, while minimizing cost
and dislike for the task assigned. A worker’s sensitivity to risk for
a task is quantified by a new measure, carefulness, which stems
from the worker’s behavior and various human factors that affect
the interaction with the risk. The problem is solved using a mixed
evolutionary and multi-criteria decision making methodology. An
approximation of the Pareto front is first generated through the
non-dominated sorting genetic algorithm II. A hybrid decisional
approach then exploits the technique for order of preference by
similarity to ideal solution in order to select the Pareto-optimal
solution that represents the nearest compromise to the decision-
maker’s preferences. These preferences are derived through a
fuzzy version of the analytic hierarchy process. The proposed
framework was tested in four real-world scenarios related to
manufacturing companies. The results show a significant increase
in overall carefulness and a strong decrease in the dislike for the
task assigned, with a modest increase in cost. The framework
thus improves the work climate and reduces the risk occurrence
and/or the impact on the workers’ health.

Index Terms—Decision making, industrial safety, job assign-
ment, multi-objective optimization, risk analysis.

NOMENCLATURE

T Set of tasks
W Set of workers
R Set of risks
P Set of preventive actions
L Set of levels of prevention
F Set of human factors
i, j, k, q Index for tasks, workers, risks, preventive

actions
ti i-th task
wj j-th worker
rk k-th risk
hk Hazardousness of risk rk
ηi Hazardousness of task ti
pq q-th preventive action
lq Level of prevention of preventive action pq
ρkj Level of caution of worker wj for risk rk
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τij Level of caution of worker wj for task ti
E Exposure matrix
B Behaviour matrix
Sj Global strategy matrix
eik Generic element of the exposure matrix
bkq Generic element of the behavior matrix
sjkq Generic element of the global strategy matrix

of worker wj
ϕj Global task-independent human factors score

of worker wj
χij Carefulness of worker wj for task ti
aij Ability of worker wj in performing task ti
zij Expertise human factor score of worker wj

for task ti
cij Cost of assigning worker wj to task ti
dij Dislike of worker wj for task ti
xij Decision variable equal to 1 if worker wj is

assigned to task ti, 0 otherwise
x Personnel assignment

I. INTRODUCTION

R ISK is one of the major concerns when considering a
personnel assignment problem, aimed at assigning the

right people to the right tasks. This particularly holds in haz-
ardous job assignments, where industrial safety is paramount.
Unfortunately, this is extremely difficult because of the un-
questionable subjectivity of the way people perceive, assess
and control risks and hazardous situations [1].

There are two principal aspects influencing people’s behav-
ior in hazardous situations: risk perception and risk propen-
sity [2]. Risk perception refers to a person’s subjective way
of estimating the characteristics and gravity of hazardous
situations [3]–[7], while risk propensity refers to the person’s
tendency to take or avoid risks [8]–[10].

Risk perception is influenced by past experience and knowl-
edge, past health status, psychological, social, political, and
cultural factors, mood and emotions, personal knowledge
about the risky conditions, trust in risk management insti-
tutions, age, and locus of control [11], [12], optimism bias
[12], [13], etc. Likewise, risk propensity is influenced by per-
sonality and experience, cultural background, mood, feelings,
education, job position, age, etc [14].

Although the factors affecting risk perception and risk
propensity have been widely studied, people’s behavior in
dealing with risk has not been fully explained. Also, little is
known about the interrelations between risk perception, risk
propensity, and decisions involving risk [2].

Companies typically adopt specific risk programs [15]
aimed at teaching workers to deal safely with risk. Risk aware-
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ness training is periodically repeated in order to continuously
improve the training outcomes in terms of injury reduction,
with consequent manifold capital investments by the employer.
The training outcome can also be improved through a training
method specifically tailored to the worker. In the literature,
an association rule learning-based approach has thus been
proposed in [14] to explore workers’ risk sensitivity profiles.
A risk sensitivity profile is an objective way to describe the
accuracy of a worker in preventing one or more risks. In [16],
an artificial neural network-based technique was proposed to
classify workers into risk sensitivity profiles. Learning from
constraints and evolutionary computation was also used in
[17] to improve the classification accuracy. However, these
solutions require significant economic resources.

Approximately 99% of companies in the EU are small
and medium enterprises (SMEs) with a small number of
employees. Altogether, SMEs employ 65 million people in the
EU [18]. Outstanding manufacturing excellence and a small
size are typical of Italian industry, which consists above all of
family SMEs. With limited dimensions and financial resources,
it is extremely important to keep costs as low as possible
for these companies. Risk awareness training may involve
considerable financial investments, which many SMEs are not
prepared to make.

The best way to tackle these problems may be to consider
workers’ sensitivity to risk when deciding which worker is
assigned to a task. This could make hazards less likely and
less damaging.

Although workers’ safety plays a key role in job assignment
problems, companies typically consider objectives such as
cost, work dislike (i.e., the worker’s aversion for the task
assigned), as well as, perhaps, other objectives. Personnel
assignment should thus be set up as a multi-objective challenge
that also takes workers’ sensitivity to risk into account.

This paper presents a novel multi-objective formulation
of the personnel assignment problem by exploiting workers’
sensitivity to risk. The aim is to assign each task to the worker
in such a way that he/she then has the safest way of interacting
with risks.

A new measure, carefulness, is introduced to quantify a
worker’s sensitivity to risk towards a task. Its value is derived
from the accuracy of the preventive actions a worker performs
when exposed to the risks involved in the task, and from
human factors related to the aspects influencing risk perception
and risk propensity. The higher the worker’s carefulness with
respect to a task, the safer his/her behavior toward that task.
Personnel assignment is therefore modeled as a multi-objective
optimization (MOO) problem with three objectives: overall
carefulness, overall cost and overall workers’ dislike for the
task assigned.

Two of the main disciplines dealing with MOO problems
are multi-criteria decision-making (MCDM) and evolutionary
multi-objective optimization (EMO). In this paper, a mixed
EMO/MCDM resolution methodology is used to exploit the
ability of EMO algorithms to widely explore the solution
space, and the accuracy of MCDM techniques in selecting the
solution representing the nearest compromise to the decision-
maker’s preferences.

An EMO algorithm, i.e., the Non-dominated Sorting Ge-
netic Algorithm II (NSGA-II) with purposely-defined con-
straint handling) is first used to generate Pareto-optimal solu-
tions. Then, a hybrid MCDM technique selects the best solu-
tion in two steps: (i) a fuzzy version of the Analytic Hierarchy
Process (F-AHP) is used to faithfully derive the decision-
maker’s preferences for the objectives; (ii) the Technique for
Order of Preference by Similarity to Ideal Solution (TOPSIS)
considers each solution as an alternative of an MCDM problem
and selects the best one using the preferences derived with F-
AHP.

The paper is organized as follows. Section II introduces
multi-criteria decision making. Section III contains some pre-
liminaries on multi-objective optimization, and Section IV
describes the genetic algorithms fundamentals for both single-
objective and multi-objective optimization. Section V explains
the concepts of sensitivity to risk and risk sensitivity profile.
Section VI contains the formal model of the worker’s careful-
ness. In Section VII, the problem formulation is given. Sec-
tion VIII contains the details of the resolution methodology.
In Section IX, four applications of the proposed optimization
framework to real-world scenarios are discussed: one scenario
involved personnel recruitment and the other three involved
personnel reassignment. Finally, the conclusions are drawn in
Section X.

II. MULTI-CRITERIA DECISION MAKING

An MCDM problem is characterized by a goal, a set of
criteria and a set of alternatives. Criteria and alternatives
are called elements. Alternatives represent different choices
available to the decision maker, while criteria are the different
perspectives from which alternatives can be viewed. The goal
consists in finding the best alternative with respect to all the
criteria.

A. Analytic Hierarchy Process

AHP [19] is an MCDM method wherein elements are
structured as a hierarchy. In general, criteria can be expressed
in terms of sub-criteria. For the sake of clarity, here the
simplest case is considered, where the hierarchy is composed
of three levels: the uppermost containing the goal, the inter-
mediate containing the criteria, and the lowest containing the
alternatives. Each criterion is connected to the goal, and each
alternative is connected to each individual criterion.

AHP ranks criteria with respect to each other and with
reference to the goal. Alternatives are ranked with reference to
each criterion. For each level of the hierarchy, AHP builds an
n× n pairwise comparison matrix (hereafter PCM) P = [pij ]
by comparing the elements with each other, with respect to
each shared parent, i.e., each element of the upper level, where
n is the number of elements in the level, and i, j ∈ {1, . . . , n}.
The following conditions hold: pij > 0, pij = 1/pji, and
pii = 1 ∀i, j ∈ {1, . . . , n}. Coefficients pij , called prefer-
ences, estimate the preference of i over j, and are typically
expressed using the Saaty scale (see Table I).

Saaty proved in [20] that the relative weights of the
compared elements are the components of the (normalized)
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principal eigenvector of a consistent PCM. An n×n PCM P
is consistent if pij = pikpkj ∀i, j, k ∈ {1, . . . , n}. However, in
real situations, this is not always achievable for PCMs based
on the Saaty scale (Saaty matrices).

Hence, Saaty defined a consistency index, based on the
principal eigenvalue λmax of a Saaty matrix, defined as
CI , λmax−n

n−1 . The principal eigenvalue of a Saaty matrix
always exists, and it holds λmax ≥ n. A consistent matrix has
λmax = n, so CI ≥ 0, and the lower CI the lower the incon-
sistency. To measure the level of inconsistency, AHP compares
CI with a random index (RI) which represents the average
consistency index of many n × n Saaty matrices randomly
generated. The comparison is based on the consistency ratio
CR = CI

RI . If CR > 0.1 judgments have to be reformulated.

TABLE I
SAATY SCALE OF PREFERENCE

Preference Explanation
1 Equally preferred
3 Moderately preferred
5 Strongly preferred
7 Very Strongly preferred
9 Extremely preferred

2, 4, 6, 8 Intermediate values (compromises)

Once the relative weights have been computed, AHP de-
termines the weight of each alternative with respect to the
goal (i.e., its ranking) by multiplying the relative weight of
the alternative with respect to each criterion by the relative
weight of that criterion. These values (one for each criterion)
are then summed and the highest-ranking alternative is chosen.

AHP has been criticized because it entails rank reversal, i.e.,
possible changes within the ranking whenever an alternative
is removed or a new alternative is added [21]. However, in
this paper, AHP is used just to prioritize the criteria (i.e., the
objectives).

B. Fuzzy AHP

Human judgements are usually affected by imprecision and
vagueness. Fuzzy set theory [22] can effectively deal with this
problem. A fuzzy set is defined as F = {(x, µF (x)), x ∈ U},
where U is the universe of discourse and µF is the membership
function such that x 7→ µF (x), where µF (x) ∈ [0, 1]. The set
{x : µF (x) > 0} is the support of fuzzy set F .

x
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Fig. 1. Membership function of a TFN T̃ , and its alpha-cut T̃α.

A fuzzy number is a convex and normalized fuzzy set de-
fined on R. Triangular fuzzy numbers (TFNs) are widely used
to express human judgments. Formally, given l,m, u ∈ R,
such that l ≤ m ≤ u, the membership function µT̃ (x) of a

TFN T̃ , shown in Fig. 1, assumes values such that: µT̃ (x) = 0
if x < l∨ x > u, µT̃ (x) = x−l

m−l if l ≤ x ≤ m, µT̃ (x) = u−x
u−m

if m ≤ x ≤ u.
An alternative representation of T̃ , based on the interval of

confidence (or alpha-cut), is T̃α = [lα, uα] = [(m − l)α +
l,−(u−m)α+ u],∀α ∈ [0, 1] (see Fig. 1).

F-AHP deals with uncertainty and vagueness by substituting
Saaty’s scale with a fuzzy version based on TFNs from 1̃
to 9̃. More rigorously, let P̃ be an n × n PCM containing
TFNs p̃αij = [pαijl , p

α
iju

], and let x̃ be a non-zero n× 1 vector
containing fuzzy numbers x̃i = [xαil , x

α
iu

]. A fuzzy eigenvalue
λ̃ is a fuzzy number that is a solution of P̃x̃ = λ̃x̃. In
order to compute the principal eigenvector, matrix P̃ needs
to be defuzzified. Defuzzification maps a fuzzy set into a
number. There are several ways to perform defuzzification.
For instance, P̃ can be defuzzified by introducing a coefficient
ζ ∈ [0, 1], called index of optimism, used to perform a
convex combination for each element of P̃, thus obtaining
P̂ = [p̂αij ] = [ζpαiju + (1 − ζ)pαijl ]. The principal eigenvector
of P̂ is then calculated as in classic AHP.

C. Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS)

TOPSIS is an MCDM technique [23], [24]. Consider a
problem with n alternatives and m criteria. TOPSIS needs
an n×m decision matrix

H =




C1 C2 · · · Cm

A1 h11 h12 · · · h1m
A2 h21 h22 · · · h2m
...

...
...

. . .
...

An hn1 hn2 · · · hnm


, (1)

where Ai is the i-th alternative, Cj is the j-th criterion,
and hij is the performance of Ai with respect to Cj , where
i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. TOPSIS also considers
a vector ω = (ω1, . . . , ωm), where

∑m
j=1 ωj = 1, which

contains the weights of the criteria. The weights of the criteria
and the performance of each alternative with respect to each
criterion are either directly expressed by experts [25], or they
result from an automatic prioritization process [26]. To select
the best alternative, TOPSIS performs the following steps:

1) construct the normalized decision matrix R = [rij ],
where rij = hij/

√∑n
i=1 h

2
ij ;

2) build the weighted normalized decision matrix V whose
generic element is vij = ωjrij ;

3) determine the ideal solutions, i.e., utopia and nadir. Let
ΩB and ΩC contain the indexes of benefit and cost cri-
teria, respectively. Utopia and nadir are defined, respec-
tively, as A+ = (a+1 , . . . , a

+
m) and A− = (a−1 , . . . , a

−
m),

where a+j = maxi=1,...,n vij for j ∈ ΩB or a+j =

mini=1,...,n vij for j ∈ ΩC , and a−j = mini=1,...,n vij
for j ∈ ΩB or a−j = maxi=1,...,n vij for j ∈ ΩC ;

4) calculate the Euclidean distance of each alterna-
tive from utopia and nadir, respectively, as D+

i =√∑m
j=1(vij − a+j )2 and D−i =

√∑m
j=1(vij − a−j )2;
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5) calculate the relative closeness coefficient of each alter-
native to utopia as RCL+

i = D−i /(D
+
i + D−i ), where

the greater RCL+
i the better Ai;

6) rank alternatives in descending order of relative close-
ness coefficients.

The alternative Ak such that k = arg maxiRCL
+
i is the best.

III. MULTI-OBJECTIVE OPTIMIZATION

A. Fundamentals

MOO aims to simultaneously optimize multiple objectives.
Formally, an MOO problem can be written as

Minimize
x

f(x) = [f1(x), f2(x), . . . , fk(x)] (2)

subject to:

gi(x) ≤ 0, i = 1, . . . ,m (3)
hj(x) = 0, j = 1, . . . , n (4)

where x ∈ Rp, k ≥ 2 is the number of objectives, m and
n are, respectively, the number of inequality and equality
constraints that define the feasible region X ⊂ Rp. The
vector-valued objective function f : Rp → Rk, defined as
f(x) = [f1(x), . . . , fk(x)], contains the functions to minimize
as components. Each x ∈ X is a feasible solution.

B. Pareto dominance and Pareto optimality

In general, MOO problems have no feasible solution for
minimizing all the objective functions at the same time. The
concepts of Pareto dominance and Pareto-optimal solution are
therefore introduced. Given the minimization problem (2)-(4),
consider two feasible solutions x1,x2 ∈ X . Solution x1 is
said to dominate x2, in symbols x1 ≺ x2, if fi(x

1) ≤
fi(x

2)∀i ∈ {1, . . . , k}, and fj(x1) < fj(x
2) for at least one

index j ∈ {1, . . . , k}. A Pareto-optimal solution is a feasible
solution that cannot be improved with respect to any objective
without degrading at least one of the other objectives. The set
of images of Pareto-optimal solutions in the objective space
is called the Pareto front.

IV. GENETIC ALGORITHMS

A. Overview

A genetic algorithm (GA) is a heuristic algorithm based
on the principles of natural selection and biological evolution
[27]. GAs are usually exploited to solve complex optimization
problems that are hard or impractical to deal with analytically.
GAs represent a solution to the problem through encoding
(e.g., bit/integer string, or real-valued vector). A solution
is called individual and consists of a chromosome, whose
components are called genes.

The first step of a GA consists in generating a set of
candidate solutions to the problem, i.e., a set of individuals,
forming a population. The goodness of each individual is
evaluated by a fitness function: for a minimization problem,
the lower the fitness, the better the individual. A selection
phase enables individuals with the best fitness be selected for
reproduction; the selected individuals form the mating pool.

Then, typically, pairs of individuals (parents) from the mating
pool are recombined through the crossover operator. The
mutation operator can also be applied. Individuals generated
by reproduction (offspring) replace (part of) the previous
population.

The process is iterated until a terminating condition is
met, e.g., a maximum number of generations. The individual
with the best fitness in the last population, or throughout all
populations, is typically chosen as the optimal solution.

B. Genetic operators used in the resolution methodology

1) Partially matched crossover: Partially Matched
Crossover (PMX) preserves offspring feasibility within a
constrained problem [28]. PMX is illustrated in Fig. 2, where
chromosomes are represented as integer strings and feasibility
means no duplicated gene. From an operational point of view,
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Parent 1

Parent 2

Offspring 1

Offspring 2

Step 1. Select two random breaking points

Step 2. Exchange the genes position-wise in the matching portion

Step 3. Determine the mapping relationship

Step 4. Repair offspring using the mapping relationship

Offspring 1

Offspring 2

Fig. 2. Partially Matched Crossover.

consider two parents. Two breaking points are generated
randomly along the chromosomes (step 1 in Fig. 2). Genes
between the breaking points form the matching portion.
Position-wise gene exchanges are then performed within the
matching portion to generate two offspring (step 2 in Fig. 2).
The mapping of the exchanged genes is called the mapping
relationship (step 3 in Fig. 2). Consider each offspring. Each
gene outside the matching portion that generates a duplicate
(circled in step 2 in Fig. 2) is repaired by replacing it with the
corresponding value in the mapping relationship. Repairing is
shown in step 4 in Fig. 2.

2) Swap mutation: Swap mutation is the randomized gene
exchange within chromosomes. For each chromosome, two
genes are chosen at random and are exchanged.

C. The NSGA-II algorithm

Genetic algorithms can be used to solve multi-objective
problems. One of the most efficient is NSGA-II [29].

NSGA-II starts by randomly generating an initial population
P0 of n individuals, and associates each individual with a
non-domination rank: rank 1 for the best level, rank 2 for the
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next best level, and so on. NSGA-II first determines the non-
dominated individuals in P0 and assigns them all rank 1; these
individuals belong to the first front. Then, individuals from the
first front are neglected in order to find individuals with rank
2, i.e., those in the next front, and so on.

At iteration t, NSGA-II generates an offspring population
Qt of n individuals, by selecting from the parent population Pt
using binary tournament selection. In a binary tournament two
members of Pt are selected randomly and the strongest of the
two is added to the mating pool. Then, crossover and mutation
operators are applied. Parent and offspring populations are
merged into a new population Pext = Pt ∪ Qt. Each of the
2n individuals in Pext is associated with its non-domination
rank and, accordingly, Pext is divided into fronts. Within each
front, the crowding distance is used to estimate the density
of individuals in each individual’s neighborhood. Crowding
distance is the sum of the distances from an individual to its
closest individual along each objective. NSGA-II sorts indi-
viduals within a front according to their crowding distances.
The new parent population Pt+1 is obtained from Pext by
discarding the worst n individuals, firstly considering sorting
among fronts, and then among individuals within the same
front. NSGA-II iterates for a specified number of generations.

V. WORKER’S SENSITIVITY TO RISK AND RISK
SENSITIVITY PROFILE

A. Risk perception, risk propensity and human factors

Let F be a set of human factors (or simply factors) whose
correlation with risk perception and risk propensity has been
reported in the sociology and psychology literature [11]–[13].
Human factors are here divided into personal, psychological
and task-related. Personal factors refer to factors related to
an individual’s past history and work experience. Personal
and psychological factors are uniquely correlated with the
worker, irrespectively of the task performed. Differently, task-
related factors assume values that are dependent on the task
performed. Human factors are summarized in Table II.

TABLE II
HUMAN FACTORS CORRELATED WITH RISK PERCEPTION AND RISK

PROPENSITY

Personal

age, level of education, income, number of past
industrial injuries and diseases, overall severity
of the suffered industrial injuries and diseases,
injury frequency, personal knowledge of the
risks of the workplace, delay of occurrence of
the risk effects, perceived level of work control,
perceived level of risk control

Task-related acquired expertise, dislike for task
Psychological anxiety level, self-esteem level, worry level

Consider a worker w. Each human factor f ∈ F is
quantified by a human factor value φf,w (hereafter, simply
referred to as value) belonging to a domain Df . The set⋃
f∈F (f, φf,w), containing (human factor, value) pairs, one

for each human factor, is the human factors configuration of
w.

B. From behavioral strategies to risk sensitivity profiles

Let us consider a simple work environment characterized by
a unique risk r. Let set Pr contain all the preventive actions a
worker can perform to prevent r. A preventive action mitigates
a risk in the sense that it can reduce the probability of the risk
materializing and/or lower the risk impact, i.e., the severity
of the impact on the worker’s health. The higher the level of
reduction, the more effective the action is in preventing the
risk. In general, it is not possible to reduce the probability of
a risk materializing to zero, nor can its impact be reduced to
zero.

Different workers exposed to the same risk generally choose
different preventive actions to protect themselves. With ref-
erence to risk r and worker w, the subset of preventive
actions chosen by w is called strategy toward r, and represents
how effective the worker’s behavior is in preventing r. Also,
the higher the values assumed by the human factors that
are directly correlated with higher values of risk perception
(see Section VI-C), the more conscious the worker is in
dealing with risk. This essentially means that a risk sensitivity
profile composed of highly-effective preventive actions and
high values for the human factors directly correlated with
higher values of risk perception, denotes a careful worker due
to his/her high sensitivity to risk. The model proposed in this
paper assumes that if a worker has a high sensitivity to risk,
he/she will be more careful, which makes the risk less likely
to occur and/or will lead to a less severe injury.

The risk sensitivity profile Πr,w of worker w for risk r
consists of two elements: the worker’s strategy toward the risk
and the worker’s human factors configuration, i.e.,

Πr,w =
{
Pr,w ,

⋃
f∈F (f, φf,w)

}
, (5)

where Pr,w ⊆ Pr is the set of preventive actions worker w
performs when exposed to risk r.

The risk sensitivity profile of a worker is fundamental in
modeling the worker’s level of caution with respect to each
risk he/she is exposed to, as the level of caution stems from
the worker’s strategy in dealing with the considered risk. In
turn, the levels of caution of a worker (one for each risk)
and the human factors configuration are used to derive the
worker’s carefulness with respect to a task, i.e., a new measure,
which is formalized in the next section and which expresses
the worker’s suitability level (in terms of safety) to the risks
to which he/she is exposed while performing the task.

VI. MODELING WORKER’S CAREFULNESS

A. Basic elements of the model

In this section, the concept of carefulness is rigorously
formalized. To make the model easier to understand, its basic
elements are first discussed from an intuitive point of view.

Within a workplace, each task is characterized by a set
of risks. Each risk has a level of hazardousness; the higher
the hazardousness, the more likely and/or dangerous the risk.
A worker performing a task can reduce the probability of
each risk materializing, as well as the risk impact, thanks to
a behavioral strategy consisting of one or more preventive
actions. Each preventive action has a level of prevention.
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The higher the level of prevention, the safer the worker’s
interaction with a risk. Thanks to the strategy, a worker’s level
of caution with respect to a risk is derived by analyzing the
number of preventive actions he/she performs for each level
of prevention. Such numbers are then aggregated through a
weighted sum, wherein each level of prevention has a weight.

A worker’s carefulness for a task measures the level of
safety resulting from assigning the worker to the task. In the
proposed model, this extent of safety stems from:
• the worker’s level of caution with respect to each risk of

the task;
• the worker’s human factors configuration.

B. Worker’s level of caution with respect to risks and tasks

Let us consider a set of tasks T = {t1, . . . , t|T |} and
a set of risks R = {r1, . . . , r|R|}, where the symbol | · |
denotes the cardinality of the set. Let E be a |T |×|R| matrix,
called exposure matrix, whose generic element eik = 1 when
performing task ti exposes to risk rk, otherwise eik = 0,
where, from now on, i ∈ {1, . . . , |T |} and k ∈ {1, . . . , |R|}.

Each risk rk ∈ R has a risk hazardousness hk ∈ (0, 1],
which accounts for the probability of the risk materializing and
its impact. The higher the risk hazardousness the more likely a
risk and/or the more serious its effects on the workers’ health.
Generally, the risk hazardousness is defined by an expert in
risk assessment.

Each task ti ∈ T is associated with a task hazardousness
ηi ∈ (0, 1], here defined as:

ηi = max
k∈{1,...,|R|}

eik=1

hk. (6)

Using the max operator in (6), the task hazardousness ηi is
equal to the risk hazardousness hk of the most dangerous risk
workers deal with while performing task ti. In fact, whatever
the task, the greatest danger for workers broadly comes from
the impact the most serious risk may have on their health.

As stated in Section V-B, preventive actions make a risk less
likely to occur and/or they can reduce its impact. Rigorously,
if P = {p1, . . . , p|P|} is the set of all the preventive actions
for all the risks, let Prk be the set of actions that can prevent
risk rk, where Prk ⊂ P . Let B be an |R|×|P| matrix, called
behavior matrix, whose generic element is:

bkq =

{
1 if rk can be prevented by performing pq
0 otherwise. (7)

Depending on the probability/impact reduction capability, each
preventive action pq , where q ∈ {1, . . . , |P|}, is associated
with a level of prevention lq ∈ L = {1, . . . , `max}. High
levels of prevention denote preventive actions that lead to a
considerable reduction in the probability of occurrence and/or
impact of the risks rk, such that bkq = 1. Note that `max stands
for the maximum level of prevention by which preventive ac-
tions can be characterized. In general, even possible preventive
actions pq with lq = `max, cannot fully prevent the risks rk for
which bkq = 1. Preventive actions are associated with levels
of prevention by experts in risk assessment, who evaluate the
ability of each preventive action to make the related risks less
likely as well as reducing their impact.

As explained in Section V-B, a worker wj ∈ W performs
a subset of the actions in Prk when exposed to risk rk ∈ R:
this subset of actions is the strategy of wj toward rk. The
strategies of worker wj with respect to each risk rk make
up the global strategy of wj . Formally, the global strategy
of wj is represented by an |R|×|P| matrix Sj, called global
strategy matrix, whose rows and columns are related to risks
and preventive actions, respectively. The generic element sjkq
of Sj is:

sjkq =

{
1 if wj performs pq when exposed to rk
0 otherwise. (8)

A global strategy matrix must contain only valid strategies,
hence the strategy worker wj uses to prevent risk rk (repre-
sented by the k-th row sjk of Sj) can be exclusively made up
of preventive actions in Prk , i.e., more rigorously,

bkq − sjkq 6= −1, ∀q = 1, . . . , |P|, (9)

where bkq is an element of the behavior matrix, whose value
is defined in (7).

For the sake of clarity, consider house painting as a sample
task that exposes a worker to various risks. For example, con-
sider an accidental fall or shoulder pain due to poor posture. A
different risk hazardousness is associated with each risk, based
on the seriousness of its effects on the worker’s health in the
specific working context. Accordingly, the task hazardousness
is equal to the higher risk hazardousness of the two risks
involved. Let us suppose that possible preventive actions for
the fall risk are, e.g., use of safety snap hooks, checking
the stability of the platform/ladder, refraining from climbing
up ladders, shelves, stacks of boxes, etc., refraining from
rapid movements, use of safety shoes, etc. Likewise, suppose
preventive actions for shoulder pain due to poor posture are
to keep the shoulders in alignment, to avoid maintaining the
same position for a long time, to keep the upper back and neck
straight, etc. Each action has a specific level of prevention
depending on its capacity to prevent the corresponding risk.
Suppose we have three levels of prevention, labeled 1, 2 and
3, corresponding to low, medium and high, respectively.
With reference to the fall risk, the highest level of prevention
may be associated, for example, with fastening the safety snap
hook because of its ability to reduce the risk probability and
impact: even if a worker falls, the snap hook prevents him/her
from hitting the ground. On the other hand, an expert may
associate checking the stability of the platform/ladder with a
lower level of prevention (e.g., medium) because this action
actually makes the risk less likely to happen but has no effect
on the risk impact. A worker’s strategy toward a risk is a
subset of all the preventive actions of that risk. A worker’s
global strategy is the union of the strategies for the two risks.

Now, more formally, consider a worker wj and his/her
global strategy in the global strategy matrix Sj. We define the
vector-valued function # : {0, 1}|R|×|P| → Z|R|×|L|+ , which
takes an |R|×|P| global strategy matrix Sj and obtains, for
each strategy (i.e., for each risk), the number of preventive
actions per level of prevention. The image of the function #,
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E =

( r1 r2 r3

t1 1 0 1

t2 0 1 1

)

B =




p1 p2 p3 p4

r1 1 1 0 0

r2 0 1 1 1

r3 0 1 0 1




h1 h2 h3

0.20.50.8

η1η2

�1 �2 �3 �4

1 2 32

ω1 = 0.25

ω2 = 0.7

ω3 = 0.9
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Levels of prevention

      Risk 
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      Task
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  Global strategy
     of worker j

(�max = 3)

      Global 
strategy matrix
   of worker j

�1 �2 �3 �4
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Sj =




p1 p2 p3 p4

r1 1 1 0 0

r2 0 1 1 0

r3 0 0 0 1




one action with
level of prevention

equal to 1

�Sj =




1 2 3

r1 1 1 0

r2 0 2 0

r3 0 0 1




two actions with
level of prevention

equal to 2

one action with
level of prevention

equal to 3

one action with
level of prevention

equal to 2

Levels of prevention
(�max = 3)

Strategy of worker j
for risk r3

#

Fig. 3. Elements of the carefulness modeling for a scenario characterized by two tasks (t1 and t2), three risks (r1, r2 and r3) and four preventive actions
(p1, p2, p3 and p4). The upper left corner contains the exposure matrix E, and the hazardousness of each risk (h1, h2 and h3) and each task (η1 and η2).
The bottom left corner contains the behavior matrix B, the level of prevention of each preventive action (`1, `2, `3 and `4) and the corresponding weights.
The upper right corner contains the global strategy matrix Sj of worker wj , derived from the elements enclosed by a dashed line in the behavior matrix B.
In matrix Sj, a solid line frame encloses preventive actions with the same level of prevention. The bottom right corner shows the image #Sj of function #
applied to matrix Sj. Each column is associated with a level of prevention (i.e., 1, 2 and 3).

denoted by #Sj, is an |R|×|L| matrix whose generic element
[#Sj]k` is defined as:

[#Sj]k` =
∑

q=1,...,|P|
lq=`

sjkq. (10)

In (10), the count of `-level actions performed by wj when
exposed to rk is assigned to element [#Sj]k` of matrix #Sj.
A weight ω` ∈ (0, 1] is then associated with each level of
prevention ` ∈ L, typically by an expert in risk assessment: the
higher the weight of a preventive action, the better it mitigates
a risk. To help the reader, the modeling elements formalized so
far are graphically summarized in Fig. 3 for a simple scenario.

The level of caution ρkj of worker wj with respect to risk
rk is here defined as a weighted sum of the count of preventive
actions used by the worker for each level of prevention,
normalized so that ρkj ∈ [0, 1], hence:

ρkj =

`max∑

`=1

ω` · [#Sj]k`

`max∑

`=1

∑

q=1,...,|P|
lq=`

ω`bkq

. (11)

The weighted sum is used here due to its ability to attribute
a key role to the effectiveness (i.e., the level of prevention)
of the specific preventive actions performed by the worker,

in order to carefully describe his/her level of caution toward
risk rk.

The level of caution τij of worker wj with respect to task ti
is defined as the ratio of the following two terms: 1) the
Euclidean norm of the vector resulting from the Hadamard
product (denoted with ◦) of vector ρ j ∈ [0, 1]Ri that contains
the worker’s levels of caution for each of the Ri =

∑|R|
k=1 eik

risks of ti, and vector hi ∈ (0, 1]Ri containing the haz-
ardousness of the risks of task ti; 2) the Euclidean norm of
vector 1 expressing the highest level of caution for task ti,
i.e., ‖1‖= √Ri. Hence,

τij =
‖hi ◦ ρ j ‖√

Ri
=

1√
Ri

√√√√
Ri∑

k=1

(hkρ
j
k)2 . (12)

The Euclidean norm is used in (12) to straightforwardly
determine the deviation of the worker’s strategy from the safest
strategy adopted to interact with the risk, i.e., all its preventive
actions performed. Note that ρjk ≡ ρkj .

C. Human factors

1) Task-independent human factors and score functions:
Let F ′ = {f1, . . . , f|F ′|} ⊂ F be the set of task-independent
human factors, i.e., personal and psychological factors. Each
worker is characterized by a set of values, each one associ-
ated with a task-independent human factor in F ′. Formally,
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let F ′+ = {f+1 , . . . , f+|F ′+|} and F ′− = {f−1 , . . . , f−|F ′−|},
where F ′+ ∪ F ′− = F ′ and F ′+ ∩ F ′− = ∅, be the set
of task-independent human factors whose values are di-
rectly proportional to increasing levels of risk perception
(or to decreasing levels of risk propensity), and the set of
task-independent human factors whose values are directly
proportional to decreasing levels of risk perception (or to
increasing levels of risk propensity), respectively. Let D+

u

and D−v indicate, respectively, the domain of f+u and f−v ,
where u ∈ {1, . . . , |F ′+|} and v ∈ {1, . . . , |F ′−|}. Typical
domains are, for example, N for the number of past industrial
injuries, {very low, low, medium, high, very high}
for the perceived level of control over a specific task, and
so on.

The task-independent human factors status of worker wj
is represented by a vector f j ∈ D+

1 × · · · × D|F ′+| × D
−
1 ×

· · · × D−|F ′−|. Each element of f j contains the value of the
corresponding human factor for wj .

More rigorously, let f+u,j ∈ D+
u and f−v,j ∈ D−v be the

value of the human factor f+u ∈ F ′+ and f−v ∈ F ′− for wj ,
respectively. Two sets of linear score functions are defined to
assign human factor scores in terms of sensitivity to risk to
the values of each human factor. Linearity stems from the cor-
relation between the value of the human factors and its impact
on risk perception and risk propensity, referred to in Section
V-A. In particular, the first set {Γ+

u (f+u ), f+u ∈ D+
u ,∀u =

1, . . . , |F ′+|} contains score functions Γ+
u : D+

u → [0, 1]
such that f+u,j 7→ Γ+

u (f+u,j) and Γ+
u (f+u,j) ∝ f+u,j . The other

set {Γ−v (f−v ), f−v ∈ D−v ,∀v = 1, . . . , |F ′−|} contains score
functions Γ−v : D−v → [0, 1] such that f−v,j 7→ Γ−v (f−v,j)
and Γ−v (f−v,j) ∝ −f−v,j . Score functions can be defined with
the help of an expert in risk assessment in order to map
the values of the domain of each task-independent human
factor into an appropriate human factor score in [0, 1] in terms
of sensitivity to risk. Note that values close to 1 mean a
higher risk perception (better), while values close to 0 mean
a lower risk perception (worse). Figure 4 shows an example
of a score function for the task-independent human factor
“perceived level of work control” (i.e., the extent to which
individuals believe they can control the task they perform)
whose values are directly proportional to decreasing levels of
risk perception.

The global task-independent human factors score ϕj ∈
[0, 1] of wj (hereafter, global task-independent score) is de-
fined as

ϕj = |F ′| ·



|F ′+|∑

u=1

1

Γ+
u (f+u,j)

+

|F ′−|∑

v=1

1

Γ−v (f−v,j)



−1

, (13)

where the harmonic mean is used because of its ability to
mitigate (intensify) the impact of large (small) outliers.

2) The expertise human factor: To quantify how experi-
enced a worker is in performing a task, the task-related ex-
pertise human factor is considered. This serves as a constraint
in the model so that each worker has the minimum expertise
required for the task assigned. The expertise human factor is
modeled as a function of a worker’s ability to perform a task
and how recently the worker last executed that task.

very low

low

medium

high

very high

value

Γ−
PLWC(medium)

DPLWC

1

0

criticality 
score

Γ−
PLWC(low)

Γ−
PLWC(very low)

Γ−
PLWC(high)

Γ−
PLWC(very high)

Fig. 4. Mapping of a score function Γ−
PLWC for the task-independent human

factor “perceived level of work control” (PLWC). Low values of the domain
DPLWC of PLWC are mapped into high scores and vice versa.

Formally, consider a worker wj and a task ti. Let aij ∈
(0, 1] be the ability of wj in performing ti. Let Pi,j be the
set of past jobs wherein wj performed ti, and let p ∈ Pi,j
be one of these past jobs. Let DSTART

j,p and DEND
j,p be the

date on which worker wj began and stopped his/her previous
employment p, respectively.

Let the function days(date1, date2) return the number of
days between date1 and date2, and let NOW represent the
current date. In addition, let the maximum of a set of dates be
the most recent date. The score of the expertise human factor
of wj in performing ti is

zij = aij +

ωPAST
∑

p∈Pi,j

days
(
DSTART
j,p , DEND

j,p

)

ωIDLE · days
(

max
p∈Pi,j

DEND
j,p ,NOW

) , (14)

where aij is expressed by an expert who evaluates the ability
of wj in performing ti, through, for example, a practical test
performed in a risk-free context. Weights ωPAST and ωIDLE ,
such that ωPAST + ωIDLE = 1, are intended to be expressed
by the management based on the importance given to the
global duration of the past jobs concerning a given task, and
how long it has been since the worker performed that task for
the last time, respectively. As an alternative, the management
may compute zij just considering the worker’s past jobs, thus
neglecting the term aij in (14). The possible current job p? of
wj is considered as a past job with DEND

j,p? = NOW. Note that if
worker wj is currently performing task ti, the denominator of
(14) would be equal to zero, since days(NOW,NOW) = 0, and
zij → +∞, which would make no sense. In this case, days()
is assumed to return ωPAST /ωIDLE , and the contribution of
ωPAST and ωIDLE is canceled because whenever a worker
is currently performing a given task, what actually matters
for the calculation of zij is just the number of days until the
current day that the worker has been performing the task.

Equation (14) stems from the following consideration. The
total time a worker spends performing a particular task leads
him/her to achieve a certain level of expertise for that task,
regardless of the time intervals (in the past) when the worker
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was not performing it. Given the specificity of the tasks of
a manufacturing company, which are composed of specific
sequences of actions and precautions to be taken at any
time, if a worker performed a task in the past, but he/she
is no longer performing the task, a decrease in expertise has
certainly occurred, which is intuitively proportional to the time
elapsed since the last time he/she performed the task. For
manufacturing tasks, it is thus reasonable to assume that the
longer the time since a worker last performed a task, the less
likely he/she will precisely remember the steps involved, and
their particular sequence of actions. We therefore considered
the decrease in expertise as linearly dependent on the time
elapsed since the last time the worker performed the task.
More complex (and more accurate) formulations could be
investigated, but this is not within the main scope of this paper.

3) The dislike for task human factor: The task-related
dislike for task human factor is used to formalize an objective
function, as will be explained in Section VII-B.

D. Worker’s carefulness

The carefulness of a worker with respect to a given task
blends the worker’s level of caution for the task (i.e., the
safety level of his/her behavior when executing the task) and
his/her human factors configuration to measure how much the
worker’s careful forethought is able to prevent the injuries
caused by the risks to which he/she is exposed while per-
forming that task. Note that carefulness differs from caution as
caution uniquely stems from the worker’s behavior, no matter
his/her human factors configuration.

Formally, we define the carefulness of worker wj with
respect to task ti as

χij = γijτij , (15)

where τij is the level of caution of wj with respect to ti as
defined in (12), and the coefficient γij is formally defined in
(16). In more detail, γij depends on the problem dealt with:
personnel reassignment or personnel recruitment. Personnel
reassignment aims to optimize the objectives by changing
some of the current employee-task associations. Instead, start-
ing from a set of candidates, personnel recruitment aims to
select the most appropriate people to hire for the vacant
positions in a company.

For reassignment problems, the quantity |ϕj − ηi| in (16)
measures the closeness of the worker’s global task-independent
score ϕj to the hazardousness ηi of the task: the higher the
closeness, the less the caution is penalized by the global task-
independent score. This essentially means that, given a task ti,

using the term (1− |ϕj − ηi|) in (16), a worker wj is assumed
to be more suitable to perform a task, the closer his/her global
task-independent score ϕj is to the hazardousness ηi of the
task. The lower the worker’s global task-independent score
with respect to the hazardousness of a task, the more likely
the worker is to get hurt, if assigned to that task with no risk
awareness training. Conversely, the higher the worker’s global
task-independent score with respect to the hazardousness of a
task, the less the worker’s performance is properly exploited
regarding the task-independent human factors influencing risk
perception, i.e., the worker could be safely assigned to riskier
tasks. Figure 5 shows a plot of γij versus (ϕj − ηi).

10.60.2-0.2-1

-0.5

0.5

1

1.5
reassignment
recruitment

γij

ϕj − ηi
-0.6

Fig. 5. Plot of γij versus (ϕj − ηi) for reassignment (solid line) and
recruitment (dashed line).

For recruitment problems, γij has a different shape de-
pending on the sign of ϕj − ηi. In detail, if ϕj − ηi ≥ 0,
that is, the worker’s global task-independent score is higher
than, or equal to, the task’s hazardousness, the worker’s level
of caution τij in (15) is multiplied by a positive term (i.e.,
γij = 1 + ϕj − ηi) which is linearly dependent on ϕj − ηi.
This means that, given τij , the better the worker’s performance
regarding the task-independent human factors, the more τij is
increased. On the other hand, if ϕj − ηi < 0, the term γij
acts as a penalty coefficient for the worker’s caution τij in
(15). In particular, a logarithmic penalty is considered here,
i.e., γij = 1 − ln(1−2(ϕj−ηi))

ln(2) . The logarithm is chosen since
the caution of a worker with a global task-independent score
lower than the task hazardousness, i.e., ϕj − ηi = −∆, with
∆ ∈ [0, 1), needs to be penalized more drastically than it
would be augmented for the same difference, but opposite
in sign, i.e., if ϕj − ηi = ∆. This is justified by the fact
that, when ϕj − ηi = −∆, assigning a worker wj to task ti
is considered increasingly unsafe as |∆| increases, because
of the worker’s lower innate ability to perceive the risks

γij =





1− |ϕj − ηi| for personnel reassignment problems





1 + ϕj − ηi if ϕj − ηi ≥ 0

1−
ln
(

1− 2(ϕj − ηi)
)

ln(2)
elsewhere

for personnel recruitment problems
(16)
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and, therefore, the danger to which he/she is exposed, with a
consequent increase in the probability of the risk materializing
and/or having a negative impact. The values of the logarithmic
penalty coefficients (i.e., 1

ln(2) and 2) were chosen to achieve
the desired shape of the penalty function for ϕj−ηi ∈ [−1, 0].
In particular, for ϕj − ηi ∈ [−1,−0.5] the penalty is negative,
which means that the corresponding worker-task assignment
is considered even more unsafe.

VII. OPTIMIZATION PROBLEM

A. Objective functions
The aim of the proposed optimization model is to optimize

three objectives: COST, DISLIKE and CAREFULNESS.
Let xij ∈ {0, 1} be a decision variable such that

xij =

{
1 if task ti is assigned to worker wj
0 otherwise (16)

where i ∈ {1, . . . , |T |} and j ∈ {1, . . . , |W|}. The vector x ∈
{0, 1}|T |×|W| represents a personnel assignment and contains
the decision variables xij in lexicographic order, as elements.

Consider the cost cij of assigning task ti to worker wj ,
which may be conceived as the amount of money a company
has to pay for wj if assigned to ti (i.e., the employment cost
together with the cost of training). As in the classic version
of the job assignment problem, one of the objectives is to
minimize the global cost, here defined as:

COST (x) =

|T |∑

i=1

|W|∑

j=1

cijxij =

|T |∑

i=1

|W|∑

j=1

(
cEMPLOYMENT
j + cTRAININGij

)
xij . (17)

In (17), cEMPLOYMENT
j is the employment cost of worker

wj , i.e., the actual amount the employer pays for the em-
ployee’s salary and benefits. The employment cost includes
the salary, commissions, taxes such as social security and
insurance, insurance premiums and pension schemes, as well
as the cost of any other fringe benefits. The other term, i.e.,
cTRAININGij , is the cost of training wj if assigned to ti.

In the proposed model, the workers’ global dislike for the
task assigned is also minimized. Let dij ∈ {0, . . . , dmax} be
the value of the dislike for task human factor expressed by
worker wj for each task ti; the greater dij the less wj likes
ti. Global dislike represents the workers’ overall aversion to
a personnel assignment x, and is defined as:

DISLIKE(x) =

|T |∑

i=1

|W|∑

j=1

dijxij . (18)

Finally, global carefulness is maximized. The global care-
fulness of a personnel assignment x measures the extent to
which riskier tasks are assigned to workers with higher levels
of carefulness, and vice versa. More formally, the global
carefulness function is defined as

CAREFULNESS(x) =

|T |∑

i=1

|W|∑

j=1

χijxij =

|T |∑

i=1

|W|∑

j=1

(γijτij)xij ,

(19)

where χij is the carefulness of worker wj with respect to task
ti (see (15)), γij is the penalty term formalized in (16), and
τij is the worker’s level of caution with respect to task ti (see
(12)).

B. Problem formulation

Let us consider a set of tasks T and a set of workers W ,
where, in general, |W|S |T |. Assume that each task can be
assigned to one worker and vice versa. Also, suppose that each
worker can perform any task.

As stated in Section VII-A, global cost and global dislike
are minimized, while global carefulness is maximized. Max-
imizing the global carefulness corresponds to minimizing its
opposite, i.e., −∑|T |i=1

∑|W|
j=1(γijτij)xij . Hence, the proposed

multi-objective formulation of personnel assignment is mod-
eled as the following minimization problem, using the notation
and concepts introduced here and in Section VI:

Minimize
x

f(x) = [COST (x), DISLIKE(x),

−CAREFULNESS(x) ] =
[ |T |∑

i=1

|W|∑

j=1

(
cEMPLOYMENT
j + cTRAININGij

)
xij ,

|T |∑

i=1

|W|∑

j=1

dijxij , −
|T |∑

i=1

|W|∑

j=1

(γijτij)xij

]
(20a)

subject to:




∑|T |
i=1 xij = 1, ∀j = 1, . . . , |W| reassignment

∑|T |
i=1 xij ≤ 1, ∀j = 1, . . . , |W| recruitment

(20b)
|W|∑

j=1

xij = 1, ∀i = 1, . . . , |T | (20c)

zijxij ≥ zmini , ∀i = 1, . . . , |T |, ηi ≥ ηmax,∀j = 1, . . . , |W|
(20d)

xij ∈ {0, 1}, ∀i = 1, . . . , |T |,∀j = 1, . . . , |W|. (20e)

Equation (20a) is the vector-valued objective function
f(x) : {0, 1}|T |×|W| → R+ × [0, dmax|T |] ×[
−2|T |,

(
1− ln(3)

ln(2)

)
|T |
]

whose components are the
global cost, the global dislike for the task assigned, and the
opposite of the global carefulness for a personnel assignment
x ∈ {0, 1}|T |×|W|. Constraints (20b), one for each worker,
are problem-dependent; in personnel reassignment, they
ensure each worker is (re)assigned to one task; in personnel
recruitment, because of the imbalance of workers and tasks,
a worker may not be assigned to a task. Constraints (20c),
one for each task, force a task to be assigned to exactly one
worker. Constraints (20d) express the minimum expertise
zmini required to perform each safety-critical task ti, i.e.,
those tasks with a task hazardousness ηi greater than a
problem dependent critical threshold ηmax ∈ (0, 1]. Finally,
(20e) is the integer constraint.
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VIII. RESOLUTION METHODOLOGY

A. Description and motivation

The optimization problem (20a)-(20e) is solved with a
mixed EMO-MCDM methodology.

In particular, weights are first assigned to the objectives
using a fuzzy version of AHP. AHP is used since pairwise
comparison makes it easier for the management to prioritize.
This is because objectives are taken into account two at a
time, which is close to the way people reason when ranking
multiple objectives. Also, AHP has particular advantages when
important elements of the decision are difficult to quantify or
compare [30]. This is the case for carefulness, which is hard to
correctly quantify for a manager because it is a new measure,
which is dimensionless and intrinsically correlated with the
level of safety in the workplace. It would thus be hard to
express, for example, marginal rates of substitutions to derive
priorities by analyzing the related indifference curves. Finally,
to enable the management to express priorities realistically,
vagueness and uncertainty are considered here using triangular
fuzzy numbers, with an index of optimism for defuzzification
[31], [32]. More accurate defuzzification techniques are pos-
sible, but this is not the main focus of the paper.

The NSGA-II algorithm is used in the resolution methodol-
ogy to generate an approximation of the Pareto front. An evo-
lutionary technique is chosen because, compared to weighting
methods, it can generate a continuous and more homogeneous
approximation of every zone of the Pareto front [33], so as
to obtain a much wider choice of Pareto optimal solutions
that are able to meet the decision maker’s preferences more
accurately.

TOPSIS automatically selects the solution to the problem
within the last front by picking the Pareto-optimal solution
representing the nearest compromise to the decision maker’s
preferences. TOPSIS is used because of its simplicity and
ability to deal with the large amount of alternatives in the
decision making process [34].

B. Pseudocode

The pseudocode in Algorithm 1 summarizes the optimiza-
tion methodology. In the code snippet, four procedures are
called. The first one, i.e., FUZZY_AHP(Õ, ζ), takes, as
arguments, the pairwise comparison matrix

Õ =




c d χ

c 1 õ12 õ13
d õ−112 1 õ23
χ õ−113 õ−123 1


, (21)

where each element õij is a TFN with the meanings defined in
Table I, and an index of optimism ζ ∈ [0, 1]. FUZZY_AHP(Õ,
ζ) returns the weights ω of the objectives. The second
procedure is INITIALIZE(pop_size, |W|, |T |, A, b,
Aeq, beq, c, d, χ). This procedure generates and returns
the initial population X of the genetic algorithm, where each
individual is a feasible personnel assignment. The parameters
of the procedure are, in order, the number of individuals of
the population pop_size, the number of workers |W|, the
number of tasks |T |, the inequality and equality constraints,

respectively, in matrix notation, i.e., A, b and Aeq, beq. Also,
c, d and χ, containing, in the order, all the worker-task values
of cost, dislike and carefulness, are used to generate indi-
viduals with appropriate values for the objectives. Procedure
NSGAII(X, A, b, Aeq, beq, cross_rate, mut_rate, c,
d, χ) performs one iteration of the NSGA-II algorithm with
crossover rate cross_rate and mutation rate mut_rate.
Pareto dominance is evaluated according to parameters c, d
and χ. Finally, procedure TOPSIS(X, ω) selects the best
solution xBEST from the final population X according to the
weights in ω, both taken as arguments.

Algorithm 1 Optimization methodology

1: INPUT: Õ, |W|, |T |, c, d, χ, A, b, Aeq, beq,
pop_size, cross_rate, mut_rate,
max_epochs, stop_condition

2: OUTPUT: xBEST

3: ω ← FUZZY_AHP(Õ, ζ)
4: current_epoch← 1
5: X← INITIALIZE(pop_size, |W|, |T |, A, b,

Aeq, beq, c, d, χ)
6: while current_epoch ≤ max_epochs do
7: X← NSGAII(X, A, b, Aeq, beq, cross_rate,

mut_rate , c, d, χ)
8: if stop_condition is true then
9: xBEST ← TOPSIS(X, ω)

10: return xBEST

11: else
12: current_epoch← current_epoch + 1
13: end if
14: end while

IX. EXPERIMENTS AND DISCUSSION

This section presents the results obtained by applying
the proposed framework to two different real-world person-
nel assignment problems, namely, personnel recruitment, and
personnel reassignment, in small manufacturing companies
producing shoes, which voluntarily accepted to take part in
the experiments.

To the best of the authors’ knowledge, this is the first work
including the workers’ sensitivity to risk in a personnel as-
signment problem, and it was thus not possible to include any
comparisons with other existing approaches. The discussion
is therefore based on comparing the assignments obtained
with the proposed framework to those suggested (or currently
adopted) by the management of the factories involved. In
addition, data related to optimization times are not included
since the problems have no strict time constraint.

A. Dataset and implementation

The optimization framework was implemented in JavaTM

and MATLAB R©. A web application was also implemented in
JavaTM EE and MySQL, and deployed on a web server. The
web application implements a website containing a question-
naire, as a multiple choice test. Workers (or applicants) from
various shoe factories remotely and anonymously filled out the
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questionnaire, thus providing us with the data needed for the
experiments. The questionnaire was aimed at:
• collecting data related to the task-independent human

factors of Table II, in order to compute the worker’s
human factors scores and global task-independent score
ϕj (see (13)). Psychological factors, i.e., anxiety, worry
and self-esteem were measured with the Zung test [35],
Penn State Worry Questionnaire [36], and Rosenberg test
[37], respectively;

• collecting data related to the task-related human factors of
Table II. In particular, the values dij of the dislike for task
human factor were expressed by using the scale {very
low, low, medium, high, very high}. These values
were then mapped uniformly into [0, 1]. To quantify the
expertise human factor for each task (see (14)), data
related to each past job duration are required. The ability
aij is evaluated with a risk-free practical test in the
factory;

• for each task ti, acquiring the worker’s strategy for each
risk rk of task ti, i.e., each risk such that eik = 1. The
strategy is composed of the preventive actions pq (such
that bkq = 1) chosen by the worker from a finite set of
proposed preventive actions derived from the behavior
matrix B (see (7)). The chosen actions determine the
elements equal to 1 in the rows sjk of the worker’s global
strategy matrix Sj (see (8)).

Due to limited space, the questionnaire is not reported.
The overall collected dataset consisted of 131 interviews. A

total of 100 interviews related to a recruitment process were
used to test the proposed framework regarding a real personnel
recruitment problem (REC). The results are discussed in
Section IX-D.

The remaining interviews, related to three different shoe
factories with 8, 10, and 13 workers, respectively, were used
in relation to personnel reassignment, in order to show the
significant increase in global carefulness (and thereby the
contribution of the proposed approach to making risks less
likely and/or less dangerous) which is achievable by simply
reassigning (part of the) tasks. The results of this second
experiment are discussed, as REA1, REA2, and REA3, in
Section IX-E.

B. Genetic encoding

In this work an integer-valued encoding was used. A per-
sonnel assignment is represented by a chromosome with as
many genes as the number of tasks: the value of a gene is an
integer identifier of the worker assigned to the task associated
with the gene. Different genes must contain different values.

C. Parameters of NSGA-II

Simulations were carried out to find the best values for
the parameters of NSGA-II. More precisely, three popula-
tion sizes, i.e., {250, 300, 350}, three crossover probabilities,
i.e., {0.25, 0.55, 0.85} and three mutation probabilities, i.e.,
{0.01, 0.05, 0.09} were first chosen based on heuristic consid-
erations, also considering that mutation probability is typically

one order of magnitude lower than crossover probability.
Population sizes were heuristically selected to obtain a fairly
uniform approximation of the Pareto front.

By combining these values, 27 configurations of parameters
were obtained. The maximum number of iterations was kept
to 1000. For each configuration, twenty runs were performed,
starting from different initial populations. At the end of each
run, the best Pareto-optimal solution was selected by TOPSIS,
thanks to the weights determined with F-AHP. Finally, the
average global cost, dislike and carefulness of all the solutions
obtained by every run of the considered configuration of
parameters were computed. The Student’s t-test was used to
validate the statistical significance, where the null hypothesis
H0 assumed that the difference in the mean values is due to
chance. A total of 339 comparisons (i.e., (27−1)2

2 + 1) were
carried out to compute Student’s t-test values for each objec-
tive. The critical value tCRITICAL for 95% confidence was
chosen. Hence, considering two compared configurations of
parameters, H0 is rejected if their t value exceeds tCRITICAL.
The configuration resulting in the greatest number of H0

rejections was chosen since it is statistically better than any
other configuration.

D. Personnel recruitment (REC)

1) Description of the problem: Personnel recruitment is
carried out by companies to select the most suitable worker to
assign to each vacant position. Usually, an expert evaluates
how experienced a candidate is in performing a task by
analyzing his/her past jobs and their duration, and evaluating
his/her ability in performing the task through an appropriate,
risk-free practical test. The higher the candidate’s ability in
performing a given task, the lower the cost of assigning the
candidate to that task, thanks to the lower cost of training.

2) Personnel recruitment in the company involved: Per-
sonnel recruitment consists of the following steps, in which
candidates:
• provide a curriculum vitae;
• perform some practical tests;
• have an oral interview.

A suitability degree for each task is eventually assigned to each
candidate based on the analysis of the curriculum vitae, the
outcome of the practical tests and the interview. In addition,
the cost is taken into account, in order to minimize the
capital allocated for the recruitment of new employees. The
management considers the cost of assigning a worker to a task
as dependent on his/her work seniority and level of dexterity
in performing the task.

3) Limitations: Although the footwear industry is charac-
terized by serious risks, including crushing injuries, intoxica-
tion, amputation, falls and burns, in the factories considered,
risk management is carried out exclusively by assigning more
dangerous tasks to candidates with a higher number of years of
experience. This is an extremely inefficient risk management
approach, mainly because a person’s expertise is only one of
the human factors influencing risk perception and propensity.
All the other factors introduced in Section V-A are ignored
by the management. Moreover, by merely considering the
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worker’s expertise for the assignment of dangerous tasks, the
worker’s behavior when dealing with risks is in no way taken
into consideration, leading to inevitable inefficiencies.

4) Proposed technique for personnel recruitment: Using
the proposed framework, the management was first asked to fill
in a PCM for the objectives (i.e., cost, dislike and carefulness)
by means of judgments expressed in terms of a fuzzyfied Saaty
scale of preference, with the meanings shown in Table I. The
weights of the objectives were derived through F-AHP and are
shown in the first row of Table III.

An expert in risk assessment configured the score functions
needed to obtain the global task-independent score (see (13)).
This expert classified the preventive actions into three levels
of prevention (i.e., low, medium, high) associated with expo-
nentially increasing weights (the terms ω` in (11)).

The optimization framework was applied to a personnel
recruitment process (REC) carried out by a footwear company.
The company had to select 10 new workers to be assigned to
10 tasks. The management considered a total of 100 applicants
for the vacant positions of the company. A candidate generally
applies for a single position (i.e., task), thus the expertise
in other tasks is considered to be zero. A practical test was
therefore required just for the position each applicant applied
for.

Data related to each candidate’s human factors and strat-
egy toward each risk were gathered using the questionnaire
described in Section IX-A, in order to obtain each candidate’s
human factors scores and his/her level of caution toward each
risk. The level of caution with respect to each task and the
global task-independent score of each candidate were first
computed according to (12) and (13), respectively. Then, the
carefulness of each candidate with respect to each task was
computed according to (15). The Pareto front was generated
by means of NSGA-II using the parameters in Table IV.

The best solution to the problem is reported in Table V.
The table is organized into horizontal and vertical blocks.
The two vertical blocks (labeled “Tasks” and “Objectives”)
refer to the tasks to be assigned (indicated as “T1”, “T2”, and
so on) and the values of the objective functions, respectively.
Each horizontal block is related to a specific scenario (REC,
REA1, REA2, or REA3) and is split into two rows labeled
as “Suggested” and “Proposed” for REC, and “Current” and
“Proposed” for REA1, REA2 and REA3. Consider a horizontal
block. Each cell in the first vertical block contains the identifier

TABLE III
WEIGHTS OF THE OBJECTIVES FOR THE PERSONNEL RECRUITMENT AND

REASSIGNMENT PROBLEMS

COST DISLIKE CAREFULNESS
REC 0.4917 0.1024 0.4059

REA1 0.3184 0.2107 0.4709
REA2 0.5824 0.0372 0.3804
REA3 0.0309 0.3866 0.5825

TABLE IV
PARAMETERS USED FOR THE PERSONNEL RECRUITMENT (REC) AND THE

PERSONNEL REASSIGNMENT PROBLEMS (REA1, REA2, REA3)

REC REA1 REA2 REA3
Chromosome encoding Integer string

Selection method Binary tournament
Crossover operator Partially matched crossover
Mutation operator Swap mutation

Population size 300 250 300 350
Crossover rate 0.85 0.55 0.85 0.85
Mutation rate 0.05 0.01 0.05 0.09

Max number of iterations 1000

of the worker assigned to the corresponding task for the
suggested/current (or proposed) personnel assignment; each
cell in the second vertical block contains the value of the cor-
responding objective for the suggested/current (or proposed)
personnel assignment.

Finally, the left hand side of Fig. 6 shows the scatter plot
of the Pareto front viewed from two different perspectives,
indicated as (a) and (b). In the plots, circles represent Pareto-
optimal personnel recruitments.

5) Discussion: Within REC, the aim is to improve the
carefulness with a minimal increase in cost. This is evident
from the weights of cost and carefulness in Table III, which
are quite similar. Dislike, in this case, plays a marginal role,
with a lower weight of 0.1024.

Table V shows that the management suggested a recruitment
with global carefulness equal to −2.731. With the proposed
recruitment, a 235.41% improvement in global carefulness is
achieved. This is an outstanding improvement. The extent of
safety in dealing with risk is highlighted by the fact that
more than 70% of workers now (i.e., after our solution was

TABLE V
PERSONNEL ASSIGNMENTS WITH CORRESPONDING OBJECTIVES VALUES FOR THE EXPERIMENTED RECRUITMENT AND REASSIGNMENT PROBLEMS

Tasks Objectives
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 COST[e] DISLIKE CAREFULNESS

REC Suggested 24 77 51 59 86 12 47 2 90 72 - - - 22,490 9.54 −2.731
Proposed 29 77 13 54 63 84 2 36 97 57 - - - 24,153 3.11 3.698

REA1 Current 5 7 2 6 1 4 8 3 - - - - - 15,240 7.44 2.157
Proposed 3 7 2 6 1 4 5 8 - - - - - 17,200 2.45 3.847

REA2 Current 2 9 4 6 3 10 1 5 8 7 - - - 20,496 1.18 3.021
Proposed 7 1 4 6 8 10 9 5 3 2 - - - 21,570 2.86 5.414

REA3 Current 4 12 9 2 13 6 11 3 10 7 1 5 8 34,780 8.52 3.551
Proposed 4 10 9 2 13 8 11 1 3 7 12 5 6 41,577 2.96 6.695
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Fig. 6. Different views of the Pareto front of two representative scenarios: (a) and (b) are views of the Pareto front of the personnel recruitment experiment
(REC); (c) and (d) show the Pareto front of the personnel reassignment related to the factory with 13 workers (REA3).

implemented) deal with the assigned task with a strategy
exclusively composed of high-level preventive actions. The
most unsafe strategy is composed of two medium-level actions
and one low-level action for a worker assigned to a task with
a hazardousness of 0.37. Data on the strategies are omitted
here for reasons of space. Finally, the proposed recruitment
brings the global dislike down to one-third of the global dislike
of the assignment suggested by the management. There is
no worker with a dislike for the task higher than medium,
and just three workers express a medium dislike for the
assigned task. Therefore, although global dislike is not one
of the paramount objectives of REC, the proposed recruitment
creates a workplace where workers are much more satisfied
with the assigned tasks, with important positive consequences
on both risk perception and the work climate. All these
improvements are possible at just a 7.39% increase in the
global cost.

Figure 7 shows a clustered column chart of the objectives
values for suggested/current and proposed personnel assign-
ments, for all the scenarios tested. Each cluster is composed of
three bars representing, from left to right, the values of global
cost, global dislike and global carefulness. With reference to
REC, it is possible to compare the values of the objectives of
the suggested and proposed recruitment, by referring to the
first two clusters on the left.

E. Personnel reassignment (REA1, REA2, REA3)

1) Description of the problem: Personnel reassignment
consists in reallocating the personnel of a company in order to
obtain the improvement of some objective. The optimization
model described in this paper was applied to three scenarios
of personnel reassignment (REA1, REA2, and REA3), each
related to a different footwear company. The following sec-
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Fig. 7. Clustered column chart of the objectives values of suggested/current
and proposed personnel assignment in the recruitment (REC) and reassign-
ment problems (REA1, REA2 and REA3).

tions contain details of the experiments on reassignment and
a discussion of the results.

2) Experiments on personnel reassignment: For each of the
three reassignment scenarios, the management was asked to
fill in a PCM to derive the priority of the objectives. Also, an
expert in risk assessment configured the score functions for the
global task-independent score (see (13)). As in the recruitment
experiment, data related to each worker’s human factors and
strategy toward each risk were obtained from the worker’s
answers to the questionnaire. Pareto fronts were obtained by
NSGA-II using the parameters in Table IV.

3) Discussion: All the companies saw global carefulness
as one of the most important objectives (see Table III). The
purpose of the experiments described in this section is to show
that it is possible to significantly increase global carefulness
just by reassigning some tasks to the most appropriate worker.
The results demonstrate that the proposed framework can
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play a key role in SMEs, particularly in small manufacturing
companies, which are very often small family realities with
a low number of employees. In such companies, the capital
available is often limited. Consequently, they tend to opt for
low-cost solutions when attempting to improve safety and
reduce the frequency with which workers are given tasks that
they dislike.

a) REA1: REA1 relates to a factory with 8 employees.
Global cost and global carefulness are the paramount objec-
tives. The management therefore aims to improve workers’
safety with a modest increase in costs. Global dislike is also
not marginal, as shown by the weights in the second row in
Table III.

The best solution is in Table V. Also, with the aid of Fig. 7,
the performance of the proposed personnel assignment can be
graphically compared to the current assignment strategy, by
considering the second pair of clusters from the left. As can
be seen, using the proposed framework, a significant increase
(78.35%) in the global carefulness at the expense of a 12.86%
increase in the global cost was achieved. Note that the increase
in cost is just temporary because it stems from training the
reassigned workers.

Strategies with only high-level preventive actions increased
from two to five. Also, there is no worker with a strategy
with only low-level preventive actions for the assigned task,
while the current assignment has three of these strategies,
one of these with respect to a task with a hazardousness of
0.83, where the worker’s hands may be crushed. In addition,
global dislike, i.e., the least important objective, is more than
halved (from 7.44 to 2.45) with a percentage reduction of
67.06%. The average dislike for the task is low and only
one worker expresses a high dislike for the assigned task,
while in the current assignment more than half of the workers
express high and very high dislike values. Note that the
improvements above are attainable by reassigning just three
workers. Reassignments are shown in Fig. 8.

b) REA2: REA2 relates to a shoe factory with 10 em-
ployees. Similarly to REA1, REA2 is a scenario related to a
company which considers global cost and global carefulness as

being paramount. As can be seen from the third row in Table
III, global cost has the greatest weight, suggesting that the
company aims to increase global carefulness, but the economic
resources are particularly limited. In REA2, global dislike
also plays a very marginal role for the management. The
results achieved are summarized in Table V, and an immediate
comparison with the current assignment is possible by looking
at the third pair of clusters from the left in Fig. 7.

Thanks to the proposed reassignment, global carefulness
achieves a 79.21% increase at the expense of just a temporary
5.24% increase in the global cost, which stems from the cost of
training the reassigned workers, as can be surmised from (17).
Strategies are now composed of only medium- and high-level
preventive actions. Also, in the proposed assignment, there
is no worker strategy with only low-level preventive actions,
while the current assignment has five such strategies.

To achieve the aforementioned improvement in terms of
global carefulness, global dislike is increased by 1.68, in
absolute terms. This is justifiable since the weight of dislike
is 0.0372, and six workers out of ten need to be reassigned
(see Fig. 8). In any case, the increased global dislike is not
dependent on workers having a dislike value for the assigned
task lower than medium, in the current assignment.

c) REA3: REA3 relates to the largest of the factories
involved, and employs 13 people. Two views of the scatter
plot of the Pareto front of REA3 are shown, as representative
of the personnel reassignment experiments, on the right hand
side of Fig. 6, as (c) and (d).

Within REA3, global carefulness is the overriding objective,
with no particular limitation on the increase in the global cost,
which is very marginal. At the same time, the management
is focused on employee satisfaction in terms of gratification
gained from the task performed: in other words, the aim is
also to achieve a low level of global dislike. The weights of
the objectives for the REA3 scenario are in the last row in
Table III. As shown, almost 97% of the importance is given
to global carefulness and global dislike.

The current and proposed assignments are shown in Ta-
ble V. The improvement can be easily evaluated by comparing

worker ID

REA1 REA2 REA3

1    2   3   4    5    6   7   8 1    2   3    4    5   6    7   8    9   10          1    2   3    4    5    6    7   8   9   10  11  12  13       
task ID

Fig. 8. (Re)assignment matrices for REA1, REA2 and REA3: empty and filled circles represent, respectively, current and proposed assignments; filled circles
inside empty circles refer to not reassigned workers. Reassignments are represented as arrows directed from the current to the proposed assignment.
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the last two clusters in Fig. 7. In this scenario with no par-
ticular constraints on global cost, the proposed reassignment
guarantees an 88.54% improvement in global carefulness.
Strategies exclusively composed of low-level preventive ac-
tions are eliminated here. The current assignment has instead
four tasks with a hazardousness greater than 0.7 performed by
workers with strategies based on low-level preventive actions
alone. The most dangerous of these tasks may lead to the
worker’s death as a consequence of falling from a loft where
materials are stored. In the proposed reassignment, this task
is performed by a worker with a strategy composed of only
high-level preventive actions.

With reference to the global dislike, a 65.26% reduction is
achieved: just 2 workers out of 13 have a medium dislike
value for the assigned task; all the others have lower dislike
values. In the current assignment, 6 workers have a dislike
value of high and very high. Such significant improve-
ments derive from six reassigned workers (see Fig. 8) which
leads to a temporary 19.54% increase in the global cost for
their training.

X. CONCLUSION

This paper has proposed a novel multi-objective formula-
tion of the personnel assignment problem by exploiting the
workers’ sensitivity to risk. Because of people’s subjectivity in
perceiving hazardous situations, a novel measure, carefulness,
was formalized. Carefulness stems from: (i) the accuracy of
the precautions a worker takes when exposed to one or more
risks; (ii) the values assumed by human factors related to the
aspects influencing risk perception and propensity.

Considering a set of tasks and a set of workers, the proposed
optimization model is focused on finding a Pareto-optimal
personnel assignment that optimizes three objectives at the
same time: maximizing the global carefulness, and minimizing
the global cost and global dislike for the task assigned.

The problem was solved using a mixed EMO/MCDM reso-
lution methodology. The NSGA-II algorithm was exploited to
obtain an approximation of the Pareto front. A hybrid MCDM
technique based on F-AHP and TOPSIS led to the selection
of the Pareto-optimal solution representing the nearest com-
promise to the decision-maker’s preferences.

Experiments were carried out thanks to 131 anonymous
interviews provided by workers (or applicants) from four man-
ufacturing SMEs, considering four real-world scenarios: one
personnel recruitment with 10 workers, and three personnel
reassignments with 8, 10 and 13 workers, respectively.

The main novelty of the proposed framework consists in
considering the workers’ sensitivity to risk in the personnel
assignment problem. Each task can therefore be assigned to the
person with the safest interaction (i.e., the highest carefulness)
with the task, thus making risks less likely and/or with fewer
injuries. This is achieved by exploiting the workers’ own
capacity to prevent the risks of the tasks they perform.

The results showed that an outstanding increase in the global
carefulness can be achieved just by reorganizing part of the
worker-task associations, with no need for risk awareness
training. Also, a high decrease in the overall workers’ dislike

for the task assigned, thus promoting a better work climate.
These improvements are obtained at the expense of just a slight
increase in the cost, which is paramount for SMEs.

Finally, thanks to the multi-objective formulation, our
framework can be profitably exploited in work environments
characterized by diverse levels of hazardousness, where safety
may not represent the most crucial aspect to be optimized.
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